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Abstract

Federated learning makes it possible to train a machine learning model on decentralized data. Bayesian networks are widely
used probabilistic graphical models. While some research has been published on the federated learning of Bayesian networks,
publications on Bayesian networks in a vertically partitioned data setting are limited, with important omissions, such as
handling missing data. We propose a novel method called VertiBayes to train Bayesian networks (structure and parameters)
on vertically partitioned data, which can handle missing values as well as an arbitrary number of parties. For structure learning
we adapted the K2 algorithm with a privacy-preserving scalar product protocol. For parameter learning, we use a two-step
approach: first, we learn an intermediate model using maximum likelihood, treating missing values as a special value, then
we train a model on synthetic data generated by the intermediate model using the EM algorithm. The privacy guarantees
of VertiBayes are equivalent to those provided by the privacy preserving scalar product protocol used. We experimentally
show VertiBayes produces models comparable to those learnt using traditional algorithms. Finally, we propose two alternative
approaches to estimate the performance of the model using vertically partitioned data and we show in experiments that these
give accurate estimates.

Keywords Federated Learning - Bayesian network - Privacy preserving - Vertically partitioned data - Parameter learning -
Structure learning

Introduction

Federated learning is a field that recently rose to prominence
due to the increased focus on data-hungry techniques, privacy
concerns and protection of the data [1, 2]. Using federated
learning, it is possible to train a machine learning model
without needing to collect the data centrally [1]. Since it
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rose to prominence, various techniques for training a model
on centrally collected data have been adapted to be used on
data that is either horizontally or vertically partitioned [2].
Data are said to be horizontally partitioned if multiple parties
collect the same variables though from different individuals,
e.g., two hospitals who want to build a model to predict heart
failure. It is said to be vertically partitioned when multiple
parties collect different variables about the same individuals,
for example, data from a hospital and from a health insurance
company where both parties have unique variables about the
same patients.

A type of model that can benefit from federated learning
is Bayesian networks. Bayesian networks are probabilistic
graphical models that have been widely used in artificial
intelligence [3-6]. They are popular because they can be
built, verified, or improved, by combining data with exist-
ing expert knowledge. For example, medical doctors can
manually create the network structure, ensuring it models
already known dependencies correctly, while the conditional
probability distributions are estimated from data. Thanks to
its graphical representation and probabilistic reasoning, it is
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also a relatively intuitive model for non-technical personnel.
This makes it very useful in scenarios where non-technical
personnel needs to make decisions based on the model, for
example when used as a tool to inform healthcare policies.

Existing literature on Bayesian networks in a
federated setting

While research has been published on federated learning of
Bayesian networks [7-10], publications on Bayesian net-
works trained on vertically partitioned data (also referred to
as heterogeneous data in the literature) are limited. One pro-
posed method [10] only deals with horizontally partitioned
data, and the other approaches [7-9] are all only capable of
handling two-party scenarios. In addition to this none of the
proposed methods can handle missing values in the dataset.

Unfortunately, these two aspects are important in practi-
cal applications. Missing data are a common problem in real
world scenarios this is especially true in federated scenar-
ios where the different parties involved may have different
data collection protocols and quality standards. In order to
still have as large, and representative, a dataset as possible,
records with missing data cannot be excluded.

The limitation to two-party scenarios is also a major down-
side in a federated setting. At its core federated learning
attempts to combine data from as many data-sources as possi-
ble. Limiting algorithms to two-party scenarios runs directly
counter to this goal.

Our contribution

In this article, we propose a novel method called VertiBayes
to train Bayesian networks on vertically partitioned data,
which can handle missing values as well as an arbitrary num-
ber of parties. In doing so we overcome the drawbacks the
existing solutions have. This will allow us to train Bayesian
networks in a vertically split federated setting, with an arbi-
trary number of parties, that are comparable to networks
trained in a classical centrally trained setting.

The rest of the article is laid out as follows. First we will
give some background information about Bayesian networks
in general, and explain how these are trained in a classic
scenario were all data is available centrally. Then we will
describe our proposed method. After this we will describe
the experimental setup we used to verify the federated model
is similar to the centrally trained model. Followed by a dis-
cussion where we will go over aspects such as scalability and
privacy concerns.

