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Abstract
Sequential recommendation (SR) predicts the user’s future preferences based on the sequence of interactions. Recently, some
methods for SR have utilized contrastive learning to incorporate self-supervised signals into SR to alleviate the data sparsity
problem. Despite these achievements, they overlook the fact that users’ multi-behavior interactions in real-world scenarios
(e.g., page view, favorite, add to cart, and purchase). Moreover, they disregard the temporal dependencies in users’ prefer-
ences and their influence on attribute information, leading to models that struggle to accurately capture users’ personalized
preferences. Therefore, we propose a multi-behavior collaborative contrastive learning for sequential recommendation model.
First, we introduce both user-side and item-side attribute information and design an attribute-weight-enhanced attention in
multi-behavior interaction scenarios. It enhances the model’s ability to capture user’s multi-behavior preferences while con-
sidering the influence of attribute information. Second, in order to capture users’ fine-grained temporal preferences. We divide
the interaction sequences into different time scales based on the users’ multi-behavior interaction timestamps. In addition,
introduce temporal aware attention to generate temporal embeddings for different time scales and effectively integrate them
with the user’s multi-behavior embeddings. Finally, we design collaborative contrastive learning, which collaboratively cap-
tures users’ multi-behavior personalized preferences from both temporal and attribute perspectives. This approach alleviates
the issue of data sparsity. We conduct extensive experiments on two datasets to validate the effectiveness and superiority of
our model.

Keywords Sequential recommendation · Multi-behavior recommendation · Contrastive learning · Graph neural network

Introduction

Recommendation systems aim to address users’ personal-
ized preferences and alleviate information overload in many
online services such as e-commerce platform, video plat-
form, andmusic platform [1–3]. Traditional recommendation
systemsmainly utilize collaborative filteringmethods to cap-
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ture user–item interactions [4, 5]. However, they frequently
neglect the sequential information within these interactions
[6, 7]. Consequently, researchers are increasingly focusing
on sequential recommendations [8].

In recent years, numerous sequential recommendations
have emerged with the aim of enhancing the model’s ability
to capture user preferences [9]. Initially, efforts were made
to understand users’ overall preferences by analyzing their
intricate interaction sequences and subsequently encoding
user embedding vectors [10]. However, driven by the rapid
advancements in neural network, recent research has utilized
neural network to enhance the performance of sequential rec-
ommendation [11, 12]. For instance,GRU4Rec [13] utilizes a
gate recurrent unit module to encode preference signals from
users’ interaction sequences. MGNN [14] learns sequential
relationships between items using a graph neural network and
then employs GRU to assign weights to different behaviors.

Despite their effectiveness, challenges persist in sequen-
tial recommendations. First, most existing works have pri-
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marily focused on encoding sequential behavior patterns for a
single behavior.However, they frequently overlook themulti-
behavior interactions of users in real-life scenarios, including
page view, favorite, and add to the cart. Considering only a
single behavior hinders the model from effectively reflecting
a user’s true preferences. Users’ multi-behavior interactions
provide a more comprehensive understanding of user prefer-
ences.

Furthermore, despite some studies integrating users’
multi-behavior into sequential recommendations [15], these
studies have primarily neglected the temporal dependencies
in users’ preferences and their influence on attribute infor-
mation. First, user preferences are in a constant state of
evolution. User preferences vary at each moment, and rely-
ing solely on timestamp-based time feature methods [16]
cannot capture the fine-grained nature of users’ preferences.
In Fig. 1, user u2 engages in sequential behaviors, includ-
ing viewing dresses, high heels, and favoriting a handbag
at time t1 (initial temporal behaviors). At time t2, the user’s
viewing a purple dress and adding the blue dress to the shop-
ping cart collectively influence the purchase behavior at time
t3 (final temporal behavior). Simultaneously, both users and
items possess abundant attribute information. Due to varia-
tions in users’ gender and age, as well as differences in the
appearance of item brands, diverse attribute dependencies
exist between users and items. For instance, among clothing
items, user u1 prefers jackets, while user u2 prefers dresses.
Attribute information can provide a more precise reflection
of users’ preferences and intentions.

Moreover, despite auxiliary behaviors aiding in enrich-
ing users’ preferences for the target behavior (purchase), it
still faces challenges related to data sparsity. Contrastive
learning, which effectively mitigates data sparsity issues
by comparing positive and negative samples from different
perspectives, has been widely employed in recent research

[17–19]. However, these approaches ignore the user’s final
temporal behavior, which is influenced by both temporal and
attribute information. Simultaneously, the semantics of aux-
iliary behaviors confuse the semantics of target behaviors
during information interactions in contrastive learning. In
addition, the model’s recommendations lack fairness.

Hence, to address the above issues, we propose the multi-
behavior collaborative contrastive learning for sequential rec-
ommendationmodel (MBCCL). First,we introduce user-side
and item-side attribute information into the model, lead-
ing to the design of the attribute-enhanced multi-behavior
embedding encoding module. We propose attribute-weight-
enhanced attention (AWE) to generate theweights for the cur-
rent attributes at each layer of the light graph convolutional
neural network, capturing user’s personalized preferences
influenced by different attribute information. Simultane-
ously, we partition the interaction sequences into different
time scales based on the timestamps of users’ multi-behavior
interactions. We design the temporal aware attention (TAA)
to users’ fine-grained temporal preferences. By presetting
these temporal embeddings to the multi head attention
layer of the Transformer [20], we facilitate efficient fusion
between temporal embedding and high-order multi-behavior
embedding, thereby capturing users’ dynamic preferences
across various time scales. Finally, we design collaborative
contrastive learning (CCL), which collaboratively captures
users’ multi-behavior personalized preferences from both
temporal and attribute perspectives. This approach allevi-
ates the issue of data sparsity. Our main contributions are
as follows:

• We focus on capturing users’ personalized preferences
by incorporating user-side and item-side attribute infor-
mation into the model, leading to the design of the
attribute-weighted enhanced attention. In addition, we

Fig. 1 Example of
recommendation. (User’s final
target behavior (purchase) is
influenced by the previous
multi-behavior sequential
interactions)
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introduce the temporal aware encoding module based on
the user interaction timestamps to capture users’ dynamic
personalized preferences.

