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Abstract
The integration of convolutional neural network (CNN) and transformer enhances the network’s capacity for concurrent
modeling of texture details and global structures. However, training challenges with transformer limit their effectiveness to
low-resolution images, leading to increased artifacts in slightly larger images. In this paper, we propose a single-stage network
utilizing large kernel attention (LKA) to address high-resolution damaged images. LKA enables the capture of both global and
local details, akin to transformer and CNN networks, resulting in high-quality inpainting. Our method excels in: (1) reducing
parameters, improving inference speed, and enabling direct training on 1024×1024 resolution images; (2) utilizing LKA
for enhanced extraction of global high-frequency and local details; (3) demonstrating excellent generalization on irregular
mask models and common datasets such as Places2, Celeba-HQ, FFHQ, and the random irregular mask dataset Pconv from
NVIDIA.
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Introduction

Image inpainting focuses on reconstructing missing regions
in a corrupted image using partially visible information, as
illustrated in Fig. 1. Early approaches propagated informa-
tion from neighboring visible regions [1–3], while recent
research employs deep neural networks to directly gener-
ate plausible and visually coherent content and appearances
[4–15].
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In recent years, convolutional neural network (CNN)-
based approaches [4, 8, 12, 16, 17] have dominated the
field of image inpainting. By training on large-scale datasets,
CNN can learn rich texture details and fill in missing regions
with learned features. In addition, CNN is computationally
efficient due to the sparse connectivity of convolutions. In
addition, CNN has an inherent characteristic, namely trans-
lation invariance, which means that no matter how the object
in the input image changes, the system should give the same
output response, so that CNN can identify and extract fea-
tures in images of any size. However, as the number of layers
of the convolutional operation deepens, and the local induc-
tive biases, these properties may no longer be beneficial and
fail to adequately capture long-range interactions or global
context [18]. This limitation hinders the ability of CNN to
understand complex structures and relationships in a larger
context.

Several related works [7, 9, 11–13] have presented var-
ious approaches to tackle the constraints imposed by CNN
architectures. These approaches can be broadly categorized
into two-stagemethods, comprising a content inferencemod-
ule and an appearance refinement module. The two-stage
methods generally first infer a coarse semantic image based
on globally visible context, followed by supplementation
with details in the second stage. However, the realization of
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Fig. 1 Selected image inpainting results of our proposed method under different scenes and different shapes of damaged areas (image damaged
areas are displayed in white, and a certain percentage of transparency is set for better visualization)

global contextual perception of thesemethods still fully relies
on repeated local convolution operations, which amplifies
the constraints imposed by the factor of translation invari-
ance within CNN. The translation invariance of CNN often
restricts information flow tomainly local regions, with global
information being gradually shared through multi-layered
heat propagation. As a result, the capability to capture global
information is limited, which can lead to suboptimal perfor-
mance in image processing tasks. In addition, when inferring
content, the feature elements between adjacent network lay-
ers are interconnected through learned fixed weights, rather
than input-adaptive weights, which may limit the deep fea-
tures perception of the network. These issues make the
transmissionof long-distance features inefficient in very deep
layers, resulting in the network tending to fill missing regions
based on nearby rather than distant visible pixels.

Lately, the transformer architecture, known for its suc-
cess in natural language processing (NLP), is increasingly
being used in computer vision tasks. Unlike CNN mod-
els, the transformer model does not rely on local inductive
priors and instead employs dense attention modules to cap-
ture long-range dependencies [19]. Some studies [20] have
demonstrated the potential of the transformer in modeling
structural relationships for natural image synthesis. Another
advantage of the transformer is its ability to producemultiple
outputs by optimizing the underlying data distribution. How-
ever, its quadratic increase in computational complexity with
input length makes it challenging to use for high-resolution
image synthesis or processing. In addition, most existing
transformer-based generative models [20, 21] use an auto-
regressive approach, which limits their application in image
inpainting tasks where missing regions have arbitrary shapes
and sizes.

Subsequently, research startedon two-stage image inpaint-
ing methods based on the transformer. These methods
typically combine CNNs and transformers to take advan-
tage of the transformer’s global structural understanding and
the CNN’s local texture refinement capabilities and com-
putational efficiency. In the first stage, a transformer-based

encoder is used to capture the structural features of the
global context of the image to be inpainted. In the second
stage, a CNN is employed to further supplement the image
details. This two-stage inpainting approach has indeed alle-
viated some of the problems encountered in previous image
inpainting tasks.Nevertheless, it still introduces considerable
difficulty to the training process and presents some chal-
lenges.

With the goal in mind, an image inpainting network
is developed, leveraging the large kernel attention (LKA)
technique proposed by Guo et al. [22]. This methodology
facilitates the efficient completion of high-resolution image
inpainting tasks, such as those with dimensions of 512×512,
all in a single stage. In NLP tasks, the transformer takes in
one-dimensional sequences as inputs, whereas image data
are three-dimensional and must be reshaped into a one-
dimensional array to accommodate inputs of the transformer.
For example, three-dimensional image data with a size of
256 × 256 × 3 (where 3 represents the number of channels
in an RGB color image) would result in a one-dimensional
sequence of length 196,608. However, the largest model
proposed in the previous study [19], namely the transformer-
XL, has a fixed sequence length of 512, making training
extremely challenging when exceeding this length. Fortu-
nately, the LKA shares certain merits from CNN networks in
terms of translation invariance and sliding window strategy,
eliminating the necessity for considering image embedding
representation or fixed sequences. Furthermore, the LKA
possesses locality, long-distance dependence, and adaptabil-
ity to spatial and channel dimensions, allowing it to construct
both global and local feature representations, while avoid-
ing the drawbacks of the transformer and the CNN network.
Consequently, the LKA is better suited for high-resolution
inpainting tasks. The paper presents several significant con-
tributions as follows:

