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Abstract

Single-frame infrared small target detection is affected by the low image resolution and small target size, and is prone to
the problems of small target feature loss and positional offset during continuous downsampling; at the same time, the sparse
features of the small targets do not correlate well with the global-local linkage of the background features. To solve the above
problems, this paper proposes an efficient infrared small target detection method. First, this paper incorporates BlurPool in
the feature extraction part, which reduces the loss and positional offset of small target features in the process of convolution
and pooling. Second, this paper designs an interactive attention deep feature fusion module, which acquires the correlation
information between the target and the background from a global perspective, and designs a compression mechanism based
on deep a priori knowledge, which reduces the computational difficulty of the self-attention mechanism. Then, this paper
designs the context local feature enhancement and fusion module, which uses deep semantic features to dynamically guide
shallow local features to realize enhancement and fusion. Finally, this paper proposes an edge feature extraction module for
shallow features, which utilizes the complete texture and location information in the shallow features to assist the network
to initially locate the target position and edge shape. Numerous experiments show that the method in this paper significantly
improves nloU, F1-Measure and AUC on IRSTD-1k Datasets and NUAA-SIRST Datasets.
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Introduction

In the field of marine rescue [1, 2] and traffic management, the
detection of small targets such as drones and floating objects
plays an important role. Restricted by the small size of the
target, imaging distance, covert and other characteristics, in
the use of visible light camera shooting and detection of small
targets, there are leakage of false detection, etc.; and infrared
imaging technology has the advantages of all-weather work,
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reliance on expert knowledge and feature templates, when
the target size, shape and local signal-to-noise ratio change
drastically, the above three methods are difficult to adapt to
the changing scenarios, which can easily lead to false alarms
and missed detections, resulting in poor robustness of the
detection algorithms.

With the continuous development of deep learning tech-
nology, reaction diffusion neural network technology
(RDNN), innovative event triggering strategies [11], point
controllers [12], fuzzy model reconstruction and filtering
methods [13], which provide new ideas for designing the
image feature compression mechanism in this paper.

Meanwhile, data-driven small target detection methods
are categorized into frame labeling-based detection methods
[14-19] and pixel-by-pixel labeling segmentation methods
[20-22], among which the pixel-by-pixel labeling segmen-
tation detection methods are more effective in detecting
single-frame target images.

Ren et al. [23] designed a dense nested interaction mod-
ule to realize the progressive interaction of deep and shallow
features, however, repeating the nested module many times
can not further eliminate the background clutter and other
information, and the key target information is lost in the
downsampling process. information in the downsampling
process. Wu et al. [24] nested Unet structures of different
sizes layer by layer, which increased the depth of the net-
work without decreasing the target resolution and avoided the
loss of information in the downsampling process, but there
is a problem of poor connection between global and local
contextual information of weak target features. Li et al. [21]
realized infrared small target pinpointing by anti-aliasing fea-
ture fusion module with ViT, however, the low-pass filtering
led to the filtering of some targets with high response values,
and the existence of ViT caused the model computation is
too large.

Aiming at the problems in the above methods, this paper
proposes an efficient infrared small target detection method.
This method jointly utilizes BlurPool with multilevel dense
connectivity to reduce the feature offset and loss of high-
frequency features during continuous downsampling; this
method proposes a deep feature mutual attention module
and a shallow feature enhancement fusion module, which
realizes global-local feature association and shallow feature
enhancement, and reduces the computational difficulty of
self-attention; this method proposes an edge feature module,
which helps to recover the target shape and spatial location.

Specifically, the main contributions of the work in this
paper are as follows:

1. In this paper, a feature extraction module based on Blur-
Pool with multilevel dense0O connection is designed to
mitigate the effect of downsampling operation on feature
offset by blurring; at the same time, the lost high-
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frequency target features are supplemented by multilevel
densities, which improves the consistency of the feature
positions and the localization accuracy, and reduces the
loss of infrared small-target features due to continuous
downsampling.

2. In this paper, the mutual attention deep feature fusion
module is designed to automatically learn the associa-
tion expression between the background global features
and the target localization, and model the feature associa-
tions in the global scope; at the same time, a compression
mechanism based on the a priori knowledge and global
attention is designed, which both reduces the computa-
tional difficulty of the model and improves the ability to
perceive the global features through the cosine similarity
indexing and the low-latitude remapping.

3. In this paper, the context local feature enhancement and
fusion module is designed to extract the spatial informa-
tion of the target from the target proximity region and the
background region, and the deep semantic features are
used to guide the enhancement and fusion of the shal-
low feature maps, which enhances the ability of adaptive
characterization of the positional information of infrared
small targets.

4. In this paper, an edge feature extraction module is
designed to learn the edge response of shallow features
through distance transform function, Sobel module and
spatial channel weights to extract accurate edge feature
representations, which assist the network in initial local-
ization and segmentation of small target location and
shape.

