
Complex & Intelligent Systems
https://doi.org/10.1007/s40747-024-01420-4

ORIG INAL ART ICLE

An improved black hole algorithm designed for K-means clustering
method

Chenyang Gao1 · Xin Yong2 · Yue-lin Gao1,2 · Teng Li1

Received: 30 May 2023 / Accepted: 9 March 2024
© The Author(s) 2024

Abstract
Data clustering has attracted the interest of scholars in many fields. In recent years, using heuristic algorithms to solve
data clustering problems has gradually become a tendency. The black hole algorithm (BHA) is one of the popular heuristic
algorithms among researchers because of its simplicity and effectiveness. In this paper, an improved self-adaptive logarithmic
spiral path black hole algorithm (SLBHA) is proposed. SLBHA innovatively introduces a logarithmic spiral path and random
vector path to BHA. At the same time, a parameter is used to control the randomness, which enhances the local exploitation
ability of the algorithm. Besides, SLBHA designs a replacement mechanism to improve the global exploration ability. Finally,
a self-adaptive parameter is introduced to control the replacement mechanism and maintain the balance between exploration
and exploitation of the algorithm. To verify the effectiveness of the proposed algorithm, comparison experiments are conducted
on 13 datasets creatively using the evaluation criteria including the Jaccard coefficient as well as the Folkes and Mallows
index. The proposed methods are compared with the selected algorithms such as the whale optimization algorithm (WOA),
compound intensified exploration firefly algorithm (CIEFA), improved black hole algorithm (IBH), etc. The experimental
results demonstrate that the proposed algorithmoutperforms the compared algorithmsonboth external criteria andquantization
error of the clustering problem.

Keywords Black hole algorithm · Data clustering · Logarithmic spiral path · Self-adaptive parameter

Introduction

Data clustering known as unsupervised algorithms plays
an irreplaceable role in the field of machine learning [1].
Compared with supervised classification algorithms, data
clustering algorithms can reveal the internal structure of
unknown data regions and provide a new perspective on
data. In recent years, data clustering algorithms have been
widely applied in data mining [2], image segmentation [3],
biomedicine [4], intelligent transportation [5], and many
other fields, which shows the significant value of its research.
Since the definition of clustering is not completely unified
[1], a classic definition is shown here: (1) instances in the
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same cluster are relatively close and similar; (2) instances
in different clusters are relatively far apart and different; (3)
measurements of similarity and dissimilarity should be clear
and meaningful. The goal of clustering algorithms is to find
such a set of clusters as described.As suggested byFraley and
Raftery in Ref. [6], clustering algorithms can be divided into
two categories: hierarchical clustering and partitional clus-
tering. Unlike hierarchical clustering, partitional clustering
obtains the final clustering groups by first specifying the ini-
tial group and then repeatedly assigning instances to groups
until it satisfies the convergence criterion [7]. The most pop-
ular partitional methods are the K-means algorithm and the
K-centroids algorithm.

Due to its advantages of simple implementation, easy
interpretation, and suitability for sparse data [8], the K-
means algorithm has been widely studied and applied in
many research areas. However, it is also noticed that the K-
means algorithm is extremely sensitive to the setting of the
initial centroids and does not perform well in some datasets
[9]. This dependence on initialization leads to the condi-
tion that the performance of the K-means algorithm can be
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improved by optimizing the selection of the initial centroids
[10]. Since the heuristic algorithmswere proposed, they have
attracted researchers’ attention and developed sufficiently
due to their excellent optimization capabilities. These kinds
of algorithms are able to search the solutions by following
specific rules in a reasonable time, for the reason that they
are designed to solve various optimization problems, espe-
cially NP-hard problems [11]. Considering such superiority,
the heuristic algorithms are also introduced in addressing the
problem of optimizing the selection of the initial centroids
for the K-means algorithm [12–15].

BHA, proposed by Abdolreza [16] in 2013, is one of
the effective swarm intelligence optimization algorithms. Its
design mechanism simulates the attraction between a black
hole and its surrounding stars in space. BHA has a simple
structure and is easy to implement for application problems,
meanwhile, it is also fast, efficient, and less affected by hyper-
parameters. Therefore, it has shown a great performance in
many application fields, such as optimization problems [17,
18], feature selection [19], image segmentation [20], gene
selection [21], clustering analysis [16, 22, 23], etc. In the past
fewyears, plenty of improvedBHAs have been proposed. For
instance, Mohammed et al. [24] proposed the gravitational
search—black hole algorithm (GSBHA) that combined GSA
and BHA, which showed better performance than the orig-
inal algorithms. In Ref. [25], Yaghoobi et al. modified the
formula to search the area near the black hole as well as
introduced mutation and crossover operators. After that, the
local search ability of BHA was noticed and redesigned to
improve its effectiveness [26]. Ibrahim et al. [27] also intro-
duced the white hole local operator for the promotion of the
exploitation ability.

Although the studies of the BHA effectively improve its
performance, these algorithms also have limitations [28]. The
simple design of the structure may cause the algorithm to be
trapped in a worse local optimal value with a low probabil-
ity of escaping in some application problems. In addition,
the algorithmmay be difficult to control and rely on random-
ness because there are almost no hyperparameters.Moreover,
the quality of the black hole in the swarm has a great influ-
ence on the performance of the algorithm, and it is difficult
to explore more space once the black hole almost manipu-
lates the update process. At the same time, the trajectories
of the stars toward the black hole are not elaborate enough
to provide a sufficient exploitation of the solution space. The
problems mentioned above may lead to a poor ability to con-
trol the balance between exploration and exploitation for the
algorithm.

The main goal of this article is to address the problem
of selecting the initial centroids for improving the perfor-
mance of the K-means algorithm. Therefore, an improved
BHA, namely self-adaptive logarithmic spiral path black hole
algorithm (SLBHA), is proposed here. Figure 1 shows how

the algorithm works, and the details of this algorithm will
be presented in the other chapters. The main contribution
of this paper is to use the new strategies for overcoming
the mentioned drawbacks of the BHA. At the same time,
the improved BHA shows an effective way to solve the
clustering problem. First, the stars in SLBHA are updated
by the logarithmic spiral path and random vector path. In
this process, a parameter for controlling the randomness
can help to adjust between the two paths, which contributes
to the local searching around the black hole. Second, the
greedy retention strategy is proposed to help retain better
results. Third, SLBHA introduces a replacement mechanism
for stars, which improves the diversity of the population,
expands the search space of the population, and provides
more possibilities for jumping out of the local optimal solu-
tion. Finally, an adaptive parameter is added to help control
the balance between global and local search procedures by
adjusting the replacement mechanism. Then the experimen-
tal results based on the standard datasets demonstrate the
effectiveness of the proposed methods. The external crite-
ria of the clustering problem are creatively employed in this
paper for the analysis.

The rest of this paper is organized as follows. “Related
works” briefly summarizes the heuristic algorithms applied
to the clustering problems. “Preliminaries” presents the basic
concepts of the classical BHAmodel and the conventional K-
means algorithm. “The proposed work” details the proposed
algorithm in this paper. “Results and discussion” evaluates
the proposedmodel through experimental tests and compares
it with other selected comparative algorithms. “Conclusions
and future work” gives the conclusions and future research
directions of this paper.

Related works

The effectiveness of heuristic algorithms in improving the
K-means algorithm is proved in a great of research works.
In this section, we give a brief overview of representative
literature from the perspective of algorithms.