• The proposed method employs a single-stage image
inpainting network that utilizes a LKA. This establishes
a global correlation with the input features, effectively
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Fig. 2 The overall architecture of our proposed method. a The method
primarily consists of three parts: an encoder–decoder, a visual attention
layer, and a progressive discriminator. b The encoder reduces the res-
olution of the input damaged image and continuously extracts shallow
features through the dual-channel residual structure, as illustrated in
(d) on the right. c This structure is the visual attention layer structure
of the basic model NLKFill-B0. The feature content output from the

encoder is transmitted to the visual attention layer, where the specific
structure of modified large kernel attention module (MLKA) can be
seen from Fig. 4(a). The attention distribution is calculated and subse-
quently fused with the input features to learn high-quality information
from both the visible and invisible regions. This information is then
parsed in the decoder network and finally outputs the inpainting result

reducing the limitations of the global semantic struc-
ture of the CNN network. Moreover, the original space
and channel dimension structure of the image is retained,
making it possible to complete the high-resolution image
inpainting task.

• Experimental results indicate that the proposed single-
stage image inpainting networkbasedon theLKAoutper-
forms existing state-of-the-art transformer-based image
inpainting, whether two-stage or single-stage models, in
terms of image inpainting quality, parameter quantity,
inference speed, and memory usage.

Related work

Image inpainting

Traditional image inpaintingmethods mainly focus on filling
in missing background pixels by copying and transferring
visible pixels fromother regions of the image. Thesemethods

include diffusion-based [1, 23, 24] and patch-based [2, 3, 25]
techniques.

Propelled by the advancements in various generative
adversarial networks (GANs) [26], conditional GANs
(CGANs) [27], and variational autoencoders (VAEs) [28],
a series of CNN-based approaches [4, 5, 7, 8, 12, 14] incor-
porating these techniques have emerged for semantic image
inpainting. Adversarial learning was applied by Pathak et
al. [8] for image inpainting of rectangular shaped holes. In
addition, Iizuka et al. [4] extended this work [8] by introduc-
ing locally and globally consistent to handle random regular
holes.Yu et al. [12] integrated the traditional patch-based idea
with deep generative model-based networks. Partial convo-
lution was proposed by Liu et al. [5] to deal with random
irregular holes. Zheng et al. [14] explored multimodal image
inpainting to producediverse results.More andmore research
tend to incorporate auxiliary information of input images into
models for a better image inpainting process. As an illustra-
tion, auxiliary edge information was incorporated by Nazeri
et al. [7] into image inpainting. Furthermore, DeepFill v2
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[29], Faceshop [30], SC-FEGAN [31] and MST [32] have
combined more auxiliary information, such as contextual
attention, gated convolution, and extracting lines and edges
from the input images to project, for image inpainting. How-
ever, most above-mentioned models use similar CNN-based
encoder–decoder networks, leading to the masked area being
gradually influenced by adjacent visible pixels. Our model
solves this problem by directly modeling the global context
dependencies using LKA [22].

Visual attention

Transformer was first proposed by Vaswani et al. [19] for
machine translation, and later achieved success in various
downstream NLP tasks. The overall network structure of
transformer consists of stacked self-attention and point-wise
feed-forward layers for both encoder and decoder. Due to its
self-attention mechanism that can effectively capture the rel-
evance between elements of the input sequence, transformer
has become increasingly popular in the field of computer
vision. For example, DETR [33] adopts transformer as the
backbone to solve the problem of object detection. Doso-
vitskiy et al. [34] proposed ViT, which applied transformer
to the field of image classification recognition for the first
time, and achieved remarkable results compared with CNN-
based methods. In addition, Parmar et al. [21] and Chen
et al. [20] used transformer to complete image generation
tasks. Nonetheless, the self-attention mechanism used in this
method, originally designed for NLP tasks, encounters three
key challenges when applied to computer vision tasks. To
start with, it processes images as one-dimensional sequences,
ignoring the inherent three-dimensional structure of images.
Furthermore, it exhibits quadratic complexity, which proves
to be computationally expensive for high-resolution images.
Lastly, only spatial adaptability is realized, while the adapt-
ability of channel dimension is ignored. In visual tasks,
different channels usually represent different feature maps
[35, 36]. Channel adaptability has been increasingly recog-
nized as beneficial and crucial for visual tasks in recent years
[36–40].

In contrast to these transformer methods that rely on a
fixed position sequence length,which is unsuitable for repair-
ing missing regions in irregular holes, this study introduces a
novel visual attentionmethod, i.e., the LKA. Thismethod not
only inherits the adaptability and long-distance dependence
of the self-attention mechanism, but also capitalizes on the
local context information inherent in traditional convolution.
Our approach circumvents the need to address the issues of
image embedding representation or fixed position sequence
length, making it more appropriate for high-resolution image
inpainting tasks.

Methods

Image inpainting aims to restore an input image withmissing
pixels into an output image with complete pixels. Our goal
is to employ multiple deep learning methods to jointly learn
from an input high-resolution damaged image and finally
obtain a high-resolution inpainting result.

To achieve a high-resolution repaired image, it is essen-
tial to employ a model that captures both global and local
characteristics of the image. This capability ensures a rea-
sonable coherence between local and global semantics. A
novel single-stage LKA high-resolution imaging inpainting
network calledNLKFill is proposed. The default basicmodel
used in our experiments is NLKFill-B0 and the overall archi-
tecture is shown in Fig. 2. In the later experiment, a larger
model NLKFill-B1 is further designed to improve the model
performance (for details please see the 4.4 Advanced exper-
iment). First, a damaged image is encoded by a modified
encoder to extract shallow features. Then, the output fea-
tures from the encoder are passed as input features to the
visual attention layer. The LKA used in this layer can cap-
ture the global attention of the image and also leverage the
inductive bias of theCNNnetwork to obtain the local features
for detail filling. Subsequently, the high-resolution restored
image that is nearly equivalent to the original can be obtained
through the upsampling process of the decoder. Finally, the
output result is fed into the discriminator, which evaluates
it against a ground-truth sample to optimize the parameter
weight within the image inpainting network.

