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Abstract
Multi-object tracking (MOT) is a task to identify objects in videos, however, objects with similar appearance or occlusion may
cause frequent ID switching, which is the main challenge of current MOT. In this paper, we propose a novel self-cross graph
neural network-based multi-object tracking method, which we termed as SCGTracker. This method seamlessly integrates
object detection and tracking through graph neural networks, building upon the foundation of the JDE paradigm. Specifically,
we construct graph structures to capture the correlation between objects in both spatial and temporal dimensions. To further
tackle the frequent ID switching problem, we employ an attention mechanism to aggregate object context information within
the same frame and across different frames, updating the object information via graph neural networks to derive highly
distinctive appearance features. Ultimately, the obtained strongly distinguishable object appearance features serve to mitigate
the issue of frequent object ID switches. In experiments conducted on the MOT17 test set, our proposed method yields
promising results, achieving a 73% Multiple Object Tracking Accuracy (MOTA) and a 73.2% ID F1 score. Furthermore, it
demonstrates a substantial reduction in ID switches compared with state-of-the-art methods.

Keywords Embedding enhancement · Graph neural networks · Joint detection and embedding · Multi-object tracking

Introduction

Multi-object tracking (MOT) entails the analysis of video
footage to identify and track one or more targets. To achieve
this, the targets of interest need to be detected in each frame
of the video. Correctly associating identical targets across
successive frames, as well as accurately handling newly
appearing or disappearing targets, is crucial.

In scenarios like video surveillance [27] and autonomous
driving [16], multi-object tracking algorithms are frequently
employed to detect and track pedestrian targets, aiding in
the comprehension and analysis of their movement trajec-
tories. This tracking capability facilitates early warnings
of abnormal pedestrian behavior or contributes to effective
vehicle control. However, pedestrian targets are subject to
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various factors, including changes in the external environ-
ment, pedestrian posture variations, and object occlusion
[21]. Consequently, maintaining a consistent ID for a specific
pedestrian target throughout the tracking process becomes
challenging, leading to a degradation in tracking effective-
ness, as illustrated in Fig. 1.

To address the challenge of frequent switching of pedes-
trian target IDs, multi-object tracking (MOT) algorithms
predominantly focus on enhancing the appearance feature
representation of pedestrian targets. The prevalent approach
[2, 28, 31, 33] involves training convolutional neural net-
work (CNN)models using both historical frames and current
frames as inputs. This allows the CNN to learn associations
between historical frames and the current frame, utilizing
these associations to improve the feature representation of
the current frame. However, a notable drawback is that
features of pedestrian objects are typically extracted inde-
pendently of each other, with minimal consideration given
to the interactions between objects. Consequently, several
studies have tackled the multi-target tracking task as both a
spatio-temporal graph modeling problem. For example, the
graph neural networks (GNNs) [41] is employed to capture
the interrelationships and contextual information between
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Fig. 1 Illustration of tracking results of FairMOT [39] and our SCG-
Tracker. In the image frames, two pedestrian objects with I D1 and I D2
(shown in red and yellow bounding boxes, respectively) are moving
toward opposite direction in frame 1, while they are partially obscured
at frame 2, and are separated again at frame 3. In (a), FairMOT [39] takes

the original I D2 object (in yellow bounding box) as a newly emerging
object at frame 3,and assigns a new ID to it. Whereas in (b) our pro-
posed SCGTracker maintains the original ID for I D2 at frame 3. This
observation is also applicable to s–6

objects. Studies [13, 36] involve a graph representation
for potential connections between trajectories and detec-
tion results. TransMOT [4] establishes connections between
trajectories in both time and spatial domain using the trans-
former encoders, treating the connection of tracked objects as
sparse graphs. However, themajority of existing graph-based
MOT algorithms fall short in addressing the interrelation-
ships among targets within the same frame and do not
consider the object occlusion scenarios, where the extracted
features may be compromised, potentially leading to corre-
lation errors and error propagation over consecutive frames.

In response to these challenges, we present a joint object
detection and tracking method by incorporating a Self-
Cross attention Graph to improve the feature representative
ability for better Multi-Object Tracking, which we term
as SCGTracker. SCGTracker seamlessly integrates object
detection and tracking, leveraging the intrinsic characteris-
tics of objects as moving objects with low constant velocity
and predictable spatial relationships between neighboring
objects. SCGTracker is built on the highly efficient joint
detection and embedding (JDE [31]) framework. According
to the JDE detected objects and their corresponding feature
embeddings, we propose to model the relationships between
individual objects in both spatial and temporal domains
through building the spatial–temporal object graph for two
consecutive frames in a video stream. To reduce the number
of ID switch caused mainly by occlusion objects’ tracking,
we propose to apply the self and cross-attention mecha-
nism in the spatial–temporal object graph. In special, the
self-attention aggregates the information of all neighboring
objects in a frame for each object. While the cross-attention

is to map objects with similar contexts in consecutive frames
into a shared space by aggregating relevant information
across frames. Throughmessage passing, the self-cross atten-
tion enhances the objects’ feature by considering both the
spatial relationship between objects in a frame and temporal
correspondence between two objects across frames. SCG-
Tracker is an efficient onlineMOTmethod that optimizes the
association of targets in consecutive frames. Through exten-
sive experiments, it is shown to obtain the best performance in
terms of both tracking accuracy and the number ID switches.