Related work

Model-driven infrared small target detection
method

Early single-frame infrared small target detection meth-
ods mainly use null domain filtering methods, such as
Max-Median filter [3, 4], Bilateral filter [25, 26], Top-Hat fil-
ter [27], etc. This type of method assumes that the background
changes slowly and the neighboring pixels are highly corre-
lated. To better explicitly construct a detection method that
canreflect the characteristics of small targets and be more dis-
criminative, Chen et al. [28] proposed a local contrast metric
model, which utilizes the difference between an image block
and its neighbors to construct a detection method based on
local contrast. Han et al. [29] proposed a multi-scale local
contrast algorithm (RLCM), a multi-scale three-layer local
contrast detection framework (TTLCM). Xia et al. [30] pro-
posed a detection method (LEF) that measures local contrast
from local phase anisotropy and local luminance difference.
Since the above two methods are less robust when facing
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complex backgrounds, some scholars have introduced the
low-rank sparse decomposition into the field of infrared small
target detection. Gao et al. [31] proposed the Infrared Patch-
Image (IPI) model, by transforming the infrared small target
detection problem into a low-rank sparse matrix decomposi-
tion problem. Dai et al. [32] proposed the column-weighted
IPI model (WIPI) and the reweighted infrared patch tensor
model (RIPT) on the basis of the IPI model.

Data-driven infrared small target detection method

At present, with the continuous improvement of the increas-
ing maturity of deep learning technology, more and more
scholars introduce deep learning technology into the field of
infrared small target detection. Wang et al. [33] proposed
to design three sub-networks in the adversarial network for
image segmentation so as to balance the leakage rate and false
alarm rate. Zhao et al. [34] proposed TBC-Net, a lightweight
detection network, which uses the target extraction mod-
ule and semantic constraints module to realize a model for
real-time detection of infrared small targets by combining
the semantic constraints. Ju et al. [35] proposed an efficient
end-to-end detection network consisting of an image filter-
ing module and an infrared small target detection module.
detection module to form an efficient end-to-end network.

Infrared small target detection method based on
global and local features

Dai et al. [36] regarded infrared small target detection as
a semantic segmentation problem and designed an asym-
metric background modulation module to aggregate deep
and shallow features, however, infrared small targets have
only a few effective pixels leading to poor detection. Li et
al. [23] realized interaction between high and low level fea-
tures as well as adaptive enhancement by means of densely
nested interaction modules and a kind of cascading channel
and spatial attention module. Multi-level features. Wang et
al. [37] combined multi-stage, multi-scale localized features
with a multi-stage feature pyramid to form the final detection
result. Zhang et al. [38] sensed the pixel correlations within
and between blocks at a specific scale, and then utilize the
context pyramid module to fuse contextual information from
multiple scales for better feature representation.

Infrared small target detection method based on
attention mechanism

Tong et al. [39] proposed to improve the feature expression
capability by enhancing the asymmetric attention module,
same-layer feature information exchange and cross-layer
feature fusion. Lietal. [21] proposed a proposed vision trans-

former branch that eliminates the interference of local flash
elements by introducing non-local correlated features.

Advanced applications of deep learning techniques
in the internet of things

Ali et al. [40] used a deep neural network architecture and
data augmentation strategy to automatically learn a hierar-
chical representation of sensor data and efficiently capture
temporal and spatial dependencies. Monem et al. [41] used
stacked LSTM networks to capture complex patterns and
temporal dependencies in selected features through tempo-
ral modeling to ensure the integrity and resilience of IoT
networks. Abdelhafeez et al. [42] utilized a machine learning
algorithm to extract sentiment-related insights from Twitter
data to accurately classify the sentiment categories of tweets
through an environmentally friendly preprocessing step and
sentiment classification algorithm.

Advanced applications of deep learning techniques
in Metaheuristics and Machine learning

Bacanin et al. [43] solved the overfitting problem by means of
an explicit exploration mechanism and a chaotic local search
strategy, and achieves superior results to other methods in
image processing tasks. Malakar et al. [44] designed a hier-
archical feature selection model based on genetic algorithm
to improve the performance of handwritten text recognition
technique by optimizing local and global features. Bacanin
et al. [45] proposed an automated framework for solving
the overfitting problem that employs a swarm intelligence
approach to improve the model performance by selecting
appropriate regularization parameters. Zivkovic et al. [46]
proposed an automated image analysis framework based on
CNN and XGBoost for identifying COVID-19 infected chest
X-ray data and optimized the hyperparameters of XGBoost
using hybrid AOA.

In summary, traditional infrared small target detection
methods do not rely on a large amount of labeled data, but
have poor adaptability in the face of complex backgrounds.
Deep learning-based infrared small target detection methods
can automatically learn and extract key features, but multiple
downsampling operations can lead to feature offset and loss.
At the same time, due to the lack of large-scale computa-
tionally powerful equipment and high-quality infrared small
target data, this type of method has a large space for devel-
opment. Therefore, it is of great significance for the field of
infrared small target detection to attenuate feature offset and
loss, enhance the degree of long-range feature correlation,
strengthen shallow feature fusion, and improve the method
operation speed.

