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Abstract
Analyzing the microscopic dynamics of pushing behavior within crowds can offer valuable insights into crowd patterns
and interactions. By identifying instances of pushing in crowd videos, a deeper understanding of when, where, and why
such behavior occurs can be achieved. This knowledge is crucial to creating more effective crowd management strategies,
optimizing crowd flow, and enhancing overall crowd experiences. However, manually identifying pushing behavior at the
microscopic level is challenging, and the existing automatic approaches cannot detect such microscopic behavior. Thus,
this article introduces a novel automatic framework for identifying pushing in videos of crowds on a microscopic level.
The framework comprises two main components: (i) feature extraction and (ii) video detection. In the feature extraction
component, a new Voronoi-based method is developed for determining the local regions associated with each person in the
input video. Subsequently, these regions are fed into EfficientNetV1B0 Convolutional Neural Network to extract the deep
features of each person over time. In the second component, a combination of a fully connected layer with a Sigmoid activation
function is employed to analyze these deep features and annotate the individuals involved in pushing within the video. The
framework is trained and evaluated on a new dataset created using six real-world experiments, including their corresponding
ground truths. The experimental findings demonstrate that the proposed framework outperforms state-of-the-art approaches,
as well as seven baseline methods used for comparative analysis.
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Introduction

With the rapid development of urbanization, the dense crowd
has becomewidespread in various locations, such as religious
sites, train stations, concerts, stadiums, malls, and famous
tourist attractions. In such highly dense crowds, pushing
behavior can easily arise, which may further increase crowd
density. This could pose a threat not only to people’s com-
fort but also to their safety [1–4]. People may start pushing
for different reasons. (1) Saving their lives in emergencies
or tense scenarios [5–7]. (2) Grabbing a limited resource,
such as gaining access to a crowded subway train [8, 9]. (3)
Accessing a venue more quickly; for instance, in crowded
event entrances, some pedestrians start pushing others to
enter the event faster [10–12]. The focus of this article is
the pushing that occurs in crowded event entrances due to
the availability of public real-world experiments about such
entrances. In this context, Lügering et al. [10] defined push-
ing as “a behavior that can involve using arms, shoulders,
or elbows; or simply the upper body, in which one person
actively applies force to another person (or people) to over-
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take, while shifting their direction to the side or back, or
force them to move forward more quickly”. Additionally,
using gaps in the crowd is considered as a strategy of push-
ing because it is a form of overtaking [10]. For more clarity,
the definition of pushing behavior adopted in this article,
published in 2022, describes it as a tactic pedestrians use
to move forward more quickly through dense crowds [10],
rather than as a strategy for fighting [13]. Understanding
the microscopic dynamics of pushing plays a pivotal role in
effective crowd management, to help safeguard the crowd
from tragedies and promoting overall well-being [1, 14–17].
The study [10] has introduced a manual rating system to
understand pushing dynamics at the microscopic level. The
method relies on two trained psychologists to classify pedes-
trians’ behaviors over time in a video of crowds into pushing
or non-pushing categories, helping to knowwhen,where, and
why pushing behavior occurs. However, this manual method
is time-consuming, tedious and prone to errors in some sce-
narios. Additionally, it requires trained observers, whichmay
not always be feasible. Consequently, an increasing demand
is for an automatic approach to identify pushing at the micro-
scopic levelwithin crowdvideos.Detecting pushingbehavior
automatically is a demanding task that falls within the realm
of computer vision. This challenge arises from several fac-
tors, such as dense crowds gathering at event entrances, the
variedmanifestations of pushing behavior, and the significant
resemblance and overlap between pushing and non-pushing
actions.

Recently, machine learning algorithms, particularly Con-
volutional Neural Network (CNN) architectures, have shown
remarkable success in various computer vision tasks, includ-
ing face recognition [18], object detection [19–21], image
classification [22] and abnormal behavior detection [23].
One of the key reasons for this success is that CNN can
learn the relevant features [24–26] automatically from data
without human supervision [27, 28]. As a result of CNN’s
success in abnormal behavior detection, which is closely
related to pushing detection, some studies have started to
automate pushing detection using CNN models [29–31].
For instance, Alia et al. [29] introduced a deep learning
framework that leverages deep optical flow and CNN mod-
els for pushing patch detection in video recordings. Another
study [30] introduced a fast hybrid deep neural network
model based on GPU to enhance the speed of video anal-
ysis and pushing patch identification. Similarly, the authors
of [31] developed an intelligent framework that combines
deep learning algorithms, a cloud environment, and live cam-
era stream technology to annotate the pushing patches in
real-time from crowds accurately. Yet, the current automatic
methods focus on identifying pushing behavior at the level
of regions (macroscopic level) rather than at the level of indi-
viduals (microscopic level), where each region can contain
a group of persons. For more clarity, “patch level” refers to

identifying regions that contain at least one person engaged
in pushing behavior. In contrast, “individual level” refers to
detecting the persons joining in pushing. Figure 1a shows
a visualized example that demonstrates the identification of
pushing behavior based on levels of patch and individual. In
other words, the automatic approaches reported in the litera-
ture can not detect pushing at the microscopic level, limiting
their contributions to help comprehend pushing dynamics in
crowds. For example, they cannot accurately determine the
relationship between the number of individuals involved in
pushing behavior and the onset of critical situations, thereby
hindering a precise understanding of when a situation may
escalate to a critical level.

To overcome the limitations of the aforementioned meth-
ods, this article introduces a novel Voronoi-based CNN
framework for automatically identifying individuals engag-
ing in pushing behavior in crowd video recordings, using
a single frame every second. It requires two types of input:
the crowd’s video recordings and individuals’ trajectory data.
The proposed framework comprises two components: feature
extraction and detection. The first component utilizes a novel
Voronoi-based EfficientNetV1B0 CNN architecture for fea-
ture extraction. The Voronoi-based method [32] integrates
the Voronoi Diagram, Convex Hull [33], and a new dummy
point generation technique to identify the local region of each
person every second in the input video. The boundaries of
local regions are determined based on the input pedestrian
trajectory data. Subsequently, the EfficientNetV1B0 (exclud-
ing its original multiclass classification part) model [34] is
used to extract deep features from these regions. In this arti-
cle, the local region is defined as the zone focusing only on
a single person (target person), including his surrounding
spaces and physical interactions with his direct neighbors.
This region is crucial in guiding the proposed framework to
focus on microscopic behavior. On the other hand, the sec-
ond component utilizes a fully connected layer coupled with
a Sigmoid activation function to create a binary classification
working instead of the original multi-class classification part
in the EfficentNetV1B0. This adaptation is crucial for pro-
cessing deep features and effectively differentiating between
pushing and non-pushing behaviors in individuals. Finally,
the adapted EfficientNetV1B0 is trained from scratch on a
dataset of labeled local regions generated from six real-world
video experiments with their ground truths [35].

-The main contributions of this work are summarized as
follows:

1. To the best of our knowledge, this article introduces
the first framework for automatically identifying push-
ing behavior at the individual level in videos of human
crowds. In contrast, previous works in the literature [29–
31] have focused on detecting such behavior at the patch
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Fig. 1 Illustrated examples: a annotated frame with yellow rectangles,
each representing a patch, showing an example of pushing behavior
detection at the patch level. Annotated frame with red squares, illustrat-

ing pushing behavior detection at the individual level. b Examples of
motion information map samples. c Examples of local region samples

level. Figure 1a provides a visualization of detection
methods at individual and patch levels.

2. The framework utilizes a novel Voronoi-based approach
with a trained and adaptedEfficientNetV1B0-basedCNN
model. The novel Voronoi-based approach incorporates
the Voronoi Diagram, Convex Hull, and a new dummy
point generation technique.

3. The article introduces a new dataset comprising both
pushing and non-pushing local regions, derived from six
real-world experiments, each with corresponding ground
truths. It is important to note that this dataset differs from
those in previous works [29, 31]. In the current dataset,
the samples consist of local regions. In contrast, in the
previous datasets, each sample represents a visualmotion
information map of the crowd within a specific patch—a
region ranging from 1.2 to 2.4 m2 on the ground—and a
specific duration, Fig. 1b and c show examples of motion
informationmaps and local region samples.Additionally,
the size of the new dataset is three times larger than that
of the previous datasets.

The remainder of this article is organized as follows.
“Related work” reviews some automatic approaches to
abnormal behavior detection in videos of crowds. The
architecture of the proposed framework is introduced in
“Proposed framework architecture”. “Training and evalua-
tionmetrics” presents the processes of training andevaluating
the framework. “Experimental results and discussion” dis-
cusses experimental results and comparisons. Finally, the
conclusion and future work are summarized in “Conclusion
and future work”.