The contribution of this study can be divided into three
aspects.

1. The SCGTracker, our proposed solution, is an end-to-end
framework designed for seamless integration of pedes-
trian target detection and tracking, utilizing graph neural
networks. Through this innovative approach, we aim to
improve the features associated with pedestrian targets
and achieve a globally optimized solution for both detec-
tion and tracking tasks.

2. We examine the interrelationships among targets within
the same frame by constructing the object map in the
spatial dimension for that frame. Additionally, recogniz-
ing the smaller target displacement between consecutive
frames, we model the targets in successive frames to
create an object graph spanning different frames in the
temporal dimension.

3. We incorporate a graph neural network, specifically a
Self-Cross AttentionGraph, to improve themiss tracking
of the occluded targets. This is accomplished by spatially
aggregating target context information within the same
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frame through the self-attention mechanism, temporally
aggregating target information across consecutive frames
using the cross-attention mechanism, and updating tar-
get features through message passing to derive highly
discriminative pedestrian object appearance features.

Related work

The tracking-by-detection (TBD)-basedMOT
algorithms

Numerous Multi-Object Tracking (MOT) algorithms adopt
the tracking-by-detection framework, which entails dividing
the multi-target tracking task into object detection and tra-
jectory association. A robust detector, such as Faster R-CNN
[25], CenterNet [6], orYOLOv5 [43], is crucial for predicting
the object’s bounding box. These bounding boxes are then
linked through data association to establish trajectories. To
accomplish this, Bewley et al. [2] initially proposed using
Kalman filtering [32] to predict the position of bounding
boxes from the previous frame in the current frame. They
then utilized the Hungarian algorithm [20] and IOU dis-
tance to match these predicted positions with the bounding
boxes in the current frame for trajectory association. Subse-
quently, Wojke et al. [33] introduced the Re-ID network to
extract appearance features of the bounding boxes, resulting
in improved performance. However, this method demands
substantial computational resources due to the necessity for
additional Re-ID networks.

The joint detection and tracking (JDE)-basedMOT
algorithms

The Joint Detection and Embedding (JDE)-basedMOT algo-
rithm integrates target detection and re-identification (Re-ID)
tasks within a single network. Zhou et al. [41] suggested
predicting the offset of object centroids between consecu-
tive frames and utilized it for data association. Wang [31]
enhanced the original detection task by incorporating the
Re-ID task, achieved by modifying the predictor head of
the detector. Computational efficiency was further optimized
through feature sharing and multi-task learning. Zhang et al.
[39] proposed an architecture based on unanchored target
detection, employing different feature maps for the detec-
tion and Re-ID tasks to alleviate competition between them.
Despite these advancements within the JDE paradigm, there
remains potential for further improvement in the accuracy of
trackers.

The graph neural network-basedMOT algorithms

LGM [8] proposes transforming the target association prob-
lem into a graph matching problem by modeling a graph
based on relationships between trajectories and detections.
It relaxes the undirected graph matching into a continuous
quadratic programming problem. TrackMPNN [24] intro-
duces a framework based on dynamic undirected graphs,
leveragingMessagePassingGraphNeuralNetworks (GNNs)
[41] to generate likelihood for associating each target. Ref-
erence [13] constructs an undirected graph between trackers
and detections, incorporating target appearance features as
node features and pose features as edge features. Node fea-
tures are updated through node similarity, and aggregated
updated edge features. TransMOT [4] establishes trajectory
links by constructing encoders in both temporal and spatial
domains, treating tracked targets as a sparse band-weighted
graph. The decoder component predicts the correspondence
between the output of the encoders and the graph represen-
tation of the current frame. However, this structure requires
substantial computational resources.

Many existing algorithms in this domain often neglect
the interdependencies among targets within the same frame,
resulting in a diminished correlation between consecutive
frames. Moreover, they frequently overlook the impact of
occlusion, where the features of a detected target are influ-
enced by unfavorable factors. As a result, the interaction
between the detected target and the trajectory target through
the graph neural network [41]may inadvertently compromise
the initially favorable features of the trajectory target.

Methodology

In the naturally captured videos, there is an assumption that
the relationships betweenmultiplemoving objects are invari-
ant in a short time period, and even some object is temporally
occluded by the obstacles, the relative relationship between
this object and others will be maintained. Hence, besides the
appearance feature of the individual object, the relative rela-
tionship between objects in framet and the correspondence
relationship across consecutive frames are also important
known information for objects correlation in MOT. Moti-
vated by this assumption, in this paper, we propose a joint
object detection and tracking method based on JDE [31]
framework, which we termed as SCGTracker. As shown in
Fig. 2, SCGTracker takes two consecutive frames as inputs,
and the CNN-based joint object detection and feature embed-
ding are applied to both frames. Then a spatial–temporal
object graph is built by taking the feature embedding as
node description, the relative position description in a frame
as spatial edges, and the object correspondence between
two consecutive frames as temporal edges. To improve the
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Fig. 2 Overview of SCGTracker. The current frame image It is sent to
the backbone network to obtain the feature graph Ft . The cross-attention
network [12] is used to decompose Ft into two separate feature graphs:
Ft1 for the Re-ID task and Ft2 for the target detection task. The target

feature vectorCt−1 extracted from the previous frame It−1 is combined
with the feature graph Ft1 and passed through the self-cross graphmod-
ule to obtain the target feature vector at the moment of It

feature representative ability for re-identification of tempo-
rary occluded objects, a self-cross attention is applied to
the spatial–temporal object graph. During the training of
the self-cross attention-based spatial–temporal object graph,
the message passing process transfers the correlation infor-
mation of neighboring objects for a given object, and the
aggregation step collects all the context information to update
the given object’s feature description. As a result, in addition
to the appearance feature, the relative position and the tem-
poral correlation are all taken into consideration for target
matching, leading to better tracking accuracy and less ID
switches in contrast to the MOT methods that only match on
object appearance feature. This paper provides some defini-
tions as follows (see Table 1):