@ Springer
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The framework diagram of the method proposed in this paper
is shown in Fig. 1, which consists of four parts: feature extrac-
tion module(FEM), mutual attention deep feature fusion
module(MADFF), context local feature enhancement and
fusion module(CLFEF), and edge feature extraction mod-
ule(EFEM). The working principle, design idea and specific
implementation of each part will be introduced in detail in
“Feature extraction module”, “Mutual attention deep feature
fusion module”, “Contextual local feature enhancement and
fusion module” and “Edge feature extraction module and loss
function”.

Feature extraction module

In classical u-shaped segmentation networks [20] or YOLO
series detection networks [14-19], feature extraction net-
works are able to adequately extract different scales and
different semantic levels of feature mapping through multiple
convolutions and their cascading downsampling operations.
However, due to the small size and irregular shape of infrared
small targets and the extreme sensitivity of the targets to slight
deviations in position [21,47]. As downsampling continues
in the feature extraction network, deviations in the spatial
location of the target accumulate, leading to misalignment of
the feature scale during deep feature fusion. Although, Blur-
Pool is able to mitigate high frequency signal aliasing using
a low-pass filter, it tends to attenuate small target regions at
higher energy levels.

Meanwhile, multiple pooling operations are able to cause
loss of important features in small-size targets during the pro-
cess of reducing image feature resolution. Although, more
jump-connected structures although more leap-connected
structures allow more high-frequency interactions between
features, the overly dense superposition operation can bring
too many parameters and computations.

To address the above problems, this paper proposes an
efficient feature extraction module (FEM) consisting of six
BCRBs connected in series and a BPM.The BCRB reduces
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Fig.2 Feature extraction module (FEM)

feature bias due to convolution operations by adding a Blur-
Pool filter before each convolution operation and provides
higher energy level target area while simplifying the struc-
ture by streamlining the number of hopping connections
Features.By adding the BlurPool filter before the MaxPool
pooling operation, the BPM is able to adaptively select the
corresponding filling method according to the filter size, thus
avoiding the loss of sparse features for small targets in the
infrared due to multiple downsampling pooling operations
and making the output features independent of the input off-
sets to improve the spatial consistency of the features.
In FEM, BlurPool can be represented by Egs. (1), (2):

BP = LPF(f) ()
LPF = / [—o00, colx(t)h(t — T)dT, 2)

where (BP) denotes (BlurPool), (LPF) denotes low-pass fil-
tering, x(t) denotes the input signal of (LPF), h(t) denotes
the frequency response of (LPF), and y(7) denotes the fil-
tered output signal.
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Mutual attention deep feature fusion module

In the existing infrared small target detection techniques
based on the Transformer attention mechanism [48], the fol-
lowing 2 main problems exist:

Although the Transformer attention mechanism is able to
encode long distance dependencies in image features, a large
number of complex local background and edge features are
required if the location information of small target scarce
features [35] is to be constructed, and the use of local features
on a single scale is prone to feature learning bias.

Meanwhile, to achieve the effect of reducing the number
of parameters and computation of the Transformer atten-
tion mechanism, pooling and other [49] methods are usually
used to compress large-size features. However, pooling-
based methods lead to redundancy of useless information; at
the same time, it is difficult for linear attention-based com-
pression methods to strike a balance between complexity and
expressive power values [50, 51].

To solve the above problems, as shown in Fig.3, this
paper starts from the perspective of global feature associ-
ation learning, adopts heterogeneous operators to compress
the key information of shallow features and embed the deep
features, introduces dilated convolution to filter the redundant
high-frequency noises, utilizes the Transformer attention
mechanism [48] to realize the interactive fusion of contex-

Fig.3 Mutual attention deep
feature fusion module
(MADFF), VTA represents to
vision transformer attention and
EGF represents to efficient
generalization of features
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tual information, and improves the network’s attention to the
location and shape of small targets.

Specifically, four dilation convolutions with dilation rates
of 1,2, 4, and 8 are used in this paper for local feature encod-
ing, which capture the details and contextual information of
the target at different scales, filter out the high-frequency
background noise, and introduce complete and pure local
features for the self-attention module.

Meanwhile, inspired by the bottleneck structure [52] in
which a low-dimensional representation of image features is
made, this paper proposed a compression mechanism based
on a priori knowledge and global attention (EGF). As shown
in Fig. 3, this paper sets up a set of key-value vectors LPg
and knowledge vector LPy based on a priori knowledge and
can be learned, and two kinds of vectors of size HW x N,
where N can be set according to the actual situation of the
number of dimensions by themselves. Firstly, the input image
features are split into vector form HW x C by doing Reshape
operation, and then the transpose vector of each query vector
LPg is cosine similarity indexed (CSI) with the split fea-
ture vectors, and the useful features related to the target are
widely queried in the whole feature map, and finally, the
similarity measurements are done as low-latitude remapping
(LLR) with the transpose vector of each knowledge vectors
LPy with Norm normalization to get the updated effective
features in the shallow features after updating.
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Among them, the learnable parameters LPx and LPy set
in this paper can be regarded as multiple local information
clustering centers based on a priori knowledge, and the local
information represented by each clustering center can sup-
plement the missing detail information in the deep semantic
features; at the same time, the limited number of cluster-
ing centers can reduce the number of model parameters and
computation amount, and realize efficient feature compres-
sion. After obtaining the learnable parameters LPg and LPy
of the compressed large-size effective shallow features, they
are fed into the Transformer module together with the query
vectors Q in the deep features, so as to achieve the effect of
recovering semantic information and fusing deep features.