Related work

This section begins by providing an overview of Voronoi
Diagrams-based Deep Learning in Computer Vision. Sub-
sequently, it explores CNN-based approaches for automatic
video analysis and detecting abnormal behavior in crowds.
The discussion then shifts to techniques specifically designed
for automatically identifying pushing incidents within crowd
videos.
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Voronoi diagram-based deep learning in computer
vision

A Voronoi diagram partitions a plane into regions based
on the distance to a set of points, known as seeds. Each
region is defined by all points closer to its corresponding
seed than any other (for more details about Voronoi diagram,
see “Voronoi-based local region extraction”, direct neighbor
identification step). Recently, integrating Voronoi diagrams
with deep learning algorithms has led to the development
of efficient applications in various computer vision tasks.
These tasks include visual-query-based retrieval systems
over image datasets [36], object detection [37], synthetic
dataset generation [38], and image classification [39, 40].

CNN-based abnormal behavior detection

Typically, behavior is considered abnormal when it is seen
as unusual in specific contexts. This implies that the defi-
nition of abnormal behavior depends on the situation [41].
To illustrate, running inside a bank might be considered
abnormal behavior, while running at a traffic light could be
viewed as normal [42]. Several behaviors have been automat-
ically addressed in abnormal behavior detection applications
in crowds, including walking in the wrong direction [43],
running away [44], sudden people grouping or dispersing
[45], human falls [46], suspicious behavior, violent acts [47],
abnormal crowds [48], hitting, and kicking [13].

Tay et al. [41] developed a CNN-based method for iden-
tifying abnormal activities from videos. The researchers
specifically designed and trained a customized CNN to
extract features and label samples, using a dataset compris-
ing both normal and abnormal samples. Similarly, study [49]
introduced a novel CNN-based system for detecting abnor-
mal crowd behavior in indoor and outdoor settings. This sys-
tem leverages the strengths of pre-trained DenseNet121 and
EfficientNetV2 models, which were fine-tuned for enhanced
feature extraction. Subsequently, the study introduced inno-
vative modifications to multistage and multicolumn models,
specifically tailored to identifying various crowd behav-
iors, including sudden motion changes, panic events, and
human flockmovement. A newmethod usingCNNs has been
developed in [50] for the real-timedetection of abnormal situ-
ations, such as violent behaviors. This method comprises the
Convolutional Block Attention Module combined with the
ResNet50 architecture to enhance feature extraction. In [51],
the authors proposed a Densely Connected Convolutional
Neural Network (DenseNet121)-based approach to identify
abnormal behaviors in surveillance video feeds, achieving
near real-time performance. Almahadin et al. [52] have
developed an innovative model to identify abnormal behav-
iors in video sequences of crowded scenes. They integrated
convolutional layers, Long Short-Term Memory networks,

and a sigmoid-based output layer to extract spatiotemporal
features and detect abnormal behaviors effectively. Never-
theless, constructing accurate CNNs requires a substantial
training dataset, often unavailable for many human behav-
iors.

To address the limited availability of large datasets
containing both normal and abnormal behaviors, some
researchers have employedone-class classifiers usingdatasets
that exclusively consist of normal behaviors. Creating or
acquiring a dataset containing only normal behavior is com-
paratively easier than obtaining a dataset that includes both
normal and abnormal behaviors. [53, 54]. The fundamental
concept behind the one-class classifier is to learn exclusively
from normal behaviors, thereby establishing a class bound-
ary between normal and undefined (abnormal) classes. For
example, Sabokrou et al. [53] utilized a pre-trained CNN to
extract motion and appearance information from crowded
scenes. They then employed a one-class Gaussian distri-
bution to build the classifier, utilizing datasets of normal
behavior. Similarly, in [54, 55], the authors constructed one-
class classifiers by leveraging a dataset composed exclusively
of normal samples. In [54], Xu et al. employed a convolu-
tional variational autoencoder to extract features, followed
by the use of multiple Gaussian models to detect abnormal
behavior. Meanwhile, in [55], a pre-trained CNN model was
employed for feature extraction, while one-class support vec-
tor machines were utilized for detecting abnormal behavior.
Another study by Ilyas et al. [56] conducted a separate study
where they utilized a pre-trained CNN along with a gradient
sum of the frame difference to extract meaningful features.
Subsequently, they trained three support vector machines
on normal behavior data to identify abnormal behaviors. In
general, one-class classifiers are frequently employed when
the target behavior class or abnormal behavior is rare or
lacks a clear definition [57]. However, pushing behavior is
well-defined and not rare, particularly in high-density and
competitive situations. Furthermore, this type of classifier
considers new normal behavior as abnormal.

To address the limitations of CNN-based and one-
class classifier approaches, multiple studies have explored
the combination of multi-class CNNs with one or more
handcrafted feature descriptors [23, 56]. In these hybrid
approaches, the descriptors are employed to extract valu-
able information from the data. Subsequently, CNN learns
and identifies relevant features and classifications based
on the extracted information. For instance, Duman et al.
[42] employed the classical Farnebäck optical flow method
[58] and CNN to identify abnormal behavior. They used
Farnebäck and CNN to estimate direction and speed infor-
mation and then applied a convolutional long short-term
memory network to build the classifier. Hu et al. [59]
employed a combination of the histogram of gradient and
CNN for feature extraction, while a least-squares support
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vector was used for classification. Direkoglu [23] utilized
the Lucas-Kanade optical flow method and CNN to extract
relevant features and identify “escape and panic behaviors”.
Almazroey et al. [60] used Lucas–Kanade optical flow, a
pre-trained CNN, and feature selection methods (specifically
neighborhood component analysis) to extract relevant fea-
tures. These extracted features were then used to train a
support vector machine classifier. A framework to analyze
video sequences in large-scale Hajj crowds was proposed
by Aldayri et al. [61]. It integrates convolution operations,
Convolutional Long Short-Term Memory, and Euclidean
Distance to achieve its objectives.

Hybrid-based approaches could bemore suitable for auto-
matically detecting pushing behavior due to the limited
availability of labeled pushing data. Nevertheless, most of
the reviewed hybrid-based approaches for abnormal behav-
ior detection may be inefficient for detecting pushing since
(1) the descriptors used in these approaches can only extract
limited essential data from high-density crowds to represent
pushing behavior. (2) Some CNN architectures commonly
utilized in these approaches may not be effective in dealing
with the increased variations within pushing behavior (intra-
class variance) and the substantial resemblance between
pushing and non-pushing behaviors (high inter-class simi-
larity), which can potentially result in misclassification.

CNN-based pushing behavior detection

In more recent times, a few approaches that merge effec-
tive descriptors with robust CNN architectures have been
developed for detecting pushing regions in crowds. For exam-
ple, Alia et al. [29] introduced a hybrid deep learning and
visualization framework to aid researchers in automatically
detecting pushing behavior in videos. The framework com-
bines deep optical flow and visualization methods to extract
the visual motion information from the input video. This
information is then analyzed using an EfficientNetV1B0-
based CNN and false reduction algorithms to identify and
label pushing patches in the video. The framework has a
drawback in terms of speed, as the motion extraction process
is based on a CPU-based optical flow method, which is slow.
Another study [30] presented a fast hybrid deep neural net-
workmodel that labels pushingpatches in short videos lasting
only two seconds. The model is based on an EfficientNetB1-
based CNN and GPU-based deep optical flow.

To support the early detection of pushing patches within
crowds, the study [31] presented a cloud-based deep learn-
ing system. The primary goal of such a system is to offer
organizers and security teams timely and valuable informa-
tion that can enable early intervention andmitigate hazardous
situations. The proposed system relies mainly on a fast and
accurate pre-trained deep optical flow, an adapted version
of the EfficientNetV2B0-based CNN, a cloud environment

and live stream technology. Simultaneously, the optical flow
model extracts motion characteristics of the crowd in the live
video stream, and the classifier analyzes the motion to label
pushing patches directly on the stream. Moreover, the sys-
tem stores the annotated data in the cloud storage, which is
crucial to assist planners and organizers in evaluating their
events and enhancing their future plans.

To the best of our knowledge, current pushing detection
approaches in the literature primarily focus on identify-
ing pushing at the patch level rather than at the individual
level. However, identifying the individuals involved in push-
ing would be more helpful for understanding the pushing
dynamics. Hence, this article introduces a new framework
for detecting pushing individuals in videos of crowds. The
following section provides a detailed discussion of the frame-
work.

Proposed framework architecture

This section describes the proposed framework for automatic
pushing person detection in videos of crowds. As depicted
in Fig. 2, there are two main components: feature extraction
and detection. The first component extracts the deep features
from each individual’s behavior. In contrast, the second com-
ponent analyzes the extracted deep features and annotates the
pushing persons within the input video. The following sec-
tions will discuss both components in more detail.

Feature extraction component

This component aims to extract deep features from each indi-
vidual’s behavior,which canbeused to classify pedestrians as
pushing or non-pushing. To accomplish this, the component
consists of two modules: Voronoi-based local region extrac-
tion and EfficientNetV1B0-based deep feature extraction.
The first module selects a frame from the input video every
second and identifies each person’s local region based on
the pedestrian trajectory data within those extracted frames.
Subsequently, the secondmodule extracts deep features from
each local region and feeds them to the next component for
pedestrian detection. Before diving into these modules, let
us define the local region term at one frame.