Visual attention layer

The attention mechanism can adaptively select and allocate
relevant attention to features according to the input features.
The key step of this mechanism involves generating attention
maps that convey the importance of distinct segments. To
accomplish this, it is essential to establish correlations among
various features.

The current mainstream methods for generating attention
maps involve either utilizing the self-attention mechanism
in transformer [34, 41, 42] or large kernel CNN networks
[38, 43–45] to capture long-distance dependencies and estab-
lish correlations among features. However, both of these
methods have their own obvious drawbacks, especially when
processing high-resolution images, which require a lot of
computational resources and parameters.

Inspired by the visual attention network (VAN) proposed
by Guo et al. [22], a visual attention layer is designed in this
study to address the aforementioned issues, as illustrated in
Fig. 2c. The key idea of themethod is to capture long-distance
dependencies by decomposing large kernel convolution oper-
ations. As shown in Fig. 3, large kernel convolutions can be
divided into three convolutions, namely the depthwise local
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Fig. 3 The standard large kernel convolution can be decomposed into
three components: a depth-local convolution, a depth-dilated convo-
lution, and a channel convolution. The figure shows how a 7 × 7
convolution is decomposed into a 3×3 depth-local convolution, a 3×3

depth-dilated convolution (with a dilation rate of 2), and a 1×1 channel
convolution. H and W represent height and width, and C denotes the
number of channels. The dark grid signifies the position of the convo-
lution kernel

convolutions, depthwise dilated convolutions, and 1×1 chan-
nel convolutions. More specifically, the decomposition of an
LKAconvolutionwith a7×7kernel size involves a depthwise
local convolution with a 3×3 kernel size, a depthwise dilated
convolution with a dilation rate d of 2 and a 3×3 kernel size,
along with a 1 × 1 channel convolution. The decomposition
process is shown in Fig. 3, and the decomposition formulas
are as follows:

d =
⌊�S/2�

2

⌋
(1)

LK AS×S = DepthConv(2d−1)×(2d−1)

+DilationConv⌈
S
d

⌉
×

⌈
S
d

⌉ + Conv1×1 (2)

Through the utilization of the aforementioned decompo-
sition, the model can capture long-distance global relations
with reduced computational overhead and parameters. Upon
obtaining long-distance global relations, the relative impor-
tance of each pixel can be estimated, and corresponding
attention maps can be generated. The operation method of
channel convolution Conv1×1 is more similar to the fully
connected layer, while the specific calculation method of
depth-local convolution DepthConv and depth dilation con-
volution DilationConv for the input image is as follows:

DepthConv =
r∑

i=1

r∑
j=1

(
2d−1∑
m=1

2d−1∑
n=1

Ii j (m · n) · K (m, n)

)

(3)

DilationConv =
r∑

i=1

r∑
j=1⎛

⎜⎜⎝
⌈
S
d

⌉
∑
m=1

⌈
S
d

⌉
∑
n=1

I (i + m · d, j + n · d) · K (m, n)

⎞
⎟⎟⎠ (4)

where S is the convolution kernel size, r is the input image
resolution size, d is the dilated convolution rates, K (m, n)

represents the weight of the convolution kernel at position

(m, n), and I represents the input image. The above convo-
lution formula can calculate the feature map based on each
pixel value of the input image.

Subsequently, we continued expanding upon the decom-
position, further modifications are applied to LK A, incorpo-
rating a masked convolutional layer, MaskConv, designed
to encourage the model to prioritize important visible values.
In theMaskConv procedure, themaskm is initially assigned
a floating-point value, and a kernel size of 2 × 2 is utilized.
Focusing solely on extracting visible information accelerates
the extraction of visible area features. Subsequently, themask
feature weight Xm is obtained by flattening the mask mp as
follows:

Xm =

⎧⎪⎨
⎪⎩

∑
(mp)
S ,

∑(
mp

)
> 0

0 ,
∑(

mp
) ≤ 0

(5)

Therein, mp represents the mask pixel value, 1 represents
the visible pixel, and 0 represents the masked pixel. The
weight of masking Xm is then applied to scale the atten-
tion score A. For example, if half of the image is masked,
only the features of the remaining 50% of the visible area are
extracted, and an initial mask weight of 0.5 is established.
Finally, the updated original attention score R is obtained
through the decomposed LK A procedure. The specific atten-
tion calculation formulas can be written as follows:

Fm = F ⊗ Xm (6)

D = DilationConv (DepthConv (Fm)) (7)

A = Conv1×1 (D) (8)

R = A ⊗ Fm (9)

where F ∈ R
C×H×W is the input feature, Fm ∈ R

C×H×W is
the feature obtained after being processed by themasked con-
volutional layer MaskConv, D ∈ R

C×H×W represents the
local structural information features, A ∈ R

C×H×W represents
the attention map, and R ∈ R

C×H×W represents the final
output fusion features. The values in the attention map rep-
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Fig. 4 Model frame comparison diagram. a Modified large kernel
attentionmodule (MLKA).bSelf-attentionmechanismmodule in trans-
former

resent the importance of each feature, and ⊗ represents the
element-wise product. It can be clearly seen that this method
is different from common attention calculation methods. As
shown in Fig. 4a, LKA [22] does not require the calculation
of Q, K , V and additional normalization like so f tmax [19].
Besides obtaining the attention map through normalization,
using the equivalent attention calculation method can also
adaptively adjust the output according to the input features
to obtain the attention distribution. Moreover, using the LKA
not only combines the advantages of convolution and self-
attention, but also realizes the adaptation of both the spatial
dimension and the channel dimension. This further improves
our fusion extraction of the global and local features of the
input image.