Contextual local feature enhancement and fusion
module

In existing infrared small target detection methods [22] the
problem of determining the kind of internal pixels is only
determined by using the semantic context information of all
the pixels in the target’s local area. However, infrared small
targets are often in complex backgrounds [32], disturbed by
natural and man-made environments as well as clutter noise,
and lack physical features such as color and texture. There-
fore, deep target semantic features and shallow target location
features play an important role in target detection and recog-
nition.

To solve the above problems and utilize deep semantic
features H and shallow location features L more effectively.
As shown in Fig. 4.

The input of the shallow feature map L is aggregated
using global average pooling for global feature informa-
tion, so that the network can better learn the relationship
between infrared mini-targets and the background, and then

Feature L Feature H
T —
GAP X-AP Y-AP
l |—>1—<—|
(I:(o:lv Norm+Split
2 s
Conv Conv Conv
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Fig. 4 Contextual local feature enhancement and fusion module
(CLFEF)

@ Springer

the positional information of each channel is aggregated
by point-by-point convolution, which enhances the distinc-
tion between the background and the target, and finally, the
background and the target are enhanced by using the Sig-
moid function to generate the bottom feature enhancement
weights; the deep feature H mapping uses one-dimensional
global average pooling to obtain the global features in the hor-
izontal and vertical directions, respectively, and encodes the
position coordinates using the horizontal and vertical direc-
tions to further deep semantic processing of the position
features, and then generates the deep feature enhancement
weights using the Sigmoid function. After multiplying and
combining the shallow feature enhancement weights with
the deep feature enhancement weights, the enhanced global
features are fused into the underlying local features by ele-
mental summation, and finally the enhanced fusion feature
map with local and global features is generated.

As shown in Egs.(3), (4), (5), the calculation of the
enhancement and fusion module is as follows:

J (L) = §(B(pwe(A(B(pwe(pool(L))))))) 3
f(H) = H - 8(w(spl(e([pool” (H) - pool” (H)]))))  (4)
Fuse(L,H)=L+ f(L)- f(H), 5)

where f(L) represents the output of the shallow features,
f(H) the output of the deep features, (pool) represents
global average pooling, pool” represents 1D average pool-
ing in the x-axis; pool” represents 1D average pooling in the
y-axis; B represents BN normalization layer; A represents
ReLU activation function; § represents Sigmoid function; w
represents 2D convolution operation; (pwc) represents Point-
Wise point-by-point convolution operation; (spl) represents
segmentation operation; [-] represents splicing operation;
- represents convolution-by-convolution multiplication; X
represents shallow feature maps; Fuse(L, H) represents the
fused and enhanced features.

Edge feature extraction module and loss function

Infrared small target detection is characterized by low con-
trast and small size, if the shallow features can be extracted
efficiently [53-55], it can retain clear detail information. At
the same time, it provides the subsequent process by provid-
ing information about the shape and contour of the target.
Therefore, fuzzy edges are analyzed and detected in shal-
low features, which help the network to accurately locate the
segmented target area by learning shallow edge features.

As shown in Fig.5, the module first uses Sobel with
Gauss—Laplace operator to obtain the labeled map of the edge
details of the infrared small target from the shallow features;
then, the internal map of the infrared small target is obtained
by using mean filter [56] and distance transform [57], and
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Fig.5 Edge feature extraction module (EFEM)

the value of each pixel is replaced with the average of the
pixel values of its surrounding neighborhood through mean
filtering to reduce the influence of noise and make the edge
details of the infrared small target more Clear and continuous,
through the distance transform function to the internal pixels
of the infrared small target will be assigned to the distance
value closest to the edge, so that the internal region of the
infrared small target has a higher gray value in the image, so
that it is easier to be attended to and recognized by the atten-
tion mechanism; and then use the spatial-channel attention
mechanism to obtain the dependence of the infrared small
target on the whole image, and finally obtain the preliminary
prediction map of the infrared small target, and with the real
target mask to do BCE loss operation. In this paper, the above
operations are used to help the network to supervise the train-
ing of feature maps, so as to retain more target high-frequency
boundary information, which is used to compensate for the
texture information lost in the convolution process. EFEM
can be represented by Egs. (6), (7), (8):

Siabeled = LG(Sobel( fin)) (6)
Jfinter = Dis(Mean(Conv( fin))) (7
Sout = Conv(( fiaveled + finter + CBAM(fin)) X fin), (8)

where fj, represents input image features, fou represents
output image features, flapeled represents detailed label
image, finer represents internal map of features, (LG) rep-
resents Gauss—Laplace operator, (Dis) represents distance
transform function, (Mean) represents mean filtering.