A frame ft is captured every second from the input video.
Here, t represents the timestamp, in seconds, since the start
of the video and can range from 1 to T , where T is the total
duration of the video in seconds. We can analyze individ-
ual pedestrians within each of these frames, such as ft . The
positions are given by discrete trajectories that assign a posi-
tion 〈x, y〉i to each person i at frame ft : ({[i, t, x, y]}Tt=1).
This revision clarifies that: LetNi denote the set of pedestri-
ans whose Voronoi cells are adjacent to that of pedestrian i .
Specifically, pedestrian j belongs to Ni if and only if their
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Fig. 2 The architecture of the proposed framework. In ft , f signi-
fies an extracted frame, while t indicates its timestamp in seconds,
counted from the beginning of the input video (with t taking values
like 1, 2, 3, . . .). For a target person i at ft , Li ( ft ) denotes the local
region, while Ni ( ft ) represents the direct neighbors of i at ft . The

input trajectory data denoted by tr assists the Voroni-based local region
extraction method in identifying the boundaries of each Li ( ft ). The
term tr_dummy refers to the data that includes the generated dummy
points and those in tr . FC stands for fully connected layer, while GAP
refers to global average pooling

Voronoi cells share a boundary. The local region for pedes-
trian i at ft , Li , forms a two-dimensional closed polygon,
defined by the positions of all pedestrians inNi . As illustra-
tions, Fig. 3a provides examples of bothNi (left image) and
Li (right image).

The region Li encapsulates the crowd dynamics around
individual i , reflecting potential interactions between i and its
neighbors Ni . Notably, the characteristics around a pushing
individual might diverge from those around a non-pushing
one, a distinction pivotal for highlighting pushing behav-
iors. Figure 3b showcases examples of such Li regions for
pushing and non-pushing individuals. The following section
introduces a novel method for extracting Li .

Voronoi-based local region extraction

This section presents a novel method for extracting the local
regions of pedestrians from the input video over time t .
Besides the input video recordings, this method requires
trajectory data {[i, t, x, y]}Tt=1 to determine the coordinates
〈x, y〉 j at frame ft , which aids in identifying the corners of
the polygonal local region Li at ft . The technique consists
of several steps: frame extraction, dummy points generation,
direct neighbor identification, and local region extraction.

Based on the definition of Li presented earlier, the deter-
mination of each i’s regional boundary is contingent uponNi

at ft (Ni ( ft )). Nonetheless, this definition might not always
guarantee the inclusion of every i within their respective
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b)

Pushing examples Non-pushing examples

a)

Fig. 3 An illustration of direct neighbors (a) and examples of local regions (b). The red circles represent individuals engaged in pushing, while the
green circles represent individuals not involved in pushing. Direct neighbors j of a person i are indicated with blue circles

c)b)a)

Fig. 4 An illustration of the effect of dummy points on creating the
local regions, as well as a sketch of the dummy points generation tech-
nique. a L37 and L3 without dummy points. b A sketch of the dummy
points generation technique. c L37 and L3 with dummy points. The

white polygon represents the border of the local regions. Yellow small
circles refer to the generated dummy points, while black points in b
denote the positions of pedestrians. r is the dimension of each square

local region. This can be particularly evident when i at ft
lacks neighboring points from all directions, exemplified by
person 37 in Fig. 4a. To address this issue, we introduce a
step to generate dummy points. This involves adding points
around each i at ft in areas where they lack direct neigh-
bors. This ensures every i remains encompassed within their
local regions, as illustrated by person 37 in Fig. 4c. For this
purpose, as depicted in Fig. 4b and Algorithm 1, firstly, this
step involves reading the trajectory data of i that corresponds

to ft (Algorithm 1, lines 1–8). Concurrently, the area sur-
rounding every i is divided into four equal square regions,
each can accommodate at least one i (Algorithm 1, lines
9–17). The location 〈x, y〉i corresponds to the first 2D coor-
dinate of each region (Algorithm 1, lines 12–13). In contrast,
the remaining 2D coordinates (〈x1, y1〉,〈x2, y2〉,〈x3, y3〉,
〈x4, y4〉) required for identifying the regions can be deter-
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Algorithm 1 Pseudo code for generating dummy points.
Inputs:

tr= {row1, row2, row3, . . . }, // A file of pedestrian trajectory data
where each row =[pedestrian Id, frame order in the corresponding video, x-coordinate of pedestrian Id, y-coordinate of pedestrian Id]
f ps: the frame rate in the corresponding video
r : the dimension of each square region in pixel unit

Outputs:
// A file of pedestrian trajectory data with dummy points
tr_dummy=tr ∪ {row1, row2, row3, . . . }
where row =[“dummy point”, frame order in the corresponding video, x-coordinate of the dummy point, y-coordinate of the dummy point]

1: f ile ← open(tr )
2: f ile_dummy ← open(tr_dummy)
3: while not EOF( f ile) do
4: rec ← read( f ile)
5: if rec[1]% f ps = 0 then
6: write(rec) to f ile_dummy
7: end if
8: end while
9: regions ← [ [ ] ]
10: while not EOF( f ile_dummy) do
11: rec ← read( f ile_dummy)
12: x ← rec[2]
13: y ← rec[3]
14: append ([x − r , y + r ]) to regions
15: append ([x + r , y + r ]) to regions
16: append ([x + r , y − r ]) to regions
17: append ([x − r , y − r ]) to regions
18: while corner in regions do
19: if empty(area([x, y], corner ]) then

20: dummy_point ←
[
x+corner [0]

2 , y+corner [1]
2

]

21: dumy_rec ← [0, rec[0], dummy_point[0], dummy_point[1]]
22: append (dumy_rec) to f ile_dummy
23: end if
24: end while
25: end while
26: tr .close()
27: tr_dummy.close()

mined by:

〈x1, y1〉 = 〈x − r , y + r〉
〈x2, y2〉 = 〈x + r , y + r〉
〈x3, y3〉 = 〈x + r , y − r〉

〈x4, y4〉 = 〈x − r , y − r〉,

(1)

where r is the dimensionof each square region. Subsequently,
each region is checked to verify if it has any pedestrians.
In case a region is empty, a dummy point in its center
is appended to the input trajectory data. Figure 4b illus-
trates an example of four regions surrounding person 37 and
two dummy points (yellow dots in first and second empty
regions), see Algorithm 1, lines 18–24. After generating the
dummy points for all i at ft , the trajectory data is forwarded
to the next step, direct neighbor identification. Figure 4c
shows a crowd with dummy points in a single ft .

The third step, direct neighbor identification, employs a
combination of Voronoi Diagram [32] and Convex Hull [33]

to find Ni ( ft ) from the input trajectory data with dummy
points. A Voronoi Diagram is a method for partitioning a
plane into several polygonal regions (named Voronoi cells
Vs) based on a set of objects/points (called sites) [32]. Each
V contains edges and vertices, which form its boundary. Fig-
ure 5a depicts an example of a Voronoi Diagram for 51Vs of
51 sites, where black and yellow dots denote the sites. In the
same figure, the set of sites contains 〈x, y〉i (dummy points
are included) at a specific ft , then each Vi includes only one
site 〈x, y〉i , and all points within Vi are closer to site 〈x, y〉i
than any other sites 〈x, y〉q . Where q ∈ all i at that ft , and
q �= i .

Furthermore, Vi and Vq at ft are considered adjacent if
they share at least one edge or two vertices. For instance,
as seen in Fig. 5, V4 and V34 are adjacent, while V4 and
V3 are not adjacent. Since the Voronoi Diagram contains
unbounded cells, determining the adjacent cells for each Vi

at ft may yield inaccurate results. For instance, most cells of
yellow points, which are located at the scene’s borders, are
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Algorithm 2 Pseudo code of direct neighbor identification step
Inputs:

tr_dummy={row1, row2, row3, . . . },
where each row =[dummy point or pedestrian Id, frame order in the corresponding video, x-coordinate point, y- coordinate]

Outputs:
direct_neighbor={row1, row2, row3, . . . },
where each row =[frame order in the corresponding video, pedestrian Id, [direct neighbors (Ids) of pedestrian Id] ]

1: f ile ← open(tr_dummy)
2: f ile_dn ← open(direct_neighbor )
3: data ← load( f ile)
4: f rames ← unique(data[:, 0])
5: while f r in f rames do
6: data_ f r ← filter(data , f r )
7: vor_diagram ← Voronoi(data_ f r [:, 2 : 4])
8: CH ← ConvexHull(data_ f r [:, 2 : 4])
9: for each region ∈ vor_diagram.regions do
10: vor_diagram.region ← vor_diagram.region ∩ CH
11: end for
12: cells ← vor_diagram.regions
13: while i in data_ f r [:, 0] do
14: cell ← cells[i]
15: dn_cells ← find_direct_neighbor_cells (cell)
16: dn_i ← dn_cells.sites
17: rec ← [ f r , i, dn_i]
18: write (rec) to f ile_dn
19: end while
20: end while
21: f ile.close()
22: f ile_dn.close()