Notations:

Table 1 Abbreviated statement expression

Abbreviation Full name

MOT Multi-object tracking

CAN Cross Attention Network

SCG Self-Cross Attention Graph

It : Represents the current frame
image

Ft The features extracted from
the backbone network for
image It

Ft1 Features from Ft used for
Re-Identification (Re-ID)
tasks

123



Complex & Intelligent Systems

It : Represents the current frame
image

It−1 Represents the previous frame
image

Ft−1 Features extracted from the
backbone network for
image It−1

Ct−1 Represents the feature vector
extracted from It−1 for a
specific target

Dt−1
p Represents the feature

information of the p-th
target in It−1

Dt−1 � {Dt−1
1 , Dt−1

2 , · · · , Dt−1
nt−1

} Represents the feature
information for all targets in
It−1

nt−1 The total number of targets in
It−1

Gt−1 Represents the target graph
for It−1

Gt Represents the target graph
for It

Eself: Represents the edges within
Gt and Gt−1

Ecross Represents the edges between
Gt and Gt−1

Ct−1′ Represents the target feature
vector of It−1 after
Self-Cross Attention Graph
updates

Ft1′ Represents the target feature
map of It after Self-Cross
Attention Graph updates

ϕx , y Represents the target feature
extracted from Ft1′ with (x ,
y) as the center

Architecture of proposedmethod

SCGTracker is designed to achieve efficient and accurate
tracking of multi-objects, analyzing their movement trajec-
tories for real-time tracking applications such as autonomous
driving. The approach employs a graph neural network
[41] to map two pedestrian targets with high similarity in
consecutive frames to a common space. This mapping aggre-
gates object information to generate highly expressive object
appearance features, thereby preventing confusion in object
association. Leveraging these tools, SCGTracker offers a reli-
able method for pedestrian target tracking.

Our strategy for pedestrian target detection involves
employing an enhanced version of the Deep Aggregation
Network (DLA-34) [35] as our backbone network.We adhere
to the concept of detecting pedestrian targets based on their
centroids.We input two consecutive frames into the network,

utilizing the image It−1 at time t − 1 as input to obtain the
feature map Ft-1. Given that we can directly acquire posi-
tion information for the pedestrian target center in the It−1

image, we extract the appearance feature vector Ct−1 of the
pedestrian target based on that position information within
the feature map Ft−1. This approach enables effective detec-
tion of pedestrian targets and extraction of their features for
tracking.

In addition to the feature map Ft−1, we input the image
It at time t into our backbone network. The feature map
Ft obtained from this process encompasses information
regarding object class confidence, object size, and object
appearance. Recognizing the distinctions in tasks,we employ
the Cross Attention Network (CAN) module to understand
both the commonalities and specificities of detection and Re-
ID task features. The CAN module learns self-relationships
between different feature channels to enhance the feature
representation of each task. Simultaneously, it employs a
cross-relationship mechanism to capture shared information
between the two tasks for commonality learning. Finally,
we decompose the feature map Ft into two separate feature
maps: Ft1 for the Re-ID task and Ft2 for the object detection
task.

To facilitate the data association process, we propose
constructing keypoints based on the appearance features of
pedestrian objects. Specifically, we use the appearance fea-
ture vector Ct−1 of pedestrian objects detected in image It−1

as the keypoint informationDt−1
p , which is then organized

into Dt−1 � {Dt−1
1 , Dt−1

2 , . . . , Dt−1
nt−1

}. Here, nt−1 repre-
sents the maximum number of objects detected in It−1. For
image It , as the position of pedestrian objects is not directly
available, we employ the feature vector at each position of
the Re-ID task’s feature graph Ft1 as the keypoint infor-
mation. To aggregate this information, we utilize the graph
neural network [41] Self-Cross Attention Graph to combine
Dt−1 and Ft1. This process merges the appearance features
of pedestrian objects from the previous frame with those in
the current frame, resulting in a more expressive representa-
tion of pedestrian object appearance in the current frame (the
specific algorithm flow is illustrated in Fig. 2) (see Table 2).