The genetic algorithm was utilized (GA) for clus-
tering problems by Maulik et al. [29]. After that, the
quantum-inspired genetic algorithm for K-means clustering
(KMQGA) proposed by Xiao et al. [14] should be noticed.
They introduced the Q-bit representation and the concept of
quantumcomputing into theirwork and changed the length of
a Q-bit in KMQGA as a variable quantity. Due to this mech-
anism, the searching space of this algorithm was extended,
which verified its effectiveness on both the simulated datasets
and the real datasets. Based on the advantages of the genetic
algorithm, Fatahi et al. [30] proposed a combination of the
pollination of flowers algorithm and the genetic algorithm
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Fig. 1 The working process of the proposed algorithm

(FPAGA). The experimental results demonstrate its effec-
tiveness with greater accuracy and better stability. However,
these methods should pay attention to the diversity of the
datasets as well as the exploration ability.

As one of the classical intelligent optimization algorithms,
the particle swarm optimization (PSO) algorithm was also
introduced in clustering problems. In Ref. [31], the author
proposed two PSO methods for data clustering. The first
algorithm showed how PSO helps to find the centroids of
a specified number of clusters and the second one applied
the K-means algorithm to seed the initial swarm. The fitness
function of the proposed methods in Ref. [31] was novel at
that time, but the design of the experiment could be more
normalized. Hatamlou et al. [15] hybridized the PSO with a
heuristic search algorithm (PSOHS). PSOwas used to search
for an initial solution to the clustering algorithm and then a
heuristic search algorithm was applied to promote the qual-
ity of this solution. The superiority of this algorithm over
other approaches has been shown in its experiment analysis.
Li et al. [32] proposed the adaptive learning PSO to prevent
the K-means clustering algorithm from depending on initial
cluster centers. Then, the improved KM-ALPSO was pro-
posed for customer segmentation and showed effectiveness
and practicability in this task. PSO and its variants showed
efficiency and robustness in solving this problem, but their
ability to balance exploration and exploitation is question-
able.

Ant colony optimization (ACO)methodologywas applied
to data clustering for data clustering in [33]. Niknam et al.
[34] not only noticed the effectiveness of the ACO algorithm
but were also interested in the simulated annealing (SA)
algorithm. They combined these two algorithms and made
use of the SA as a local search in ACO. The experimental
results showed a better response and a quicker convergence
than ordinary evolutionary methods. In addition, the authors

[35] also proposed a new hybrid evolutionary algorithm that
combined the fuzzy adaptive particle swarm optimization
(FAPSO), ACO, and K-means algorithms, which was called
FAPSO–ACO–K. The performance of this algorithm was
much better than the other algorithms for the partitional clus-
tering problem. The combination of ACO and the K-means
algorithm has some different characters compared with the
other heuristic algorithms, which should be researched and
explored.

The gravitational search algorithm (GSA) is an effective
method for searching problem space for the optimal solu-
tion and it was combined with the K-means algorithm in
the hybrid method proposed by Hatamlou et al. [36]. Their
hybrid algorithm, named GSA–KM, helped the K-means
algorithm to escape from local optima and increased the con-
vergence speed of GSA. Different from the classical GSA,
Dowlatshahi et al. [37] adapted the structure of GSA by a
special encoding scheme and presented the grouping GSA
(GGSA). The simulation experimental results indicated that
this method can effectively be applied to multivariate data
clustering. Han et al. [38] introduced a new mechanism that
is inspired by the collective response behavior of birds into
GSA to add diversity, which was called bird flock GSA
(BFGSA). Since the collective response mechanism helped
the algorithm explore a wider range of the search space, the
performance of BFGSAwasmuch better than the other algo-
rithms. The proposed GSA-based methods mentioned above
concentrated on overcoming the drawbacks of the traditional
GSA and achieved great results.

In addition, there are still many other heuristic algorithms
applied to this problem. For example, Senthilnath et al. [39]
used the firefly algorithm (FA) for data clustering and com-
pared it with the other two algorithms. Xie et al. [9] proposed
two variants of FA, namely inward intensified exploration FA
(IIEFA) and compound intensified exploration FA (CIEFA).
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The dispersingmechanism introduced inCIEFA ensured suf-
ficient variance betweenfireflies for the purpose of increasing
search efficiency. However, the time complexity of the FA-
based methods is not good enough. A modified bee colony
optimization (MBCO) was presented in Ref. [40] and the
hybrid algorithms performed better than the compared algo-
rithms. To tackle the cuckoo search (CS) clustering problem,
Boushaki et al. [11] extended the CS capabilities using
nonhomogeneous update which is inspired by the quantum
theory. Zhou et al. [41] used a recently proposed meta-
heuristic optimization algorithm, called symbiotic organism
search (SOS), to solve the clustering problems. Tawhid et al.
[42] proposed a new hybrid swarm intelligence optimiza-
tion algorithm called monarch butterfly optimization (MBO)
algorithm with cuckoo search (CS) algorithm and applied
it to the clustering problem. An enhanced whale optimiza-
tion algorithm (EWOA) is introduced in Ref. [43], while the
experiments demonstrated the applicability and feasibility of
the enhancements. Almotairi et al. [44] proposed a method
named HRSA for the clustering problem, which combined
the original Reptile Search Algorithm (RSA) and Remora
Optimization Algorithm (ROA).

For all the algorithms mentioned above, it should be
emphasized that there is no algorithm that can obtain satisfac-
tory solutions for any application problems and outperform
any other algorithms. A useful algorithm should strike a
balance between exploitation and exploration abilities and
converge to the optimal solution as required. In this paper, we
focus on designing the improved BHA for solving the initial
optimization problem of the K-means algorithm. The loga-
rithmic spiral path and a replacement mechanism for stars
are introduced to improve the searching ability of the algo-
rithm. At the same time, we innovatively design an adaptive
parameter to help control the balance between global and
local search procedures through adjusting the replacement
mechanism. The experiments show that the proposed algo-
rithm is able to converge to the optimal solution mostly and
outperform the compared algorithms.

Preliminaries

This section describes briefly the main concepts utilized in
the proposed approach, which are the classic BHA and the
K-means algorithm.

The classical BHA

The concept of the black hole was first identified by John
Michell and Pierre Laplace in the eighteenth century and
named by John Wheeler in 1967 [16]. BHA is a population-
based intelligent optimization algorithm inspired by the
behaviors of black hole and stars. The black holes are formed

when massive stars gravitationally collapse and then create
a gravitational field that is so powerful that even light can-
not escape. The space around a black hole called the event
horizon is the limit that the matter can reach because nothing
enters the scope of the event horizon can escape. The radius
of the event horizon is called the Schwarzschild radius, which
is calculated by the following equation:

R � 2GM

Cl
, (1)

where G is the gravitational constant, M is the mass of the
black hole, andCl is the speed of light. Inspired by the above
concepts, theBHA is proposed as a novel heuristic algorithm.
In the process of searching for the optimal solution, the best
agent is set as the black hole while the others are regarded
as stars. Then the locations of stars change as they move
toward the black hole following the specific tail. Once a better
solution is found, the black hole will be replaced with it. In
addition, those who are beyond the event horizon of the black
hole will be swallowed by it and new stars will be generated
to keep the population constant.