Fig. 5 a Example of a simple
Voronoi decomposition. b
Example of bounded Voronoi
decomposition. Both are
constructed using 30 pedestrian
points and 21 dummy points

Site

Edge

Vertex

Voronoi cell

a) b)

unbounded cells, as depicted in Fig. 5a. For further clarity,
Vi ( ft ) becomes unbounded when i is a vertex of the con-
vex hull that includes all instances of i at ft . As a result,
the Voronoi Diagram may not provide accurate results when
determining adjacent cells, which is a crucial factor in iden-
tifying Ni ( ft ). To overcome such limitation, Convex Hull
[33] is utilized to finite the Voronoi Diagram (unbounded

cells) as shown in Fig. 5b. The Convex Hull is the mini-
mum convex shape that encompasses a given set of points,
forming a polygon that connects the outermost points of the
set while ensuring that all internal angles are less than 180◦
[62]. For this purpose, the intersection of each Vi ( ft ) with
Convex Hull of all i at ft is calculated, then the Vi ( ft ) in
the diagram are updated based on the intersections to obtain
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the bounded Voronoi Diagram of all i at ft (Algorithm 2,
lines 5–12). In more details, the Convex Hull of all i at ft is
measured (Algorithm 2, line 8). After that, the intersection
between Vi ( ft ) and the Convex Hull at ft is computed. And
finally, we update the Voronoi Diagram at each ft using the
calculated interactions to obtain the corresponding bounded
one as shown in Fig. 5b (Algorithm 2, lines 8–11). After
creating the bounded Voronoi Diagram, individuals in the
direct adjacent Voronoi cells of Vi ( ft ) are Ni ( ft ), (Algo-
rithm 2, lines 12–20). For example, in Fig. 5b, direct adjacent
Voronoi cells of V3 at ft are {V2,V22,V35,V15,V7}, and
N3 = {2, 22, 35, 15, 7}.

The last step, local region extraction, aims to extract the
local region of each i at ft , where i /∈ dummypoints. The step
firstly findsLi ( ft ) based on each 〈x, y〉 j , where j ∈ Ni ( ft ),
Fig. 4c. Then,Li ( ft ) are cropped from corresponding ft and
passed to the next module, which will be discussed in the
next section. Figure 3b displays examples of cropped local
regions.

EfficientNetV1B0-based deep feature extraction

To extract the deep features from each individual’s behav-
ior, the feature extraction part of EfficientNetV1B0 is used
over their local regions Li ( ft ). EfficientNetV1B0 is a CNN
architecture that has gained popularity for various com-
puter vision tasks due to its efficient use of resources and
fewer parameters than other state-of-the-art models [34].
Furthermore, it has achieved high accuracy on multiple
image classification datasets. Additionally, the experiments
in this article (“Comparison with five baseline frameworks
based on popular CNN architectures”) indicate that com-
bining EfficientNetV1B0 (without local classification part)
with local regions yields the highest accuracy compared
to other popular CNN architectures integrated with local
regions. Therefore, EfficientNetV1B0’s feature extraction
part is employed to find more helpful information from each
individual’s behavior.

The architecture of the efficientNetV1B0-based deep fea-
ture extraction model is depicted in Fig. 2. Firstly, it applies
a 3 × 3 convolution operation to the input image, a local
region with dimensions of 224 × 224 × 3. Following this,
16mobile inverted bottleneck convolution (MBConv) blocks
[63] are employed to extract deep features (feature maps)
∈ R

7×7×320 from each Li ( ft ). In more detail, the MBConv
blocks used consist of one MBConv1, 3× 3, six MBConv6,
3×3, and nineMBConv6, 5×5. Figure 6 illustrates the struc-
ture of theMBConvblock,which employs a 1×1 convolution
operation to expand the depth of feature maps and capture
more information. A 3 × 3 depthwise convolution follows
this to decrease the computational complexity and number
of parameters. Additionally, batch normalization and swish
activation [64] are applied after each convolution operation.

Conv, 1 X 1

Depthwise
Conv, 3 X 3 or 5 X 5

H,W,C

Squeeze-and-Excitation

Conv, 1 X 1

H,W,C

H,W,C

Input

Output

H,W,C

Squeeze-and-Excitation block

Global Average
Pooling2D

Conv 1 X 1

Swish

Conv 1 X 1

Sigmoid

Fig. 6 The architecture of MBConv block

The MBConv then employs a Squeeze-and-Excitation block
[65] to enhance the architecture’s representation power. The
Squeeze-and-Excitation block initially performs global aver-
age pooling to reduce the channel dimension. Then it applies
an excitation operation with Swish [64] and Sigmoid [66]
activations to learn channel-wise attention weights. These
weights represent the significance of each feature map and
are multiplied by the original feature maps to generate the
output featuremaps.After theSqueeze-and-Excitationblock,
another 1 × 1 convolution with batch normalization is used
to reduce the output feature maps’ dimensionality, resulting
in the final output of the MBConv block.

The main difference between MBConv6 and MBConv1
is the depth of the block and the number of operations
performed in each block; MBConv6 is six times that of
MBConv1. Note that MBConv6, 5 × 5 performs the iden-
tical operations as MBConv6, 3 × 3, but MBConv6, 5 × 5
applies a kernel size of 5× 5, while MBConv6, 3× 3 uses a
kernel size of 3 × 3.

Detection component

The primary objective of the detection component is to ana-
lyze the feature maps generated by the previous component
and categorize individual behaviors as either pushing or non-
pushing.This task requires a binary classification followedby
an annotation process. Unfortunately, the classification part
of the original EfficientNetV1B0 architecture is not designed
for binary tasks and is thus unsuitable for identifying pushing
behavior. Consequently, we have adapted the classification
part of EfficientNetV1B0 to support binary classification. In
addition to extracting deep features in the preceding com-
ponent, this modification allows the EfficientNetV1B0 to
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Fig. 7 A visualized example of a sequence of frames annotated with red rectangles highlighting the individuals participating in pushing. The
original frames were taken from [35]

classify individual behaviors as pushing or non-pushing in
the detection component. To perform the binary classifica-
tion task, we combine a 1 × 1 convolution operation, 2D
global average pooling, a fully connected layer with a single
neuron, and a Sigmoid activation function. Figure 2 shows
the classifier. To gain more information by increasing the
number of channels in feature maps, the 1× 1 convolutional
operation is used. The new dimension of feature maps for
each Li ( ft ) is 7 × 7 × 1280. After that, the global aver-
age pooling2D is utilized to transform the feature maps to
1×1×1280 and feed them to the fully connected layer with
one neuron, which produces an output x ∈ R. Subsequently,
the Sigmoid function σ is applied to x , transforming it into
a value between 0 and 1. The sigmoid function, commonly
used in binary classification, is defined as Eq. (2):

σ(x) = 1

1 + e−x
, (2)

where σ(x) represents the probability of the pushing label
for the corresponding i at ft , and e denotes the mathematical
constant known as Euler’s number. Finally, the classifier uses
a threshold value to identify the class of i at ft as Eq. (3):

Class(i, ft ) =
{
pushing if σ(x) ≥ threshold

non-pushing if σ(x) < threshold
(3)

By default, the threshold value for binary classification is
configured to 0.5, which is suitable for datasets exhibiting a
balanced distribution.Unfortunately, the newpushing dataset
created in “Anovel dataset preparation” for training and eval-
uating the proposed framework is imbalanced.As such, using
the default threshold may lead to poor performance of the

introduced trained classifier on that dataset [68]. Therefore,
fine-tuning the threshold in the trained classifier becomes
essential for improving accuracy across both pushing and
non-pushing classes. The methodology for finding the opti-
mal threshold for the classifier will be explained in detail
in “Evaluation metrics and performance improvement”. Fol-
lowing training and adjusting the classifier’s threshold, it
can categorize individuals i as pushing or non-pushing. At
the same time, the annotation process draws a red rectangle
around the head of each pushing person in the correspond-
ing frames ft (see Fig. 7) and finally generates an annotated
video.

The following section will discuss the training and evalu-
ating processes of the proposed framework.

Training and evaluationmetrics

This section introduces a novel labeled dataset, as well
as presents the parameter setups for the training process,
evaluation metrics, and the methodology for improving the
framework’s performance on an imbalanced dataset.