Encoder–decoder layer

A deep residual CNN [46] serves as the backbone of the
encoder for extracting shallow image features, with its inter-
nal structure depicted in Fig. 2b. In the design of the residual
structure, emphasis is placed on leveraging the strengths of
the convolutional layer in initial image processing, facilitat-
ing the mapping of the image space to a higher dimensional
feature space. A dual-channel parallel processing approach
is adopted, as illustrated in Fig. 2d. In the first channel, each
input image undergoes pixel normalization, followed by the
application of the Gelu [47] activation function and two local
convolutions. Simultaneously, the second channel directly
performs a partial convolution on each input image. The
final output results from the summation of the features from
these two channels. In comparison to conventional CNN
architecture, such a parallel structure allows for more sta-

ble optimization and significantly enhances the extraction of
input image features.

In addition, the damaged regions of the image are sepa-
rated in the encoder–decoder layer from the visible regions
through an operation similar to masking the convolutional
layer MaskConv. This ensures that each feature map rep-
resentation exclusively captures locally visible information,
thereby preventing cross-contamination of implicit correla-
tions due to the large CNN sensory field. This approach not
only enhances the sensitivity of the network compared to a
normal CNN but also significantly improves computational
efficiency.

Our decoder is basically the same as [10, 20, 48], and its
structure is basically symmetrical to the encoder for upsam-
pling to ensure stable image quality.

Discriminator

To stabilize the training of the single-stage image inpaint-
ing network, a GAN framework is adopted, wherein the
single-stage image inpainting network functions as the gener-
ator, and a discriminator architecture identical to StyleGAN
[49] serves as the discriminator. The discriminator incor-
porates a progressive structure that more effectively guides
the generator in producing high-resolution images. Inspired
by StyleSwin [50] and SwaGAN [51], a discrete wavelet
filter (DWT) [50, 51] is implemented before inputting
images to the discriminator. This step is designed to cap-
ture high-frequency details and optimize the generator for
high-resolution image inpainting, as illustrated in Fig. 2a and
Fig. 5.

First, we apply pixel-level L1 reconstruction loss [52] and
perceptual loss [53] to the output of the inpainting network,
forcing the generated image content to be closer to the basic
truth and helping to judge whether the inpainted content is
structurally reasonable. The reconstruction loss and percep-
tual loss are both improved on the basis of the L1 lossmethod.
Compared with the L1 loss method, the reconstruction loss
and the perceptual loss can better capture the high-level fea-
tures of the image, and can be better for image generation
tasks. It can better retain the semantic information of the
image and better reflect the similarity between the origi-
nal input and the generated output, but at the same time it
may also introduce some additional computational costs. In
addition, we introduce adversarial loss [27] to continuously
improve the quality of repair. Through joint adversarial opti-
mization of the generator and discriminator, we can achieve
Nash equilibrium and ensure that the overall network model
outputs high-quality results. The specific calculation formula
of the above loss function is as follows:
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Fig. 5 Capture directional
multi-scale information of
image texture through wavelet
transform

DWT
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Convfiltering

Lrec = ∥∥Mreal − M f ixed
∥∥
1 + ∥∥Ireal − I f i xed

∥∥
1

+ ∥∥M · (
Ireal − I f i xed

)∥∥
1 (10)

L per = 1

N

N∑
i=1

∣∣φ · (Ireal) − φ · (
I f i xed

)∣∣ (11)

LGAN = log (1 + exp (−D (Ireal))) (12)

where M f ixed and Mreal are the real image that represents
the occluded area and the repaired image that represents the
occluded area, respectively, M represents the mask image,
I f i xed and Ireal are the original real image and the repaired
image, respectively, φ is the visual geometry group (VGG)
[54] pre-trained model, and D is the discriminator.

Finally, the total loss function in this single-stage training
can be expressed as Eq. (13):

L = Lrec + L per + LGAN (13)

Experiments

Experimental details

Datasets
We adopt three public datasets for imaging inpainting,
namely the Celeba-HQ [55] and FFHQ [49] datasets for
high-resolution face restoration, and Places2 [56] dataset for
natural scenes. Brief introductions for each are provided as
follows:

• Places2 comprises more than 1.8 million images cap-
tured across 365 diverse scenes. Owing to the intricate
nature of these scenes, it stands out as one of the most
demanding datasets for image restoration tasks. Our
approach involves a standard train/test split, specifically
900 images per category are used for testing.

• Celeba-HQ stands as a high-quality dataset featuring
human faces. The inclusion of high-frequency details
in hairs and skin proves invaluable for assessing the
fine-grained texture synthesis capabilities of models. Our
training dataset comprises 29,000 images, with an addi-
tional 1000 images earmarked for testing.

• FFHQ is also a high-quality dataset featuring human
faces. This dataset contains a large number of face images
fromdifferent races, ages, and genders. It has broad diver-
sity, making it suitable for various face-related research.
Our training dataset contains 68,000 training images and
2000 designated test images.

Since a large number of real damaged images cannot be col-
lected, extra masks are added to the original data to obtain
occluded damaged images. The Pconv [5] mask dataset
released by NVIDIA, which includes rectangular and irreg-
ular masks, is chosen here to enhance the effectiveness
of network model training. In the present experiment, we
adopted 55,000 irregularmasks in the training set, and 12,000
irregular faces in the test set.

Baselines

We have listed most of the current excellent and famous
models for comparison with their abbreviations and brief
introductions as follows:

• PIC [14] adopts amultivariate image completion approach
to the task of generating multiple different reasonable
solutions for image completion.

• DeepFillv2 [29] designs gated convolutions to solve the
problem of ordinary convolutions, which can use free-
form masks and guides to complete the image.