• We propose the MBCCL model that incorporates multi-
behavior into sequential recommendation as auxiliary
information, enriching users’ preferences from various
perspectives. Building upon the encoding of multi-
behavior, we design a collaborative contrastive learning
approach that collaboratively captures users’ person-
alized preferences from both temporal and attribute
perspectives, alleviating data sparsity and improving the
fairness of models’ recommendation.

• We conduct extensive experiments on two datasets Tmall
and Fliggy Trip. Compared to other SOTA baselines, the
results demonstrate the effectiveness and superiority of
our proposed method.

Related work

Multi-behavior recommendation focuses on the user’s multi-
behavior interactions in real-world scenarios, while sequen-
tial recommendation further explores the sequential interac-
tion patterns between these behaviors to understand the user’s
interest evolution process more comprehensively. Therefore,
we aim to capture users’ complex personalized preferences
more accurately and comprehensively based on sequential
recommendation and using users’ multi-behavior interac-
tions. Simultaneously, contrastive learning, as a learning
paradigm to address data sparsity, learns high-quality infor-
mation representation by comparing positive and negative
sample pairs. It has found widespread application in recent
sequential recommendations. In this section, we summarize
the relevant research work from the following research lines:
i) sequential recommendation; ii) multi-behavior recommen-
dation; iii) contrastive learning.

Sequential recommendation

Sequential recommendation aims to predict user prefer-
ences by leveraging the user interaction sequence [15]. Early
research employed Markov chains to predict which items
users are likely to interact with next [4]. In recent years,
significant efforts have utilized deep learning techniques to
capture users’ dynamic preferences from their sequential
interactions [20]. For example, MGNM [21] utilizes capsule
networks and BiLstm to capture users’ temporal multi-level
interests,whileMAE4Rec [22] leveragesTransformer to pre-
dict user preferences and employs a masked autoencoder
to eliminate redundant interactions. Furthermore, the graph
neural network captures the user’s personalized preferences
by encoding user embedding-item embedding with high-
order connectivity in the user–item interaction graph,making

it widely applicable in sequential recommendation. GES
[23] provides a general embedding smoothing framework
for sequential recommendation models. LSTCSR [24] con-
structs an item-item graph with the interaction sequences
of different users to obtain information on the collaboration
between items in different sequences.

However, the majority of these methods focus solely on a
single type of user interaction behavior, neglecting users’
multi-behavior interactions in real-life scenarios, such as
page view, favorite, and add to the cart. In MBCCL, we
employ users’ multi-behavior interaction data to capture
users’ personalized preferences through sequential recom-
mendation.

Multi-behavior recommendation

Multi-behavior recommendation systems leverage users’
multi-behavior interaction data to capture personalized pref-
erences [25]. For example, MBN [26] develops a novel
multi-behavior network model that captures item corre-
lations and acquires meta-knowledge from multi-behavior
basket sequences. MBHT [27] designs a multi-behavior
hypergraph-enhanced Transformer framework to capture
both short-term and long-term cross-type behavior depen-
dencies. MB-STR [28] uses the Transformer to encode the
user’smulti-behavior interaction and encode the user’smulti-
behavior heterogeneous dependencies.

Nevertheless, these methods overlook the fact that users’
multi-behavior preferences change over time and are also
influenced by attribute information in real-life scenarios.
Therefore, we design the temporal aware encoding mod-
ule and the attribute-enhanced encoding module to generate
dynamic user preferences that incorporate attribute informa-
tion.

Contrastive learning

Contrastive learning learns information representation by
comparing pairs of positive and negative samples to gener-
ate high-quality embedding while alleviating the problem of
data sparsity. It has been widely used in visual representation
learning [29] and natural language processing [30]. Recently,
some studies have proposed introducing contrastive learning
into a recommendation system [31]. For example, CML [17]
pioneered the integration of contrastive learning into multi-
behavior recommendation systems. MCLSR [32] proposed
a multi-level comparison learning framework to effectively
learn self-supervised signals. It constructs three views in
addition to the sequence view and utilizes a multi-level
comparison mechanism to learn collaborative information.
EC4SREC [33] uses the interpretation method to determine
the importance of the commodity in the user sequence and
derive the positive and negative sequences accordingly.
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Following this research line, we propose collaborative
contrastive learning (CCL), which collaboratively captures
users’ personalized preferences from both temporal and
attribute perspectives.

Preliminary

In our sequential recommendation scenario, suppose we
have the users set U = {u1, . . . , um} and the items set
I = {i1, . . . , in}. Introduce and define the set of behaviors B.
We consider the behavior to be predicted (purchase) as the
target behavior b, while other behaviors (such as page views,
favorites, and adding to the cart) are considered auxiliary
behaviorsb′. The user’smulti-behavior interaction sequences
are {Yb

u , . . . ,Y B
u }. MBCCL leverages temporal and attribute

information to enhance the capture of users’ fine-grained
preferences. We further define the following.

Multi-behavior temporal user–item interaction graph By
incorporating temporal information that reflects users’ evolv-
ing preferences over time, we transform the multi-behavior
user–item interaction data based on their interaction times-
tamps tu,i,b into a graph structure, which we define as Gt

b =
(V , Eb).WhereV represents the set of nodes, including users
and items, and Eb represents the set of edges, including users’
multi-behavior interactions. In Fig. 2, dashed lines represent
the initial interactions between users and items at time t1
while solid lines represent the final interactions at time t3.