A novel dataset preparation

Here, it is aimed at creating the labeled dataset for training
and evaluating the proposed framework. The dataset consists
of a training set, a validation set for the learning process, and
two test sets for the evaluation process. These sets comprise
Li ( ft ) labeled as pushing or non-pushing. In this context,
each pushingLi ( ft )means i at ft contributes pushing, while
every non-pushing Li ( ft ) indicates that i at ft follows the
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Fig. 8 Overhead view of
exemplary experiments. a
Experiment 270, as well as
Experiments 50, 110, 150, and
280 used the same setup but with
different widths of the entrance
area ranging from 1.2 to 5.6 m
based on the experiment [35]. b
Experiment entrance_2 [67] The
entrance gate’s width is 0.5 m in
all setups

Table 1 Characteristics of the chosen experiments

Video experimenta Width (m) Pedestrian total Number of gates Duration (s) Resolution

50 4.5 42 1 37 1920 × 1440

110 1.2 63 1 53 1920 × 1440

150 5.6 57 1 57 1920 × 1440

270 3.4 67 1 59 1920 × 1440

280 3.4 67 1 67 1920 × 1440

Entrance_2 3.4 123 2 125 1920 × 1080

m meter, s second
aThe same names as reported in [35, 67]

social norm of queuing. The following will discuss the data
sources and methodology used to prepare the sets.

The dataset preparation is based on three data sources:
(1) six videos of real-world experiments of crowded event
entrances. (2) Pedestrian trajectorydata. (3)Ground truths for
pushing behavior. Six video recordings of experiments with
their corresponding pedestrian trajectory data are selected
from the data archive hosted by Forschungszentrum Jülich
[35, 67]. This data is licensed under CC Attribution 4.0
International license. The experimental situations mimic the
crowded event entrances, and static top-view cameras were
employed to record the experiments with a frame rate of 25
frames per second. For more clarity, Fig. 8 shows overhead
views of exemplary experiments, and Table 1 summarizes
the various characteristics of the chosen experiments. Addi-
tionally, ground truth labels constructed by the manual rating
system [10] are used for the last data source. In this system,
social psychologists observe and analyze video experiments
frame-by-frame to manually identify individuals who are
pushing over time. The experts use PeTrack software [69] to
manage the manual tracking process and generate the anno-
tations as a text file. For further details on the manual system,
readers can refer to Ref. [10].

Here, the methodology used for papering the dataset is
described. As shown in Fig. 9, it consists of two phases: local
region extraction; and local region labeling and set genera-
tion. The first phase aims to extract local regions (samples)
from videos while avoiding duplicates. To accomplish this,

the phase initially extracts frames from the input videos sec-
ond by second. It employs After that the Voronoi-based local
region extraction module to identify and crop the samples
from the extracted framesbasedon the trajectory data. Table 2
demonstrates the number of extracted samples from each
video, and Fig. 3b shows several examples of local regions.
Preventing the presence of duplicate samples between the
training, validation, and test sets is crucial to obtain a reli-
able evaluation for the model. Therefore, this phase removes
similar and slightly different samples before proceeding to
the next phase. It involves using a pre-trained MobileNet
CNN model to extract deep features/embeddings from the
samples and cosine similarity to find duplicate or near dupli-
cate samples based on their features [70]. This technique is
more robust than comparing pixel values, which can be sen-
sitive to noise and lighting variations [71]. Table 2 depicts
the number of removed duplicate samples.

On the other hand, the local region and set generation
phase is responsible for labeling the extracted samples and
producing the sets, including one training set, one validation
set, and two test sets. This phase utilizes the ground truth label
of each i at ft to label the samples (Li ( ft )). If i at ft contribut-
ing to pushing, Li ( ft ) is categorized as pushing; otherwise,
it is classified as non-pushing. Examples of pushing samples
can be found in Fig. 3b. The generated labeled dataset from
all video experiments comprises 3384 pushing samples and
8994 non-pushing samples. The number of extracted push-
ing and non-pushing samples from each video is illustrated
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6 video experiments
[50, 110, 150, 270, 280
and Entrance2]

Trajectory data

Ground truths

1

2

3

Data Sources

Local region
extraction

Duplicates
removal

Local Region Extraction Local Region Labeling and Set Generation

Test2
100%

 Local
regions

Labeling Set Generation

Test1
15%

Validation
15%

Training
70%

110, 150, 270, 280 and Entrance2Video 50

Fig. 9 Pipeline of dataset preparation. In the part ‘Local Region Label-
ing and Set Generation’, red refers to the pushing class and pushing
sample, while the non-pushing class and non-pushing sample are repre-

sented in green. The local region extraction component uses trajectory
data to determine the coordinates of each person

Table 2 Summary of the prepared sets

Video Number of samples Labeled dataset Training set Validation set Test set1 Test set2

Original Deleted Distinct P NP P NP P NP P NP P NP

110 1046 1 1045 548 497 365 331 99 84 84 82

150 1469 70 1399 625 774 455 547 83 113 87 114

270 1627 11 1616 577 1039 401 727 84 161 92 151

280 1822 44 1778 287 1491 213 1104 44 181 30 206

Entrance_2 6204 325 5879 1030 4849 726 3403 156 715 148 731

Total 12,168 451 11,717 3067 8650 2160 6112 466 1254 441 1284

50a 317 344 317 344

aVideo 50 is used exclusively for the evaluation process, while the remaining video experiments will be employed for both training and evaluation

in Table 2. After creating the labeled dataset, the sets are
generated from the dataset. Specifically, the second phase
randomly divides the extracted frames from video experi-
ments 110, 150, 270, 280, and Entrance_2 into three sets:
70%, 15%, and 15% for training, validation, and test sets,
respectively. Then, using these sets, it generates the training,
validation, and test (test set 1) sets from the labeled corre-
sponding samples (Li ( ft )). Another test set (test set 2) is
also developed from the labeled samples extracted from the
complete video experiment 50. Table 2 shows the summary
of the generated sets.

To summarize, four labeled sets were created: the train-
ing set, which consists of 2160 pushing samples and 6112
non-pushing samples; the validation set, which contains 466
pushing samples and 1254 non-pushing samples; the test
set 1, which includes 441 pushing samples and 1284 non-
pushing samples; and the test set 2, comprising 317 pushing
samples and 344 non-pushing samples. It’s crucial to empha-
size two key aspects where the new dataset significantly
deviates from the datasets outlined in Refs. [29, 31]. First,
the samples in the introduced dataset capture the crowd’s
appearance surrounding each pedestrian i (Li ( ft )). This con-
trasts with samples from previous datasets, which represent
the visual motion information within a region ranging from
1.2 to 2.4 m2 on the ground. While the previous datasets

were focused on analyzing behavior at a patch level, the
new dataset is better suited for studying pushing behavior
at an individual level. Figure 1b and c provide examples
of motion information maps and local region Li samples,
respectively. Second, the new dataset is significantly larger,
containing 12,378 samples, compared to 3780 and 3941 sam-
ples in the datasets reported in Refs. [29, 31], respectively.
In other words, considering the local region around a person
also results in a larger dataset than the patch approach.

Parameter setup

Table 3 shows parameters used during the training process.
The default values for the learning rate and batch size that
are typically used in trainingCNNarchitectures on ImageNet
in Keras were selected. Additionally, other parameters were
fine-tuned through experimentation to achieve optimal per-
formance with the new dataset. To prevent overfitting, the
trainingwas halted if the validation accuracy did not improve
after 20 epochs.

Evaluationmetrics and performance improvement

This section will discuss the metrics chosen for evaluating
the performance of the proposed framework. Additionally,
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Table 3 The hyperparameter values used in the training process

Parameter Value

Optimizer Adam

Loss function Binary cross-entropy

Learning rate 0.001

Batch size 32

Epoch 100

it will explore the methodology employed to enhance the
performance of the trained imbalanced classifier, thereby
improving the overall effectiveness of the framework.

Given the imbalanced distribution of the generated local
region dataset, the framework exhibits a bias toward the
majority class (non-pushing). Consequently, it becomes
crucial to employ appropriate metrics for evaluating the
performance of the imbalanced classifier. As a result, a com-
bination of metrics was adopted, including macro accuracy,
True Pushing Rate (TPR), True Non-Pushing Rate (TNPR),
and Area Under the receiver operating characteristic Curve
(AUC) on both test set 1 and test set 2. The following provides
a detailed explanation of these metrics.

TPR, also known as sensitivity, is the ratio of correctly
classified pushing samples to all pushing samples, and it is
defined as:

TPR = TP

TP + FNP
, (4)

where TP and FNP denote correctly classified pushing per-
sons and incorrectly predicted non-pushing persons.

TNPR, also known as specificity, is the ratio of correctly
classified non-pushing samples to all non-pushing samples,
and it is described as:

TNPR = TNP

TNP + FP
, (5)

where TNP and FP stand for correctly classified non-pushing
persons and incorrectly predicted pushing persons.

Macro accuracy, or balanced accuracy, is the average pro-
portion of correct predictions for each class individually. This
metric ensures that each class is given equal significance,
irrespective of its size or distribution within the dataset. For
more clarity, it is just the average of TPR and TNPR as:

Macro accuracy = TPR + TNPR

2
. (6)

AUC is ametric that represents the area under theReceiver
Operating Characteristics (ROC) curve. The ROC curve
illustrates the performance of a classification model across
various threshold values. It plots the false positive rate (FPR)
on the horizontal axis against the true positive rate (TPR)

on the vertical axis. AUC values range from 0 to 1, where a
perfectmodel achieves anAUCof 1,while a value of 0.5 indi-
cates that themodel performs no better than randomguessing
[72]. Figure 10a shows an example of a ROCcurvewithAUC
value.