Bayesian networks

In this section, we will shortly explain how a Bayesian net-
work is generally trained in a central setting.
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Training a Bayesian network consists of two phases:
structure learning and parameter learning. The first phase,
structure learning, consists of determining the structure of
the graph (i.e., the set of links between variables) and can be
done either manually, using expert knowledge, or automat-
ically, using algorithms such as K2 [11]. The second phase
is the so-called parameter learning. In this phase, the con-
ditional probability distributions (CPDs) for each node in
the network are determined. Throughout this paper, we will
focus on CPDs in the form of conditional probability tables
(CPTs) as these are the most common form of CPD. In the
next subsections, we will discuss how this is done in a cen-
trally trained scenario. After which we will discuss how these
methods need to be adapted for the federated scenario.

Structure learning

The structure of a Bayesian network can be either determined
manually or learnt using an algorithm. Here, we focus on the
latter, since the former does not involve data analysis. One of
the most popular structure learning algorithms is K2, which
performs a heuristic search for a viable structure by scoring
potential parent nodes for a given node and step-wise adding
the highest scoring parent [11]. The scoring function used in
K2 is described in equation 1 below.
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where pi; is the set of parents of node x;. ¢; is the number
of possible instantiations of the parents of x; present in the
data. r; is the number of possible values the attribute x; can
take. a;jx is the number of cases in the dataset where x; has
it’s kth value and the parents are initiated with their jth com-
bination. N;jj = Y, ajjk, is the number of instances where
the parents of x; are initiated with their jth combination.

It is important to note that the resulting structure depends
on the order in which nodes are introduced into the K2 algo-
rithm. As such, it is possible to construct different structures
for the same data.

Parameter learning

There are two relevant scenarios to consider when perform-
ing parameter learning: with and without missing data. When
there is no missing data, CPDs can be learned using the max-
imum likelihood [12]. To calculate the maximum likelihood
for an attribute X with a set of parents ¥ we simply have
to calculate: P(X = x;|Y; = y;) = N¢x;, yi)/N(yi) , where
N(x;, y;) is the number of records where X = x; and ¥; = y;
and N(y;) is the number of records where Y; = ;. In the pres-
ence of missing data, the maximum likelihood for training a
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Bayesian network is commonly estimated using algorithms
such as Expectation Maximization (EM) [13, 14]. The EM
algorithm consists of the following two steps repeated itera-
tively until convergence is reached:

1. Estimate the likelihood of your data using your current
estimates of the probabilities.
2. Update your estimates.

To estimate the likelihood of the current estimates in the
E-step the following equation needs to be solved:
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where n is the number of samples in the dataset, p is the
number of nodes in the network, P (d;) is the likelihood of
the i — th sample, x;; is the value of the j — th node in the
i — th sample, and y;; is the set of values of the parents of
the j — th node in the i — th sample. The appropriate values
P (x;]yij) need to be selected from the current estimate of the
CPDs based on the attribute values of this particular sample.

It is important to note that since this algorithm is a hill
climbing-type algorithm, it can get stuck in local optima.
Therefore, it is good practice to run the algorithm several
times with different random initializations and use the best
result [12].

Method
VertiBayes

In this section we present our novel method VertiBayes and
explain how it handles the various additional hurdles and con-
cerns that arise in a vertically partitioned federated setting.
First, we will discuss how to perform structure learning. In
the second subsection, we will discuss parameter learning.
After this we will discuss the time complexity of VertiBayes.
Finally, we will discuss the impact a vertically split scenario
has on classification and model validation for Bayesian net-
works, as well as provide several solutions to deal with the
problems that arise.

Structure learning

As mentioned previously, structure learning can be done
using the K2 algorithm. In this subsection, we will discuss
how to adapt the K2 algorithm to a vertically partitioned sce-
nario. To solve this equation, the following information needs
to be collected:

1. The number of possible values for the attribute X.

2. The number of instances that fulfil X = x; and ¥ = y;,
where X is the child attribute, x; is a given value for X,
Y is the set of parent attributes, and y; is a given set of
assigned values to Y. This needs to be calculated for every
possible set ;.

The number of possible values of attribute X can be calcu-
lated trivially without revealing any important information
to an external party in a vertically split federated setting as
all relevant information is available locally at one party.

To calculate the number of instances that fulfil X = x; and
Y = y; (the number of instances for each possible value of
X for each possible configuration of X’s parents) we have to
calculate the number of instances that fulfil certain conditions
across different datasets. There are different approaches we
could utilize to solve this problem.