Multi-behavior attribute user–item interaction graph In
real-world scenarios, users’ multi-behavior interactions are
influenced by attribute information. To encode fine-grained
user preferences, we transform user interaction data along
with user-side and item-side attribute information into a
graph structure, defined as Ga

b = (V , Eb), where V rep-
resents the set of nodes, including users, items, and attribute

information, and Eb represents the set of edges representing
the multi-behavior of users. Each user node is connected to
the item nodes and attribute nodes it interacts with, and the
same applies to the item side.

Our research question can be formalized as follows:
Input Sequences of multi-behavior interactions

{Yb
u , . . . ,Y B

u }.
Output The learning function estimates the probability

that user um will interact with item in with the target behavior
at the future t + 1 time step.

Our approach

The structure of our proposed MBCCL model is shown in
Fig. 3, which consists of four key modules: (1) initial embed-
ding layer; (2) temporal aware multi-behavior embedding
encoding; (3) attribute-enhanced multi-behavior embedding
encoding; and (4) collaborative contrastive learning.

Initial embedding layer

In order to capture the user’s preferences, we utilize the initial
embedding layer to generate low-dimensional embedding for
users Eu and items Ei :

Eu = Embedding(IDuser); Ei = Embedding(IDitem) (1)

where Embedding indicates to map the user’s and item’s
ID to a low-dimensional embedding space for generating
user embedding Eu and item embedding Ei , based on the
embedding dimension d and batch num n. We use the
Xavier initializer [34] to generate initial parameters for the
embedding matrix. In the training process of MBCCL, the
parameters of the initial embedding layer will be learned to
better capture the user’s preferences and behavior patterns. In

Fig. 2 Example of the user’s
single-behavior interaction
sequence and multi-behavior
temporal interaction sequence
integrating attribute information
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Fig. 3 The overall architecture of MBCCL. (i) Temporal aware multi-
behavior embedding encoding, which generates the initial temporal and
final temporal multi-behavior embedding; (ii) attribute-enhancedmulti-
behavior embedding encoding, which generates the attribute weight

to enhance multi-behavior embedding; (iii) collaborative contrastive
learning, which collaboratively captures users’ multi-behavior person-
alized preferences from both temporal and attribute perspectives

addition, a fully connected layer is utilized to generate initial
attribute embedding for users and items [35]. Specifically,
the user’s initial attribute embedding Eu,a is calculated as
follows:

Eu,a = f (WXz + b) (2)

where X indicates the one-hot encoding of the user’s attribute
information, z is the number of attributes of the current user,
W and b are parameters of the fully connected layer, and f
is the activation function. As the user has multiple attributes
(such as age and gender), we average the attribute embedding
to generate the user’s initial attribute embedding. The same
operation applies to the item side.

Temporal awaremulti-behavior embedding
encoding

In multi-behavior interaction scenarios, users’ personalized
preferences change over time, and their ultimate target behav-
ior (purchase) is influenced by their previous sequential
interactions with multi-behavior. In addition, the weights
between these different behaviors are not the same. For exam-
ple, in Fig. 1, the “add to cart” behavior at time t2 is more
important than the “page view” behavior at time t1. To cap-
ture users’ dynamic preferences and encode the importance
of different behaviors, focus on the multi-behavior tempo-
ral user–item interaction graph. We design a temporal aware

multi-behavior embedding encoding module based on the
light graph convolutional neural network (LGCN) [36].

Higher order multi-behavior embedding encoding

In the context of multi-behavior interaction, there are
complex relationships between user behaviors, and each
behavior has its own unique characteristics. For example,
on e-commerce platforms, the page view behavior is pre-
dominant, and the purchase behavior is uncommon. To
concentrate on each behavior, we iteratively aggregate infor-
mation on four multi-behavior temporal interactions graphs
(Gt

v,G
t
f ,G

t
c,G

t
p) to generate multi-behavior embedding

representations for users and items. This enables us to learn
high order dependency relationshipswithin user interactions.
Users’ and items’multi-behavior embedding generated at the
l layer are computed as follows:

El+1
u,b =

∑

i∈Nu,b

φEl+1
i,b (3)

where l indicates the number of LGCN layers, El+1
u,b is multi-

behavior user embedding with higher order connectivity at
the l layer, when l = 0, the embeddings are the initial user
and item embedding generated in Sect. 4.1, and Nu,b are the
neighboring nodes for users under the current behavior. φ =
1/

√
Nu,bNi,b is the symmetric normalization term to avoid

that the size of the embedding increases with the number of
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layers of the graph convolution and to improve the stability
of the model. The same operation is applied to the item side.

At the same time, in multi-behavior scenarios, different
behaviors have their own distinct impacts on predicting user
preferences. Using an e-commerce platform as an exam-
ple, the purchase behavior often more accurately reflects a
user’s actual preferences compared to the page view behav-
ior. Tomore precisely leverage various behaviors in capturing
user preferences, we propose an adaptive weight generation
method that enables the model to automatically learn the
importance of different behaviors in prediction. The calcula-
tion of behavior weights is shown as follows:

αu,b = wb·nu,b∑
s∈NB

ws ·nu,s
; El+1

u,b = αu,b · El+1
u,b (4)

where wb indicates user weight under behavior b, which is
the same for all users. nu,b indicates the number of times
the user interacted with the item under the behavior b and
nu,s indicates the total number of user interactions. Subse-
quently, we aggregate themulti-behavior embedding of users
and items to generate high-level connectivity embedding:

El+1
u,b = σ

(
Wg · El+1

u,b

)
(5)

where σ indicates the activation function PReLu, Wg indi-
cates the parameter matrix, and the same operation is applied
to the item side. The computation of the final multi-behavior
embeddings for users and items is shown as follows:

Eu,b = 1
l

L∑
l=1

Ei,b; Ei,b = 1
l

L∑
l=1

Eu,b (6)