As mentioned above, the binary classifier employs a
threshold to convert the calculated probability into a pre-
dicted class. The pushing class is predicted if the prob-
ability exceeds the threshold; otherwise, the non-pushing
label is predicted. The default threshold is typically set at
0.5. However, this value leads to poor performance of the
introduced framework because EfficientNetV1B0 and clas-
sification were trained on imbalanced dataset [68]. In other
words, the default threshold yields a high TNPR and a low
TPR in the framework. To address the imbalance issue and
enhance the framework’s performance, it becomes necessary
to determine an optimal threshold that achieves a better bal-
ance between TPR and FPR (1-TNPR). To accomplish this,
the ROC curve is utilized over the validation set to identify
the threshold value that maximizes TPR andminimizes FPR.
Firstly, TPR and TNPR are calculated for several thresholds
ranging from 0 to 1. Then, the threshold that yields the min-
imum value for the following objective function (Eq. (7) is
considered the optimal threshold:

Objective function = |TPR − TNPR|. (7)

As shown in Fig. 10a, the red point refers to the optimal
threshold of the classifier used in the proposed framework,
which is 0.038.

Experimental results and discussion

Here, several experiments were conducted to evaluate the
performance of the proposed framework. Initially, the per-
formance of the proposed framework itself is assessed.
Subsequently, It is compared with five other CNN-based
frameworks. After that, two customized CNN architectures
in the abnormal behavior detection field were used for fur-
ther evaluation of the proposed framework. The influence of
the deep feature extraction module on the proposed frame-
work’s performance is also investigated. Subsequently, the
manuscript explores the impact of dummy points on the
framework’s performance. This is followed by a comparison
with two state-of-the-art approaches for pushing behavior
detection. All experiments and implementations were per-
formed on Google Colaboratory Pro, utilizing Python 3
programming language with Keras, TensorFlow 2.0, and
OpenCV libraries. InGoogle Colaboratory Pro, the hardware
setup comprises an NVIDIAGPUwith a 15 GB capacity and
a system RAM of 12.7 GB. Moreover, the framework and all
the baselines developed for comparison in the experiments
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Fig. 10 ROC curves for the introduced framework. a ROC curve with an optimal threshold on the validation set. b ROC curves with AUC values
on test set 1 and test set 2. TPR true pushing rate, FPR false pushing rate

were trained using the same sets (Table 2) and hyperparam-
eter values (Table 3).

Performance of the proposed framework

The performance of the proposed framework was evaluated
using the generated dataset (Table 2) and various met-
rics, including macro accuracy, TPR, TNPR, and AUC. We
first trained the proposed framework’s EfficientNetB0-based
deep feature extraction module and detection component on
the training and validation sets. Subsequently, the frame-
work’s performance on test set 1 and test set 2 were assessed.

Table 4 shows that the introduced framework, with the
default threshold, obtained macro accuracy of 83%, TPR of
74%, and TNPR of 92% on test set 1. On the other hand, it
achieved 82% macro accuracy, 88% TNPR, and 76% TPR
on test set 2. However, it is clear that the TPR is significantly
lower than the TNPR on both test sets, see Fig. 11a and c. To
balance the TPR and TNPR and improve the TPR, the opti-
mal threshold is 0.038, as shown in Fig. 10a. This threshold
increases TPR by 12% and 7% on test set 1 and test set 2,
respectively, without affecting the accuracy, see Fig. 11b and
d. In fact, the framework’s accuracy improved by 2% on test
set 1. The ROC curves with AUC values for the framework
on the two test sets are shown in Fig. 10b, with AUC values
of 0.92 and 0.9 on test set 1 and test set 2, respectively.

To summarize, with the optimal threshold, the proposed
framework achieved an accuracy of 85%, TPR of 86%, and
TNPR of 84% on test set 1, while obtaining 82% accuracy,
81% TPR, and 83% TNPR on test set 2. The next section
will compare the framework’s performancewith five baseline
systems for further evaluation.

Comparison with five baseline frameworks based on
popular CNN architectures

In this section, the results of further empirical comparisons
are shown to evaluate the framework’s performance against
five baseline systems. Specifically, it explores the impact of
the EfficientNetV1B0-based deep feature extraction module
on the overall performance of the framework. To achieve
this, EfficientNetV1B0 in the deep feature extraction mod-
ule of the proposed framework was replaced with other CNN
architectures, including EfficientNetV2B0 [73] (baseline 1),
Xception [74] (baseline 2), DenseNet121 [75] (baseline 3),
ResNet50 [76] (baseline 4), andMobileNet [77] (baseline 5).
To ensure fair comparisons, the five baselines were trained
and evaluated using the same sets, hyperparameters, andmet-
rics as those used for the proposed framework.

Before delving into the comparison of the results, it is
essential to know that CNN models renowned for their per-
formance on some datasets may perform poorly on others
[78]. This discrepancy becomesmore apparentwhen datasets
differ in several aspects, such as size, clarity of relevant
features among classes, or overall data quality. Powerful
models can be prone to overfitting issues, while simpler
models may struggle to capture relevant features in complex
datasets with intricate patterns and relationships. Therefore,
it’s crucial to carefully select or develop an appropriate
CNN architecture for a specific issue. For instance, Effi-
cientNetV2B0demonstrates superior performance compared
to EfficientNetV1B0 across various classification tasks [73],
including the ImageNet dataset. Moreover, it surpasses the
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Table 4 Performance of the proposed framework on both test sets

Threshold Test set 1% Test set 2%

Macro accuracy TNPR TPR (TPR-TNPR) Macro accuracy TNPR TPR (TPR-TNPR)

Default: 0.5 83 92 74 18 82 88 76 12

Optimal: 0.038 85 84 86 2 82 81 83 2

TNPR and TPR are true non-pushing rate and true pushing rate, respectively
Bold font denotes the best performance

Fig. 11 Confusion matrix of the
proposed framework on a Test
set 1 with default threshold. b
Test set 1 with the optimal
threshold. c Test set 2 with
default threshold. d Test set 2
with the optimal threshold

previous version in identifying regions that exhibit push-
ing persons in motion information maps of crowds [29, 31].
These remarkable outcomes can be attributed to the efficient
blocks employed for feature extraction, namely the Mobile
Inverted Residual Bottleneck Convolution [63] and Fused
Mobile Inverted Residual Bottleneck Convolution [79]. Nev-
ertheless, it shouldbenoted that the presenceof these efficient
blocks does not guarantee the best performance in identifying
pushing individuals based on local regions within the frame-
work. Hence, in this section, the impact of six of the most
popular and efficient CNN architectures on the performance
of the proposed frameworkwas empirically studied. For clar-
ity, EfficientNetV1B0 was used within the framework, while

the remaining CNN architectures were employed in the base-
lines.

The performance results of the proposed framework, as
well as the baselines, are presented in Table 5 and visualized
in Fig. 12. The findings indicate that EfficientNetV1B0 with
optimal threshold leads the framework to achieve superior
macro accuracy and AUC with balanced TPR and TNPR
compared to CNNs used in baselines 1–5. This can be
attributed to the architecture of EfficientNetV1B0,which pri-
marily relies on the Mobile Inverted Residual Bottleneck
Convolution with relatively few parameters. As such, the
architectural design proves to be particularly suited for the
generated dataset focusing on local regions. The visualiza-
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Table 5 Comparative analysis of the developed framework and the five CNN-based frameworks

Framework Threshold Test set 1(%) Test set 2(%)

M. acc TNPR TPR | TPR-TNPR | M. acc TNPR TPR | TPR-TNPR |
The framework Default: 0.5 83 92 74 18 82 88 76 12

Optimal: 0.038 85 84 86 2 82 81 83 2

Baseline 1 Default: 0.5 83 91 74 17 80 91 69 22

Optimal: 0.167 84 88 80 8 81 89 74 15

Baseline 2 Default: 0.5 79 91 67 24 77 90 64 26

Optimal: 0.062 81 80 81 1 78 76 79 3

Baseline 3 Default: 0.5 77 92 62 30 74 89 58 31

Optimal: 0.038 81 77 84 7 76 70 83 13

Baseline 4 Default: 0.5 70 92 49 43 75 87 64 23

Optimal: 0.024 75 81 69 12 79 88 77 11

Baseline 5 Default: 0.5 79 94 65 29 77 92 62 30

Optimal: 0.076 83 83 84 1 80 80 79 1

M. acc means macro accuracy. TNPR and TPR are true non-pushing rate and true pushing rate, respectively
Bold font denotes the best performance

Fig. 12 Comparison between
the framework (based on
EfficientNetV1B0) with the
baseline frameworks based on
other popular CNN architectures

tion in Fig. 13 shows the optimal threshold values for the
baselines. These thresholds, as shown in Table 5 and Fig. 12,
mostly improved the macro accuracy, TPR, and balanced
TPR andTNPR in the baselines. For example, baseline 1with
optimal threshold achieved 84% macro accuracy, roughly
similar to the proposed framework. However, it fell short of
achieving a balanced TPR and TNPR along with improving
TPR on both test sets as effectively as the framework. To
provide further clarity, baseline 1 achieved 80% TPR with
8% as the difference between TPR and TNPR, whereas the
proposed framework attained an 86% TPR with 2% as the
difference betweenTPRandTNPRon test set 1. Similarly, on
test set 2, the framework achieved 81% TPR, while baseline
1 achieved a TPR of 74%.