Suppose the number of the population is N and the dimen-
sion of the optimization problem is D. At the beginning, the
agents are randomly initialized in the solution space then the
fitness value of each agent is calculated [28]. Take solving the
minimum value problem as an example, the agent of themin-
imum fitness value is set as the black hole. Xt

i represents the
i th agent at the t th iteration and Xt

BH is the black hole. Then
the movements of agents can be formulated by the following
equation:

Xt+1
i � Xt

i + rand × (
Xt
BH − Xt

i

)
, (2)

where rand represents a random number in the interval [0,1].
The formula indicates that the stars in the population are
attracted by the black hole and move in the direction of the
black hole while the distances of movements are decided by
the random number rand. However, there exists an event
horizon around the black hole. Once a star approaches or
exceeds the radius of the event horizon, it will be absorbed
by the black hole, and the algorithmwill replace it with a new
star in the population. The event radius of a black hole here
is different with the Eq. (1), which is given by the following
equation:

R � fBH
∑N

i fi
, (3)

where fi and fBH represent the fitness value of the i th agent
and the black hole, respectively. At each iteration of the algo-
rithm, the agents in the population are re-evaluated and then
compared to the black hole based on the fitness value for
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checking whether the black hole needs to be replaced. The
process of the BHA will not stop until the convergence con-
dition is met, where the optimal solution is found.

The K-means algorithm

According to the related articles [7], the K-means algorithm
starts from a randomly set of centroids, assigns instances to
the clusters by the comparison of the distances with the cen-
troids, then recalculates the centroids and iterates until the
termination condition is satisfied. The main similarity metric
utilized by the K-means clustering algorithm is Euclidean
distance [8], that is, the data points in the same cluster are
closer and the distances within different clusters are rela-
tively farther based on the Euclidean distance. Specifying
the number of clusters that the algorithm needs to split into
and the location of the initial centroids are essential for theK-
means algorithm. For the next step, data points are assigned
to different clusters by comparing the distances to the initial
centroids. The resulting clusters may still have large errors
at this point, so the centroids should be recalculated and the
data points should be reallocated as well. The above pro-
cess is completed iteratively until the stop condition of the
algorithm is met. The selection of the initial centroids has
an important influence on the results of the clustering, which
means the better initial centroids can greatly improve the
performance of the algorithm.

Given k initial centroids, each centroid represents a cluster.
There are m instances in the dataset, and the dimension of
each instance is d, then the objective function is defined as:

J �
k∑

i�1

|Ci |∑

j�1

distance
(
xij , μi

)
, (4)

whereCi represents the i th cluster andμi is the centroid of it
.|Ci | is the total number of the clusterCi . xij represents the j

th instance of the i th cluster and distance
(
xij , μi

)
indicates

the distance between xij and μi which can be defined by the
following equation:

distance
(
xij , μi

)
�

√√√√
d∑

p�1

[
xij (p) − μi (p)

]2
. (5)

After assigning the data points for the first time, the cen-
troids in the algorithm are recalculated using the mean value
of the instances belonging to the cluster, which is formulated
by the following equation:

μi � 1

|Ci |
|Ci |∑

j�1

xij . (6)

The stopping condition of the algorithm may be that
the objective function value no longer changes with the re-
clustering of instances, or the algorithm reaches the number
of iterations. The time complexity of the K-means algorithm
is proved to be linear, namely O(T kmd) [8], where T is the
number of iterations of the algorithm. It is the linear time
complexity that makes K-means a popular and competitive
method. Even if the number of instances in the dataset is rel-
atively large, the K-means algorithm has certain advantages
compared with other clustering algorithms.

The proposed work

The classical BHA has demonstrated its feasibility and supe-
riority in the data clustering problem at the beginning of
its proposal [16]. However, the problem that the algorithm
is easy to fall into local optimization limits its application
and development. Therefore, this paper designs an improved
black hole algorithm, namely SLBHA. The flow chart of the
algorithm is shown in Fig. 2. To overcome the drawback of
trapping in the local optimum, SLBHA introduces the loga-
rithmic spiral path for improving the local exploitation ability
into the BHA and adds a greedy retention strategy. More-
over, a new improved mechanism of global exploration is
designed in SLBHA, which greatly expands the search scope
of the algorithm and refines the search process. The proposed
algorithm will be described in the following sections. To be
clearer, the pseudo-code of the algorithm is shown in Algo-
rithm 1.

Initialization and representation of agents

Similar to other population-based intelligent optimization
algorithms, each individual in the population of the BHA
represents a feasible solution that is a set of centroids for
the data clustering problem. The agents can be defined as
follows:

Xi � (
ci , 1, ci , 2, . . . , ci , k

)T , (7)

where ci , j ( j � 1, 2, . . . , k) represents the j th centroid in
i th agent, it is a d-dimensional vector. k is the number of
clusters which is defined before the process of the algorithm.
It is obvious that Xi is a matrix of k × d and a swarm of N
agents is a set of N matrices. For initialization, k points for
each agent as the set of centroids are randomly selected from
the dataset in the proposed methods.
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Fig. 2 The flow chart of SLBHA
Start

Randomly initialize 

the swarm 

Update 

No

Perform the replac-

ement mechanism

Evaluation and the 

black hole setting

1 < ?

Yes

Update the agent 

using the logarith-

mmic spiral path

Update the agent 

using the random 

vector path

No

Utilize the filtering 

mechanism to judge

Evaluate the swarm 

and set the new 

black hole 

Stopping condition 

satisfied?

Yes

End

2 < ?

No

The proposed improved self-adaptive logarithmic
BHA (SLBHA)

In the classical BHA, the stars are attracted by the black hole
and move toward it at a certain distance. It can be seen that
themethod of deciding the trajectory of stars is usually single
and depends a lot on randomness. That is to say, when the
black hole is located in the local optimal solution, the stars
may be attracted and moved to it with a too-fast convergence
at the beginning, which may cause the algorithm to fall into
the local optimal solution and be unable to jump out of it.
After setting the position of the black hole, the movements
of the stars are equivalent to searching the space around the
black hole. No matter whether the phase of the algorithm is
global exploration or local exploitation, the BHA deals with
it with the same method, which means its balance between
the two searching modes may not be satisfactory.

Logarithmic spiral path with parameter

The logarithmic spiral path was proposed in the whale
optimization algorithm [45] to simulate the helix-shaped
movement of humpback whales, which is an effective search
method. Used in the firefly algorithm in the literature [46],
this path improved the local exploitation ability of the fire-
fly algorithm and verified its effectiveness in experiments.
Sharma et al. [47] introduced a logarithmic spiral-based local
search strategy and incorporated it with the ABC algorithm
to build a newviable algorithm. To the best of our knowledge,
there has been no such research that combines this strategy
with the BHA until now. In this paper, the logarithmic spiral
path is introduced into the BHA and the improved updating
formula is given in the following equation:

X̂ t+1
i �

{
Xt
i +

(
Xt
BH − Xt

i

) · ebl · cos(2πl), r1 < ρ

Xt
i + R · (

Xt
BH − Xt

i

)
, r1 ≥ ρ

, (8)
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Fig. 3 The movement of the stars
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where X̂ t+1
i represents the calculated result of the next gen-

eration that may be used for updating. The symbol · is the
element-by-element multiplication operation. b is a constant
related to the shape of the logarithmic spiral path and l is
a random number in [-1,1]. r1 is another random number in
[0,1] and is generated in eachupdatingprocess.ρ is the hyper-
parameter that controls the update paths of agents, which is
in the range [0,1]. When the generated random number r1 is
less than ρ, the agent will be updated according to the log-
arithmic spiral path, otherwise, the other path is chosen. R
is a random matrix of size k × 1. The idea of replacing the
random number with the random vector to expand the agent
search solution space was first proposed by Yaghoobi and
Mojallali [25], and then Deeb et al. introduced it in Ref. [22]
and made improvements. Inspired by the above literature,
this paper also takes use of the random vector as one of the
paths. Deeb et al. [22] suggest that the elements in the ran-
dom vector should be valued within the range of [0,1.5] and
the dimension of the vector is d. However, to avoid excessive
deviation from the original optimization path, the random-
ness is reduced using a k × 1 random vector in this paper.
The generated numbers of vectors are also adjusted in [0,1].
In this way, the algorithm not only expands the search space
for the agents but also keeps the degree of randomness at a
balanced level. The improved star trajectory selection mech-
anism is shown in Fig. 3. The path of traditional BHA is
represented by the dotted line, which is only for illustration
here and not actually used in the algorithm.