Temporal aware attention (TAA)

Users’ final purchase preferences may deviate from their ini-
tial preferences. For example, in Fig. 1, the user’s preferences
at t1 include tops, hats, and pants. In contrast, before the pur-
chase, the user’s preference is only for tops. Unlike CLSR
[37], which divides user preferences into short-term and
global preferences, given that user preferences change over
time, we contend that global preferences cannot effectively
reflect a user’s personalized dynamic preferences. We divide
the user’s multi-behavior interactions into initial interactions
t Iu,i,b and final interactions t Fu,i,b based on the timestamps
tu,i,b. Design a temporal aware attention and use the slot
mapping function τ(·) to generate two temporal embeddings
for users, as shown in Fig. 4. The calculation is as follows:

T I
u,i,b = sin

(
τ

(
t Iu,i,b

)
· w̄1

)

T F
u,i,b = cos

(
τ

(
t Fu,i,b

)
· w̄2

)

Fig. 4 Example of temporal aware attention

w̄1 = 1

10, 000 2l
dt

; w̄2 = 1

10, 0002l+1
dt

(7)

wherew1 andw2 represent the parameter matrix, and dt rep-
resents the temporal embedding dimension. Subsequently,
we utilize a linear layer to align the acquired initial temporal
embedding andfinal temporal embeddingwith the high-order
multi-behavior user embedding:

Ē I
u,b = Linear

(
T I
u,i,b

)
; Ē F

u,b = Linear
(
T F
u,i,b

)
(8)

We put the multi-behavior user embeddings generated in
Sect. 4.2.1 into query/key/value vectors as Q = Eu,bWQ,

K = Eu,bWk, V = Eu,bWV . Then, we preset the initial tem-
poral embedding sequence Ē I

u,b = {Ē I
u1,b

, . . . , Ē I
um ,b} and

the final temporal embedding sequence Ē F
u,b = {Ē F

u1,b
, . . . ,

Ē F
um ,b} at the multi-head attention layer of the Transformer

[20]. This method is referred to as temporal aware attention
(TAA) and is implemented as shown in the following equa-
tion:

YI = TAA
(
[Eu,b‖Ē I

u,b], Eu,b, Eu,b

)

= softmax

( [Ē I
u,b; Q]K√

d

)
V (9)

where YI is the result of the weights of a layer of initial
tempora-aware attention, and ‖ denotes concat operation. In
addition, the same operation applies to the final tempora-
aware attention. In thisway,multi-head attention is combined
to obtain the output of the multi-head attention layer:

Multihead (YI ) = Concat
(
Y 1
I , . . . ,Y h

I

)
W (10)

where {Y 1
I , . . . ,Y h

I } are the output of each attention layer, h
are the layers of attention. We normalize the output results
of the multi-head attention layers using a residual connec-
tion layer with regularization. Then, we use a feed-forward
network to obtain the final attention output:

N = Norm (YI + Multihead (YI ))

F = max (0, NW1 + b1)W2 + b2
(11)
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where W is the weight parameter and b is the bias. We use
temporal aware attention to effectively fuse the high-order
user–item multi-behavior embeddings with the two types
of temporal embeddings, capturing the user’s evolving per-
sonalized preferences over time. The final computed initial
temporal usermulti-behavior embeddings E I

u,b andfinal tem-

poral user multi-behavior embeddings EF
u,b are calculated as

follows:

E I
u,b = TAA

(
Eu,b ← Ē I

u,b

)

EF
u,b = TAA

(
Eu,b ← Ē F

u,b

) (12)

Attribute-enhancedmulti-behavior embedding
encoding

On online platforms, there is rich attribute information
associated with user–item interactions. For instance, user
attributes such as age and gender and item attributes such
as brand and appearance play a significant role in shaping
user preferences. Users with different attributes may exhibit
different preferences for the same item. Instead of solely
generating attribute embeddings as done in AGCN [35],
we propose an attribute-enhancedmulti-behavior embedding
encodingmodule to enhance user–item embeddings and cap-
ture users’ fine-grained preferences.

Attribute-weight-enhanced attention (AWE)

Different attribute information holds varying importance for
users. To better utilize diverse attribute information in cap-
turing fine-grained user preferences and providing more
personalized recommendations, we design the attribute-
weighted enhancement attention (AWE) based on LGCN.
Aim to generate fused attribute-weighted user and item
embeddings based on the different attribute information:

ωl
u←a = softmax(σ (Wl(El

u,b‖El
u,a + bl)))

ωl
i←a = softmax(σ (Wl(El

i,b‖El
i,a + bl)))

(13)

where ωl
u←a is the attribute weight at the l layer. σ is the

activation function, and Wl , bl are the weight matrix and
bias.

Weight-enhanced embedding aggregation

In the multi-behavior attribute user–item interaction graph,
each user node is connected to the item nodes it interacts
with, as well as the attribute nodes. Simultaneously, item
nodes are connected to their corresponding attribute nodes
and the user nodes they interact with. We utilize LGCN
to process the four multi-behavior attribute user–item inter-
action graphs (Ga

v,G
a
f ,G

a
c ,G

a
p). This is done to generate

high-order embeddings for users, items, and attribute. The
computation process is as follows:

E (l+1)
u,a = 1

Nu,a

∑
u∈Nu,a

E (l)
u,b

E (l+1)
u←a,b = ∑

a∈Nu,a

ωl
u←a E

(l)
u,b � E (l)

u,a
(14)

where E (l+1)
u,a is the attribute embedding, E (l+1)

u←a,b is themulti-
behavior user embedding enhanced by attribute weight, l
represents the number of LGCN layers, when l = 0, the
embeddings are the initial user–item and attribute embedding
which generated in Sect. 4.1, Nu,a represents neighboring
attribute nodes for users, and similar operations are applied
to the item side.Aftermulti-layers of graph convolution oper-
ations, the user and item embeddings enhanced by attribute
weights are calculated as follows:

Ea
u,b = 1

l

L∑
l=1

E (l+1)
u←a,b; Ea

i,b = 1
l

L∑
l=1

Ei←a,b (15)

Collaborative contrastive learning

Contrastive learning, as a learning paradigm addressing data
sparsity issue learns high-quality information representation
by comparing positive and negative sample pairs. It has
found widespread application in recent sequential recom-
mendations [38]. Nonetheless, these approaches tend to over-
look users’ personalized preferences, resulting in a dimin-
ished diversity in model recommendations. For instance,
CML [17], the pioneering use of contrastive learning in
multi-behavior recommendation, considered target behavior
embedding and auxiliary behavior embedding as positive and
negative samples. However, they neglect the dynamic prefer-
ences of users. CLSR [37], employingmulti-view contrastive
learning from graphs and sequential structures, does take
temporal preferences into account. However, it fails to cap-
ture the implicit information within a user’s multi-behavior
interactions, influenced by rich attribute information. To
address this, we introduce collaborative contrastive learning
(CCL) to collaboratively capture users’ personalized prefer-
ences from both temporal and attribute perspectives. CCL
models the evolution of user interests, addresses data spar-
sity issues and enhances the diversity and fairness of model
recommendations.

User-preference aggregation

In the encoding processes of attribute-enhanced multi-
behavior embedding and temporal aware multi-behavior
embedding, we acquire attribute-enhanced multi-behavior
user and item embedding sequences, initial temporal user
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embedding sequences, and final temporal user embedding
sequences. We aggregate them to generate fused attribute-
weighted initial temporal preferences and final temporal
preferences:

Ẽ I
u,b = Ea

u,b‖E I
u,b; Ẽ F

u,b = Ea
u,b‖EF

u,b (16)

Initial preference contrastive learning

Through the introduction of auxiliary behaviors and facili-
tating information interaction with the target behavior, we
efficiently address the data sparsity issue related to the tar-
get behavior. During the initial stages of user interactions,
user preferences showcase diversity, and various behaviors
carry different levels of significance for users. Hence, in
the context of initial preference contrastive learning, we
define positive samples as embeddings of the target behavior
and multi-auxiliary behavior embeddings for the same user
{Ẽ I

u1,b
, Ẽ I

u1,v/Ẽ
I
u1, f

/Ẽ I
u1,c}. Simultaneously, within a batch,

we randomly select users and define negative samples as
embeddings of the target behavior andmulti-auxiliary behav-
iors for different users {Ẽ I

u1,b
, Ẽ I

u2,v}. We define the user’s

initial preference contrastive loss LI
cl,u based on InfoNCE

[39] as follows:

LI
cl,u = ∑

u∈U
− log

exp
(
cosine

(
Ẽ I
u1,b,Ẽ

I
u1,v

)
/τ

)

∑
u∈U exp

(
cosine

(
Ẽ I
u1,b,Ẽ

I
u2,v

)
/τ

) (17)

where τ represents the temperature hyperparameter used to
adjust the scale of the softmax function, with the same oper-
ation applied to the item side. When analogously combined
with the contrastive loss of the item side, the initial preference
contrastive loss is LI

cl = LI
cl,u +LI

cl,i . The initial preference
contrastive learning loss is composed of the sum of each pair
of auxiliary behaviors (page view, favorite, add to cart) with
the target behavior (purchase).

Final preference contrastive learning

The user’s initial temporal preference and final temporal
preference are not the same in the end. Preferences at dif-
ferent times have different importance for model prediction.
Meanwhile, during the initial preference contrastive learning
process, the model might capture too much semantic infor-
mation from auxiliary behaviors (e.g., page view, collecting,
and adding to cart), thereby confusing the semantic informa-
tion of the target behavior (purchase) itself. To mitigate the
semantic influence of auxiliary behaviors, we concatenate
auxiliary embeddings Ẽ F

u,b′ = Ẽ F
u,v‖Ẽ F

u, f ‖Ẽ F
u,c to consoli-

date the semantic information of the target behavior.

In the final preference contrastive learning,we define posi-
tive samples as embeddings of the sameuser’s target behavior
and auxiliary behaviors {Ẽ F

u1,b
, Ẽ F

u1,b′ }, and negative samples
as embeddings of different users’ target behavior and aux-
iliary behaviors {Ẽ F

u1,b
, Ẽ F

u2,b′ }. The user’s final preference

contrastive loss is defined as follows LF
cl,u :

LF
cl,u = ∑

u∈U
− log

exp
(
cosine

(
Ẽ F
u1,b,Ẽ

F
u1,b′

)
/τ

)

∑
u∈U exp

(
cosine

(
Ẽ F
u1,b,Ẽ

F
u2,b′

)
/τ

) (18)

Analogously combining the loss of item side, we obtain
the final objective function of final preference contrastive loss
as LF

cl = LF
cl,u + LF

cl,i .

Joint loss

In the learning phase of MBCCL, we utilize the original
Bayesian ranking (BPR) loss Lbpr, initial preference con-
trastive lossLI

cl, and final preference contrastive loss lossLF
cl

to jointly optimize the model for the main supervised task.
This ensures that themodelminimizes the difference between
the positive and negative sample predictions of the users. We
define the BPR loss Lbpr as follows:

Lbpr = ∑
n∈U

∑
i∈Nu

∑
i ′ /∈Nu

− log
(
σ

(
ybu,i+ − ybu,i−

))
(19)

where ybu,i+ , ybu,i− are the positive and negative sample of
BPR loss. The loss and the prediction of the model are cal-
culated as follows:

L = Lbpr + λ1LI
cl + λ2LF

cl (20)

where λ1, λ2 indicate the weights of the collaborative
contrastive loss, which aim to highlight the importance of
different moments of user interaction.We use the Adam opti-
mizer with stochastic gradient descent to train our model
during the training process.

