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Abstract
Multi-agent reinforcement learning encounters a non-stationary challenge, where agents concurrently update their policies,
leading to changes in the environment. Existing approaches have tackled this challenge through communication among
agents to obtain their partners’ actions, but this introduces computational complexity known as partner sample complexity.
An alternative approach is to develop partner models that generate samples instead of direct communication to mitigate this
complexity. However, a discrepancy arises between the real policies distribution and the policy of partner models, termed
as model bias, which can significantly impact performance when heavily relying on partner models. In order to achieve a
trade-off between sample complexity and performance, a novel multi-agent model-based reinforcement learning algorithm
called decentralized adaptive partner modeling (DAPM) is proposed, which utilizes fictitious self play (FSP) to construct
partner models and update policies. Model bias is addressed by establishing an upper bound to restrict the usage of partner
models. Coupled with that, an adaptive rollout approach is introduced, enabling real agents to dynamically communicate
with partner models based on their quality, ensuring that agent performance can progressively improve with partner model
samples. The effectiveness of DAPM is exhibited in two multi-agent tasks, showing that DAPM outperforms existing model-
free algorithms in terms of partner sample complexity and training stability. Specifically, DAPM requires 28.5% fewer
communications compared to the best baseline and exhibits reduced fluctuations in the learning curve, indicating superior
performance.
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Introduction

With the development of cutting-edge deep learning tech-
niques, multi-agent reinforcement learning (MARL) has
produced remarkable achievements and has been widely
applied in diverse fields, such as gaming [1], sensor networks
[2], autonomous driving [3], and multi-robot navigation
[4]. Despite the advancements of MARL, it encounters
challenges due to the non-stationarity of multi-agent envi-
ronments, where policies are updated simultaneously by
multiple agents, leading to dynamic changes. Existing solu-
tions such as PBL [5], CommNet [6], and MAAC [7] have
addressed the non-stationarity challenge by developing com-
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munication protocols among agents and enabling access
to partner actions. However, every communication causes
computational complexity, known as partner sample com-
plexity. These model-free approaches need an impractical
number of such communications to be accessed for effec-
tive training. Consequently, partner sample complexity is
a crucial factor that cannot be overlooked during training.
On the other hand, model-based approaches have proven to
be advantageous in addressing the issue of dynamic sample
complexity resulting from agent-environment interactions in
both single-agent reinforcement learning (SARL) and multi-
agent reinforcement learning (MARL) [8, 9]. This is achieved
by constructing the dynamic model of the real environment,
which enables a reduction in the amount of required samples.
Notably, previous approaches overlooked the importance of
building models to represent others’ actions as a means
to minimize sample requirements. In a multi-agent system
(MAS), the development of multiple partner models can
be utilized to simulate the behavior of partners, thereby
decreasing partner sample complexity. However, the accu-
racy of these models poses a significant challenge to policy
quality, as model bias between real policies and partner poli-
cies may result in model-based approaches underperforming
compared to model-free counterparts. The limitation of pre-
vious works bring up critical questions in MARL:

• How to effectively build partner models to accurately
represent the actions of other agents?

• How can a suitable equilibrium be achieved betweenmit-
igating partner sample complexity inmodel-freemethods
and addressing the accuracy challenges of model-based
techniques in MARL?

Introducing decentralized adaptive partner modeling
(DAPM), a novel approach that integrates model-free and
model-based learning techniques to effectively leverage part-
ner models for policy optimization in decentralizedMAS. To
answer the first question, as illustrated in Fig. 1,DAPM lever-
ages the FSP technique tomaintain belief about the actions of
partner agents and develop partner models that facilitate the
modeling of their actions. In contrast to previous FSP-related
works [10, 11], where each agent employs two policies: an
average policy network trained through supervised learning
and a best response policy network trained through rein-
forcement learning. The choice of which network to use
was determined by a predetermined probability. This study
proposes modifications to equip partners with both average
policy networks and best response networks. However, the
discrepancies in partner model accuracy can result in varying
contributions to the compounded error when interacting with
multiple partner models.

Addressing the second question requires achieving a deli-
cate balance between partner sample complexity and partner

Fig. 1 Visualization of DAPM, with the DTDE framework. Agents
communicate to share information. The partner models update their
policy using the data from ego agent and generate training data under
certain conditions to update the agent’s policy

model accuracy. In this regard, an adaptive rollout method is
implemented to determine the necessity for communication
with real partners (best response network) or partner mod-
els (average policy network). This method enables informed
decisions on when communication is essential and optimizes
communication efficiency in MAS. As the models are con-
tinuously optimized, more partner models can be included in
the training process of MARL, reducing sample complexity
associated with partnering agents. The main contributions of
this paper can be summarized as follows:

• Introduction of the pioneering approach with fictitious
self play technique: DAPM is the first to comprehen-
sively employ the FSP technique for modeling agents’
actions, significantly advancing current methodologies
in the field.

• Innovative adaptive rollout method: A dynamic approach
to determining the need for communication with real
partners, reducing partner sample complexity in MARL
while maintaining algorithm performance, surpassing
prior works that rely on predetermined probabilities.