Self-cross attention graph

In real-world environments, pedestrian targets can be
obscured or affected by motion blur, introducing complexity
to the tracking process. Existing tracking algorithms fre-
quently employ the Re-ID features of targets directly in
the data association link, without accounting for potential
interdependencies between targets. This methodology may
undermine the correlation between different frames, leading
to a consistent switch in the ID of the same pedestrian target.
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Table 2 SCGTracker training process

Step Process

Input Current frame image It , the previous frame image It−1

Step 1 Utilize a model to obtain the feature map Ft for the
current frame It
Extract the target feature vectors Ct−1 from the
previous frame It−1

Step 2 Send the feature map Ft to the CAN module,
decomposing it into two parts:
Ft1: Features used for Re-ID tasks; Ft2: Features
used for object detection tasks

Step 3 Build graphs Gt−1 and Gt based on the extracted
target feature vectors Ct−1 and Ft1

Step 4 Feed graphs Gt−1 and Gt into the Self-Cross Attention
Graph module

Step 5 Utilize self-attention mechanisms to aggregate and
update feature information on each node

Node Aggregation: hli � [xli ||ml
Eself→i ], where Gt−1

and Gt connect node i to all other nodes through the
edge Esel f

Node Update:xl+1i � xli + MLP(hli )

Step6 Utilize cross-attention mechanisms for further
information exchange

Node Aggregation: hli � [xli ||ml
Ecross→i ], where

Ecross connects node i in Gt−1 to all nodes in Gt

Node Update:xl+1i � xli + MLP(hli )

Output Complete interaction between Ft1 and Ct−1 to obtain
updated feature information, resulting in Ft1′ and
Ct−1′. Send the feature map Ft2 to the detection
branch, which outputs the object positions on the
image It

As a result, the tracking outcomes becomeunstable, causing a
notable deterioration inMulti-Object Tracking performance.

To tackle this challenge, we introduce the Self-Cross
Attention Graph. The primary innovation of this approach
lies in its spatial modeling of targets within the same frame.
It achieves this by leveraging the self-attention mechanism
[29] to comprehensively capture information within the tar-
get area. Moreover, it aggregates target context information
within the same frame and updates target features through
message passing. The method further extends spatial corre-
lation to the temporal dimensionbymodeling targets between
successive frames, exploiting the consistent contextual rela-
tionships of pedestrian targets over a short period. The
cross-attention mechanism [12] enhances focus on target
information, and message passing is employed to bring tar-
gets with similar contexts in different frames closer in terms
of spatial distance. Consequently, this process significantly
improves the representation of target features.

The Self-Cross Attention Graph entails the construction
of object graphs within the same frame (the previous frame

graph Gt−1 and the current frame graph Gt ) and between
consecutive frames. The nodes in these graphs correspond to
the keypoints in the two images. Intra-frame object graphs
connect node i to all other nodes via Eself, while object graphs
between frames connect node i to all the keypoints in the
other object graph through Ecross. Both Eself and Ecross rep-
resent undirected edges.

The nodes in the graph Gt−1 and graph Gt are updated
with representation information through messages propa-
gated by their edges E . Following themessage passing phase,
the SCGTracker derives the updated pedestrian target feature
vector Ct−1′ in the image It−1 and Ft1 of image It . From the
feature map Ft1′, the Re-ID feature ϕx , y of the pedestrian
target in the current frame is directly extracted, with (x , y)
serving as the center.

Attentional aggregationMulti-target tracking tasks often face
challenges such as occlusion, changes in attitude, scale vari-
ations, and the presence of external or invisible regions, all
of which can degrade target feature information. As a rem-
edy, we have introduced an attention mechanism designed
to prioritize the undisturbed portion of the target, thereby
minimizing sensitivity to disruptive factors.

Self-attention mechanism [29]: Given the similarity in
structure between two object graphs in consecutive frames,
aggregating self-information within the same object graph
can be beneficial for identifying similar nodes.

Cross-attention mechanism [12]: To augment the expres-
siveness of pedestrian object features in the current frame,
a comprehensive comparison is needed between all the key-
points Dt−1

p in the previous frame and the feature graph Ft1
of the current frame. This entails searching for contextual
clues that aid in distinguishing a true match from other sim-
ilarities and filtering out keypoints in the current frame that
correspond to Dt−1

p . This iterative process focuses attention
on specific locations, facilitating information transfer and the
completion of different object graphs (as illustrated in Fig. 3).

To implement self-attention-based information [29]
aggregation within the object graph, we connect node i to
all other nodes in the same graph using both edge Eself in
graph Gt−1 and edge Eself within Gt . Additionally, node i
in graph Gt−1 undergoes cross-attention-based [12] infor-
mation aggregation with nodes in between Gt by connecting
to them. Information between nodes is aggregated through
edges Eself and Ecross, and the representation of nodes is
updated on each layer of the graph neural network [41].

In the aggregation process, the attentionmechanism is uti-
lized to account for the relationship between a node and its
neighbors during information aggregation. The node aggre-
gation formula is as follows:

Hl
i �

[
xli ||ml

E→i

]
. (1)
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Fig. 3 Self-Cross Attention Graph. object graphs Gt−1 and Gt con-
structed from object feature vectors at the moments It−1 and It . First,
intra-frame object information aggregation is performed, followed by

inter-object graph information aggregation based on cross-attention
[12]. Through this process, we obtain more expressive pedestrian target
appearance features

Here, xli represents node i in graph Gt , and l represents
the number of layers in the graph neural network [41]. The
node’s information transfer, denoted as ml

E→i , is the result
of aggregation from all nodes { j : (i , j) ∈ E}, where E ∈
{Eself, Ecross}. The notation [·||·] indicates node information
splicing.