Experiments

In this section, we conduct experiments on two datasets to
evaluate the performance of our MBCCL by answering the
following research questions:

• RQ1 How does MBCCL perform when competing with
various recommendation baselines on different datasets?

• RQ2How do the designed three modules in our MBCCL
frame work affect the recommendation performance?

• RQ3 How effective are the multi-behavior and attribute
information introduced in our MBCCL framework?
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Table 1 Statistics of experimented datasets

Dataset User Item Multi-behavior types User attribute Item attribute Interactions

Tmall 7775 5953 View, fav, cart, buy Age, gender Category, brand, seller 60,087

Fliggy trip 17,307 4923 View, cart, buy Age, occupation, habitual city Category, city 161,316

• RQ4 How effective is the collaborative contrastive learn-
ing we designed?

• RQ5Howdo different configurations of key hyperparam-
eters impact the performance of MBCCL framework?

Experimental settings

Datasets

We utilize two recommendation datasets collected from real-
world scenarios. The Tmall dataset is provided by Tmall
stores, and the Fliggy Trip dataset is provided by the Fliggy
platform. These datasets contain users’ multi-behavior as
well as rich attribute information for users and items. Table 1
presents the data distribution for both datasets. In our experi-
ments, users and items with fewer than five interactions were
filtered out.

Evaluation metrics

The experiment uses two evaluation metrics widely used in
recommendation tasks: normalized discounted cumulative
gain (NDCG) and hit ratio (HR). In our experiments, we
adopted the leave-one-out evaluation approach, which has
been widely used in previous works.

Methods for comparison

To evaluate the performance of our MBCCL, we compare
it with various SOTA recommendation baselines from five
groups: single-behavior recommendation, multi-behavior
recommendation, sequential recommendation, recommen-
dation with contrastive learning and incorporate external
knowledge recommendation.

Single-behavior recommendation

• IMP-GCN [12] It aggregates users with similar prefer-
ences into a user–item interaction graph and uses graph
neural networks to encode embeddings for users and
items.

• STAM [40] It designs a temporal encoding module
that incorporates temporal information into neighboring
nodes and uses neural networks to generate temporal
embeddings.

Multi-behavior recommendation

• EHCF [41] It applys a new non-sampling migration
learning, i.e., efficient heterogeneous collaborative fil-
tering, to sequence recommendation models.

• GHCF [42] It is based on users’ multi-behavior interac-
tions and incorporates the weights of behaviors into the
graph convolution operation for iterative aggregation.

• MBGCN [43] It introduced a heterogeneous graph that
combines multi-behavior, allowing user embedding to
incorporate weights specific to certain behaviors, facili-
tating behavior-aware embedding propagation.

• MBGMN [44] It customizes the meta-learning paradigm
for multi-behavior relationship learning and performs
embedding propagation in graph neural networks.

Sequential recommendation

• SASREC [1] It introduces a self-attention-based sequen-
tial model to capture long-term semantic information.

• Bert4rec [45] It predicts user’s interest in products
by extracting their historical interests from user’s past
behaviors.

• SURGE [46] It uses metric learning to reconstruct loose
item sequentials into a dense item-item interest graph,
aggregatingdifferent types of preferences from long-term
user behavior into clusters within the graph.

Recommendation with contrastive learning

• CML [17] It pioneered the application of contrastive
learning in multi-behavior recommendation models for
the first time.

• CLSR [37] It separates user preferences into long-term
and short-term preferences and decouples them through
self-supervised learning.

• MMCLR [19] It enhances the multi-behavior recommen-
dation model by introducing a multi-view contrastive
learning approach based on both sequence and graph
structures.

Incorporating external knowledge recommendation

• KGAT [47] It combines user–item interaction graphswith
knowledge graphs and uses attention mechanisms to dif-
ferentiate the importance of different neighbor nodes.
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• AGCN [35] It incorporates attribute information into the
user–item interaction graph and proposes an adaptive
graph convolutional network for joint item recommen-
dation and attribute inference.

Parameter settings

Our proposed model is implemented on the Pytorch frame-
work. The hyperparameters are set as follows: the number of
multi-head attention heads in TAA is 6. The dropout in both
Tmall and Fliggy Trip is 0.7. The learning rate in Tmall is
1e−3, and that in Fliggy Trip is 1e−2. batch size is set to 128
in Tmall and Fliggy Trip. The embedding vector dimension
is 32 and the temporal embedding vector dimension is 16.
The reports of the models we implemented are all based on
the average scores of 5 random runs on the test set.

Performance comparison (RQ1)

We give detailed evaluation results for all methods on dif-
ferent datasets in Table 2, where the results for MBCCL are
highlighted in bold. The main observations are as follows:

• The performance gap between MBCCL and single-
behavior recommendation models (IMP-GCN, STAM)
underscores the effectiveness of incorporating multi-
behaviors as auxiliary information to capture users’
personalized preferences.

• Compared to multi-behavior recommendation models
(EHCF, GHCF, MBGCN, and MBGMN), MBCCL
demonstrates superior performance. Existing multi-

behavior recommendations focus on utilizing multi-
behavior interaction data to capture users’ dependencies
on multi-behaviors, often neglecting temporality. This
validates the effectiveness of our temporal aware encod-
ing module in capturing users’ dynamic preferences.

• Among the various comparison methods, it is evi-
dent that the injection of multi-behavior information
into sequential recommendations significantly enhances
performance compared to traditional sequential recom-
mendation models (SASREC, Bert4rec, and SURGE).
Traditional sequential recommendation learns the user’s
sequential interaction pattern based on the interaction
sequence. Building upon this, we use multi-behavior
information to further enrich the user’s sequential inter-
action pattern. Concurrently, we introduce rich attribute
information on the user side and item side to capture
users’ fine-grained preferences.