Compared to other baselines that utilize optimal thresh-
olds on test set 1, the proposed frameworkoutperformed them
regardingmacro accuracy, TPR, andTNPR. Similarly, on test
set 2, the framework surpasses all baselines except for the
ResNet50-based baseline (baseline 4). However, it is essen-
tial to note that this baseline only achieved better TNPR,
whereas the introduced framework excels in macro accuracy
and TPR. As a result, the framework emerges as the supe-
rior choice on test set 2. To alleviate any confusion in the
comparison, Fig. 14 shows the ROC curves with AUC val-
ues compared to its baselines on test set 1. Likewise, Fig. 15
depicts the same for test set 2. The AUC values show that the
proposed framework achieved better performance than the
baselines on both test sets. Moreover, they substantiate that
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Fig. 13 ROC curves with
optimal thresholds for the
baselines over the validation set.
TPR stands for true pushing
rate, while FPR refers to false
pushing rate. ROC receiver
operating characteristics

Fig. 14 ROC curves with AUC values on the test set 1. Comparison
between the introduced framework (based on EfficientNetV1B0) with
five baselines based on different CNN architectures, as well as the one
baseline without the deep feature extraction module (baseline 6). TPR
true pushing rate, FPR false pushing rate

EfficientNetV1B0 is the most suitable CNN for extracting
deep features from the generated local region samples.

In conclusion, the experiments demonstrate that the pro-
posed framework, utilizing EfficientNetV1B0, achieved the
highest performance compared to the baselines relying on

Fig. 15 ROC curves with AUC values on the test set 2. Comparison
between the framework (based on EfficientNetV1B0) with five base-
lines based on different CNN architectures, as well as the one baseline
without the deep feature extraction module (baseline 6). TPR true push-
ing rate, FPR false pushing rate

other CNN architectures on both test sets. Furthermore,
the optimal thresholds in the developed framework and the
baselines resulted in a significant improvement in the perfor-
mance across both test sets.
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Table 6 Comparison to CNN-1 and CNN-2

Framework Optimal threshold Test set 1(%) Test set 2(%)

Macro accuracy TNPR TPR Macro accuracy TNPR TPR

The framework 0.038 85 84 86 82 81 83

CNN-1 0.23 73 71 75 64 40 88

CNN-2 0.0076 71 71 71 75 66 85

TNPR and TPR are true non-pushing rate (Sensitivity) and true pushing rate (Specificity), respectively

Comparison with customized CNN architectures in
abnormal behavior detection field

Here, there are twoobjectives: (1) evaluating the performance
of some existing CNN models developed to detect abnormal
human behavior for pushing detection purposes. (2) Further
evaluation of the trained binary classifier (EfficientNetB0
with fully connected layer and Sigmoid activation function).
The customized architectures are CNN-1 [23] and CNN-2
[41]. The first architecture, CNN-1, employed 75× 75 pixels
as an input image. Furthermore, three convolutional layers,
batch normalization, and max pooling operations were used
for feature extraction. The developers of this model utilized a
fully connected layer with a softmax activation function for
classification. The second architecture, CNN-2, downsized
the input images to 32 × 32 pixels before employing three
convolutional layers with three max-pooling layers. For clas-
sification, it used two fully connected layers, with the first
layer based on a ReLU activation function and the second
layer employing a softmax activation function.

The results in Table 6 and Fig. 16 demonstrate that our
classifier surpassed CNN-1 and CNN-2 by at least 11% in all
metrics, includingmacro accuracy, TPR, TNPR, andAUCon
test set 1. In contrast, on Test Set 2, the developed classifier
achieved a macro accuracy of 82%, significantly outper-
forming CNN-1 and CNN-2, which attained 40% and 66%,
respectively. Furthermore, the two customized CNN archi-
tectures exhibited high False Pushing Rates (FPR) of over
34%,while the proposed classifier’s FPRwas 19%.Addition-
ally, as shown in Fig. 17, the AUC of our classifier stands at
90%, in comparison to CNN-1 and CNN-2, which achieved
74% and 83%, respectively.

To sum up, the proposed binary classifier has demon-
strated significant superiority over CNN-1 andCNN-2 across
both test sets. Given the high complexity of pushing detection
in crowded environments, the simple architectures of CNN-
1 and CNN-2 fall short of effectively identifying pushing
MIM-patches.

Impact of deep feature extractionmodule

This section aims to investigate how the deep feature extrac-
tion module affects the framework’s performance. For this

Fig. 16 ROC curves of our classifier and the two customized CNNs on
test set 1

Fig. 17 ROC curves of our classifier and the two customized CNNs on
test set 2

purpose, a new baseline (baseline 6) is developed, incorpo-
rating a Voronoi-based local region extraction module and
detection component. In otherwords, the deep feature extrac-
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Table 7 Performance results of
the baseline 6

Threshold Test set 1(%) Test set 2(%)

Macro accuracy TNPR TPR Macro accuracy TNPR TPR

Default: 0.5 59 97 18 58 59 57

Optimal: 0.342 67 91 44 59 38 79

TNPR and TPR are true non-pushing rate (Sensitivity) and true pushing rate (Specificity), respectively

tion module is removed from the proposed framework to
construct this baseline.

Table 7 demonstrates that the baseline exhibited poor per-
formance, with macro accuracy of 67% on test set 1 and 59%
on test set 2. Additionally, Figs. 14 and 15 illustrate AUC
values of 72% on test set 1 and 61% on test set 2 for base-
line 6. Comparing this baseline with the weakest baseline
in Table 5, which utilizes ResNet50, it is evident that deep
feature extraction leads tomacro accuracy improvement of at
least 8% on test set 1 and at least 20% on test set 2. Similarly,
deep feature extraction enhances AUC values by at least 11%
on test set 1 and more than 24% on test set 2.

In summary, the deep feature extraction module signifi-
cantly enhances the performance of the framework.

Impact of dummy points

This section aims to evaluate the impact of adding dummy
points on the performance of the proposed framework. For
this purpose, a new dataset, identical to the original (Table 2)
but without dummy points, was prepared. The new dataset
was then used to train and evaluate the framework (named
baseline 7). Figure 18, on the right in a, b, c, and d, displays
several examples of local regions generated without using
dummy points.

In the proposed framework, the local region is crucial in
assisting it to identify the behavior of each individual i . This
is because the local region encompasses the crowd dynamics
around i , thereby reflecting potential interactions between i
and its neighbors. It is clear that L of person i located at
the borders of crowds when dummy points are not added,
fail to encompass the crowd dynamics surrounding i (e.g.,
samples on the right side in Fig. 18a–c). This leads to los-
ing valuable information about the i’s behavior, decreasing
the framework’s performance. Meanwhile, the examples on
the left (Fig. 18a–c) illustrate how the dummy point tech-
nique helps form Li that encompasses the space around i .
Moreover, Fig. 18d illustrates that the dummy point tech-
nique is not applied to i who is surrounded by neighbors in
all directions. As Table 8 illustrates, incorporating dummy
points enhanced the performance of the proposed framework
on both test sets, improving the macro accuracy, TPR, and
TNPR by 5%. In contrast, the framework without the dummy
points technique (baseline 7) achieved lower performance,
with a macro accuracy of 62%, a TNPR of 57%, and a TPR

d)

a)

b)

c)

Local regions
with dummy points

Corresponding local regions
without dummy points

Fig. 18 Examples of local regions with dummy points (left samples)
and without dummy points (right samples). The white circle represents
the target person i in the local region Li

of 66%, compared to the developed framework. Moreover,
the dummy point technique increased AUC in the framework
by 3% and 26% over test set 1 and test set 2, respectively
(Figs. 19, 20).
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Table 8 Comparison to baseline 7

Framework Optimal threshold Test set 1(%) Test set 2(%)

Macro accuracy TNPR TPR Macro accuracy TNPR TPR

The framework 0.038 85 84 86 82 81 83

Baseline 7 0.030 80 79 81 62 57 66

TNPR and TPR are true non-pushing rate (Sensitivity) and true pushing rate (Specificity), respectively

Fig. 19 ROC curves of the proposed framework and baseline 7 on test
set 1

Fig. 20 ROC curves of the proposed framework and baseline 7 on test
set 2

Performance evaluation against existing pushing
detection approaches

Theprimary aimof this section is to assess the performanceof
the proposed framework by comparing it with existing auto-

matic approaches for detecting pushing behavior in dense
crowds. As mentioned in the literature, two main approaches
have been published [29, 31], along with a more concise
method referenced in [30], which is part of Ref. [29]. This
comparison will focus on the primary approaches detailed
in [29, 31]. It is noteworthy that these approaches employ
a patch-based methodology, targeting the identification of
patches containing at least one individual engaged in push-
ing. Each patch typically encompasses an area ranging from
1.2 to 2.55 m2 on the ground. To clarify, both approaches
employ a similar strategy for patch identification. They start
by extracting Motion Information Maps (MIM) from con-
secutive frames of video or live streams that capture dense
crowds. Every MIM, along with its initial corresponding
frame, is then divided into a grid of MIM-patches, arranged
into rows and columns as defined by the user. Figure 21a
displays an example with 2× 4 patches on the left side and a
single MIM-patch on the right side. This patch identification
strategy enables the trained classifiers in both approaches to
mark pushing patches within the crowd. The red rectangle
in Fig. 21a highlights an example of such annotated pushing
patches.