We employ the attention mechanism to perform aggrega-
tion and compute node information transfermE→i . To obtain
the attention of other nodes towards node i , we compute the
representation of node i as a query object qi and retrieve the
value v j of certain nodes based on their properties (e.g., key-
word k j ). Subsequently, we calculate a weighted average of
this information to obtain the attention.

ml
E→i �

∑
j :(i , j)∈E

αi , jv j (2)

The attention weight αi . j between nodes i and j is
obtained by querying the softmax of the similarity between
object qi and keyword k j :

αi , j � Sof tmax
(
qTi k j

)
. (3)

To calculate the query object qi , keyword k j , and value
v j , we use linear projection of the depth feature of the graph
neural network [41]:

qi � Wl
1x

l
i + bl1,

k j � Wl
2x

l
j + bl2,

v j � Wl
3x

l
j + bl3 (4)

To enhance the representational power of the model, we
use a multi-headed attention mechanism with h attention
heads in practice.

ml
E→i � Wl

(
ml, 1

E→i ||ml, 2
E→i ||· · ·||ml, h

E→i

)
(5)

During the update process of the graph neural network
[41], the neighborhood information Hl

i obtained from aggre-
gation is utilized to update the features of the current node
i :

xl+1i � xli + MLP
(
Hl
i

)
. (6)

The Self-Cross Attention Graph incorporates two types
of aggregation mechanisms: self-attention [29] and cross-
attention [12]. In the self-attention mechanism, the input is
Gt /Gt−1, which aggregates contextual information of nodes
within the same feature map, enhancing the expressiveness
of the node features in Gt /Gt−1. Simultaneously, this infor-
mation is fed into the cross-attention mechanism [12] to
enable interaction between nodes connected through con-
tinuous edges. The node information messages from Gt−1

are utilized to strengthen the node features in Gt , resulting
in improved outcomes during the data association phase.
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Network loss

Our proposed network output comprises a detection task and
a pedestrian target feature re-identification task. The learning
task for target detection adheres to the loss function design of
the target centroid-based detection network.We utilize cross-
entropy loss [17] to compute the target centroid category Lcls.
For calculating the target centroid offset loss Loff and the
target area size loss Lsize, we employ L1 Loss [40].

The losses for the detection task are calculated as follows
during testing:

Ldet � Lcls + λoffLoff + λsizeLsize, (7)

where λoff � 1 and λsize � 0.1.
To learn and identify features with different identities in

the Re-ID task, we treat it as a classification task. During
training, we consider all objects in the dataset with the same
identity ID as the same class and use their IDs as classifi-
cation labels for the Re-ID task. To obtain the target center
location (Ci

x , C
i
y) on the heat map, we use bi � (xi1, y

i
1, x

i
2,

yi2). The Re-ID feature vector E(Ci
x ,C

i
y )
is extracted from the

target centroid location (Ci
x , C

i
y) and mapped to the class

distribution vector P � {p(k), k ∈ [1, k]} using a fully con-
nected layer and softmax operation. The classification labels
for the Re-ID task are encoded using one-hot encoding Li (k).
Re-ID losses are then computed as follows:

L identity � −
N∑
i�1

K∑
k�1

Li (k) log(p(k)), (8)

where K represents the number of IDs of all targets in the
training set. To summarize, the overall loss Ltotal is calcu-
lated as follows:

L total � 1

2

(
1

ew1
Ldet +

1

ew2
L identity + w1 + w2

)
, (9)

wherew1 andw2 are learnable parameters that balance these
two tasks.

Experiment

Training details & parameter settings

Datasets We conducted our experiments on the MOTchal-
lenge, specifically utilizing the MOT 16 [19] and MOT 17
[19] pedestrian datasets. Both datasets consist of the same
set of videos, with seven videos assigned for training and
seven for testing. However, it is important to note that while
MOT 16 provides only one detector, MOT 17 offers three

Table 3 Evaluation metrics for multi-object tracking algorithms

Evaluation metrics Description of indicators

False negative Number of real trajectories not
predicted

False positive Number of predicted trajectories that
are not true trajectories

ID Switch Number of times trajectory identifiers
were exchanged

Mostly lost tracklets Maximum 20 percent of trajectories
predicted during tracking, i.e.
number of almost lost trajectories

Mostly tracked tracklets Number of tracked trajectories for
which 80 percent of the trajectories
were predicted for the tracking
process

MOTA Accuracy of multi-object tracking with
bias detection effect

IDF1 The ratio of the number of correct ids
to the sum of true ids and detected ids
is a composite indicator of the
accuracy of the biased ids

detectors, namely Faster R-CNN [25] and SDP [9]. Addition-
ally, we employedMOTSynth, a large-scale synthetic dataset
designed to replace real data, for pedestrian detection, track-
ing, and segmentation. MOTSynth [7] encompasses a wide
range of variations, including changes in environment, cam-
era perspective, object texture, lighting conditions, weather,
seasonal changes, and object identity. By leveraging this
diversity, MOTSynth [7] aims to bridge the gap between
synthetic and real data, enhancing the robustness and gen-
eralizability of our methods.
EvaluationmetricsTheMOTdataset not only offers data sup-

port for video sequences but also provides a range of related
metrics for evaluating multi-object tracking algorithms com-
prehensively. These metrics [1] assess various aspects of
performance, including detection and identity tracking. Table
3 presents the algorithm evaluation criteria and their descrip-
tions provided by the MOT dataset.