• Superior performance in cooperative scenarios: Through
experiments in MPE [12] and MAPDN [13] cooper-
ative scenarios, DAPM outperforms SOTA model-free
methods, achieving a remarkable 28.5% reduction in
required communications. This underscores its potential
to enhance sample efficiency in MARL.

Related work

This section discusses the related work and existing solu-
tions for sample complexity. First of all, two differentMARL
paradigms are discussed in the first part. Following that, the
model-based MARL will be introduced, with a special focus
on reducing dynamic sample complexity. Lastly, the back-
ground of partner modeling will be introduced.
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Multi-agent reinforcement learning

The combination ofmetaheuristic andmachine learning tech-
niques has been successfully used in various areas. Key
algorithms like the hybrid sine cosine algorithm and firefly
algorithm have shown effectiveness in dealing with issues
such as overfitting in computer vision [14, 15]. These algo-
rithms are good at exploring large solution spaces and can
handle changes within dynamic environments. In MARL,
metaheuristic learning plays a significant role, especially in
managing the balance between exploration and exploitation
and adapting to changing situations. This impact is seen
in policy optimization, coordination, and decision-making
among autonomous agents. MARL methods align with suc-
cessful metaheuristic principles. Additionally, centralized
training with decentralized execution (CTDE) and decen-
tralized training with decentralized execution (DTDE) are
two primary training strategies in MARL. CTDE algorithms
optimize local agent policies using a centralized reward and
execute policies based on local histories, while DTDE allows
agents to communicate and interact with the environment
independently. VDN [16] is the first attempt known to us that
combines centralized value function learning with decentral-
ized execution, assuming equal contributions fromagents and
decomposing a central action-value function into individual
Q-values. The QMIX [17] and weighted QMIX [18] algo-
rithms represent a significant improvement upon the VDN
method, as they incorporate a mixed network that consid-
ers the state information of agents. This approach allows
for the determination of transformation weights that opti-
mize the performance of the centralized training method.
This enables the decomposition of the central return with
non-linearity operations, leading to improved performance
and more effective coordination among agents. MADDPG
[12] is a CTDE approach that employs a critic for each
agent to access the observations, actions, and policies of oth-
ers. Local critics use joint observations and actions as input
to compute Q-values, promoting coordination and decision-
making in multi-agent systems. Although CTDE is a useful
technique, it faces scalability challenges. These challenges
arise from the exponential growth of state and action spaces,
which increases the computational complexity. Additionally,
the cost of centralizing information adds to the challenge. In
order to address these challenges, various techniques have
been proposed to augment the performance and scalability
of centralized critic methods. ATT-MADDPG [19] utilized
attention mechanism to explicitly capture the dynamic joint
policy of other agents and promote cooperation among them.
In theDTDE paradigm, agents are permitted to communicate
with each other, and methods such as MAAC [7] collect all
received messages to train the policy for the network. These
approaches facilitate direct interaction and communication
among agents, without considering sample complexity. In

this study, DAPM adopts the DTDE training paradigm
and trains the policy network independently with partner
models. The partner model generates samples for training,
thereby reducing the sample complexity associated with
partners.

Model-based reinforcement learning

Recent model-based approaches, such as those proposed by
Wang et al. [8] and Sun et al. [20], have demonstrated advan-
tages in reducing sample complexity for SARL. However,
in complex real-world environments, it may be challenging
for these algorithms to learn accurate models. As a result,
careful consideration is needed when choosing approaches
for model learning and model usage. Early model-based
methods employed simple models such as linear models
[21] and Gaussian processes [22]. However, the limited
expressiveness of these models makes them inadequate for
handling non-linear and high-dimensional environments.
More recent methods have utilized deep neural networks for
improved performance, such as neural network ensembles
[23] and Bayesian neural networks [24]. Previous research
has employed various methods for model usage in SARL.
Dyna-style approaches [25] have the ability to generate extra
data using the learned models, effectively expanding the
dataset for RL training. Monte Carlo (MC) value estimate
[26] was one of the first models used to approximate state
values. Many value-based RL algorithms rely on temporal-
difference (TD) [27] prediction, which is another commonly
used method for value approximation. MVE [28] showed
that incorporating H-step TD value prediction can effec-
tively mitigate estimation errors. However, MVE relies on
a predetermined task-specific horizon H, which may need
to be adjusted during training. To overcome this limita-
tion, STEVE [29] proposes an approach that interpolates
between different horizons H and leverages ensemble uncer-
tainty to further enhance the performance of MVE. SLBO
[30] employs the model to generate complete trajectories
from the start state, but the rollout length is limited due to
compounding model error. MBPO [31] uses branched roll-
outs in the model, starting from real environment states,
and takes k steps based on the policy π and the learned
model, allowing for diverse trajectory generation and pol-
icy refinement. AMLAPN [32] introduces a novel approach
in model-based MARL by incorporating a centralized auxil-
iary prediction network. This network is designed to model
the dynamics of the environment and actions of opponents,
effectively addressing the issue of non-stationarity. Krupnik
et al. [33] present a novel approach for trajectory planning
by introducing a centralizedmulti-step generatingmodel that
utilizes a disentangled variational auto-encoder. MAMBPO
[9] extends the MBPO approach to multi-agent settings,
selectively using simulated data that is close to real data to
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improve the policy. CPS [34] utilizes a dynamic model of the
environment to predict the next state and uses a rewardmodel
to assess the quality of the predicted state. By combining
these models, CPS can determine the priority of state-action
updates. However, these methods primarily focus on lever-
aging the environment model to reduce dynamic sample
complexity, without considering the utilization of partner
models to mitigate the sample complexity arising from com-
munication among agents. In this research, an approach
has been proposed where each agent builds partner mod-
els to model actions for other agents, and learns its policy
using samples generated from real agents and partner models
simultaneously.