In addition, the datasets have been standardized before
used in the experiments of this paper, so the value of each
dimension of the agent should be between 0 and 1. In the
process of star movement, a module to check whether the

star exceeds the value range is necessary. When the value of
the position exceeds 1 or is less than 0, it is set as 1 or 0 for
calculation.

Greedy retention strategy

In this paper, a cautious greedy retention strategy is used to
retain the optimal solution of the agent during its movement.
If the position that the star is moving causes the quality of the
solution to decline, it will remain stationary, and only when
the movement gains more promotion can the star move. In
this way, it is possible to ensure that the update process of the
stars is always in a progressive state and the enhancement of
the algorithm solution is stable. Its mathematical expression
is shown in the following equation:

Xt+1
i �

{
X̂ t+1
i , i f f

(
X̂ t+1
i

)
< f (Xt

i )
Xt
i , else

. (9)

With the above measures, the optimization ability of the
BHA has been improved to some extent. However, it is insuf-
ficient because such a greedy strategymay lead the algorithm
to be trapped in a local optimum. Improving the global search
ability of the algorithm, especially in the early stage of the
algorithm, can help to get rid of the local optimal solution.
Therefore, the following strategies are designed based on this
idea.

Replacement mechanism of stars

In the classical BHA, the stars are attracted to search only
around the black hole and such an approach may lead to
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Fig. 4 Diagram of replacement mechanism

the lack of global exploration capability of the algorithm. To
further improve the global search capability of the BHA and
increase the diversity of the population, a replacement mech-
anism for stars is proposed in this paper. The basic idea of
this mechanism is that the locations of good solutions should
be preserved and the worse solutions should be replaced to
search more solution space. Figure 4 shows the process of
the replacement mechanism. The steps of the operator are
given as follows:

Step 1: Sort all the stars (including the black hole) in
descending order according to the fitness value. It can be
concluded that the top-ranked stars represent the worse qual-
ity solutions. Half of the better agents is Part 1 and the other
half is Part 2.

Step 2:Choose the stars of Part 1 and execute themutation
operator one by one. The results of mutation are put into the
solution pool which can be seen as a set of the solutions that
are waiting for selection.

Step 3:The stars in Part 2 are reinitialized and thrown into
the solution pool, too.

Step 4:All stars in the solution pool are sorted in descend-
ing order. The latter half (the best part) of the solution pool
is utilized to replace Part 2 of the original swarm.

The mutation operator in Step 2 can be defined as: (1)
Randomly select a position of mutation z (integer in [1, k])
of Xmu ; (2) Select a data point xz at random in the dataset;
(3) Replace the clustering center point of Xmu[z] with xz to
generate a new agent. Themutation operatormakes relatively
minor changes, which means the mutation of superior agents
in the population may be beneficial to obtain better results
with less cost. The reinitialization operation is equivalent to

completely replacing agents, and the generation of new indi-
viduals in half of the population is conducive to promoting
the diversity of the population and expanding its search space.

Self-adaptive parameter

It is not enough to only improve the exploration and exploita-
tion capabilities of the algorithm, because it ismore important
to maintain the balance between the two search modes. The
algorithm needs to update the population at the right time
to expend the searching space, so as to avoid falling into the
local optimal region. In the earlier iterations of the algorithm,
more global searching is necessary, while more attention
should be paid to local search in the later iterations. There-
fore, an adaptive parameter is introduced in this paper to
choose the appropriate timing and maintain the balance. The
formula of the self-adaptive parameter α is shown as follows:

α � e
−2t
T+1 , (10)

where t is the current iteration number and T is the total
number of iterations. Figure 5 is the functional graph of α.
It can be seen from the figure that the value of α gradually
decreases form1 to close to 0.1with the increase of iterations.
In each iteration, a random number r2 is generated in [0,1].
If r2 < α, the replacement mechanism will be performed in
this iteration. It is apparent that the probability of performing
this operation is higher at the early stage of the algorithm.
However, with the increase of the number of iterations, the
algorithm needs more local exploration and excessive global
searchingmay affect the convergence speed of the algorithm.
Therefore, the probability of performing this operation is rel-
atively reduced.
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Algorithm 1 Pseudo-code of SLBHA

Input: Dataset of size × , the maximum number of iterations , the population size , the value of and 

the number of clusters 

Output: The optimal solution that the algorithm found

Initialize the population randomly.

Evaluate the swarm by the fitness function and set the best solution as the black hole.

For ← 1 to do

For ← 1 to ( − 1) do

Generate a random number 1.

If 1 < then

Update the agent using the logarithmic spiral path, get ̂ +1.

Else

Update the agent using the random vector path, get ̂ +1.

Evaluate the new position of the agent, ( ̂ +1).

If ( ̂ +1) < ( ) then

Replace the current agent with ̂ +1, i.e., +1 = ̂ +1.

Else

The current agent doesn’t move.

If ( +1) < ( ) then

= +1

Else
Calculate the event radius of the black hole .

If ( +1, ) < then

Replace the current agent with a new star, i.e., +1 =

Update the parameter and define a list as the solution pool .

Generate a random number 2.

If 2 < then

Sort all the agents in population in descending order according to the fitness value.

For ← 1 to ( /2) do

Randomly initialize a new agent , add it to .

For ← ( 2)⁄ to do

Perform the mutation operator on the , add the generated to .

Evaluate all the new agents and sort the agents in in descending order according to the fitness 

value.

For ← 1 to ( /2) do

[ ] = [ ]

Results and discussion

To objectively and comprehensively evaluate and verify the
effectiveness of the algorithms proposed in this paper, 13
datasets are selected for experiments. The comparison algo-
rithms used here are listed as follows: K-means [7], K-means
+ + [48], FC-Kmeans [49], PSO [31], ABC [50, 51], FA

[38], BHA [16], WOA [52, 53], SOS [40], CIEFA [9], IBH
[22]. The experiments mentioned above are conducted on an
Intel(R) Core (TM) i7-10,700 CPU with 16 GB RAM. The
content related to the experiments will be introduced in this
section.

123



Complex & Intelligent Systems

Fig. 5 The curve where the value of α changes with the number of
iterations

Table 1 Datasets used in the experiments

Datasets Features number Instances
number

Contraceptive Method Choice 9 1473

Housing Prices 12 545

Stroke Prediction 12 5110

Heart failure clinical records 13 299

Shill Bidding 13 6321

Early Stage Diabetes Risk
Prediction

17 520

Lymphography 18 148

Mobile Price 20 2000

Gender Gap in Spanish WP 21 4746

Steel Plates Faults 32 1941

Ionosphere 34 351

QSAR biodegradation 41 1055

Arcene 10,000 900

Datasets description

Table 1 gives a detailed introduction to the datasets used in
this paper, including the number of features and the number
of instances of the datasets. The datasets of Stroke predic-
tion, Early-stage diabetes risk prediction, Mobile price, and
Housing Prices are selected from the Kaggle website, and the
rest are from theUCI data repository. Formore details, please
access the website of Kaggle (https://www.kaggle.com/) and
theUCIRepository (http://archive.ics.uci.edu/ml/index.php)
[54].