In the context of algorithm research, it is essential to con-
centrate on specific metrics that align with targeted business
requirements. When evaluating multi-target tracking algo-
rithms, certainmetrics offer particularly informative insights.
These includeMOTA, IDF1, IDSwitch,ML, andMT.MOTA
(MultipleObjectTrackingAccuracy) and IDF1 (IDF1Score)
are comprehensive metrics that provide a holistic assess-
ment of algorithm performance. MOTA emphasizes detector
performance, while IDF1 prioritizes accuracy in trajectory
matching. The formulas for MOTA and IDF1 are as follows:

MOTA � 1 −
∑

t FN + FP + I D∑
t gt

, (10)

123



Complex & Intelligent Systems

IDF1 � I DT P

I DT P + 0.5I DFP + 0.5I DFN
(11)

We conducted the experiments on Ubuntu 20.04 LTS and
trained the model using GeForce RTX3090. To train the
network on the MOT17 [19] dataset and accelerate the pro-
cess, we first pre-trained on the CrowdHuman [26] dataset.
This pre-training helped improve the human detection per-
formance while providing strong domain generalization. The
network takes inputswith an image resolution of 1088× 608,
is trained for 40 epochs, has an initial learning rate of 0.00001,
and employs a batch size of 12. We applied a learning rate
reduction by a factor of 10 after every 20 training cycles.

Experimental results and analysis

Experimental results and analysis of different modules To
verify the impact of the cross-attention network CAN and the
graph neural network [41] SCG on the multi-object tracking
algorithm. We used the MOT20 [5] training set as the vali-
dation set and performed ablation experiments on it.

Table 4 displays the experimental results module on the
validation set for the differentmodules. It is evident thatwhen
using only SCG, ourmethod exhibits a slight improvement in
theMOTAmetric and a significant decrease in the FPmetric.
These outcomes indicate that SCG can effectively enhance
the representation of appearance features of pedestrian tar-
gets

After incorporating only the Cross Attention Network
(CAN), a notable enhancement in tracking performance and
tracking persistence was observed. This observation sug-
gests a genuine competition between the Re-ID task and the
object detection task. To enhance the model’s performance,
we decoupled these two tasks. The best results on the valida-
tion set were achieved when all modules were added to the
model.

Experimental results and analysis of the number of layers
in the graph neural network We conducted an experiment
to investigate the influence of the number of layers in the
graph neural network [41] on the overall performance of
the algorithm. To identify the most suitable number of
Self-Constructing Graph (SCG) layers, we systematically
increased the number of layers in the graph neural network
[41]. In our study, we introduced two hyperparameters to
control the depth of the graph neural network [41] specifi-
cally for the self-attention and cross-attention mechanisms
[12]. The parameter ls determines the depth of the GNN for
self-attention [29], indicating the number of layers through
which information is propagated and aggregated within each
node’s local neighborhood. Similarly, the parameter lc con-
trols the depth of the GNN for cross-attention.

Table 5 depicts the tracking results obtained by the SCG
with varying numbers of layers on the MOT17 [19] valida-
tion set. Notably, when the number of SCG layers reaches 3,
the tracking performance shows a decline compared to cases
where fewer layers are utilized. This phenomenon can be
attributed to the increased neighborhood aggregation ofGNN
nodes, causing the loss of node diversity within the graph.
Consequently, the vector representations become more sim-
ilar, resulting in smoother node features. In comparison to
using only one SCG layer, employing two SCG layers yields
the best results across various indicators. This observation
can be explained by the fact that when the number of graph
neural network layers is insufficient, the information propa-
gation path becomes limited, impeding the network’s ability
to capture long-range relationships and contextual informa-
tion between nodes. Consequently, the network may struggle
to capture global patterns and structures within the graph
data. For the final algorithm configuration, we opt for a two-
layer graph neural network with ls � 1 and lc � 1

Experimental results and analysis of different features To
assess the effectiveness of augmenting object features, our
study compares the use of solely object appearance features
to the inclusion of object location information.

Table 6 illustrates a decrease of 0.5% in both MOTA
and IDF1 when incorporating Gemo., suggesting that adding
location information may introduce similar target location
characteristics, potentially causing tracking algorithm errors
by incorrectly associating distinct targets as a single target.
In light of this observation, we chose to exclusively use the
appearance features of the objects

Experimental results and analysis of the number of layers of
the graph neural network We investigate the influence of the
number of multi-head attention mechanisms on the overall
performance of the algorithm.

We conducted ablation experiments, varying the number
of attention heads, denoted as "h ". The results, presented
in Table 7, demonstrate the performance of the model under
different configurations.

Interestingly, we observed that the best overall metrics
were achieved when the number of attention heads was set to
3, with the exception of the FP metric. This can be attributed
to the fact that each attention head focuses on different
subspaces of features, allowing for a more comprehensive
understanding of the data. However, when the number of
attention heads is 4, the model may overly emphasize noise
or less significant features in the training data, leading to
reduced generalization ability. On the other hand, a smaller
number of attention heads may limit the model’s capacity to
explore the diversity present in the data.
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Table 4 Experimental results of
different modules on the
verification set

SCG CAN MOTA (%)↑ FP ↓ FN ↓ IDs ↓ MT ↑ ML ↓ IDF1 (%)↑

39.6 23,798 77,120 6228 321 778 41.8√
39.8 21,576 775,899 7115 281 804 39.7√
40.5 21,841 767,858 6255 327 766 40.9√ √
40.5 22,844 767,048 6030 335 847 41.8