• We assess the performance of MBCCL against sev-
eral representative recommendations with contrastive
learning (CML, CLSR, and MMCLR). Nevertheless,
prior studies leveraging contrastive learning for per-
formance improvement often overlook the influence of
rich attribute information on user preferences. In addi-
tion, the weights assigned to user preferences at the
initial moment and the final moment differ. Therefore,
we propose collaborative contrastive learning (CCL),
encompassing both initial preference contrastive learning
and final preference contrastive learning. This approach
collaboratively captures users’ personalized preferences
from both temporal and attribute perspectives.

Table 2 Experimental results on
Tmall and Fliggy trip datasets

Models Tmall Fliggy Trip

HR Imprv NDCG Imprv HR Imprv NDCG Imprv

IMP-GCN 0.041 5.34 0.024 6.21 0.084 1.17 0.059 1.23

STAM 0.049 4.12 0.029 4.86 0.091 1.04 0.065 1.04

EHCF 0.070 2.72 0.033 4.24 0.071 1.61 0.059 1.23

GHCF 0.161 0.62 0.078 1.21 0.104 0.78 0.071 0.85

MBGCN 0.187 0.39 0.084 1.05 0.083 1.24 0.062 0.51

MBGMN 0.196 0.33 0.092 0.88 0.114 0.67 0.076 0.73

SASRec 0.137 0.90 0.056 2.08 0.098 0.89 0.081 0.57

Bert4rec 0.164 0.59 0.059 1.93 0.128 0.45 0.105 0.25

SURGE 0.223 0.17 0.121 0.42 0.131 0.41 0.117 0.13

CML 0.205 0.26 0.096 0.80 0.119 0.56 0.087 0.51

CLSR 0.220 0.18 0.127 0.36 0.125 0.49 0.094 0.40

MMCLR 0.235 0.11 0.136 0.27 0.143 0.41 0.121 0.09

KGAT 0.039 5.63 0.021 6.40 0.105 0.77 0.073 0.81

AGCN 0.131 0.95 0.049 2.23 0.123 0.51 0.090 0.46

MBCCL 0.261 – 0.173 – 0.186 – 0.132 –

HR@N ,NDCG@N (N = 20)
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• The performance gap observed between MBCCL and
other models (KGAT, AGCN) underscores the advan-
tages of our attribute-weight-enhanced attention
approach. Leveraging attribute embedding to generate
attribute weights on graph neural networks proves effec-
tive in enhancing model performance and fairness.

Model ablation study (RQ2)

To explore the distinct contributions of modules in MBCCL,
we conduct an ablation study on two datasets. We examined
the following configurations:

• w/o TAE (temporal aware encoding) We removed the
temporal aware encoding module and utilized the initial
embeddings of users and items for iterative aggregation
in the graph convolutional neural network.

• w/o AWE (attribute-enhanced encoding)We removed the
attribute enhanced encoding module.

Table 3 Ablation study on two datasets, where
HR@N ,NDCG@N (N = 10)

Tmall Fliggy trip

HR NDCG HR NDCG

MBCCL 0.261 0.173 0.186 0.132

w/o TAE 0.254 0.169 0.179 0.125

w/o AWE 0.227 0.138 0.159 0.105

w/o CCL 0.235 0.145 0.162 0.113

• w/o CCL (collaborative contrastive learning) We
removed the collaborative contrastive learning and used
only the BPR loss during model training.

Table 3 shows the results of the ablation experiments:

1. By comparing MBCCL with “w/o TAE,” we observed
that the introduction of temporal aware encoding into the
model, along with the use of temporal aware attention,
enables the model to capture dynamic user preferences

Fig. 5 Multi-behavior and attribute information impact studies
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that evolve over time, thereby improving the accuracy of
model predictions.

2. By comparing MBCCL with “w/o AWE,” we found
that utilizing attribute-weight-enhanced user and item
embedding performed better than using only the initial
embedding of users and items. User interactions with
multi-behaviors are influenced by rich attribute informa-
tion related to users, such as age and gender, as well
as attributes of items such as brand and appearance.
By incorporating attribute information, we effectively
enhance the model’s performance and increase the fair-
ness of the model.

3. By comparing MBCCL with “w/o CCL,” we observed
that our collaborative contrastive learning, designed from
both temporal and attribute perspectives, effectively mit-
igates the data sparsity issue of target behaviors. In addi-
tion, starting from real-world scenarios and dividing user
interactions into initial interactions and final interactions
based on timestamps, we designed initial preference con-
trastive learning and final preference contrastive learning
to effectively capture the user’s fine-grained preferences.

Effect of multi-behavior and attribute information
(RQ3)

From Fig. 5a, b, we can observe that the purchase behav-
ior contributes the most to the model’s predictions, followed
by page view behavior. In real-world scenarios, user’s
multi-behavior can better reflect their personalized prefer-
ences. These results indicate that the impact of behaviors
is significant in sequential recommendation. By introducing
multi-behaviors, we effectively enrich user preferences from
various perspectives and enhance the model’s recommenda-
tion performance.

We conduct an ablation experiment focusingwith attribute
information, as illustrated in Fig. 5c. The results unequivo-
cally indicate that item attributes wield the most substantial
influence on the model’s performance. Attribute informa-

tion notably enhances the model’s overall performance.
Diverse attribute information exerts varying impacts on a
user’s interactions with multi-behaviors. Hence, we intro-
duce attribute-weight-enhanced attention to encode attribute
weights.

To delve into the user’s nuanced preferences, we visu-
ally represent attribute weights, as depicted in Fig. 5d. For
instance, the attribute weight for a user’s purchase behavior
on an item with ID 3680 is 0.7969, and the favorite behavior
weight is 0.4528, signifying the user’s heightened inclina-
tion to purchase the item based on its attribute information.
The attribute weight enhancement attention serves to capture
users’ fine-grained preferences and enhance the fairness of
model recommendations.