Mean filtering can be represented by Eq. (9):

i=(=5~%)
1 - 2 2

Mean(v,y) =~ ) 1@+iy+)), ©)
=5

where x, y represents the position of pixel point, N represents
the neighborhood window size.

Distance transform function can be represented by Eq. (10):

Dis((r, ), (i, ) =y (=2 + (v — )2, (10)

where x,y represents the position of pixel point, i, j
represents the coordinates of neighboring pixel points,

Dis((x, y), (i, j)) represents the Euclidean distance between
pixel (x, y) and neighboring pixel (i, j).

To train the training method proposed in this paper, the
similarity between the prediction results and Ground Truth
(GT) needs to be measured to maximize the prediction results
to approximate the location and target pixels of the real
infrared small target image, and this paper employs a hybrid
loss function including the edge prediction loss and the detec-
tion result loss. Among them, the edge prediction loss uses
the BCE-Loss loss function to construct accurate primary
target edge features, and the detection result loss uses the
Soft-IoU loss function to measure the gap between the pre-
diction result and the real IR small target image. The two
losses are shown in Egs. (11), (12), (13):

Lpce = — 1—2)6,"]' log I—ZSI',]'
i,j ij
—Zx,-,j log Zsi*j arn
i,j i

D jXij o Sij
i SiLj +Xi ;g — Xij —Sij
Loss = a1 Lyce + o2 Lsoft, (13)

Liofe (x, 5) = 5 12)

where s; ; € HxW represents the predicted score map,

Xi,j € HxW represents the true mask map corresponding
to the infrared small target image, oy = 0.3 and o = 0.7.

Experiments
Datasets and evaluation metrics
Datasets

The IRSTD-1k Datasets [58] consists of 1000 infrared
images with an image size of 512 x 512. These images
were captured with an infrared camera in the real world,
covering real targets such as drones, bright spots, boats and
vehicles. The backgrounds include a variety of scenes such
as oceans, rivers, fields, mountains, cities, and clouds.The
NUAA-SIRST Datasets [23] contains a total of 427 real and
independent high-quality infrared images covering real tar-
gets such as drones and boats, as well as highlights in a variety
of scenes, such as oceans, rivers, fields, and mountains, cities,
and clouds.

In this paper, the IRSTD-1k Datasets is divided into train-
ing dataset and validation dataset according to the ratio of
8:2, of which 80% is used for parameter training and tuning
of the detection method, and 20% is used for evaluating the
generalization ability of the detection method, respectively.

@ Springer
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The above data division method ensures that different data
samples are used in the training and validation process to
accurately assess the effectiveness of the model.

To further evaluate the performance of the model, this
paper selects the NUAA-SIRST Datasets as our test dataset.
50 images are randomly selected from the NUAA-SIRST
Datasets as the test set, which have diverse scenes and light-
ing conditions, and are able to evaluate the robustness and
accuracy of the detection model more comprehensively.

In addition to dataset segmentation, this paper also adopts
a cross-validation approach to validate the performance of
the detection method. Specifically, this paper uses K-fold
cross-validation, where the training dataset is divided into K
mutually exclusive subsets, and K — 1 of them are used for
training each time, and then the remaining one is used for
validation. Such a repetitive process is performed K times
to ensure that each subset is used for validation. Ultimately,
in this paper, the results of the K validations are averaged to
obtain a final performance evaluation.

Analysis of datasets

The above two datasets are applicable to the field of small
target detection for binary classification, with only “target”
and “background”, and no classification of small target types.

To better design the infrared small target detection net-
work, this paper analyzes the IRSTD-1k Datasets and
NUAA-SIRST Datasets appearing in the paper for the phys-
ical characteristics of the small targets in infrared images
using three metrics, namely, the number of targets, the size
of the targets, and the brightness of the targets.

As shown in Fig. 6a, the two datasets have similar metrics
in terms of the number of targets contained in a single image,
with more than 80% of the images containing only 1 target.

As shown in Fig. 6b, the proportion of target size in the
IRSTD-1k Datasets to the whole image is mostly concen-
trated in 0.03-0.15%, while the proportion of target size in
the NUAA-SIRST Datasets is mostly concentrated in 0.01—
0.03%.The image sizes of the NUAA-SIRST Datasets (300
x 300) are all smaller than the image size of the IRSTD-1k
Datasets (512 x 512), which further indicates that the target
sizes in the NUAA-SIRST Datasets are smaller.