For example, we could leverage e-differently privacy [15]
to create a solution. This approach is relatively simple, how-
ever, itintroduces noise, which can be problematic for smaller
probabilities or for nodes with many parents, where a small
amount of noise from each parent will eventually add up.

Alternatively we could attempt to solve it using homo-
morphic encryption [16]. Homomorphic encryption avoids
adding any noise, but it is computationally expensive, espe-
cially as the K2 algorithm would require a fully homomor-
phic encryption scheme.

Finally a secret-sharing approach based in secure Mul-
tiParty Computation (MPC) [17] is an option. It is less
computationally expensive than (full) homomorphic encryp-
tion, and does not introduce any noise. As such we propose
to use this approach.

We propose to use the privacy preserving scalar product
protocol to calculate the scalar product of vectors, one for
each site, where each individual is represented as 1 or 0
depending on whether they fulfil the local conditions (in this
case whether the child and parent nodes have the appropriate
values). Earlier research has used this approach to calcu-
late the information-gain when training a decision tree [18],
which at its root, poses the same problem we face here. Addi-
tionally, this protocol also works in a hybrid setting, which
allows our proposed method to be as versatile as possible.

Various variants of the privacy preserving scalar prod-
uct protocol have been published [18-22]. Most of these
focus on 2-party scenarios but variants do exist for N parties
[23]. These methods have different advantages and disad-
vantages, such as different privacy guarantees and risks,
different runtime complexities, and different communication
cost overheads. Because of this, the preferred method will
differ per scenario. A K2 implementation using one of these
protocols will have the same privacy guarantees and risks but
will pose no additional privacy concerns beyond those posed
by the chosen protocol.
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Parameter learning

During parameter learning, the actual CPDs will be calcu-
lated. There are two scenarios that need to be considered: with
and without missing values. EM works under the assumption
that data is missing at random or missing completely at ran-
dom.

Without missing values As discussed earlier, parameter learn-
ing without missing values can be done by calculating the
maximum likelihood for various attribute values. This means
calculating for each node i, N;;, the number of samples for
each possible configuration of the parents of node i and N; j«
the number of samples for each possible configuration of the
parents where the value is k, for each possible value of the
node. N; j; can be calculated by simply summing the various
N;;j values. For the sake of performance it is advised to do
this. These can be calculated using the scalar product protocol
as explained earlier when describing the solution for K2. As
such, performing parameter learning in a vertically split fed-
erated scenario with no missing values is not a problem and
can be done without any significant additional privacy risks
compared to the central variant beyond the risks involved in
the scalar product protocol implementation used.

With missing values As mentioned in section 1.3.2 Expec-
tation maximization requires that the appropriate values
P (x;j|yij) are selected from the current estimate of the CPDs
based on the attribute values of this particular sample.

However, selecting the appropriate values P (x;;|y;;) can
only be done when all child and parent node values are
known. This is not possible in a privacy preserving setting
if the child and parent nodes are spread over multiple par-
ties. Conversely, even if it was possible to somehow select
the appropriate values P (x;;|y;;), they may also never be
revealed to anyone as it would be trivial to look up the parent
and child node values in the CPD as the P(x;;|y;;) values
will likely be unique.

It should be noted that a theoretical solution would be a
layered approach combining homomorphic encryption with
the privacy preserving scalar product protocol. However, due
to the time complexity of each privacy preserving technique
involved, the need to repeatedly execute the expectation step,
and the fact this will need to be done for every single individ-
ual present in the training set, this is not practically viable.

Therefore, we conclude that the EM algorithm cannot be
easily applied in a vertically split federated scenario without
severe limitations. Instead, we propose the following three-
step solution, which we have dubbed VertiBayes.

1. Treat“missing” as a valid value and train an intermedi-
ate Bayesian network using maximum likelihood on the
training data.

2. Generate synthetic data (including “missing” values)
using this intermediate Bayesian network.
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Fig.1 Training process for VertiBayes

3. Train the final model on this synthetic data using the EM
algorithm.

As discussed earlier, parameter learning in a vertically split
federated setting without missing values is possible with the
privacy guarantees provided by the privacy preserving scalar
product protocol used. Generating synthetic data by using
this intermediate model also does not add any additional pri-
vacy concerns compared to a centrally trained model, as this
is a basic functionality of any Bayesian network. On the con-
trary, the final model has a reduced risk of data leak because
it is trained on synthetic data [2, 24].