Partner modeling

Partner modeling is a viable approach for addressing non-
stationarity in MARL. From an agent’s perspective, con-
sidering partners as part of the environment can lead to
instability and challenges in policy learning, as partners’
policies may also change. However, when partners’ infor-
mation is explicitly incorporated through partner modeling,
the environment becomes more stable, enabling the use
of standard SARL algorithms for policy learning. While
most previous works have focused on competitive sce-
narios and referred to the partner model as the opponent
model in their literature, partner modeling has proven to be
a useful solution for handling non-stationary problems in
MARL.

Fictitious play [35] is an example of an agent estimating
its opponent’s strategy based on past experience to deter-
mine its next move. Recent studies have made progress in
modeling opponents using neural networks, benefiting from
their powerful representation capabilities. DRON [36] han-
dles a multitasking Q-learning problem to learn an opponent
policy representation and a play-against policy. VAE [37]
has also been used to model opponents, by learning rep-
resentations in MAS based on the opponent trajectories.
From the perspective of an agent, self other modeling (SOM)
[38] uses gradient ascent to learn the opponent’s goal from
its policy, opponent observation, and action. TomNet [39]
learns embedding-based opponent representations for meta-
learning. However, these methods without considering the
model bias between the partner models and real agents,
where agents exploit inaccuracies in a model when part-
ner models generate too much useless samples, resulting
in sub-optimal policies in the real-world scenario. In this
research, an upper bound for the opponent model error has
been utilized to limit the use of the opponent model, which
guarantees the policy network will improve with partner
models.

Preliminaries

Decentralized partially observable MDP

The cooperation MARL problem is formulated as a n
agents decentralized partially observable Markov decision
process (Dec-POMDP), which can be defined as a tuple
(N ,S,A, T ,R,O, γ ), where N is a set of n agents and
S is the state space. The joint action space, denoted as
A = ∏n

i Ai , is formed by the individual action spaces
of each agent, represented as Ai . Similarly, the joint local
observation space, denoted asO = ∏n

i Oi , is formed by the
individual observation spaces of each agent, represented as
Oi , and γ is the discount factor. From the preservative of
agent i, its policy is denoted as πi , which is the probabil-
ity distribution over its action space. The joint policy of the
other agents, denoted as π−i (a−i |s) = ∏

j �=i π j (a j |s), rep-
resents the probability distribution over the joint action space
of all agents except agent i, where a−i represents the joint
action excluding agent i. At every time t, agent i takes action
ati ∈ Ai sampled from the individual policyπ i (ati |oti ), where
oti is the local observations of agent i’s state s

t . After all the
agents taking actions ut = {

at1, . . . , a
t
n

}
, the environment

moves to the next Markov state st+1 based on the transition
function T . Then, each agent will receive a team rewardRt .
The objective of agent i is to maximize its expected rewards,
denoted by ηi :

max
πi

ηi
[
πi , π−i

] = E(st ,ati ,a
t−i )∼T ,πi ,π−i

×
[ ∞∑

t=1

γ t Rt (st , ati , a
t
−i )

]

. (1)

Followed by Zhang et al. [40], we define that each agent in
the environment can observe the historical trajectories of all
other agents but has no knowledge about their policies.

Fictitious selfplay

Fictitious self play [10] is an extensive form of fictitious
play [35], which enables the fictitious player to update their
policies in extensive form, resulting in linear time and space
complexity. FSP agents update their best response network
and average response network through reinforcement and
supervised learning, respectively. In detail, FSP algorithms
include two memories: MRL stores each agent’s history
(st , at , r t , st+1) for reinforcement learning.MSL stores each
agent’s state action pair (st , at ) for supervised learning.

In this method, each agent i hold belief Bt
i j on the strategy

profile of other agents j, where j ∈ N−i := {1, . . . , n}n �=i .
The belief Bt

i j indicates the estimation of agent i on the syn-
chronous action that the other agent j may taken at time t.
These beliefs can be grouped to define the joint belief Bt

i
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that agent i has on the actions of other neighboring agents.
By holding the belief Bt

i , the agent i can locally estimate the
team reward as follows:

Rt
i (ai , a−i , s

t ) =
∫

j∈Ni

Rt
i (ai ,Bt

i , s
t
j )ds

t
j . (2)

These partner models are learned to infer others’ actions
by supervised learning, which are average policies. Subse-
quently, agents’ best response policies are updated through
reinforcement learning. It is important to note that in this
process, the memoryD is utilized, replacing MRL and MSL .
All these networks are trained on this memory, but partner
models are trained on the most recent data added to memory.