• HiFill [11] proposes a lightweightmodelwith an efficient
contextual residual aggregation mechanism to achieve
ultra-super-resolution image restoration.

• CRFill [13] teaches this patch borrowing behavior to
attention-free generators through joint training on the
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auxiliary context reconstruction task, which makes the
generated output reasonable even when reconstructed
from surrounding regions, as well as capturing the corre-
spondence between missing and known regions.

• ICT [10] is a coarse-to-fine two-stage inpainting network
that uses a combination of transformer and convolutional
neural network to complete multivariate image.

• TFill [15] is also a two-stage inpainting network from
coarse to fine. It uses a restricted convolutional neu-
ral network with small and non-overlapping receptive
fields for weighted label representation, which allows the
transformer to explicitly model remote visible contex-
tual relationships of equal importance in all layers, while
using larger receptive fields do not implicitly confuse
adjacent markers.

Metrics

In this study, we primarily use traditional patch-level image
quality metrics, including peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM), as well as the latest
image similarity metrics, such as Learned Perceptual Image
PatchSimilarity (LPIPS) [57] andFréchet InceptionDistance
(FID) [58].

PSNR is calculated by the mean square error between the
original image Ireal and the processed image I f i xed , and
can be used to objectively evaluate image quality and image
similarity. The formula is as follows:

PSN R
(
Ireal , I f i xed

)

= 20

⎛
⎝ 2n − 1√

MSE
(
Ireal , I f i xed

)
⎞
⎠ (14)

where n is the number of bits representing a pixel. The mean
squared error (MSE) is computed as the expected value of
the square of the difference between the estimated parameter
value and the true parameter value, and it can be expressed
using Equation (15). The r in MSE represents the image
input resolution:

MSE = 1

r2

r∑
i=1

r∑
j=1

(
Ireal (i, j) − I f i xed (i, j)

)2 (15)

SSIM is another index to measure the similarity of two
images. When one of the two images is an undistorted image
and the other is a distorted image, the SSIM value of the two
images can be regarded as a quality indicator of the distorted
image. The larger the value of SSIM, the higher the similarity
between the two signals. Compared with PSNR, SSIM is
more in line with the judgment of human eyes on image
quality in the measurement of image quality. The formula is
as follows:

SSI M
(
Ireal , I f i xed

)

=
(
2ηIreal · ηI f i xed + c1

) (
2σIreal I f i xed + c2

)
(
η2Ireal

+ η2I f i xed

) (
σ 2
Ireal

+ σ 2
I f i xed

+ c2
) (16)

where ηIreal and ηI f i xed are the brightness mean values of the
input image Ireal and I f i xed respectively, σIreal and σI f i xed
are the brightness variance of the input image Ireal and I f i xed
respectively, c1 and c2 are two constants used to stabilize the
calculation. They are used to prevent division by zero in the
denominator and to prevent instability caused by too small
values in the denominator, respectively.

The FID serves as ametric to depict the diversity and qual-
ity of generated images. It entails the calculation of feature
space statistics for both the real and generated images. A
reduced FID value indicates improved image diversity and
quality. The formula is as follows:

F I D = ∥∥μIreal − μI f i xed

∥∥2 + TIreal

(∑
Ireal

+
∑

I f i xed − 2

√∑
Ireal ·

∑
I f i xed

)
(17)

where μIreal and μI f i xed are the real images Ireal and gener-
ate the mean vector of the image I f i xed in the feature space

respectively,
∥∥μIreal − μI f i xed

∥∥2 represents the Euclidean
distance between mean vectors squared, TIreal is the trace of
the covariance matrix in the feature space of the real image,∑

Ireal and
∑

I f i xed denote the traces of the covariance
matrices of the real image and the generated image in the
feature space, respectively, and

√∑
Ireal · ∑

I f i xed repre-
sents the square root of the feature space covariance matrix
of the real image and the generated image.

Compared to the FID, which is generally used for deeping
featuresmeasure image similarity, LPIPS ismore in linewith
human perception than traditional methods, and the lower
the value of LPIPS, the more similar the two images are.
The basic idea of LPIPS is to use the features of deep net-
works to measure the perceptual distance between images
instead of pixel distance. The features of deep networks can
capture high-level semantic information of images instead
of low-level detailed information. Therefore, LPIPS can bet-
ter reflect human visual perception than simple mean square
error (MSE) or peak signal-to-noise ratio (PSNR). The for-
mula is as follows:

LP I PS
(
Ireal , I f i xed

) =
L∑

i=1

1

HiWiCi

∑
h,w,c

(
φi (Ireal)h,w,c − φi

(
I f i xed

)
h,w,c

)2
(18)
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Table 1 Quantitative comparison on the Places2 and Celeba-HQ test
sets using different ratios of irregular masks with an input image resolu-
tion of 256×256. NLKFill-B0 can achieve a similar level of inpainting
as TFill with a lower cost. Thismethod surpasses the latest method TFill

because it only trains in a single stage, which is simpler and easier than
the two-stage approach. In these metrics, ↓ indicates lower is the better,
and ↑ indicates higher is the better

Dataset Mask Ratio LPIPS↓ FID↓ PSNR↑ SSIM↑
20–40% 40–60% 20–40% 40–60% 20–40% 40–60% 20–40% 40–60%