The proposed process, which is illustrated in Fig. 1, allows
us to train a Bayesian network in a vertically split federated
setting with missing values without any additional privacy
concerns compared to a centrally trained model. However, it
should be noted that it is possible that a loss of signal may
occur due to the three-step approach. In the experiment sec-
tion, we will test if our proposed method avoids this potential
pitfall.
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Time complexity when training a model in a federated
setting

A major downside to federated learning is that the time
complexity is usually considerably worse compared to the
centralized setting. This is unavoidable due to the extra over-
head created by communication as well as the increased
complexity introduced by the privacy preserving mecha-
nisms. In this subsection, we will discuss the time complexity
of VertiBayes.

In our implementation, there are two important factors to
take into account. The first is the number of parties n. This
is a major bottleneck as the n-party scalar product protocol
implementation we have used scales combinatorically in the
number of parties.

The second important factor is the size of the CPDs that
need to be calculated, as each unique probability that needs to
be calculated requires a separate n-party scalar product proto-
col to be solved. As such, our implementation scales linearly
in the number of probabilities that need to be calculated. The
time complexity of various aspects for our implementation
can be found in Table 1.

Important to note is that the population size is not a main
driver of the runtime. A relatively simple network trained on
a small dataset, but with a high number of unique attribute
values will have a significantly longer runtime than a more
complex network with few unique attribute values. This is
because the overall time complexity is dominated by the
number of scalar product protocols and subprotocols, which
is independent of the population size, but dependent on the
number of probabilities that need to be calculated.

Finally, it is important to note that there is ample room
for parallelization to improve the running time as each scalar
product protocol that is needed for VertiBayes is fully inde-
pendent and can easily be run in parallel.

Federated classification and model validation
The process of using the model to classify new instances in
a federated setting is itself a complex problem that depends

strongly on the type of model used. In this subsection, we will
discuss the methods that are available to classify an individual

Table 1 Time complexity

in a vertically partitioned setting using a Bayesian Network
and the implication this has for the validation of the model.

Classification of new samples using a Bayesian Network
in a vertically partitioned federated setting suffers from the
same issues as the expectation step in the EM algorithm.
To classify an instance from vertically partitioned data, we
need to select the appropriate probabilities from the CPD. As
discussed before, this is not viable while preserving privacy
when parent and child nodes are split over multiple parties.
This has major consequences for the validation of a new
model in a federated setting.

As such, whenever possible the validation should be done
using a publicly available dataset which avoids the need
for privacy preserving measure during validation. If such a
dataset is not available, we propose two different approaches,
“Synthetic Cross-fold Validation” (SCV) and “Synthetic Val-
idation Data Generation” (SVDG), to validate the model in
a privacy preserving manner.

SCV uses the synthetic data generated by the intermedi-
ate Bayesian network as both training and validation data
by executing the EM training using k-fold cross validation.
However, it is possible that this results in overfitting on the
synthetic data and therefore the performance estimate may
be biased by the intermediate Bayesian network.

SVDG splits the private dataset into training and valida-
tion sets. It will then train a Bayesian network on the training
set in a federated manner as normal. On the validation set, it
will train a federated network using only the federated max-
imum likelihood approach. We can then use the Bayesian
network trained on the validation set to generate a synthetic
validation dataset. This approach reduces the risk of over-
fitting the previous approach suffered from but may lead to
biased estimates if the synthetic validation set is not repre-
sentative of the original validation set, for example because
the test-fold was too small.

These approaches avoid leaking real data, but as men-
tioned, they may not be viable in practice. An illustration of
the two new approaches can be seen in Fig. 2.

Number of scalar product protocols

Number of scalar product subprotocols per protocol

Number of multiplications per subprotocol

O(m),
where m is the number of unique parent-child value combinations
for which a probability needs to be calculate

!
m foreach x,2 <=x <=n,

where 7 is the number of parties involved in the protocol
O(pxnx*(n—1)),

where p is the population size, and n is the number of parties
involved in the protocol

@ Springer
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Fig. 2 Flow diagrams for proposed validation procedures SCV (left)
and SVDG (right). SCV utilizes the first step of VertiBayes as normal,
performing (federated) structure learning and federated maximum like-
lihood learning. The synthetic dataset generated during step 2 is split
into a training and validation set. The training set is used as normal in