As shown in Fig. 6¢c, the average brightness of small tar-
gets in the IRSTD- 1k Datasets is much higher than that in the
NUAA-SIRST Datasets.Meanwhile, the above two datasets
are suitable for the target detection task of binary classifica-
tion (the labeled images are binarized PNG images) and do
not classify the specific kinds of targets. In summary, the tar-
gets and backgrounds in the two datasets are in an unbalanced
state.
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Evaluation metrics

In this paper, the infrared small target detection problem is
regarded as an image segmentation problem, so the normal-
ized intersection ratio (nloU) [36], subject operating char-
acteristic curve (ROC) [49], Precision, Recall, F-Measure,
Cohen Kappa [59] are used as the evaluation metrics for
assessing the detection methods.

(1) Cohen Kappa

For infrared small target detection data, there is a common
problem of unbalanced target size and brightness distribu-
tion, this paper uses Cohen Kappa coefficient to evaluate the
consistency of the prediction results with the real labeled
images.

The Cohen Kappa coefficient can be represented by the
Fig.7 and Egs. (14), (15), (16):

Po — Pe

Kappa = (14)
1 — pe
TP + TN
Po = 15)
(TP 4+ FP + FN + TN)
(TP 4 FN)(TP + FP)
Pe = (16)

~ (TP +FP + FN + TN)?’

where p, denotes the sum of the number of correctly catego-
rized samples in each category divided by the total number
of samples; p, denotes the result of multiplying the number
of true samples in each category by the number of samples
in the corresponding category, divided by the square of the
total number of samples.

(2) nloU

When combining deep learning techniques with infrared
small target detection [36], the output of the detection method
is a binary mask, and the values of these metrics are usually
infinite. Meanwhile, existing segmentation-based detection
methods model infrared small target detection as a segmen-
tation process [60], which often sacrifices the integrity of
the segmented target for a higher detection rate [61]. To
obtain more scientific and accurate detection results, this
paper adopts standardized Intersection over Union (nloU)
instead of IoU.

nloU is defined as:
N .
1 TP[i]
IoU = — 17
V=N Z T[i1+ Pli] — TP[] 17

where N represents the total number of samples in the
dataset; % represents the IoU value of the ith
sample; T'[i] represents the number of target true mask pix-
els of the ith sample; P[i] represents the number of pixels

of the predicted segmentation result of the ith sample; T P[i]
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represents the number of true mask pixels in the predicted
segmentation result of the (ith) sample.

(3) ROC, AUC

The ROC curve is a common tool for evaluating the perfor-
mance of binary classification algorithms, and the method in
this paper is suitable for segmenting the target to be tested
from an infrared image containing only one class of tar-
get and background. The curve is able to present a moving
trend between false positive rate (FPR) and true positive rate
(TPR), which helps the detection method to achieve the best
detection performance under a sliding threshold.

TPR (True Positive Rate) indicates the true positive rate,
the proportion of samples with true prediction and correct
prediction to all true samples, as shown in Eq. 18:

TP
TPR = —
p

(18)
FPR (False Positive Rate) represents the false positive rate,

the proportion of samples with true predictions and incorrect

predictions to all non-true samples, as shown in Eq. (19):

FP

FPR = — 1
P 19)

AUC is a comprehensive metric that does not depend on
a specific threshold and is able to measure the accuracy of

detection methods. At the same time, it can visually com-
pare the performance differences between different detection
methods on the ROC curve. In infrared small target detec-
tion, AUC is able to compare the detection capabilities of
different methods in different scenarios.

(4) P-R, F1-Measure

F1-Measure is a metric for evaluating the performance of
classifiers and is commonly used in binary classification
problems. In infrared small target detection, targets and
non-targets are usually categorized as two classes and then
F1-Measure is used to evaluate the detection performance.

The calculation of Precision, Recall and F1-Measure are
shown in Egs. (20) to (22):

TP

Precision = — (20)
TP + FP
TP
Recall = ———— (21)
TP + FN
Fl— 2 x (Precision x Recall) 22)

Precision + Recall

Experimental details

In this paper, to validate the effectiveness of the proposed
method, we configured the following hardware and soft-
ware environments: Intel(R) Core(TM) i9-10850K, 32 GB
of RAM and NVIDIA Geforce RTX3090 GPU, Windows 11
system environment, Pycharm 2022.3.2 and Pytorch 1.10.1.
In this paper, the input image size is adjusted to 512x512,
SGD is used as the optimizer, the initial learning rate is set
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to le-3 for 150 epochs, the batch-size is 8, and the learning
rate is adjusted downward to the initial 0.1 every 50 epochs.

For the training data, to ensure that the scarce features of
infrared small targets are not lost, this paper does not resize
the input image, ensures that the size of the original image
is unchanged and input into the network, and sets the batch-
size to 10 according to the storage capacity limit of the test
platform.This paper selects ALCNet [62], ACM-Unet [36],
TBC-Net [34], IAAANet [22], IST-TransNet [21] and MTU-
Net [49] as data-driven IR small target detection methods, and
LCM [28], RLCM [29], RIPT [63] and IPI [32] are selected
as model-driven IR small target detection methods. To make
a fair comparison, the hyper-parameters of all methods are
used as provided by the original authors, and they are all
trained and tested on the same dataset, and the test results
will be taken as the mean value of all test images.