The datasets used in this paper have different dimen-
sions and instances, which presents various challenges to the

data clustering algorithm. Usually, the preprocessing process
including feature coding and data standardization is required
before using the datasets. The main theme in this paper is
the data clustering problem, so distance measurement is an
important factor [1]. Therefore, the non-numeric data need
to be converted to numeric data to facilitate calculation. In
addition, the data need to be normalized to eliminate the
influence of different scales, which can also indirectly avoid
the influence of noise and outliers. Here, the datasets are pre-
processed by themethodsmentioned above including feature
coding, data standardization, and normalization to facilitate
the comparison of algorithms, and this step is also essential.

Evaluation criteria

Clustering classifies a dataset with undefined classes accord-
ing to some specific method, so its evaluation methods are
defined differently from that of classification algorithms. The
literature [55] gives three methods to evaluate the validity
of clustering: external criteria, internal criteria, and relative
criteria. External criteria are mainly evaluated by imposing
the results of clustering algorithms on a pre-specified dataset
structure to validate the clustering solutions. Internal crite-
ria evaluate the internal structure generated by the clustering
algorithm. As for relative criteria, they evaluate a structure
by comparing it with other methods. External criteria are
based on some prior information of the datasets while inter-
nal criteria are not dependent on external information [56].
The evaluation criteria used in the experiments of this paper
include external criteria and quantization error.

External criteria

Suppose C � {C1, C2, . . . , Ck} is the set of clusters
that the data clustering algorithm generated and P �
{P1, P2, . . . , Ps} is defined structure of the dataset. Con-
sider a pair of data points (xa , xb) randomly selected from
the dataset, the following terms will be measured:

SS: if xa and xb belong to the same cluster of C and the
same partition of P .

SD: if xa and xb are in the same cluster of C , but in the
different partitions of P .

DS: if xa and xb are in the different clusters of C , but in
the same partition of P .

DD: if xa and xb belong to the different clusters of C and
the different partitions of P .

Here, a, b, c, and d are utilized to represents the number
of SS, SD, DS, and DD. The total number of all pairs of data
points in the dataset is M , which means M � a +b+ c+d. It
can be deduced that M � m(m − 1)/2, where m is the total
number of the dataset mentioned before. Then the indices
that measure the similarity between C and P can be defined

123

https://www.kaggle.com/
http://archive.ics.uci.edu/ml/index.php


Complex & Intelligent Systems

as follows:

J � a

(a + b + c)
, (11)

FM � a√
m1m2

�
√

a

a + b
· a

a + c
, (12)

where J is the Jaccard coefficient while FM represents
Folkes and Mallows index. m1 � a/(a + b), m2 � a/(a + c).
For the two indices, the higher value indicates the more simi-
lar degree of C and P . Here, these two indices are utilized to
evaluate the similarity between the obtained clustering results
and the original labels of the dataset, so as to compare the
effectiveness of the algorithms. To the best of our knowledge,
it is the first work that introduces these two criteria into the
related studies.

Quantization error

The fitness function is essential for intelligent optimization
algorithms. A suitable fitness function can improve the effi-
ciency and performance of the algorithm. Inspired by the
literature [31], this paper selects quantization error as the
fitness function, which can be formulated as follows:

(13)

fitness � f
(
Xt

p

)
� f

[(
cp, 1, cp, 2, . . . , cp, k

)]

�

∑k
i�1

[
∑|Ci |

j�1

distance
(
xij , cp, i

)

|Ci |

]

k
,

where Xt
p is the p th agent in t th iteration and cp.k is its

kth element. The quantization error is also evaluated based
on the structure of the clusters to some extent, which can
be regarded as an internal criterion. The smaller the fitness
value is, the better the solutions searched by the agent are.
The indicators used in this paper also include the average
fitness value, the best fitness value, the worst fitness value,
and the standard deviation.

Experiment settings

In order for each algorithm to exhibit the best performance,
the state-of-art algorithms selected for comparison all use
the parameters suggested in the original articles, which is
shown in Table 2. Among them, algorithms not mentioned in
the table generally require no parameters. The parameters of
SLBHA are tested and discussed in “Parameter experiment”.
For the sake of fairness, the experiments are conducted by
running the algorithms 30 times. The maximum number of
iterations and agents are set as 100 and 20, and the fitness
function of all the algorithms is set as the same one, i.e., the

Table 2 Parameter settings of the experiments

Algorithms Parameters

PSO w � 0.72, c1 � c2 � 1.49

ABC Limit � 1000

FA β0 � 1, γ � 1

CIEFA τ � (1 − t/Ttotal) × (1 + μ), β0 � 1, γ � 1,
α � 0.2

SLBHA ρ � 0.5, α � e−2t/T+1

quantization error used in this paper. Since they run on the
same standardized datasets, the values of each dimension of
agents in every algorithm are in the range of [0,1].

Parameter experiment

In the proposed algorithm, there is a parameter ρ, which con-
trols the selection of the star movement path, and its value
may have an important impact on the algorithm’s exploration
capability. Therefore, an experiment is designed to analyze
which value of this parameter is appropriate for the algo-
rithms. In addition to the introduced parameter ρ, for the
swarm intelligence algorithm, the population size N and the
number of iterations T also exercise a greater influence on
the performance of the algorithm. Therefore, it is necessary
to design experiments to explore the values of these three
parameters for this paper.

For the purpose of exploring the appropriate value of the
parameter ρ while observing its influence on the algorithm
and the improvement effect, the first part of the parameter
experimentswill discuss the settings ofρ and T . In this exper-
iment, ρ is taken within [0, 1], then the experiment selects
the values of ρ by 0.1 steps. In the meanwhile, the number
of iterations T is set in [100, 150], and the step length is
10. For each parameter combination pair 〈ρ, T 〉, the exper-
iment runs 20 times independently on 10 datasets, and then
the mean results of the fitness values are summarized and
plotted in Fig. 6.

The abscissa of Fig. 6 represents the value of ρ, with a
total of 11 values, while the ordinate represents the value of
total iteration numbers. It can be seen from the figure that the
impact of the iteration numbers on the accuracy of the algo-
rithm is obvious. In almost all datasets used here, the figure
is gradually deepened from top to bottom. Especially in the
Ionosphere dataset, the optimal solution can almost always
be found when t ≥ 50, so its color is deeper and more aver-
age than the others. In horizontal comparison, ρ values have
different effects on the performance of the algorithm. For
all used datasets, it can be seen that most of the deeper posi-
tions are located in [0.4,0.6] expect some outliers, which also
indicates that the influence of parameter ρ on the algorithm
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Fig. 6 Mean fitness values of part
of SLBHA for different
parameter combinations of
parameter ρ and the number of
iterations T on datasets

(b) Housing Prices

(c) Stroke Prediction (d) Heart failure clinical records

(a) Contraceptive Method Choice        

                       (h) Steel Plates Faults(g) Gender Gap in Spanish WP

(i) Ionosphere (j) QSAR biodegradation

(e) Shill Bidding (f) Early Stage Diabetes Risk Prediction
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Fig. 7 Mean fitness values of SLBHA for different population sizes N
on datasets

is not always stable. Considering the meaning of parameter
ρ, it represents the balance degree of the two paths in the
SLBHA algorithm, and the random number used for control
is generated in [0,1]. Therefore, only the logarithmic spiral
path is effective when ρ � 1, and only the vector update
path is effective when ρ � 0. Comparing the color depth of
the left end (ρ � 0), the right end (ρ � 1), and the middle
part (ρ ∈[0.4,0.6]), the middle part is deeper than the left and
right ends, indicating that too large or small of the value ρ

is not suitable for the algorithm. From another perspective,
it also proves that the combination of the two paths is much
better than using a single path and the proportion of these
two paths should be relatively balanced to achieve the opti-
mal performance of the algorithm. According to Fig. 6, it can
be found that when ρ � 0.5 and T � 100, the algorithm can
achieve satisfactory performance in all datasets while saving
time and space resources.