Hyperparemeters

There are a number of choices which need to be made when
initializing a new run of VertiBayes. These choices represent
the various hyperparameters that can be set. The choices are
as follows:

e Will structure learning be done using a predefined struc-
ture based on expert knowledge, or by utilizing the K2
algorithm.

e If K2 is used for the structure learning, what are the max-
imum amount of parents a node may have.

e Is discretization of continuous variables done using pre-
defined bins based on expert knowledge, or utilizing an
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step 3, which is then validated using the validation set. SVDG splits the
data before performing any training into a training and validation set.
The training set performs VertiBayes as normal. While we only run step
1 and 2 on the validation set. The synthetic data generated is then used
to validate the model that was trained on the training set

automatic approach. There are different strategies pos-
sible for automatic discretization which may have their
own hyperparameters.

e What validation strategy is chosen from among the
options in “Federated classification and model valida-
tion”.

The chosen structure learning approach can have a major
impact on the performance of the resulting model. Similarly,
the discretization approach can have a big impact as we will
show in our experiments.

In the next section, we will perform experiments to
validate that VertiBayes results in networks with similar per-
formance as a centrally trained model. We will also verify
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if the two proposed approaches to validation give the same
results as the validation on the public data, and if there are
scenarios where they are inappropriate due to the aforemen-
tioned risks.

Experimental setup

In order to validate our proposed approach, we have imple-
mented it in a combination of Java and Python' using Van-
tage6 [25] and ran a number of experiments. Vantage6 is an
open-source infrastructure for privacy preserving federated
learning which utilizes Docker. We compare the performance
of our algorithm with a centrally trained Bayesian network
using WEKA [26], amachine learning library written in Java.

The goal of the experiments is to show that the networks
created by VertiBayes and the models created in a classic
centralized scenario are the same. We did not compare results
against other federated methods because (1) they cannot cope
with missing data and (2) we use centralized learning as a
baseline and want to show that VertiBayes performs equally
well as a centralized approach

Structure learning

To validate our federated implementation of the K2 algorithm
we ran experiments using the Iris [27], Asia [28], Alarm
[29], and Diabetes [30] datasets. As K2 is deterministic and
dependent on the order in which the nodes are put into the
algorithm we ensured this was the same for both the federated
learning and centralized learning model and then compared
the resulting structures.

Parameter learning

In our experiments regarding parameter learning, we have
used the Iris [27], Asia [28], Alarm [29], and Diabetes [30]
datasets. In the case of the Iris dataset, we predict the “label”
attribute, for Asia we predict “lung”, for Alarm we will be
predicting “BP” and for Diabetes we will predict “outcome”.
The Iris dataset contains 150 samples, the Diabetes dataset
contains 768 samples, while the other two datasets contain
data of 10.000 samples. The Asia and Alarm datasets come
with a predefined structure. The Iris dataset uses a naive
Bayes structure. The Diabetes dataset also uses a predefined
structure.

' Our code can be found in the following two git repositories

e Main algorithm code:
VertiBayes.

https://github.com/MaastrichtU-CDS/

e Vantage6 wrapper code: https://github.com/MaastrichtU-CDS/
VertiBayes_vantage6.

Both the Iris and Diabetes dataset contain continuous vari-
ables. For the sake of a fair comparison between the central
and federated models, these were discretized into bins before
starting our experiments, where each bin contains at least
10% of the total population as well as a minimum of 10 indi-
viduals. If the last bin cannot be made large enough to fulfil
these criteria it is simply added to the previous bin. In the case
of a dataset of less than 10 individuals, the bin will simply
contain all possible values. For our experiments the bins were
predefined alongside the predefined network structure, but
the bins can also be generated on the fly during the training
of the federated model using the same discretization strat-
egy. The simplicity of this strategy allows it to be executed
without needing additional privacy preserving mechanics.
However, it should be noted that this is not the best pos-
sible discretizing strategy. For example, a model using the
Minimum Description Length method (MDL) [31] for dis-
cretization, or utilizing expert knowledge, might outperform
this setup.

Slight variations of this discretization strategy were used
in preliminary experiments. However, we will not list the
results of those variants here as they produced similar results.