Places2 PIC 0.1425 0.1956 25.60 35.59 23.38 21.51 0.8185 0.7484

DeepFillv2 0.1437 0.1859 26.03 32.04 22.54 20.72 0.8015 0.7393

HiFill 0.1945 0.2656 32.65 47.32 21.34 19.31 0.7447 0.6625

CRFill 0.1393 0.1795 20.32 26.51 23.16 21.19 0.8229 0.7612

ICT 0.1304 0.1769 19.76 25.29 23.68 21.97 0.8297 0.7611

TFill 0.1128 0.1562 17.64 22.53 23.99 21.87 0.8374 0.7727

NLKFill-B0 0.1123 0.1530 17.28 23.41 23.17 22.01 0.8380 0.7801

Celeba-HQ PIC 0.0845 0.0904 14.513 25.031 26.781 21.723 0.9330 0.8112

DeepFillv2 0.0680 0.0702 16.278 28.711 25.868 21.108 0.9221 0.8020

ICT 0.0701 0.0766 10.515 20.843 28.242 23.076 0.9522 0.8641

TFill 0.0562 0.0622 10.386 20.167 32.761 31.458 0.9672 0.9518

NLKFill-B0 0.0557 0.0615 10.470 20.066 33.088 31.773 0.9691 0.9573

Fig. 6 The quality comparison of the repair results of various methods under different mask ratios can be observed. Among them, the evaluation
of the LPIPS metric is primarily carried out using the Places2 and Celeba-HQ datasets. The quality improves as the metric value decreases

where Ireal and I f i xed are two images, L is the number of
layers of the deep network, φi is the feature extraction func-
tion of the i-th layer, and Hi ,Wi , andCi are the height, width
and number of channels of the i-th layer, respectively.

Implementation details

The model uses PyTorch v1.9.1 and three NVIDIA A4000
GPUs (16 GB) on the Ubuntu 18.0 LTS system. Based on the
experimental requirements, the single-stage image inpainting
network is trained on images with resolutions of 256× 256,
512 × 512, 1024 × 1024, and the corresponding batch sizes
during training are 48, 12 and 4. The time for initial step
training is set as 5,00,000 iterations, and we adopt an Adam
optimizer with beta1 = 0.5 and beta2 = 0.9. For the learning
rate schedule, we set its initial value as 0.0002 for the first

2,00,000 iterations and linearly decay it to zero in the next
3,00,000 iterations. The loss optimization function of this
network is L = Lrec + L per + LGAN .

Main results

We first compare our basic model NLKFill-B0 with the fol-
lowing state-of-the-art image inpainting methods, namely
PIC [14], DeepFillv2 [29], HiFill [11], CRFill [13], ICT [10]
and the latest TFill [15]. We use their publicly released code
and models for the experiments.

Quantitative comparison

Table 1 shows the quantitative evaluation results on Places2
[56] and Celeba-HQ [55] test sets, using the irregular masks
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Table 2 TFill requires a two-stage process from coarse to fine. The NLKFill-B0 can obtain inpainting results with a single-stage training

Model Input size Batch size FLOPs (G) Param (M) Mem (M) GPU infer time (ms)

TFill-coarse 256 12 10.23 83.229 13,467 49.70

NLKFill-B0 256 12 1.15 47.804 10,347 28.97

TFill-refine 512 3 16.01 147.553 13,635 57.88

NLKFill-B0 512 3 1.15 47.804 11,099 39.80

provided in the test set of Pconv [5]. The mask ratio rep-
resents the range of mask ratios applied to the image. The
original mask ratio is divided into 20%–40% and 40%–60%.
In accordance with the experiments of ICT [10] and TFill
[15], we only compare the results on themid-level mask ratio
(mainly concentrated in 30% and 50%). In Fig. 6, the qual-
ity comparison of repair results for various methods under
different mask ratios is observable, with the primary evalu-
ation conducted using the LPIPS metric. The results show
that our model surpasses the previous state-of-the-art CNN-
based models at all mask scales. Our basic model achieves a
similar performance as TFill, but TFill needs to go through
two stages from coarse to fine. In contrast, we use a simpler
structure, a lower training cost, and only one stage to com-
plete the inpainting task, as shown in Table 1. Figure10 also
clearly demonstrates that our method outperforms TFill in
terms of inpainting details.

Although our basic model NLKFill-B0 metrics does not
perform as well as TFill in under certain conditions, such
as the FID (40%–60%) and PSNR (20%–40%) indicators of
Places2, and the FID (20%–40%) indicator in the Celeba-
HQ dataset in Table 1. This may be related to the technology
used in the measurement of each index. For example, FID
is a measure used to calculate the distance between the real
image and the feature vector of the generated image. The
smaller the FID value, the higher the similarity. From the
experimental results, NLKFill is more inclined to produce
natural and reasonable restorations. Therefore, the structure
of the real image may sometimes not be fully followed in
some areas. More details of the comparison are provided in
Appendix Fig. 15.

However, it is worth noting that both ICT and TFill in
recent years use transformer to capture global information
through a two-stage method, in which ICT directly down-
samples the original image to 32× 32 or 48× 48 resolution,
resulting in important information lost in this straightforward
massive downsampling process. NLKFill-B0 only trains in
a single state, which is more simple and easier than the
two-stage approaches. In addition, our further experiments
(for details please see the 4.4 Advanced experiment) demon-
strates that when we modify the model to a larger size model
(NLKFill-B1), which has a slightly smaller model size than

TFill, the image repair effect of our model is better than that
of TFill model on the whole Table 2 .

Qualitative comparison

To make the comparison of inpainting results of various
image inpainting methods more intuitive, we use the same
input data for qualitative evaluation. Figure7 shows images
of natural scenes occluded by random masks. In this case,
we mainly compare the results of semantic content inpaint-
ing. Among them, PIC [14], DeepFillv2 [29] and HiFill [11],
although good at removing the target object, fail to infer the
correct shape after inpainting the object. For example, in
the road images (please see the second and third rows in the
Fig. 7), they cannot correctly infer the road behind the object.
In the animal images, only DeepFillv2, CRFill [13], TFill
[15] and our method can infer the dog’s legs. In addition,
our method generates more realistic results in terms of the
dog’s head appearance and background content reasoning,
which are more reasonable compared to other methods. In
the removal of grass shadows, ourmethod also providesmore
reasonable inpainting results. The most challenging task is
to inpaint the damaged area of the structured house. It can
be observed that the inpainting of the random rectangular
damaged area in Fig. 7 is not satisfactory for any method.
However, even so, our method still performs better than the
previous methods, producing semantic structures closer to
real images in damaged regions, rather than producing too
many unnaturally distorted structures.