The second part of the parameter experiments is based on
the first part mentioned above, discussing the influence of
the population size N on SLBHA. ρ and T are set as 0.5 and
100, respectively. The population size N is set within [10,
50] and the step size is set as 5. For each value of N , SLBHA
runs 20 times independently, and the average fitness values
are obtained and plotted as a line graph as shown in Fig. 7.

As shown in Fig. 7, the abscissa represents different pop-
ulation sizes while the ordinate represents the fitness values.
It is shown in Fig. 7 that the average fitness values of SLBHA
decrease with the expansion of population size, but increase
slightly to some extent after a certain threshold. There are
two or more fluctuation trends shown on all the lines in the
figure. This phenomenon first indicates that the efficiency of
the algorithm increases with the expansion of the population
size. However, after a certain critical value, this trend slows
down and develops in the opposite direction, which is, the
unsuitably over-large population will lead to a slight decline

in algorithm performance. In conclusion, the impact of pop-
ulation size N on the algorithms is fluctuating and complex
and it should be selected thoughtfully. To prevent the fluctu-
ation effect of algorithm performance decrease caused by a
large population, the population size is set as 20 in this paper
after comprehensive consideration.

To sum up, the parameter experiments, on the one hand,
provide a reference for parameter settings in this paper. In
a comprehensive view, the parameters are set as follows:
ρ � 0.5, T � 100, N � 20. On the other hand, these exper-
iments can also reflect the effectiveness of the improvement
measures designed in this paper.

Analysis of the proposed strategies

In this section, the proposed strategies are analyzed and their
effectiveness is verified through experiments. According to
the beginning design ideas, the strategies of SLBHA shown
in “Analysis of the proposed strategies” can be divided into
two groups. Here, the star replacement mechanism and self-
adaptive parameter strategy can be regarded as a group, while
the other two strategies form another group. The improve-
ment strategieswithin a group are interrelated and indivisible.
Therefore, the part of improved SLBHA (only retained
the logarithmic spiral path with parameter and the greedy
retention strategy) and the completely improved SLBHA
are compared with the traditional BHA. Table 3 shows the
comparison results of the two algorithms, where LBHA rep-
resents the part of improved BHA.

From the previous descriptions of the algorithm, it can be
seen that the LBHA adds a logarithmic spiral path and ran-
dom control parameter for adjustment as well as the greedy
retention strategy compared to the classical BHA. The com-
plete SLBHA adds a replacement mechanism of stars and
uses a self-adaptive parameter for regulation, which can
expand the global searching space of the agents and increase
the population diversity, resulting in a better performance of
the search capability. The experiments conducted here show
the validity of the above strategies. As for the mean value,
SLBHA performs better than LBHA on all datasets except
the QSAR biodegradation dataset in terms of the average of
the fitness values, and both algorithms perform better than
BHA. When it comes to the minimum and maximum of the
fitness values, SLBHA performs better than LBHA on more
than 2/3 of the datasets. The possible reason is that SLBHA
may have slightly insufficient local exploration for some
datasets, despite its extended searching range in compari-
son. In addition, these algorithms are inherently heuristic,
and the instability of the results due to randomness is not
unusual. As can also be seen in Table 9, the LBHA algorithm
has better standard deviation results than SLBHA on more
than half of the datasets, which also indicates that the stabil-
ity of these two algorithms is similar. However, the results
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Table 3 Comparison between BHA and proposed algorithms

Datasets Best Worst Mean

BHA LBHA SLBHA BHA LBHA SLBHA BHA LBHA SLBHA

Contraceptive Method Choice 0.6469 0.503 0.4389 0.7476 0.6743 0.7444 0.7071 0.6145 0.5652

Housing Prices 0.8349 0.5695 0.5304 1.0234 0.8358 0.7902 0.9176 0.7203 0.6386

Stroke Prediction 0.8072 0.6971 0.6615 0.8465 0.8348 0.8357 0.8253 0.7709 0.7394

Heart failure clinical records 0.9868 0.7097 0.7381 1.0842 0.9659 0.9617 1.0376 0.8549 0.8472

Shill Bidding 0.7768 0.6979 0.6721 0.8168 0.8092 0.7774 0.8041 0.7653 0.7439

Early Stage Diabetes Risk 1.1503 1.0604 1.0244 1.7939 1.4906 1.2526 1.5298 1.2148 1.1596

Lymphography 1.2889 0.756 0.7752 1.4545 1.2173 1.1144 1.3562 1.0507 0.9223

Mobile Price 1.4627 1.1454 1.1558 1.5237 1.4344 1.4384 1.4892 1.3651 1.2792

Gender Gap in Spanish WP 0.7106 0.5867 0.6322 0.742 0.7237 0.7135 0.7234 0.6879 0.684

Steel Plates Faults 0.9995 0.7793 0.7493 1.1358 1.0422 1.2408 1.0671 0.9799 0.9553

Ionosphere 0.7086 0.6969 0.696 1.2347 0.8648 0.7728 0.9512 0.7129 0.7094

QSAR biodegradation 0.5646 0.4049 0.5423 0.6799 0.635 0.6421 0.6355 0.5967 0.6031

Arcene 16.1197 11.642 11.6083 21.117 18.5873 12.5475 19.1976 12.7298 11.9341

Datasets Standard deviation Jaccard coefficient FM values

BHA LBHA SLBHA BHA LBHA SLBHA BHA LBHA SLBHA

Contraceptive Method Choice 0.0183 0.0466 0.0806 0.2415 0.2939 0.3113 0.3901 0.4698 0.5061

Housing Prices 0.0431 0.0706 0.0739 0.3223 0.4106 0.4541 0.4944 0.5829 0.6303

Stroke Prediction 0.0094 0.0450 0.0354 0.5219 0.6907 0.7740 0.7062 0.8172 0.8716

Heart failure clinical records 0.0247 0.0501 0.0550 0.3827 0.5201 0.5317 0.5537 0.7023 0.7157

Shill Bidding 0.0091 0.0289 0.0251 0.4628 0.5961 0.6642 0.6485 0.7470 0.7974

Early Stage Diabetes Risk 0.1362 0.0841 0.0406 0.5059 0.5254 0.5250 0.6746 0.7084 0.7146

Lymphography 0.0335 0.1075 0.1060 0.4017 0.4947 0.4992 0.5730 0.6940 0.7026

Mobile Price 0.0160 0.0665 0.0667 0.1515 0.1891 0.2124 0.2634 0.3325 0.3871

Gender Gap in Spanish WP 0.0075 0.0324 0.0177 0.3560 0.4364 0.4546 0.5263 0.6112 0.6283

Steel Plates Faults 0.0245 0.0655 0.1161 0.4140 0.4585 0.4776 0.5886 0.6391 0.6609

Ionosphere 0.1714 0.0296 0.0185 0.4950 0.5383 0.5384 0.6831 0.7330 0.7331

QSAR biodegradation 0.0187 0.0484 0.0250 0.4668 0.4995 0.5128 0.6420 0.6790 0.6934

Arcene 0.9157 1.3857 0.2107 0.3802 0.4932 0.4973 0.5535 0.6964 0.7018

Bold texts represent the best values under the indicators (larger values are better under Jaccard coefficient and FM values, smaller values are better
for the others)

of BHA are more stable than those of the two algorithms
on 10 datasets, which shows that though the proposed algo-
rithm improves the overall performance, its stability needs to
be further improved to some extent. The calculating results
of external indicators (including the Jaccard coefficient and
FM values) of SLBHA in all datasets are higher than LBHA,
which means that the distribution of clusters obtained by
SLBHA is more similar to that of labels in the original
datasets. In addition, these two algorithms also outperform
BHA in these two indicators.