It is evident that current approaches cannot detect individ-
uals who join in pushing, a capability offered by the proposed
framework.Consequently, comparing these approaches directly
with the developed framework would be unfair, as they serve
different purposes. To facilitate a fair and effective, the patch
identification strategy in both existing approaches has been
modified to operate at a microscopic level, as opposed to
the patch level. The enhanced patch identification strategy
employs the input trajectory data to find a square patch for
each person (i), with i’s position serving as the center of the
patch. The dimensions of this patch are approximately 75cm
on the ground. This dimension was chosen after observ-
ing various dimensions in video experiments of entrances
employed in this work. We found that this particular dimen-
sion ensures the patch not only covers individual i but also
captures the surrounding crowd dynamics, thereby providing
insight into the interactions between individuals i and their
direct neighbors(Ni ).

For instance, as illustrated in Fig. 21b, the patches for indi-
viduals numbered 53 and 66 are marked with white squares,
along with the correspondingMIM-patches for the areas sur-
rounding individuals 53 and 66. For the sake of clarity and
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Fig. 21 Visual Examples of
patches and MIM-patches in
related Works [29, 31]: a a 2× 4
patch array with a MIM-patch
generated by related works. b
Two examples of square patches
(highlighted in white) and their
corresponding MIM-patches
created by DL4PuDe and
Cloud-DL4PuDe. The numbers
53, 63, and 55 denote the IDs of
three pedestrians. Moreover, in
b, the dark gray color aims to
give readers an overview of the
square patches created by the
enhanced patch identification
strategy while ensuring that the
original frame remains visible.
In the notation ft , f signifies a
frame at timestamp t in seconds
s. MIM stands for Motion
Information Map

53

6663

Patch

Corresponding
MIM-patch

Pushing
MIM-patch

of  53

Patch

a)

b)

Non-pushing
MIM-patch

of  66

Table 9 Comparison to state-of-the-art automatic pushing detection approaches

Framework Optimal threshold Test set 1(%) Test set 2(%)

Macro accuracy TNPR TPR Macro accuracy TNPR TPR

The framework 0.038 85 84 86 82 81 83

DL4PuDe 0.023 77 76 78 62 44 80

Cloud-DL4PuDe 0.04 77 75 78 61 48 74

TNPR and TPR are true non-pushing rate (Sensitivity) and true pushing rate (Specificity), respectively

ease of discussion, the first [29] and second [31] approaches
with enhanced patch identification strategy shall henceforth
be referred to as “DL4PuDe” and “Cloud-DL4PuDe,” respec-
tively.

To compare Dl4PuDe and Cloud-DL4PuDe approaches
with the proposed framework, it is necessary to train and
evaluate them using a dataset that includes both pushing and
non-pushing square MIM-patches. Furthermore, the setup of
parameters, as outlined in Table 3, will be used in the training
process. For this purpose, we created such a dataset using the
same video experiments, trajectory data, and ground truth
data employed in preparing the dataset for the proposed
framework. Initially, MIMs are extracted from the video
experiments using a combination of deep optical flow and
color wheel methods, similar to the previous approaches. For
more information, we refer the reader to Ref. [31], specifi-
cally Section IV.A.2. Next, the improved patch identification
strategy is employed to extract patches from those MIMs.
Afterward and based on the ground truth data, MIM-patches
containing a person i engaged in pushing are labeled as
pushing; otherwise, they are labeled non-pushing. For more

clarity, in Fig. 21b, the MIM-patch for individual 53 is cate-
gorized as pushing due to the pushing behavior of person 53.
Conversely, theMIM-patch for individual 66 is non-pushing,
given that person 66 does not join in such behavior. Finally,
the same splitting technique used to generate the dataset for
training and evaluating the proposed framework was also
employed to create the new dataset for DL4PuDe and Cloud-
DL4PuDe approaches.

Table 9 displays the comparison results between the
proposed framework and the enhancedDL4PuDe andCloud-
DL4PuDe approaches. The results indicate that the proposed
framework significantly outperformed both approaches on
both test sets. On test set 1, the proposed framework achieved
a minimum 8% improvement in macro accuracy, TPR, and
TNPR compared to the related approaches. In contrast, on
test set 2, DL4PuDe and Cloud-DL4PuDe exhibited high
false positive rates (FPR) with 62%and 61% macro accu-
racy, respectively. Meanwhile, the framework achieved an
82% macro accuracy on test set 2. Figure 22 presents the
confusion matrices for each approach on both test sets.
Moreover, as shown in Figs. 23 and 24, the framework
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Fig. 22 Confusion matrices for
the proposed framework,
DL4PuDe, and Cloud-DL4PuDe
with the optimal threshold: a
proposed Framework on Test
Set 1, b proposed framework on
Test Set 2, c DL4PuDe on Test
Set 1, d DL4PuDe on Test Set 2,
e Cloud-DL4PuDe on Test Set 1,
f Cloud-DL4PuDe on Test Set 2
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Fig. 23 ROC curves and AUC values for Test Set 1: a comparison
between the introduced framework, DL4PuDe, and Cloud-DL4PuDe

Fig. 24 ROC curves and AUC values for Test Set 2: a comparison
between the introduced framework, DL4PuDe, and Cloud-DL4PuDe

consistently outperformed the other approaches in terms of
the AUC metric. It achieved an improvement of at least 7%
on test set 1 and 22% on test set 2. These results can be
attributed to the fact that square patches may contain both
pushing and non-pushing behavior simultaneously. This can
lead the CNN classifier to learn irrelevant features from
the patches. For more clarity, the patch of person 66 in
Fig. 21b is classified as non-pushing because person 66 is
not engaged in pushing behavior, even though person 63
within the same patch is involved in pushing. In summary,
our developed framework achieved superior performance,
demonstrating improvements of at least 8% in macro accu-
racy, TPR, TNPR, and AUC on both test sets compared to
the enhanced DL4PuDe and cloud-DL4PuDe approaches.

Furthermore, both approaches experience overfitting when
attempting to detect pushing behavior at the microscopic
level. This serves as evidence that our novel approach, used
in our framework to identify the local regions of each person,
efficiently assists EficientNetV1B0-based CNN in learning
the relevant features for pushing behavior.

Conclusion and future work

This article introduced a new framework for automatically
identifying pushing at the microscopic level within video
recordings of crowds. The proposed framework utilizes a
novel Voronoi-based method to determine the local region
of each person in the input video over time. It further
applies EfficientNetV1B0 to extract deep features from these
local regions, capturing valuable information about individ-
ual behavior. Finally, a fully connected layer with a Sigmoid
activation function is employed to analyze the deep features
and annotate the pushing persons over time in the input video.
To train and evaluate the performance of the framework, a
novel dataset was created using six real-world experiments
with their trajectory data and corresponding ground truths.
The experimental findings demonstrated that the proposed
framework surpassed state-of-the-art approaches, as well as
seven baseline methods in terms of macro accuracy, true
pushing rate, and true non-pushing rate.

The proposed framework has some limitations. First, it
was designed to work exclusively with top-view camera
video recordings that include trajectory data. Second, it was
trained and evaluated based on a limited number of real-
world experiments, which may impact its generalizability
to a broader range of scenarios. Our future goals include
improving the framework in two key areas: (1) enabling it
to detect pushing persons from video recordings without the
need for trajectory data as input. (2) Improving its perfor-
mance in terms ofmacro accuracy, true pushing rate, and true
non-pushing rate by: (a) Enlarging the dataset by utilizing
additional videos from real-world experiments. These videos
will encompass various scenarios. (b) Employing transfer
learning and data augmentation techniques. (c) Processing a
sequence of frames instead of a single frame, to extract more
valuable features.
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