Methods

In this section, the introduction of the novel learning
paradigm DAPM is presented to address the partner sam-
ple complexity problem in MARL and speed up the training
process. Note that despite the method being proposed to be
combined with MASAC, DAPM can be easily applied to
other SOTA MARL algorithms.

Initially, an overview of the algorithm is presented, as
illustrated in Fig. 2. First, agent i utilizes supervised learn-
ing to train partner models for each of the other agents using
samples from the observation buffer, which consists of self-
observation and partner action pairs< oi , a−i >. The partner
models then generate all other agents’ actions at−i (purple)
based on the self-observation oti . Meanwhile, agent i contin-
ues to optimize its policy using the soft-actor-critic method, a
reinforcement learning technique, by receiving rewards from
the environment and updating its policy network parameters
accordingly. As depicted in the figure, other agents’ policy
networks incorporate information about all agents in the envi-
ronment and generate joint actions at−i (black) based on their
local observations. The adaptive rollout module determines
whether to use samples from the partner models during this
step. This method is further detailed in Fig. 3. In this fig-
ure, the rollout length is denoted as k. The process involves
measuring the discrepancy between each partner model and
its corresponding actual agent. Subsequently, the number of
interactions required with partner models within k steps is
computed.

Decentralized adaptive partner modeling

The main concept is that agent i can obtain the actions of
partner models more readily compared to requesting actions
from real partners. To simplify the complexity of sampling
partners, the local agent can generate samples from part-
ner models based on self-observation, instead of relying on

Algorithm 1 DAPM algorithm
Require: Initialize replay buffer D, actor πζ , critic Qw for each agent

i,
1: partner models π

φ
j for j ∈ −i

2: for N epochs do
3: Execute actions with real partners using πζ , store the resulting
4: transitions in D
5: Update all partner models’ parameters φ on D
6: Calculate the errors for each partner model επ̂

j

7: For each partner, compute n j =
min j ′ επ̂

j ′

επ̂
j

8: for M model rollouts do
9: Sample random state s from D
10: Perform k-steps rollout start from s:
11: for p = 1, 2, . . . , k do
12: a p−1

i = π i
φ(sp−1)

13: For each partner agent j:
14: if p <= n j then

15: a p−1
j = π

φ
j (sp−1)

16: else
17: a p−1

j = π
ζ
j (sp−1)

18: end if
19: Add the transitions to D
20: end for
21: end for
22: Update parameters ζ and w using samples from D
23: end for

communication to request actions from others. The DAPM
approach involves acquiring and employing partner models
to generate supplementary training data for the agent’s policy.
Afterward, the policy is updated using the multi-agent soft
actor-critic (MASAC) scheme. Algorithm 1, which can be
found in Sect. 5, provides a concise overviewof the approach.
As the agent interacts with both the environment and actual
partners, the resulting transitions are collected and recorded
in a centralized memory buffer denoted as D. Periodically,
all partner models are trained on this memory buffer. Subse-
quently, these partner models are employed to interact with
agent i and generate additional samples,which are also stored
in D for training the actor and critic networks, ensuring effi-
cient utilization of partner models in the learning process.

Partner model learning

In line 5 of Algorithm 1, all partner models are trained
using samples from the replay buffer D. The partner model
aims to approximate the nash equilibrium policies for
the players by leveraging the advances in game theoretic
FSP. Specifically, DAPM use a variation of FSP, in which
agents form beliefs about other people’s actions using an
empirical distribution of other people’s past actions. Typ-
ically, the method use the indicator function ψ t

i (ai |oi ) =
[ψ t

1(ai ), ψ
t
2(ai ), . . . , ψ

t
k(ai )] :→ [0, 1]k , where ψ t

k(ai ) = 1
if ai = k otherwise ψ t

k(ai ) = 0, to count the number of the
actions have been taken. Then, f ti (oi ) are used to represent
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Fig. 2 General framework of the DAPM method from the agent i’s perspective

Fig. 3 Example of the adaptive
rollout module from the agent
i’s perspective. Agent i will run
k steps with other learned
partner models. For each
partner, agent i calculates the
performance of its partner model
and decides how many steps to
interact with it within k steps

the empirical distribution of historical action that the agent
i has taken at observation oi until the time t , which can be
computed as follow.

f ti = 1

1 − t

t∑

n=1

ψ t
i (ai ). (3)

Such that for each action interval I ⊂ A the probability of
the action ai belonging to I is given by the integral of f ti (oi )
over I . For example, if I = [o1, o2], the probability can be
expressed as:

P(ai ) =
∫ o2

o1
f ti (τ )dt . (4)
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Adaptive partner rollout

Upon constructing partner models using the FSP technique,
a theoretical analysis is conducted to establish an upper
bound on the partner modeling error. This analysis allows
us to identify the optimal number of steps that the real agent
can communicate with the partner models, while still main-
taining convergence of the DAPM algorithm under certain
conditions. In model-based RL, the dynamic model error
comes from two components, namely generalization error
and distribution shift, which similarly affect partner model
error. To ensure a consistent algorithmic improvement, the
model can be enhanced by minimizing the discrepancy, rep-
resented as a constant value denoted as C , which quantifies
the gap between the actual returns and the returns predicted
by the model. In this research, the viewpoint of the agent i
is adopted, and efforts are made to establish an upper bound
C on the difference between the expected return of running
policy with real partners ηi [πi , π−i ] and that of running pol-
icy with partner models η̂i [πi , π̂−i ]. This upper boundC can
be formulated as follows:

∣
∣ηi [πi , π−i ] − η̂i [πi , π̂−i ]

∣
∣ ≤ C . (5)

Since each partner model is trained using supervised learn-
ing based on historical trajectories taken by real part-
ners, the error in each partner model can be quanti-
fied using standard Probably Approximately Correct (PAC)
generalization bounds. In this work, the generalization
error of partner agents for agent i is defined as επ̂

−i =
maxs DTV (π−i (·|s)||π̂−i (·|s)), representing the validation
loss of partner models on the time-dependent state distribu-
tion of the data-collecting policy πD . The maximum total-
variation distance επ

−i = maxs DTV (π−i (·|s)||πD−i (·|s))
denotes the distribution shift for partner models. By control-
ling the two errors in partner modeling, the research presents
a bound:

∣
∣ηi [πi , π−i ] − η̂i [πi , π̂−i ]

∣
∣ ≤ 2rmax

[
γ (επ̂−i + 2επ−i )

1 − γ
+ 2επ−i

]

(6)

Here, γ is the discount factor. The upper bound can be min-
imized by decreasing the discrepancy between real partner
and learned partner models. To facilitate the dynamic adjust-
ment of genuine agents and partner models, the model is
trained in a two-step process. Initially, the model is trained
with real agents over M steps to learn partner models for
each agent. Subsequently, during the next k-steps, under cer-
tain conditions, the real partners are replaced with partner
models to mitigate partner sample complexity. The method
is like a length 1 branch k-steps rollout but performs in the
real environment. Letηbranchi denote the return obtained from

this multi-agent k-steps rollout approach. By employing this
approach, the returns can be bounded in the following man-
ner:

∣
∣ηi [πi , π−i ] − ηbranchi [(πD

0 , π̂0), . . . , (π
D
i , π̂i ), . . . , (π

D
n , π̂n)]

∣
∣

≤ 2rmax

[

(k + 1)επ̂−i + γ k+1επ−i + γ k+1επ−i

1 − γ

]

= C(επ−i , ε
π̂−i , k)

(7)

Here, the pair (πD
i , π̂i ) means that the data collecting policy

πD
i and partner model policy π̂i are used before and after

the k-steps starts respectively for agent i . The upper bound
denoted by C includes both the generalization errors and
policy shifts for partner models.

Not like the classic k-steps rollout choosing the optimal
k = argmink>0C(ε−i

π , ε−i
π̂

, k), with low generalization error,
the approach aims to maintain the rollout length while mak-
ing adjustments to the interaction steps between real agents
and partnermodels. As a result, the adaptive rollout approach
shortens the rollout length for inaccurate partner models,
while retaining a longer rollout length for accurate models,
as depicted in Fig. 3.

Throughout the training process, both real agents and
partner models exhibit performance enhancement and error
reduction, leading to decreasing discrepancies. In the event
of favorable model quality, an increased utilization of partner
models becomes viable. Consequently, the proposed imple-
mentation involves an adaptive approach to dynamically use
partner models. Technically, using partner models in too few
steps with relatively accurate models, results in low part-
ner sample efficiency, especially at the end of training. Long
steps may deviate from the real trajectory distribution due
to partner models’ inaccuracies. Thus, the adaptive method
reduces interaction steps with incorrect partner models but
keeps more accurate ones.

From the previous discussion and referencing line 6 of
Algorithm 1, the generalization error for each partner model,
denoted as επ̂

j is initially computed. Subsequently, the total
generalization error for all partner models over k steps is
calculated as: (k + 1)επ̂

−i = (k + 1)
∑

j⊂−i ε
π̂
j . Consid-

ering agent i’s perspective, it can interact either with the
real partner j following policy π j , or with the partner model
employing policy π̂ j . Hence, in line 7, π̂ j is utilized for the

first n j = min j ′ επ̂
j ′

επ̂
j

steps, then the real partner is interacted

with by agent i for the remaining k − n j steps, as illus-
trated from lines 10 to 18. In this case, the generalization
for each partner model is bounded by kmin j ′ επ̂

j ′ . With such
n j defined, the generalization error for all partner models
becomes

∑
j⊂−i (n

j + 1)επ̂
j , which improves the ηbranchi by

make the discrepancy bound tighter.

123



Complex & Intelligent Systems

Policy learning

Finally, the MASAC algorithm is employed for policy learn-
ing, which utilizes an actor-critic scheme involving an actor
that selects actions based on local observations, and a critic
that estimates rewards considering all agents’ observations
and actions. In line 1 of Algorithm 1, the parameter ζi
is assigned to the actor network, and the parameter wi is
assigned to the critic network.