To test the effect of missing values we have done exper-
iments where we randomly set 0%, 5%, 10% and 30% of
the values to missing. The performance of the models is
measured by calculating the area under receiver operating
characteristics curve (AUC). The centrally trained model is
internally validated using 10-fold cross validation. The fed-
erated model is validated using the two different validation
approaches described in the last section; it is also validated
against a “public” central dataset, which is simply the left-
out fold from the original dataset. All of these approaches
use 10-fold cross validation. We also compare the Akaike
information criterion (AIC) [32] values of the network for
their original (private) training data. This is done to deter-
mine if there is any difference in the CPDs used by the two
models. As mentioned before, the goal of the experiments is
to get similar networks, as such we would expect the AUC
and AIC of the networks produced by VertiBayes and the
central approach to be similar. The AUC was chosen as a
relevant metric because it is a powerful performance met-
ric which naturally corrects for certain biases. For example,
it does not have the same biases towards the majority class
that accuracy has. AIC was chosen because it is a standard
measure within Bayesian Network learning used to compare
the complexity of the networks. This is important since we
are not just interested in achieving similar performance, but
wish to create similar networks.

For all of these experiments, the data are randomly parti-
tioned over two parties by dividing the original dataset into
two equally large sets of attributes.
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Scaling in the number of dataparties

To illustrate VertiBayes works when dealing with multiple
parties the aforementioned parameter learning experiment
was repeated for 3-8 parties using the Asia dataset. As
this dataset contains 8 attributes this means the number of
attributes varied from 4 to 1 attribute per party.

Results

The results of our experiments can be found in this section.
First we will discuss the results of the structure learning
experiments. After that we will cover the experiments regard-
ing parameter learning.

Structure learning

The federated implementation of the K2 algorithm consis-
tently resulted in the same structure as the centrally trained
model for all datasets.

Parameter learning

Table 2 shows the results of our parameter learning experi-
ments. It lists the AUC for the centrally trained model, as well
as the AUC’s for the various (federated) validation schemes.
The AUC’s of the federated model are listed in bold if the dif-
ference with the central model is larger than 0.05. The AIC
is shown for the centrally trained model, this is compared
to the AIC for the federated model trained. The difference
between the central and federated AIC is listed in bold if
the difference is at least 5%. An AIC closer to O is better. A
negative percentage in the AIC difference column indicates
the federated model performed better. The results are shown
per dataset for differing levels of missing data; no missing
data, 5% missing data, 10% missing data, and 30% missing
data. VertiBayes showed similar performance to the centrally
trained model in all scenarios.

Time complexity

To illustrate the time complexity we kept track of the runtime
of the parameter learning experiments. The results can be
found in Fig. 3. The relative runtimes are plotted versus pop-
ulation size, number of attributes, and total size of the CPDs
that need to be calculated during the Maximum Likelihood
stage of VertiBayes. As can be clearly seen in these graphs
the performance depends mostly on the size of the CPDs,
and is virtually independent from population size. Number
of attributes does correlates with a longer runtime because
more attributes often implies more probabilities will need
to be calculated to fill all CPDs However, since the size of
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the CPDs also depend on how connected the network is and
how many values each attribute can take it does not correlate
perfectly.

Scaling in the number of dataparties

The results of our experiments with the Asia dataset using
multiple parties can be found in Table 3. The number of
parties has no meaningful impact on the performance of
VertiBayes. The minor differences are due to the inherent
variation introduced by several random factors within Vert-
iBayes, such as the random nature of the synthetic data that
is generated during the second step of VertiBayes.

Discussion

In this paper, we have proposed a novel method to train
Bayesian networks in a federated setting using vertically
partitioned data with missing values. The results of our
experiments have shown that it is possible to perform both
structure and parameter learning of Bayesian networks in
such a setting with reasonable accuracy. Structure learning
can be performed by adapting any of the existing structure
learning algorithms to use a secure multiparty computation
algorithm. In this study, we used a protocol within the K2
algorithm, but the same approach could be applied to other
score-based algorithms or even constraint-based algorithms
such as the PC algorithm [33]. Parameter learning requires
one of two approaches. When there is no missing data present,
the scalar product protocol can be used directly to compute
the maximum likelihood, or when missing data is present the
three-step solution described in “VertiBayes” using the EM
algorithm can be applied. We will now discuss the perfor-
mance of VertiBayes compared to a centrally trained model
as well as the limitations in terms of scalability. Lastly, we
will discuss the sensitive information that may be leaked by
any Bayesian network and the limitations this brings in a
federated setting.