In summary, although BHA has higher stability, SLBHA
and LBHA are better than BHA in algorithm performance,
that is, the improvement measures added in LBHA are

effective. Furthermore, the SLBHA outperforms the LBHA
showing the replacement mechanism of stars and the self-
adaptive parameter contributes to the convergence of the
proposed algorithm.

Results analysis and discussion

As mentioned above, several metrics are used to evaluate
the experiments conducted in this paper. In this section, the
experimental results will be analyzed and discussed. For
comparison purposes, the best, worst, mean, and standard
deviation of the 30 experimental fitness values are given in
Tables 4, 5, 6 and 7. Tables 8 and 9 give the means of Jaccard
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coefficient values and FM values. The minimum values for
each row in Tables 4, 5, 6 and 7 as well as the maximum
values for each row in Tables 8 and 9 are shown in bold for
clarity.

Tables 3 and 4 show that the algorithm proposed in this
paper performed better results on most of the datasets. It can
be found that even though SLBHA can always converge to
the best fitness value in iterations, it cannot get the results
steadily. The iteration curves of the clustering algorithms are
shown in Fig. 8. It can be seen that the proposed SLBHA
can quickly and accurately find satisfactory solutions in all
datasets than the other comparison algorithms. Table 6 shows
that the SLBHA is better compared to the other algorithms
in terms of average fitness values on all the datasets except
the Shill Bidding dataset. For comparison, the experimental
results from Tables 4, 5, 6 and 7 on the Shill Bidding dataset
indicate that though the average fitness values obtained by
the SOS algorithm are better than the two proposed algo-
rithms, the minimum values are not good enough. In Table 7,
we can find that the SOS algorithm is more stable than the
proposed methods in this paper on several datasets. It may
be concluded that the SOS algorithm failed to find the opti-
mal solution and got trapped in the local optimal solution,
then this situation repeated several times stably and caused
such a result. The same phenomenon can also be seen in
the results of other algorithms. For example, the traditional
method K-means algorithm performs better than most of the
heuristic algorithms in Table 7, which indicates that the K-
means algorithm is more stable. The main reason for this
phenomenon may be that the convergence of the K-means
algorithm is certifiable and it has a simple structure and easy
rules. It should be noted here that we pay more attention to
the performance of the algorithm than stability. Therefore,
although the K-means algorithm is stable enough, it can-
not make us satisfied. It should also be pointed out that the
other selected algorithms and the proposed algorithm are all
heuristic algorithms, which are influenced by randomness
as mentioned above, and there is no algorithm whose sta-
bility is better than other algorithms in Table 7. However,
the proposed algorithm in this paper still needs to pay atten-
tion to the improvement of stability. Considering the Arcene
dataset, which has 10,000 dimensions and 900 instances, its
high dimension brings challenges to clustering algorithms. It
can be seen from the experiments that the proposed method
performs better than other algorithms, which shows that the
SLBHA is also suitable for such high dimensional datasets
and it is a feasible solution to this challenge.

It can be found fromTables 8 and 9 that the proposed algo-
rithm outperforms the other methods in terms of the external
metrics except for theMobile Price dataset which means that
clusters obtained by SLBHA are closer to the distribution of
the original datasets compared to the other algorithms. In
summary, it can be proved that the proposed algorithm can

effectively find the best clustering centroids that are closer to
the real distribution on the above datasets.

In summary, it can be found that the algorithm proposed in
this article performs better thanmost comparative algorithms
in terms of best, worst, and average fitness values, as well
as Jaccard coefficient and FM values, including traditional
clustering algorithms and heuristic algorithms. However, the
proposedSLBHAperforms less prominently in terms of stan-
dard deviation. It can be concluded that SLBHA has a good
ability to converge to the optimal solution and find the results
closest to the original label distribution. However, this ability
may pose a risk of instability. The algorithm performs well
on multiple datasets, which also verifies the universality of
the application of the algorithms in this paper.

Time complexity

SLBHA proposed in this paper is designed on the framework
of classical BHA. The time complexity of the BHA is mainly
related to the total number of iterations T and population
size N , and its time complexity is lower than other heuristic
algorithms [54]. The modification works of the former two
strategies compared to the BHA are constant in cost, so its
time complexity is comparable to that of the BHA. Then the
SLBHAadds a replacementmechanismanda randomcontrol
parameter. The cost of the replacementmechanism is linearly
related to the population size N . Therefore, although its time
complexity is larger than that of BHA, these extra costs will
not reduce the availability of the algorithm.

To further compare the time complexity of the proposed
algorithm and the other algorithms, experiments of running
time are conducted on all the datasets. The parameter settings
for experiments are the same as the previous content. The
experimental results of the average running time are listed in
Table 10. It can be seen from Table 10 that the running time
of K-means, K-means + + and FC-Kmeans, three traditional-
based clustering algorithms, is significantly shorter than that
of heuristic algorithms. Compared with the K-means algo-
rithm, K-means + + has fewer iterations, which makes it get
the least running time among all the above algorithms. The
FC-Kmeans algorithm, on the other hand, takes longer than
both because it combines the K-means and the K-means + +
algorithms. Among all the heuristic algorithms, SLBHA and
classical PSO have the least running time, which means that
the proposed algorithm performs better while also achieving
faster convergence speed. It is worth noting that the exper-
imental results show that the running time of the BHA is
higher than that of the SLBHA. After observing and analyz-
ing the experimental process, we believe that the possible
reason for this phenomenon is that the BHA algorithm is
prone to falling into the local optima. In the process of BHA,
it can be observed that each star in each iteration needs to
be calculated whether it is too close to the black hole. When
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(a) Contraceptive Method Choice        (b) Housing Prices              (c) Stroke Prediction

(d) Heart failure clinical records          (e) Shill Bidding     (f) Early Stage Diabetes Risk Prediction 

(g) Lymphography                (h) Mobile Price           (i) Gender Gap in Spanish WP 

    (j) Steel Plates Faults              (k) Ionosphere             (l) QSAR biodegradation  

enecrA)m(

Fig. 8 Iterative curves for different datasets
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falling into a local optimal solution, the stars are very similar
and near the black hole, which means that there are too many
new stars generated in this process. Once BHA falls into a
local optimum too early, more stars are regenerated which
results in an increase in time cost. In contrast, although the
strategy proposed in this article increases a portion of the
runtime, the stars are more dispersed in the solution space,
with fewer agents being regenerated due to being too close
to the black hole. The reduced time required to generate new
agents exceeds the time required for redundant operations.
Therefore, SLBHA not only greatly improves BHA’s per-
formance, but also controls time costs when addressing the
clustering problem. Overall, the burden of being forced to
generate a large number of new agents due to local optima is
a potential flaw of BHA that has not been discovered before,
and this phenomenon is worth noting.