The previous inpainting methods have tolerably slight
flaws in inpainting damaged face images at a resolution of
256×256, as shown in Fig. 8. However, when the image res-
olution is increased to 512 × 512, these flaws become more
noticeable, and even make these inpainting methods fail to
complete the inpainting task, as shown in Fig. 9.

The latest method TFill uses a two-stage design to suc-
cessfully inpaint damaged face images with a resolution of
512 × 512. However, our method can produce more natural
and reasonable inpainting results than TFill when important
semantic information is missing. As shown in Fig. 10, our
method can handle the transition of the hair region more nat-
urally and reasonably, and does not generate vertical streaks
caused by stitching the inpainting results onto the damaged
images. More comparisons are presented in Appendix 15.
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Fig. 7 Qualitative comparison and inpainting results of Places2 test set
with random irregular mask and rectangular mask, the image resolution
is used 256×256, because earlier work can only be trained at this scale.

Our model generates more reasonable object and scene structures with
better visual effects than previous methods

Fig. 8 On the image resolution scale of 256×256, whether it is a random irregular mask or a rectangular mask, there is only a slight gap in the
performance of each method on the Celeba-HQ test set. Our model has nearly the same repair quality as TFill

Ablation experiments

Ablation experiments on our model are conducted to assess
the impact of each module of our method on the image
inpainting results. The results with and without the dual-
channel residual layer, modified encoder–decoder layer,
progressive discriminator and LKA layer are compared. In
addition, the effect of the wavelet filter [50, 51] on the image

inpainting quality is also analyzed. The results are shown in
Table 3.

We carry out this ablation experiment on the Celeba-HQ
[55] and Places2 [56] datasets, respectively, to train and eval-
uate our model. We start with the encoder–decoder structure
of VQGAN [48] as a baseline model, and then introduce
a dual-channel residual module. The experiment demon-
strates that this structure design significantly improves the
performance. When we further integrate this model with
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Fig. 9 Comparison of methods using the 512× 512 resolution Celeba-
HQ testset

Fig. 10 Comparison with TFill method in terms of inpainting details.
For example, TFill produces vertical stripes on the hair due to stitching,
while our method makes the transition more natural

Fig. 11 A continuation of Fig. 7, using the Places2 test set with a res-
olution of 256×256 as input, and showing some more results. It can
be seen that the inpainting results of NLKFill-B1 are slightly better
than NLKFill-B0, but it also shows that NLKFill still needs to further
improve on the Places2 dataset to enhance semantic understanding

the discriminator of StyleGAN [49], its performance already
becomes comparable to that of previous CNN-based meth-
ods.

In addition,we further optimize the encoder–decoder layer
by employing a modified convolutional network layer to
effectively separate the damaged and visible regions in the
image. The results in Table 3 show that our improvement
leads to a significant performance boost, especially for the

Table 3 The ablation studies for each module, which finally validates
the effectiveness of the modules. In these metrics, ↓ indicates lower is
the better, and ↑ indicates higher is the better

Method Celeba-HQ Places2

LPIPS↓ FID↓ LPIPS↓ FID↓
Baseline 0.0587 11.17 0.1181 18.15

+Style Discriminator 0.0585 11.10 0.1175 18.14

+Deep Two-Channel Residual 0.0573 11.03 0.1143 17.88

+Modified Encoder–Decoder 0.0559 10.87 0.1138 17.53

+DWT 0.0554 10.71 0.1121 17.48

+MLKA 0.0542 10.44 0.1104 16.97

Table 4 NLKFill-B0 is the basic model, and NLKFill-B1 is a version
similar to the model size of the TFill method. Layers indicates the
number of visual attention layers and the MLKA modules contained in
them. The FLOPs data are obtained from testing under the RTX A4000
GPU hardware environment using 256 × 256 resolution image input

Model Layers Param (M) FLOPs (G)

NLKFill-B0 {1, 0, 0, 0} 47.804 1.15

NLKFill-B1 {3, 4, 5, 3} 89.113 8.68

FID [58] metric. This demonstrates the importance of apply-
ing different weights for visible and damaged regions, as
opposed to using general convolutional networks in image
inpainting tasks. On top of that, we add wavelet filters to
further enhance the quality of the generated results.

Finally, we adopt an enhanced LKA, which further boosts
the inpainting quality and metric scores. The employment
of this attention mechanism highlights its significant role in
improving the performance of our model.

The above-mentioned experiments demonstrate that the
addition and application of each module constitute an effec-
tive improvement to the model for this image inpainting task.
This is especially true when the image dataset contains high-
frequency content or fine details.

Advanced experiment

Due to the simple hierarchical structure of NLKFill, we
extend the NLKFill-B1 model based on NLKFill-B0 to
further address the performance challenges of tasks with dif-
ferent complexity levels. In comparison, NLKFill-B1 has
a four-layer structure with decreasing resolution, namely
H
4 × W

4 ,
H
8 × W

8 ,
H
16 × W

16 ,
H
32 × W

32 , and twice the number
of parameters. Here, H and W denote the height and width
of the input image respectively. As the resolution decreases,
the number of output channels C will continue to increase.
The detailed information of each model is shown in Table 4
and the model structure of NLKFill-B1 is shown in Fig. 12.