Comparative experiments
Quantitative analysis of IRSTD-1k Datasets

In this paper, a comprehensive comparison is made with the
methods of this paper using the comparison methods on the
IRSTD-1k Datasets.

The quantitative analysis data of each comparison method
on the IRSTD-1k Datasets. As is shown in Table 1, in the
model-driven detection based methods, the LCM, RLCM
and RIPT cannot exclude the influence of background and
clutter noise, which leads to the positive samples not being
detected correctly and a large number of negative samples
being mistaken as positive samples, resulting in a lower Pre-
cision and higher Recall situation; limited by the fixed target
shape and size in the method, the IPI method is less robust
to target diversity, resulting in lower F1-Measure and AUC
indexes.

Among the data-driven detection methods, the method
in this paper achieves 0.8125, 0.8588, 0.8916, and 0.8351
on multiple metrics of nloU, F1-Measure, AUC and Cohen
Kappa, respectively, which are 3.21%, 6.13%, 5.40%, and
6.42% better than the sub-optimal values, and achieves the
optimal values among the various methods The optimal value
among the multiple methods is reached. Finally, as shown in
Fig. 8, this paper visualizes the three evaluation metrics of
nloU, F1-Measure and AUC by the method of box plot, and
the method of this paper has no outliers and has high robust-
ness.

Meanwhile, after comparative experiments and tests,
compared with IAAANet, IST-Transformer and MTU-Net,
which use the self-attention mechanism, this paper’s method
achieves a better balance between the number of parame-
ters and the computation speed (on GPU) of a single image;
compared with TBC-Net, this paper, with the addition of
the self-attention mechanism and a large number of cas-
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cade operations, is still can realize processing a 512x512
image in 0.1 s, proving the effectiveness of the EGF method
in MADFF.

Quantitative analysis of IRSTD-1k datasets

As shown in Fig. 11, this paper demonstrates the detection
effect of some classical detection methods and SOTA meth-
ods on IRSTD-1k Datasets, and the model-driven detection
methods based on model-driven detection have more prob-
lems of false alarms and missed detections.

The LCM and RLCM methods based on the principle of
local contrast maximization can detect some small targets,
but when facing a complex background or a small difference
between the background contrast and the target, there is still
the problem of false alarms due to the existence of the block-
ing effect itself. The IPI method based on local block tensor
analysis is able to predict multiple targets with different sizes
more accurately, but suffers from the problem of blurred edge
features when facing targets with diverse shapes and sizes.

Although data-driven detection-based methods generally
obtain better detection results and robustness, they still have
more problems.

AlCNet, ACM-Uent methods are more stable in different
backgrounds, but due to the fact that they are only based on
multiple levels of concurrency in the local feature area, they
do not associate global multi-scale features with contextual
information, which makes it impossible to distinguish com-
plex backgrounds such as cloud layers.

As the Transformer attention mechanism in IST-TransNet,
IAAANet and MTU-Net methods extracts a large number of
long range global features such as useless background and
noise, and ignores the problem of the scarcity of local features
of small targets, which fails to provide the Transformer with
a sufficient amount of effective target data, resulting in a large
number of false alarms when the target is obstructed by grass
and trees. A large number of false alarm situations.

Due to the use of lightweight strategies such as reducing
jump connections and channel compression, the edge texture
and detail features cannot be recovered, which leads to the
loss of the smallest size target when the TBC-Net method
performs multi-target detection.

In this paper, when facing backgrounds such as clouds,
grasses and complex textured road surfaces, the method ben-
efits from the BlurPool and cascade method in FEM, which
reduces the target position offset and feature loss; MADFF
can fully correlate the global features of the background with
the local features of the target, which excludes the influence
of a large amount of background and clutter information on
the later target feature identification, and reduces the case of
false alarm of the target; and then, the CLFEF utilizes the
deep global features in MADFF to strengthen the shallow
local features of the target, which further reduces the loss
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Table 1 Comparison of multiple evaluation metrics for different comparison methods on the IRSTD-1k dataset

Method nloU 1t Recall T Precision | F1-Measure t AUC T Cohen Kappal Params] Time on GPU/s |
LCM 0.1936 0.8692 0.0406 0.0776 0.3996 0.2552 - -
RLCM 0.3028 0.8761 0.0254 0.0494 0.4519 0.2746 - -
RIPT 0.3240 0.8362 0.0356 0.0683 0.4119 0.1986 - -
IPI 0.6469 0.5562 0.7255 0.6297 0.4671 0.3627 - -
ALCNet 0.6343 0.6845 0.4910 0.5718 0.6924 0.5872 3.5M 0.255
ACM-Unet 0.7287 0.7829 0.7378 0.7597 0.7296 0.6583 5M 0.159
TBC-Net 0.7385 0.8752 0.6217 0.7270 0.7862 0.6829 5M 0.049
TAAANet 0.7642 0.8143 0.5904 0.6845 0.8125 0.7456 18.24M 0.12
IST-TransNet  0.7528 0.7861 0.6845 0.7312 0.7577 0.7084 7.0M 0.085
MTU-Net 0.8259 0.8058 0.8222 0.8139 0.8459 0.7849 7.5M 0.108
Ours 0.8525 0.8723 0.8553 0.8637 0.8916 0.8351 8.1M 0.096