In conclusion, the running time experiments supplement
the analysis theory of time complexity mentioned above. The
experimental results indicate that SLBHA also outperforms
most of the compared heuristic algorithms in terms of time
cost. It should be seen as an advantage of SLBHA that it
ensures the quality of the obtained solutions while reducing
time costs.

Statistical tests

Friedman test

The Friedman test is a non-parametric test that can be used
as a tool for determining whether there is a statistically sig-
nificant difference between three or more groups [57]. This
test is particularly useful when the size of samples is very
small. The null hypothesis is set as that there is no significant
difference between the given algorithms. Then the alternate
hypothesis is that at least two of them are different from each
other. Here, the test statistic for Friedman test is given as
follows:

FR � 12

NdKm(Km + 1)

∑
R2
i − 3Nd (Km + 1), (14)

where Nd is the total number of datasets, Km is the total
number of algorithms and Ri is the sumof ranks of all datasets
for algorithm i . The average rank of the algorithms based
on the average fitness values is shown in Table 11. After
calculating the test statistic, we can draw a conclusion about
whether these algorithms are significantly different through
the decision rules about the Friedman test. For one thing, if
the statistic FR is larger than the critical value that can be
found in Friedman’s critical values table, the null hypothesis
can be rejected. For another thing, if the p value is less than or
equal to the alpha which is the level of significance, we can
also reject the null hypothesis. Otherwise, the null hypothesis
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should be accepted. Table 11 also shows the calculated results
of the Friedman test. It can be seen in Table 11 that SLBHA
got the best average rank and the K-means algorithm got the
worst. The statistic FR is 125.0 and the p value is 1.7827e −
21.The former is greater than the critical valuewhile the latter
is less than alpha, which means that we can reject the null
hypothesis. In conclusion, there is a significant difference
between the algorithms tested in this paper.

Wilcoxon rank sum test

The Wilcoxon rank sum test is also a non-parametric test.
It can be used to determine whether two dependent groups
are selected from the same distribution [58]. The p values
of the Wilcoxon rank sum test of the proposed SLBHA are
reported in Table 11. The values below 0.05 are underlined in
the tables. As shown in Table 12, there is a significant differ-
ence between SLBHA with the selected algorithms because
all of the Wilcoxon rank sum test results are less than 0.05.
Combined with the other tables mentioned above, it can be
concluded that SLBHA is significantly superior to other algo-
rithms.

Conclusions and future work

In this article, an improved self-adaptive logarithmic spi-
ral path black hole algorithm (SLBHA) is discussed and
analyzed. The path improvement measures introduced in
SLBHA effectively enhance the local search capability of
the algorithm. Then the replacement mechanism of the
stars increases the diversity of the population. Additionally,
SLBHA uses a self-adaptive parameter to balance the global
and local search phases. Therefore, the algorithm effec-
tively improves the exploration and exploitation capabilities
of BHA and the ability to maintain the balance between
them, with high availability and effectiveness. Moreover,
the effectiveness of the proposed algorithm is experimen-
tally verified. The quantization error and external criteria
(Jaccard coefficient and FM values) are utilized to measure
the performance of clustering algorithms. The experimental
results show that the SLBHA outperforms the other compar-
ative algorithms on most of the datasets and the generated
clusters are closer to the label distribution in reality. The
time complexity of SLBHA is also better than other heuristic
algorithms. Statistical tests indicate that there is a significant
difference between the proposed algorithm and other com-
pared algorithms. However, the experiments also show that
the shortcomingof the algorithm is that its stability is strongly
affected by randomness. Further future work is mainly in two
aspects. On the one hand, there is still room for improvement
in the stability of the proposed algorithms and it may relate
to the control of randomness, which is a common problem

123



Complex & Intelligent Systems

Ta
bl
e
12

T
he

W
ilc
ox
on

ra
nk

su
m

te
st
re
su
lts

of
SL

B
H
A

D
at
as
et
s

K
-m

ea
ns

K
-m

ea
ns

+
+

FC
-K

m
ea
ns

PS
O

A
B
C

FA
B
H
A

W
O
A

SO
S

IF
A

IB
H
A

C
on
tr
ac
ep
tiv

e
M
et
ho
d
C
ho
ic
e

2.
60

E
−

06
1.
73
E

−
06

1.
22
E

−
04

3.
18
E

−
06

6.
04
E

−
03

1.
73
E

−
06

2.
88
E

−
06

1.
73
E

−
06

9.
63
E

−
04

2.
60
E

−
06

7.
69
E

−
06

H
ou
si
ng

Pr
ic
es

1.
73
E

−
06

1.
73
E

−
06

3.
05
E

−
05

1.
73
E

−
06

3.
18
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
92
E

−
06

1.
73
E

−
06

4.
29
E

−
06

St
ro
ke

Pr
ed
ic
tio

n
1.
92
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

3.
52
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

3.
33
E

−
02

1.
73
E

−
06

1.
49
E

−
05

H
ea
rt
fa
ilu

re
cl
in
ic
al
re
co
rd
s

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
11
E

−
03

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

6.
04
E

−
03

1.
73
E

−
06

2.
05
E

−
04

Sh
ill

B
id
di
ng

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
64
E

−
05

1.
73
E

−
06

1.
73
E

−
06

3.
18
E

−
06

2.
60
E

−
06

1.
73
E

−
06

3.
52
E

−
06

E
ar
ly

St
ag
e
D
ia
be
te
s
R
is
k

Pr
ed
ic
tio

n
1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

4.
73
E

−
06

1.
73
E

−
06

1.
92
E

−
06

3.
52
E

−
06

3.
72
E

−
05

1.
73
E

−
06

2.
35
E

−
06

Ly
m
ph
og
ra
ph
y

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

2.
60
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

2.
80
E

−
02

1.
73
E

−
06

6.
98
E

−
06

M
ob
ile

Pr
ic
e

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

9.
71
E

−
05

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

4.
11
E

−
03

1.
92
E

−
06

2.
13
E

−
06

G
en
de
r
G
ap

in
Sp

an
is
h
W
P

4.
29
E

−
06

1.
73
E

−
06

1.
73
E

−
06

2.
88
E

−
06

1.
48
E

−
04

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
25
E

−
04

3.
52
E

−
06

7.
69
E

−
06

St
ee
lP

la
te
s
Fa
ul
ts

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

5.
22
E

−
06

4.
07
E

−
05

1.
73
E

−
06

1.
49
E

−
05

1.
73
E

−
06

2.
83
E

−
04

1.
92
E

−
06

6.
32
E

−
05

Io
no
sp
he
re

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

2.
35
E

−
06

1.
13
E

−
05

1.
73
E

−
06

1.
92
E

−
06

1.
73
E

−
06

7.
51
E

−
05

2.
13
E

−
06

3.
11
E

−
05

Q
SA

R
bi
od
eg
ra
da
tio

n
1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
49
E

−
05

4.
73
E

−
06

1.
73
E

−
06

9.
32
E

−
06

1.
73
E

−
06

3.
85
E

−
03

4.
73
E

−
06

1.
73
E

−
06

A
rc
en
e

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

2.
88
E

−
06

1.
73
E

−
06

1.
73
E

−
06

1.
73
E

−
06

4.
73
E

−
06

1.
73
E

−
06

5.
22
E

−
06

123



Complex & Intelligent Systems

for heuristic algorithms. On the other hand, the proposed
algorithm can be applied to solve other optimization prob-
lems and they may need to make the corresponding changes
according to the application scenarios.
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