Model performance and validation

Our experiments show that the resulting models produced
by VertiBayes are comparable to the centrally trained mod-
els. As such, there is generally no meaningful difference in
terms of AUC or AIC. The added privacy guarantees make
it possible to train a model in a vertically partitioned setting.
This takes away certain barriers with respect to data-sharing,
allowing models to be trained on larger sets of data, which
contains data that would have been inaccessible in a central-
ized setting. Utilizing this normally inaccessible data should
lead to improved models in real life scenarios.
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Fig.3 Relative runtime of

1.0 A @ 1.0 4 ®( 1.0 1 [ ]
VertiBayes using various
datasets plotted versus 08 - 0.8 4 0.8 1
population size, number of )
attributes, and total number of E 0.6 - 0.6 0.6
probabilities that need to be <
calculated during the Maximum ® 04 ° 044 o 0.4 ®
ol o] --® ° o,
Likelihood stage « | _e-T >
024 @ _—=="" 024 e 0.2 1 R
= 4
, 4
001@ 8 00{08® 00{®
5000 10000 10 20 30 0 1000 2000
Population Number of attributes Size CPDs
Table 3 Results of the repeated experiments with multiple parties for the Asia dataset
AUC
Number of parties ~ Public validation =~ SCV validation ~ SVDG validation =~ AIC score ~ Running time MS
Asia Missing data: 0% 2 0.97 1.00 1.00 —22575 142292
3 0.98 1.00 1.00 —22564 144124
4 0.98 1.00 1.00 —22642 145343
5 0.98 1.00 1.00 —22600 144756
6 0.97 1.00 1.00 —22570 142854
7 0.99 1.00 1.00 —22530 144551
8 0.98 1.00 1.00 —22488 145143
Asia Missing data: 10% 2 0.70 0.71 0.70 —23888 426849
3 0.70 0.70 0.70 —23837 426379
4 0.70 0.69 0.71 —23837 425364
5 0.70 0.70 0.71 —23918 427819
6 0.70 0.71 0.71 —24042 427391
7 0.69 0.69 0.71 —23871 432755
8 0.70 0.70 0.70 —24073 412467

Furthermore, the experiments show that it is possible to
validate the model in a privacy-preserving manner despite
it being impossible to efficiently classify an individual in a
privacy-preserving manner.

It is however important to note that in certain edge-cases
some validation approaches can show unreliable results. For
example, the SVDG approach can cause problems when the
test-folds are too small and the bins are generated on the fly
while training, as opposed to working with pre-defined bins.
If there are not enough individuals in the test-set to create
multiple accurate bins on the fly this strategy will result in a
loss of information. This was most notable when running the
preliminary experiments with the Iris dataset, which is quite
small.

Similarly, the model ran into problems using the SCV
approach whenever the CPDs become too large because a
node has multiple parents with a significant amount of bins.
This is notable in the results of the Diabetes model. Certain
nodes with multiple parents would end up with CPDs that
contained more cells than there are individuals in the dataset.
This led to an overestimation of the AUC if the SCV approach

@ Springer

was used, as it overfits on the training data. However, this
was not an issue when utilizing the SVDG approach, due to
the stronger separation between training and validation data.
Using larger bins can alleviate this problem to some extent.
However, the bins cannot be made arbitrarily large as this
will eventually cause a loss of information. Using expert-
knowledge based discretization strategies tailored to each
dataset, or a better automatic discretization strategy such as
the MDL method mentioned earlier, would help avoid these
problems.

These problems of overfitting and loss of information,
show that it is extremely important to have an appropri-
ate discretization strategy. So long as the potential pitfalls
surrounding discretization are addressed, VertiBayes can be
used to train and validate a Bayesian network in a vertical
federated setting.

Scalability

Any algorithm that is adapted to a federated setting will
be slower than the central counterpart due to the overhead
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caused by the protocols used to protect privacy. Our experi-
ments confirmed the potential issues we brought up in “Time
complexity when training a model in a federated setting”
when we discussed the theoretical time complexity.

The effects of population-size proved to be negligible. The
effects of the complexity of the network structure, that is to
say the number of nodes and links within the network, is
only relevant in so much that it creates more probabilities to
calculate. As expected, the size of the CPDs that had to be
calculated had the greatest effect on the total runtime.