Effect of collaborative contrastive learning (RQ4)

To illustrate the efficacy of our design collaborative con-
trastive learning in alleviating the data sparsity issue we
conduct a comprehensive series of experiments. In the Tmall
dataset, we categorized users into five groups based on the
sparsity of their target behavior (purchase). TheX-axis delin-
eates different sparsity levels of user groups, the left Y -axis
denotes the number of users in each group, and the right
Y -axis showcases the HR@20 values in the test results, pre-
sented in Fig. 6a. At all sparsity levels, MBCCL outperforms
other multi-behavior and contrastive learning recommenda-
tion methods, demonstrating remarkable recommendation
performance, particularly for users with sparse target behav-
ior data.

Concurrently, with regard to the selection method for
positive and negative sample pairs in collaborative con-
trastive learning, we conduct experiments where we omitted
initial preference contrastive learning and final preference
contrastive learning, utilizing two variants illustrated in the
figure, as shown in Fig. 6b. “CML”: is modeled after CML
[16], where we defined positive and negative samples in con-
trastive learning as the target behavior and auxiliary behavior.

Fig. 6 Collaborative contrastive
learning impact studies
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“S-MBRec”: is modeled after S-MBRec [35], where we
set positive and negative pairs as purchase behavior and
other single behaviors. It is evident that our collaborative
contrastive learning outperforms these variants, underscor-
ing that our coordinated approach involving temporal and
attribute information, by contrasting users’ multi-behavior
and attribute information at different times and employing
diverse methods for selecting positive and negative sam-
ples, this approach effectively mitigates data sparsity issues,
enhancing the diversity and fairness of the model’s recom-
mendations.

Hyperparameter study (RQ5)

To evaluate the performance of our proposedMBCCLmodel,
we utilize four experiments to explore the impact of various
parameter settings. Themodel incorporates four key parame-
ter configurations: the length of timestamps tu,i,b, the number
of attention heads in temporal aware attention, the number of
layers in the light graph convolutional neural network l, and
the weight coefficients λ1 λ2 in the joint loss function. The
conclusions drawn from these experiments are as follows:

Impact of timestamp length

In the propose temporal aware encodingmodule,we explored
the impact of varying lengths of timestamps tu,i,b on the cor-
responding HR scores. Figure7a illustrates the results of this
analysis, revealing the following trends: The temporal aware
encoding module attains higher HR scores on both datasets
when the timestamp length is set to 10. However, with an
increase in the timestamp length, the module’s performance
begins to decline. This phenomenon may be attributed to the
fact that projects with interactions that occurred a long time
agomay not effectively reflect the user’s current preferences.

Impact the number of attention heads

In temporal aware attention, we investigated the influence of
employing different numbers of attention heads on HR and
NDCG scores. Figure7b presents the results of this analysis,
revealing the following trend: The attribute weight enhance-
ment module achieves higher HR and NDCG scores on both
datasets when the number of attention heads is set to 6.

Fig. 7 Parameters’ analysis
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Impact of the number of light graph convolutional neural
network layers

In the MBCCL model, we examine the impact of using
different numbers of LGCN layers on HR and NDCG
scores. Figure7c displays the results of this analysis, and we
observed the following trends: Using three layers of the light
graph convolutional neural network effectively improves the
model’s performance, demonstrating that embedding with
higher order connectivity has a positive effect. However, as
the number of layers increases, it introduces excessive noise
and leads to the problem of over-smoothing in the propaga-
tion layers, causing a decline in the model’s performance.

Impact of weight coefficients

FromFig. 7d, it is evident that themodel achieves its best per-
formancewhen theweight for thefinal preference embedding
contrastive loss λ2 is set to 0.5, and the weight for the ini-
tial preference λ1 is set to 0.1. This observation implies the
following: User preferences at the final moments strongly
correlate with the target behavior, such as purchasing. Con-
versely, at the initial stages of user interactions, preferences
are more diverse and less predictable. Therefore, allocating
a lower weight to the initial preference in the loss function
recognizes this diversity. Striking the right balance between
these weights enables the model to adeptly capture both
the evolving preferences over time and the diverse initial
preferences, resulting in enhanced performance in recom-
mendation tasks.

Conclusion

In this work, MBCCL integrates users’ multi-behavior inter-
actions as auxiliary information, enabling the model to
acquire a more profound understanding of diverse user pref-
erences during interactions with items. Furthermore, we
introduce the temporal aware encoding module and the
attribute weight enhancementmodule, incorporate two atten-
tion mechanisms, and employ LGCN to skillfully encode
comprehensive user and item attribute information and tem-
poral data from diverse perspectives. In addition, to address
data sparsity issues in the target behavior and enhance
the diversity and fairness of model recommendations, we
introduce collaborative contrastive learning (CCL), which
collaboratively captures users’ multi-behavior personalized
preferences from both temporal and attribute perspectives.
The experiments conduct on two datasets demonstrate that
the model significantly outperforms various baseline recom-
mendation models.

Sequential recommendation models employ contrastive
learning based on heuristic methods to augment the data.

However, these approaches may fall short of effectively
preserving the inherent semantic structure of sequences,
making them susceptible to noise interference. Furthermore,
user interaction data are fraught with substantial biases,
including selection bias, position bias, exposure bias, and
popularity bias. Blindly fitting data without accounting for
these inherent biases can compromise the interpretability and
robustness of the model’s recommendations. In our future
work, we intend to explore the integration of causal learning
into our collaborative contrastive learning models to address
bias issues. Concurrently, we will investigate enhanced data
augmentation methods that bolster the model’s capacity to
capture user preferences while preserving the semantic struc-
ture of sequences.
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