We present the experimental training results for NLKFill-
B1 on the Places2 [5] and FFHQ [49] test sets in Table 5, and
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Fig. 12 This structure is the middle layer (four-stage visual attention
layer) structure of the larger model NLKFill-B1. The feature content
output by the encoder goes through four stages of visual attention lay-
ers, and the resolution of each layer decreases step by step. Except for

the middle layer of the network, the rest of the structure is consistent
with NLKFill-B0, see Fig. 2 for details. The specific structure of the
visual attention layer in each stage can be seen in Fig. 2(c)

Fig. 13 Our model can train
directly on images with a
resolution of 1024 × 1024 and
output inpainting results with
the same resolution. The results
show that NLKFill-B1, which
has a larger model size, can
capture and utilize more detailed
features in high-resolution
images. Due to limitations in
computing resources and
training time, the output is not
optimal yet, but it demonstrates
the future potential of our
method for high-resolution
inpainting tasks

the mask ratio setting is a modest of 40%. We pay particu-
lar attention to the performance of inpainting results on the
Places2 dataset. The table shows that the larger themodel, the
better the indicators and the Fig. 11 illustrates that enlarging
the model improves the inpainting results of the Places2 test
set to some extent. Additional inpainting results at different
resolutions are provided in Appendices 16 and 17.

Furthermore, the model’s simple hierarchical structure
allows it to be trained directly with uncompressed 1024 ×
1024 high-resolution images as input. To better control over
the resolution of input images, we only use the model
NLKFill-B1 and the face dataset FFHQ for training (FFHQ
dataset contains 70,000high-definition face images of 1024×

1024 resolution). Figure13 shows that NLKFill-B1 still cap-
tures enough detailed features from high-resolution images,
making the restoration structuremore refined andnatural, and
finally outputs high-resolution inpainting results. The qual-
ity comparison of the repair results of various methods under
different output resolutions can be observed in Fig. 14 and
some other high-resolution inpainting results are provided in
Appendix 17.

The advanced experimental results confirm that larger
models indeed achieve superior performance. However,
larger models also require more training time, larger and
higher quality datasets, especially for high-resolution inpaint-
ing tasks like 1024× 1024 resolution. Due to computational
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Table 5 Comparing the effects of different size models at different resolutions. In these metrics, ↓ indicates lower is the better, and ↑ indicates
higher is the better

Model Input size FFHQ Places2

LPIPS ↓ FID ↓ LPIPS ↓ FID ↓
TFill 256 0.0591 15.23 0.1328 20.12

NLKFill-B0 256 0.0586 15.27 0.1329 20.34

NLKFill-B1 256 0.0571 15.15 0.1323 19.94

TFill 512 0.0621 15.11 0.1339 20.31

NLKFill-B0 512 0.0592 15.58 0.1342 20.75

NLKFill-B1 512 0.0565 14.84 0.1310 19.74

NLKFill-B1 1024 0.0549 15.53 – - -

Fig. 14 The quality comparison of the repair results of various methods under different output resolutions can be observed in the figure. Among
them, the evaluation of LPIPS metric is mainly carried out using the Places2 and Celeba-HQ datasets. Quality increases as the metric decreases

resource constraints, we have not yet fully explored the
model’s potential and showcased its best results. Neverthe-
less, based on its current performance, the model still offers
a lot of room for improvement.

Conclusion and future work

In this study, we introduced the large kernel attention (LKA)
mechanism as a replacement for traditional network architec-
tures, combining the global structural modeling capabilities
reminiscent of transformers with the local detail feature cap-
ture abilities of CNNs. It is crucial to emphasize that the LKA
mechanism is not a transformer network; rather, it operates
based on large kernel convolutions.

Through innovative enhancements to the encoder–decoder
layer and the LKA layer, we dynamically balanced the
weights of visible and damaged regions, resulting in an
improved quality of inpainted images.

Experimental results demonstrate that our proposedmethod
outperforms previous single-stage or two-stage transformer-
based inpainting networks across various metrics, including

parameter quantity, inference speed, memory usage, and
computing resource overhead. This advancement facilitates
the direct training of high-resolution images, such as 512 ×
512 and 1024 × 1024. Furthermore, we conducted ablation
experiments on different modules of NKFill, exploring and
evaluating the model’s potential and areas for improvement.

Despite these achievements, there is room for improve-
ment, particularly on the Places2 dataset. The inpainting
performance on irregularly damaged images of different
scene types and complex scenes is slightly inferior to that
on facial images. This indicates the necessity for further
exploration of comprehensive understanding and utilization
of semantic content in images. Our ongoing work and future
research will focus on refining the model’s performance
across various datasets, enhancing semantic content under-
standing, and pushing the boundaries of high-resolution
image inpainting.
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Appendix A additional examples

In Figs. 15, 16 and 17,we showmore examples on FFHQ [49]
high-resolution face dataset images, which are occluded by
central rectangular masks and random irregularities. Here,

Fig. 15 Additional results
comparing with TFill.
Additional results between TFill
and NLKFill-B0 and
NLKFill-B1 on the FFHQ test
set. In the results, you can focus
on the quality comparison of the
red frame line position in the
picture. In contrast, our models
NLKFill-B0 and NLKFill-B1
are superior in both eye and hair
restoration, and can generate a
more realistic appearance
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Fig. 16 Additional results for NLKFill-B1. Example inpainting results
of our method NLKFill-B1 on the FFHQ face dataset. Here, the center
mask is used for all input images. An example input for center masking
is shownon the upper left.As can be seen, the finished images are of high
average quality. Even in some challenging cases, such as when glasses
are covered by the center, our method can correctly inpaint faces with
glasses. According to the image sequence, the corresponding image
resolution is 512 × 512, 256 × 256, increasing from top to bottom

all examples shown are selected from the corresponding test
set. In Fig. 15, we continue to supplement the comparative
results of TFill on multiple test examples. In Figs. 16 and 17,
we demonstrate the inpainting capabilities of NLKFill for
center-corrupted face images at different resolutions. These
examples nicely demonstrate that our model is suitable for
multi-resolution inpainting tasks under different masks, and
synthesizes semantically consistent content with a visually
realistic appearance based on all existing visible pixels.
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