After every epoch, the actor and critic networks are trained
using a batch of samples that are randomly drawn from the
replay buffer D, employing a specified number of gradient
descent steps. During training, the policy entropy is maxi-
mized to foster exploration, facilitate continuous learning,
and minimize sample complexity. The critic network lever-
ages TD learning method to enhance its policy, and the target
for the critic is determined as follows:

y = r t+1 + γ
(
Qwi

(st+1, at+1
i , at+1

−i ) − α logπζi (a
t+1
i |st+1)

)

(8)

The MASAC algorithm employs a log term to reward high-
entropy policies, with the weight α used to control the level
of entropy. The critic network’s loss function is formulated
as the mean squared error between the expected return from
the target and the expected return predicted by the current
critic network:

LQi (wi ) = (
Qwi (st , ati , a

t
−i ) − y

)2 (9)

The aim of the actor network is to optimize the agent’s policy
bymaximizing both the expected return,which represents the
cumulative reward, and the entropy, which promotes explo-
ration and prevents determinism. The loss function used to
update the policy gradient is as follows:

Lπi (ζi ) = −(
Qwi (st , ati , a

t
−i ) − α logπζi (ati |sti )

)
(10)

Experiments

In this section, the effectiveness ofDAPM is assessed in com-
parison to various model-free algorithms such asMADDPG,
MAPPO, and MATD3. Through the experiments, it is illus-
trate that DAPMexhibits higher sample-efficiency compared
to these baselines in two distinct cooperative tasks.

Environment descriptions

The algorithm is tested with other baselines in two different
cooperative benchmarks, which are the multi-agent particle
(MPE) [12] environment benchmark and multi-agent active

voltage control on power distribution networks (MAPDN)
[13].

1. Cooperative navigation The cooperative navigation task
is a challenging scenario in MPE where multiple agents
are trained to navigate in a shared environment with the
goal of covering multiple landmarks without colliding
with each other. This task requires agents to coordi-
nate their actions and make decisions that are mutually
beneficial in order to achieve the collective objective of
covering all landmarks. In this task, each agent has access
to several types of information, including its own speed
and location, as well as the relative location of other
agents and landmarks. The locations for all landmarks
and agents are randomly generated at the beginning of
each episode, which introduces variability and requires
agents to adapt to changing environments. The agents
are rewarded based on their performance. Specifically,
the agents are rewarded based on a cumulative sum of
negative minimum distances calculated between each
landmark and the corresponding agent’s position. This
encourages agents to get as close as possible to the land-
marks in order to cover them effectively. However, agents
are also punished for collisions, which motivates them to
avoid colliding with each other during navigation. Fig-
ure 4a provides a visual representation of cooperative
navigation, showcasing the agents moving in the envi-
ronment and covering the landmarks without colliding.
This task poses several challenges, including the need for
agents to learn effective navigation strategies, coordinate
their actions to avoid collisions and adapt to changing
environments with randomly generated agents and land-
marks.

2. MAPDN The power distribution network employs dis-
tributed active voltage regulation, where multiple agents
work collaboratively to control PV inverters that gener-
ate reactive power to maintain the voltage at each bus
within a safe range of 0.95 p.u. ≤ vk ≤ 1.05 p.u., for
all buses k in the system. The term “p.u.” refers to the
voltage unit used in the system. In this task, each agent
is responsible for controlling a PV inverter to regulate
the voltage at a specific bus in the distribution network.
The agents need to cooperate with each other to manage
the voltage of all the buses in the network effectively, as
the decisions of one agent can impact the voltage lev-
els observed by other agents due to the interconnected
nature of power networks. It is important to note that
not all buses in the network have a PV installed, mak-
ing cooperation among agents crucial to ensure voltage
stability across the entire network. Figure 4b provides a
visual representation of the power distribution network,
with different zones denoted by different colors. Each
agent has limited information and can only observe par-
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Fig. 4 Illustrations of the two
benchmark domains

tial information about the system. For example, the agent
responsible for controlling the PV inverter at bus 23 can
only access information from zone 2 of the network. To
maintain the voltagewithin the desired range, agents need
to make coordinated decisions on reactive power gen-
eration by adjusting the output of their respective PV
inverters. The agents rely on communication and coordi-
nation to exchange information and take actions based on

the observed voltage levels and other relevant data. The
objective is to collectively regulate the voltage levels at
all the buses in the network while considering the lim-
itations of each agent’s observation capabilities and the
interconnected nature of the power distribution network.
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Table 1 Hyperparameters used
in different benchmarks

Environment

Hyperparameter MPE MAPDN

Number of steps in one epoch 25 240

Learning rates [actor, critic, partner model] [0.0005, 0.0005, 0.0005] [0.0001, 0.0001, 0.0001]

Hidden layer sizes 64 64

Batch size 1024 32

Rollout length 1 → 20 1 → 100

Discount factor 0.95 0.99

Target networks update rate 0.01 0.01

Simulation settings

To ensure a fair comparison between DAPM and other
baselines, the hyperparameters of both algorithms are kept
consistent across different environments. However, the only
distinction is a binary switch that determines the choice
between communicating with the partner models π