Bold values represent the best result or a secondary result

Table 5 Number of self-attention
layers and cross-attention layers Layers MOTA (%)↑ FP ↓ FN ↓ IDs ↓ MT ↑ ML ↓ IDF1 (%)↑

ls � 0, lc � 0 77.1 19,149 56,418 1656 972 114 79.1

ls � 1, lc � 0 78.2 16,797 55,362 1278 984 115 79.2

ls � 0, lc � 1 78.6 17,130 53,709 1389 1002 123 81.0

ls � 1, lc � 1 78.7 18,000 52,536 1206 1008 117 81.2

ls � 1, lc � 2 77.9 18,615 54,633 1371 996 117 80.5

ls � 2, lc � 1 78.1 17,550 54,783 1395 999 114 80.7

Table 6 Ablation study on the
effect of using geometric features
during affinity computation

Appear Geom MOTA
(%)↑

FP ↓ FN ↓ IDs ↓ MT
(%)↑

ML
(%)↓

IDF1
(%)↑

√
73.0 23,772 125,442 2997 43.0 17.6 73.2√ √
72.5 28,110 124,347 2799 41.4 19.9 72.7

Bold values represent the best result or a secondary result

Table 7 Number of different
multi-head attentions in results
on MOT17 validation set

h MOTA (%)↑ FP↓ FN↓ IDs↓ MT↑ ML↓ IDF1 (%)↑

1 76.6% 19,890 56,940 1611 948 129 78.8%

2 86.5% 7188 36,630 1815 1125 87 85.2%

3 87.1% 7479 34,251 1758 1173 75 86.0%

4 85.1% 8403 39,720 1932 1059 87 82.9%

Table 8 Comparison of efficiency between SCGTracker and FairMOT

FLOPs (G)↓ Parameters (M)↓ FPS ↑

Fairmot 87.5 16.5 15.99

SCGTracker 88.1 16.7 14.57

We choose the optimal number of attention heads, in this
case, 3, allows for a balance between capturing relevant fea-
tures and avoiding overfitting or underutilization of important
information, resulting in improved model performance and
generalization ability.

In terms of computational and parameter requirements (as
illustrated in Table 8), our model exhibits a slight increase
compared to FairMOT [39]. This is primarily due to our algo-
rithm’s focus on addressing the issue of frequent ID switching
among high-density pedestrians. The attention module we

have devised involves calculating and modeling correlations
betweenmultiple elements, resulting in higher computational
complexity.However, the attentionmechanismalso enhances
themodel’smodeling and representation capabilities, despite
typically having a relatively small number of parameters.
When evaluating the frames per second (FPS) on theMOT17
[19] dataset, SCGTracker demonstrates competitive perfor-
mance while simultaneously improving tracking accuracy.

The loss diagram of MOT17 [19] is illustrated in Fig. 4.
The metric train_hm_loss reflects the detection loss, while
train_id_loss pertains to the loss of features. On the other
hand, train_loss represents the overall or total loss. Notably,
when the epoch reaches 15, the curve of train_id_loss starts
to exhibit a gradual smoothness. In contrast, train_hm_loss
continues to display a downward trend at 15 epochs, but even-
tually stabilizes around 29 epochs. It is worth mentioning
that train_loss reaches a plateau by epoch 29, indicating a
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Fig. 4 The loss chart of MOT17 [19]

Table 9 Comparison of ours and
other algorithms on MOT16 test
set

Algorithms MOTA (%) ↑ FP ↓ FN ↓ IDs ↓ MT ↑ ML ↓ IDF1 ↑

QDTrack [22] 69.8 9861 44,050 1097 41.6 19.8 67.1

TraDes [34] 70.1 8091 45,210 1144 37.3 20.0 64.7

KDMOT [38] 74.3 – – 797 40.4 17.6 74.7

CSTrack [15] 70.7 10,286 41,974 1071 38.2 17.8 71.8

GSDT [30] 74.5 8913 36,428 1229 41.2 17.3 68.1

FairMOT [39] 74.9 – – 1074 44.7 15.9 72.8

SCGTracker (ours) 74.6 10,589 30,538 1021 44.3 16.1 73.1

Table 10 Comparison of ours
and other algorithms on MOT17
test set

Algorithms MOTA (%) ↑ FP ↓ FN ↓ IDs ↓ MT ↑ ML ↓ IDF1 ↑

CTracker [11] 66.6 22,284 160,491 5529 32.2 24.2 71.6

SGT [10] 76.4 25,974 102,885 4101 48.0 11.7 72.8

GSDT [30] 73.2 26,397 120,666 3891 41.7 17.5 66.5

CenterTrack [42] 67.8 18,498 160,332 3039 34.6 24.6 64.7

TraDes [34] 69.1 20,892 150,060 3555 36.4 21.5 63.9

TrackFormer [18] 74.1 34,602 108,777 2829 – – 68

MOTR [37] 73.4 – – 2439 – – 68.6

FairMOT [39] 73.7 27,507 117,477 3303 43.2 17.3 72.3

SCGTracker (ours) 73.0 23,772 125,442 2997 43.0 17.6 73.2

diminishing improvement in the overall loss. Consequently,
the training process is halted at epoch 26 to prevent further
training iterations that would yield minimal gains.

Comparison with other algorithms: To demonstrate the
state-of-the-art performance of our algorithm on the MOT
challenge dataset, we conducted a comparative analysis with
other top-performing tracking algorithms. By examining
Tables 9 and 10, it becomes apparent that our algorithm does
not exhibit a substantial improvement in theMOTAmetric for
the MOT16 [19] and MOT17 [19] datasets. This is primarily
attributed to the fact that our algorithm primarily focuses on
addressing the issue of ID switching in high-density pedes-
trian datasets.