The number of parties also proved to not be very impactful.
This intuitively makes sense as the bottleneck for VertiBayes
lies in the calculation of the CPDs. When calculating the CPD
for a particular attribute we can easily deduce the maximum
parties involved in this calculation. For example P (X|Y) will
involve at most 2 parties in a vertical partitioned setting as it
only involves 2 attributes. Similarly, calculating P(X|Y, Z)
will involve at most 3 parties. This means that the effect
of the number of parties is naturally limited depending on
the maximum amount of parents a node has in the network
structure.

This does mean that there are practical limitations to using
VertiBayes, as it may take too long to train a large or complex
network. However, it should be noted that in certain settings
a longer runtime might still be acceptable. For example, it is
perfectly acceptable that training a model for use in a clinical
setting takes an extended amount of time.

Sensitive information in published Bayesian
networks

Publishing a Bayesian network, or any machine learning
model, will reveal certain information about the training data,
regardless of how the network is trained. When publishing a
Bayesian network two important aspects will be revealed: the
network structure and the CPDs. The network structure will
only reveal which conditional dependencies exist amongst
attributes, which is not sensitive data in most scenarios. The
CPDs on the other hand, can potentially be used to recon-
struct individual level data from the training-set, when the
probabilities in the CPD’s are based on one, or a few indi-
viduals. An effective countermeasure is using k-anonymity
[34] to ensure that each probability in the CPDs represents
a minimum amount of samples and that no probabilities of
0 or 1 are present in the CPDs. Such probabilities make it
considerably easier to deduce individual level data, and they
can also lead to artefacts when using the network.

Lastly, a public Bayesian network can be used by one of
the parties that participated in the training to guess (although
not reconstruct) the data of the other parties based on their
own data. Similarly, any third party with partial data can use
the final model to estimate the missing values in his dataset.
This is unavoidable and it should be taken into consideration

when decisions are made about which models are to be made
public.

These concerns imply that there are practical limits to
what privacy preserving techniques should aim for. Trying
to prevent any and all privacy issues using privacy preserving
techniques during the training phase is futile when models
are made public as the models themselves will always reveal
some information.

Adapting the structure learning approach

In this article we choose to utilize the K2 algorithm to learn
the network structure. Other approaches exist as well, these
can be score-based [35] or constraint based [36]. Extending
VertiBayes to utilize one of these alternatives is possible.
At its core VertiBayes uses the privacy preserving n-scalar
product protocol to calculate simple statistics such as the
maximum likelihood. Any score based on constraint based
structure learning algorithm that can is based on similar sim-
ple statistics can be calculated in a privacy preserving manner
in a similar way.

Conclusion

In this paper, we have proposed a novel approach to train
Bayesian network parameters from a vertically partitioned
data with and without missing values. This method can deal
with an arbitrary number of parties, only limited by the run-
time. We have shown that there are no additional privacy
risks compared to a centrally trained model beyond the ones
presented by the specific privacy preserving scalar product
protocol implementation used. Our experiments show there
are no meaningful differences in performance between mod-
els trained with VertiBayes and models trained centrally,
provided continuous variables are adequately discretized.
They also show it is possible to estimate the performance
of a model with vertically partitioned data with a reasonable
accuracy. As such, VertiBayes is a useful tool for training
Bayesian networks in a vertically partitioned setting. Uti-
lizing Bayesian networks in a vertically partitioned setting,
will unlock normally inaccessible data, which will lead to
improved models in real life scenarios.

Future work

When using the model in a federated setting with a verti-
cal split, it is currently not possible to efficiently classify or
predict a new instance in a privacy preserving manner using
a Bayesian network. It would be beneficial if a solution for
this was found and implemented. In addition to this, Vert-
iBayes could be improved by implementing more advanced
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discretization methods, such as MDL, in a vertically parti-
tioned setting as our current implementation relies either on
a very basic automatic discretization approach or the use of
experts, which may not be the best discretization approach
possible. Additionally, the impact of different missing data
mechanisms on our proposed approach should be investi-
gated. In this article we used data that missed completely at
random, however, we did not look at other missing mecha-
nisms, such as missing at random. It would be worthwhile to
investigate whether this significantly influences the perfor-
mance of the resulting model. Lastly, it would be beneficial
to run experiments in different real life scenarios to verify
how VertiBayes scales in practice, especially with regards to
the number of parties participating. As mentioned in Sect.
4.2 we do not expect major in realistic scenarios, but this
should be verified.
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