φ
j and

real partners π
ζ
j . In the MPE experiment, the action space

is discrete, and the actor, critic, and partner model networks
in DAPM are parameterized with a three-layer MLP using
ReLU activation functions. The optimizer used for all net-
works is Adam optimizer. The length of each episode is fixed
at 25 timesteps, and the performance of the partner model is
evaluated using accuracy. The MAPDN experiment involves
a 33-bus network with 5 distinct regions and 6 agents, as
shown in Fig. 4b. Each zone is visually differentiated by a
unique color scheme, and each agent is represented by a star
symbol. Similar to the MPE experiment, all networks in this
environment are parameterized by a three-layer MLP with
ReLU activation functions, but DAPM use RMSprop opti-
mizer for parameter updates. The action range is set within
[−0.8, 0.8] to ensure the safety of distribution networks fol-
lowing the MAPDN experiment. The episode length is set to
be 240 timesteps, which exceeds the episode duration typi-
cally employed in the MPE. During training, test results are
reported using the median and 25–75% quartile shading with
5 random seeds. The evaluation metric for this experiment is
the controllable rate (CR), which measures the ratio of time
steps where all buses’ voltages are under control. A com-
prehensive list of hyperparameter settings can be found in
Table 1.

Results

The convergence speed of the average reward value is first
analyzed with a different number of agents in various tasks
to demonstrate the sample efficiency of DAPM. Second, win
rate and collision rate are utilized to demonstrate DAPM
is superior to other algorithms. Finally, the adaptive rollout

method is demonstrated to avoid the performance drop of
DAPM with four different rollout lengths k.

Sample efficiency analysis

To establish the superior sample efficiency of the method
over other baseline approaches across various tasks and agent
quantities, the illustration begins withMPE. Experiments are
conducted with fixed agent quantities of 3 and 5, as depicted
in Fig. 5. In Fig. 5a, the training involves 3 agents with 3
landmarks in the environment. The training results reveal that
the DAPM converges about 0.75 M interactions while other
baselines are still divergent. Here, MATD3 is the best perfor-
mance baseline. It converges at 1.1 M interactions, resulting
in a reduction of approximately 31.82% in interaction. In
Fig. 5b, the environment contains 5 agents, which is more
complex than the previous task. The figure shows that MAD-
DPG and MATD3 have not converged at the end of training
steps and resulted in a significantly lower average reward.
DAPM starts to converge at 0.75M interactions, which takes
28.57% fewer interactions than MAPPO. In Fig. 5c, the pol-
icy is trained inMAPDNwith 6 agents. The figure shows that
DAPM starts to converge at 140 k interactions, while MAD-
DPG converge at 187 k interactions, resulting in a reduction
of approximately 25.13% in interaction. MAPPO can con-
verge around 140 k interactions like DAPM, however, it has
0.21 less controllable rate, and a more detailed comparison
can be seen in Table 2. Therefore, partnermodels indeed gen-
erate useful extra samples when running rollouts, which help
agents learn fast. Based on the analysis, it can be concluded
that the DAPM can reach asymptotic performance and final
performance as others with fewer interactions. This indicates
a reduction in partner sample complexity and an accelerated
learning process for agent policies through the utilization of
partner models with the adaptive rollout method.

Stability and win rate analysis

As observed in Fig. 5, the fluctuation of DAPM curve will be
smaller than other algorithms, which means DAPM is more

123



Complex & Intelligent Systems

Fig. 5 Comparison between the performance of DAPM in MPE and
MAPDN. Interaction means the communication times between the ego
agent with other agents. The mean and standard error are depicted using

bold lines and shaded areas, respectively. a MPE environment and the
number of agents in is 3. bMPE environment and the number of agents
is 5. c MAPDN environment and the number of agents is 6

Table 2 Performance analysis
on converge speed (�) and
average reward (∗) or
controllable rate (◦)

Task MPE: 3 agents MPE: 5 agents MAPDN: 6 agents
� ∗ � ∗ � ◦

Algorithm

MADDPG 1.8 M −141 None None 187 k 0.9

MATD3 1.1 M −140 None None 244 k 0.9

MAPPO 1.7 M −139 1.05 M −380 140 k 0.7

DAPM 0.75 M −139 0.75 M −380 140 k 0.91

The bolded part under ’converage speed’ shows how often the agent communicates with the environment,
with ’M’ representing million times and ’k’ representing thousand times. Less communication means better
sample efficiency. Also, bolded parts related to reward and controllable rate indicate that DAPM achieves the
same reward as the best baseline. This means DAPM improves sample efficiency without sacrificing final
performance

stable than others during the training process. In the cooper-
ative MPE environment, agents are penalized for collisions,
contributing to curve fluctuations. To compare the stability
of each method more clearly, boxplots are utilized to depict
the collision rate for each algorithm in different tasks. The
collision rate indicates the frequency of agents crashing into
each other in MPE and the occurrence of voltage going out
of control in MAPDN.

Figure 6 clearly shows that DAPM exhibits the lowest
collision rate in every subfigure, signifying its superior sta-
bility. As partner models continue to refine their policies
during the training process, the expectation is to utilize more
refined average policies towards the conclusion of train-
ing. This keeps the model from exploiting the environment,
which can lead to a high collision rate, especially if there
are many agents. From Fig. 5, DAPM’s average reward is
slightly higher than the best baseline for each task. As shown
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Fig. 6 Stability comparison in different tasks

in Fig. 7, the rewards obtained by different algorithms within
1000 episodes aremeasured to demonstrate the superiority of
DAPM in cooperative tasks. From Fig. 7a, b, the win rate of
DAPM is slightly superior to the best performance baseline
and 0.04 less than MATD3 in Fig. 7c. Based on the results,
DAPM has the same performance as the best baseline. This
is because the policy network still trains using the soft-actor-
critic framework, and the only thing that has changed iswhere
the samples in the buffer come from. This method does not
impact the performance but achieves it with fewer interac-
tions. Overall, the approach makes the training process more
stable and faster.