One crucial measure to evaluate the effectiveness of our
approach is the IDF1 metric, which quantifies the number of
instances where the track ID number differs from the initial

track ID number. Additionally, the IDs metric indicates the
frequency of trajectory identity exchanges. It is worth noting
that our method achieved the best results in terms of IDF1
and IDs, indicating that it effectively alleviates the problem
of pedestrian ID switching in dense scenes.

While the improvement in the MOTA metric may not be
substantial, the exceptional performance in IDF1 and IDs
demonstrates the efficacy of our method in mitigating the
challenges associated with ID switching in crowded pedes-
trian scenarios. This showcases the unique contribution and
value of our approach in addressing this specific problem,
even if it does not lead to a significant improvement in over-
all MOTA performance (The best results are highlighted in
red, and the second-best results are highlighted in blue).

To assess the robustness of our algorithm, we conducted
an experiment on the MOTSynth [7] dataset, comparing it
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Table 11 Comparison of ours
and other algorithms on
MOTSynth test set

Method MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDs ↓

GNMOT [14] 44.7 44.1 299 586 11,445 169,662 4997

GCNNMatch [23] 46.8 58.2 459 348 50,979 125,778 2499

MPNTracker [3] 49.6 59.4 474 303 45,414 121,893 2571

GMTracker [8] 51.7 61.3 519 303 44,232 115,755 2583

GSDT [30] 60.1 62.9 558 291 23,697 108,117 2676

SCGTracker (ours) 57.5 64.3 579 288 33,177 107,838 2229

Bold values represent the best result or a secondary result

with existing graph neural network-based multi-target track-
ing algorithms. The results of this experiment are presented
inTable 11, alongside the findings fromother relevant papers.

Upon analyzing Table 11, we observe that while our algo-
rithm does not achieve the highest scores in terms of MOTA
indicators, it performs on par with other methods in terms of
MOTA, ML, MT, and IDs. Here, MT represents the propor-
tion of ground-truth trajectories covered by track hypotheses
that overlapwith at least 80%of their respective ground-truth
trajectory, while ML represents the proportion of ground-
truth trajectories covered by track hypotheses that overlap
with up to 20% of their respective ground-truth trajectory.

This suggests that our algorithm effectively obtains dis-
criminative target features, contributing to a reduction in the
number of target ID switches. This ability to capture strongly
discriminative target features is a notable strength of our algo-
rithm, contributing to its robustness in multi-target tracking
scenarios.

Visualization results

As depicted in Fig. 5, three distinct trace scenarios were cho-
sen for effective display plots from the test set. The first row
of the figure illustrates the detection effect graph without uti-
lizing the decoupling module (CAN), while the second row
demonstrates the effect of decoupling with the Cross Atten-
tion Network (CAN).

As depicted in the detection effect plots, the response area
of the pedestrian targets enclosed within the red circles in
each image of the first row is notably smaller than that of the
second row. This observation suggests that the competition
between the detection task and the Re-ID task has a substan-
tial impact, not only on the detection task but also on the
tracking task. Hence, it is imperative to decouple them using
a cross-attention network.

The tracking performance of our method on the MOT17
test set is illustrated in Fig. 6. Each row of the figure cor-
responds to a video sequence from the MOT17 test set, and

each column from left to right represents our tracking results
every 30 frames.

Discussion

The SCGTracker is an online algorithm designed for end-
to-end multi-target tracking. It leverages an attention mech-
anism to aggregate information surrounding the targets.
Additionally, it employs message passing to interact with
target feature information, thereby identifying highly dis-
criminative characteristics. However, there are some notable
drawbacks that need to be addressed. First, the performance
in target detection falls short of expectations, as evidenced
by unsatisfactory results obtained from the MOTA indica-
tor. As previously discussed, our method primarily focuses
on enhancing target features while disregarding the crucial
data association module. Second, the SCGTracker fails to
fully exploit the positional information of the targets. Our
experiments reveal that incorporating the positional infor-
mation at the pixel level in the current frame may introduce
similar target position features, resulting in errors within the
tracking algorithm. Resolving these aforementioned issues
constitutes a significant research area within the context of
the MOT framework based on graph neural networks.

Conclusion

We conducted a literature review on the application of
Graph Neural Networks (GNNs) [41] for enhancing target
re-identification (Re-Id). Our findings reveal that existing
algorithms often overlook the interdependencies among tar-
gets within the same frame. Additionally, when facing
occlusion, the features of the detected target can unintention-
ally compromise the high-quality features of the trajectory
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Fig. 5 Impact of CAN on detection tasks

Fig. 6 Tracking effects on the MOT17 test set

target. To address this issue, our paper introduces the con-
struction of object graphs for each frame and between
consecutive frames. We leverage the self-attention mecha-
nism to aggregate target features within the same frame and
employ cross-attention to gather information frompedestrian
targets in two consecutive frames, effectively capturing their
correlations. The target features are then updated using a
Graph Neural Network [41]. Experimental evaluations on
the MOT17 dataset demonstrate that our proposed method
is highly competitive compared to state-of-the-art tracking

methods. In fact, it achieves comparable or superior results
across almost all evaluation metrics.
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