Performance and statistical analysis with different
rollout length

The performance of agents in DAPM is strongly related to
the quality and usage of partner models. It is acknowledged
that partner models have a model bias with real partners,
and agents learn to exploit model inaccuracies after inter-
acting with them for too many steps will lead to a lower

performance. To prove the adaptive rollout method can avoid
performance dropping by increasing the rollout length, the
performance of DAPM with four different rollout lengths
is compared in Fig. 8. Additionally, the Analysis of Vari-
ance method (ANOVA) [41, 42] was used to test whether
changing the rollout length affects the final average reward.
In this statistical analysis, each ANOVA is summarized with
an F-statistic and a p value. In this context, where ANOVAs
are repeated for each task, a Holm–Bonferroni correction is
applied to control the probability of false positives. From
Fig. 5a and b, it is evident that the average reward converges,
regardless of the number of involved agents. For simplicity,
the analysis is conducted with 3 agents in the MPE task, and
two analyses are performed for the two tasks. As shown in
Fig. 8a, length 10 got the best performance compared with
other settings, which can achieve a higher reward and use
fewer steps to converge while others can still converge to
a reasonable average reward with extra steps. Surprisingly,
length 5 got theworst performance. One possible explanation
is that using a small number of partner models may create
samples that are far from the normal distribution.Whenmod-
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Fig. 7 Win rate comparison in different tasks

els are trained on these polluted batch samples, they tend to
explore in the wrong direction. In Fig. 8b, length 30 per-
formed the best compared to the other settings. The results
show that as the partner model is used more, the algorithm
will get a lower CR and converge later. This shows that the
adaptive rollout method reduces some of the negative effects
of partnermodels by using different rollout lengths of partner
models.

In Fig. 9, we observe that varying the rollout length has
minimal impact on the average reward achieved. Addition-
ally, statistical analysis using the F-statistic and p value
indicates no significant correlation between rollout length
and final performance within each environment. This is sup-
ported by two separate ANOVA tests in both MPE and
MAPDN environments, where the rollout length parame-
ter (k) does not exert a significant statistical influence on
the average reward. In MPE, F equals 0.94 with a p value
of 0.43 (Fig. 9a), and in MAPDN, F equals 2.08 with a
p value of 0.11 (Fig. 9b). The result proves that extending
the rollout length can reduce communication instances with-
out negatively impacting model performance. However, an

excessively long rollout length can slow down convergence
speed. Therefore, it is crucial to choose a suitable rollout
length.

Based on the analysis above, the adaptive rollout method
does avoid performance dropping by increasing the usage of
partner models.

Conclusion

This study aims to contribute to the field of sample effi-
cient partner modeling in MARL by specifically focusing
on the development of sample-efficient partner modeling
techniques. The intended application scenarios are real-life
online learning settings that involve the coordination and
collaboration of multiple robots. To investigate the bene-
fits of partner modeling in enhancing multi-robot sample
efficiency, we first examined the sample complexity associ-
ated with partner modeling and then conducted a theoretical
analysis of DAPM. By leveraging partner models, DAPM
is able to reduce the sample complexity. Simulation results
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Fig. 8 Performance curves of different rollout lengths on DAPM

Fig. 9 Impact of rollout length k on final performance. Error bars represent 95% confidence intervals calculated from 20 independent runs. Result:
rollout length has no influence on the average reward for both MPE: 3 agents and MAPDN: 6 agents

demonstrated that DAPM achieves comparable asymptotic
performance to other model-free baselines but with lower
sample complexity. Nevertheless, despite the significant
reduction in sample complexity, DAPM still required a sub-
stantial number of trials to achieve satisfactory performance,
emphasizing the need for further advancements in the pur-
suit of real-life learning in MAS. Additionally, it is crucial to
highlight that the manuscript has not addressed the potential
issues of model learning speed and scalability in MARL.

Future studies aim to enhance the model’s learning speed
and quality using the MARL framework, which includes
designing a careful reward function to guide the learning
process. Using well-structured rewards could speed up learn-
ing by helping agents focus on vital aspects of the task. Also,
attentionmechanisms could be employed to tackle scalability
issues, ensuring that the proposed techniques can scale effec-
tively tomore complex scenarios. Furthermore, to explore the
application of partner modeling in more complex real-world
tasks. One possible approach is to merge sim-to-real [43]

learning with partner modeling, enabling agents to utilize
their acquired knowledge when working in real-world condi-
tions instead of beginning from the beginning. This approach
could potentially reduce the time and resources required to
train an agent in a real-world setting, as well as improve its
performance.

In summary, while this manuscript contributes signifi-
cantly to the understanding of sample-efficient partner mod-
eling inMARL, we acknowledge the need for future research
to address model learning speed, scalability challenges, and
further explore the application of partner modeling in com-
plex real-world tasks.
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