The optimal and sub-optimal values of each metric are indicated in bold blue and red, respectively, and 4 indicates that the larger the value of the
metric, the better the detection performance. The method in this paper achieved better results in nloU, F1-Measure, AUC and Cohen Kappa
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Fig. 8 nloU, F1-Measure, AUC of different comparison methods in IRSTD-1k Datasets. As can be seen from the box plots, the method of this
paper has high robustness with no outliers during the testing process, while obtaining competitive results

of internal target features; finally, EFEM utilizes the shallow
contour and position information to ensure the integrity of
the target shape and accurate localization.

Meanwhile, as shown in Figs.9 and 10, this paper also
plots the ROC curves of different methods on the IRSTD-
1k Datasets with 3D effects, which proves that the proposed
methods in this paper are obviously better than other meth-
ods.

NUAA-SIRST datasets

To fully reflect the validity of the methods in this paper, the
same experimental setup and evaluation metrics as the com-
parison experiments on the IRSTD-1k Datasets are used in
this paper, and the validation is carried out on the NUAA-
SIRST Datasets (Fig. 11).

As shown in Table 2, LCM, RLCM and RIPT still appear
to have generally lower Precision and higher Recall; com-
pared with the above methods, the IPI method has better
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Fig.9 ROC curves for different ——LCM
comparison methods on ~—— TBCNet
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Fig. 10 3D visualization results of ALCNet, ACM-Unet, TBC-Net, IAAANet, IST-TransNet, MTU-Net and the proposed method in this paper on

IRSTD-1k Datasets

Precision and Recall metrics, but worse F1-Measure and
AUC metrics. The above detection methods rely heavily
on a priori knowledge and manual parameterization, and in
complex scenes, with the imaging distance and environmen-
tal factors changing, the shape and size of the small target
will change accordingly, resulting in poor detection results.
Meanwhile, among the data-driven detection-based methods,
the method in this paper achieved 0.8057, 0.8111, 0.7981
and 0.7737 in nloU, F1-Measure, AUC and Cohen Kappa
metrics, respectively, which were 2.68%, 2.37%, 6.02%, and
6.77% higher than the suboptimal values, and reached the
multiple methods’ optimal value.

As shown in Fig. 12, this paper demonstrates the detec-
tion effect of some classical detection methods with SOTA
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methods on the NUAA-SIRST Datasets. The problems of
false alarms, missed detections, loss of target center features
and shape distortion when facing single target and multi-
targets, which expose that the other comparison methods
cannot exclude the background interference and lose a large
number of target features in the detection process. In con-
trast, in this paper, through MADFF, CLFEF fully correlates
the global and local features, weakens the influence of clutter
noise, and preserves the internal features of the target; at the
same time, EFEM preserves the position and edge informa-
tion, and accurately reconstructs the shape of the target.
The analysis results of the comparison methods on the two
datasets are consistent, and the quantitative and qualitative
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Fig. 11 Detection results of different detection methods on the IRSTD-
1k Datasets. In the figure, the location of the small target is zoomed in,
and the solid yellow box indicates “Target Successfully Detected”, the
dashed yellow box indicates “Target False Alarm”, and the red box indi-

analysis results are consistent, which proves the effectiveness
and advancement of this paper’s method.

Ablation experiments

In this section, the paper uses convolutional layers and jump
connections to form a Baseline containing 3 downsamplings.

GT LCM
JAAANet

GT LCM

TAAANet

IST-TransNet

-

IST-TransNet

MTU-Net Ours

RLCM

IST-TransNet

MTU-Net Ours

RLCM

IST-TransNet

MTU-Net

cates “Target Miss Detection”. The method in this paper does not have
false alarms and missed detections, and effectively retains the target
features and achieves better detection results

In this paper, ablation experiments are conducted on the pro-
posed FEM, MADFF, CLFEF, and EFEM modules using
the NUAA-SIRST Datasets, and the validity of each design
is evaluated by adding different modules sequentially. To
ensure the fairness of the ablation experiments, the same
parameter settings are used in this paper for the ablation
experiments of each type of module.
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Table 2 Comparison of multiple evaluation metrics of different comparison methods on NUAA-SIRST Datasets

Method nloU 1 Recall T Precision | F1-Measure T AUC 1T Cohen Kappat Params | Time on GPU/s |
LCM 0.2123 0.8507 0.0384 0.7352 0.3239 0.1896 - -
RLCM 0.4296 0.8512 0.0301 0.5817 0.3958 0.2074 - -
RIPT 0.2999 0.8129 0.0287 0.5543 0.4542 0.2358 - -
IPI 0.6233 0.5714 0.7481 0.6479 0.4215 0.3681 - -
ALCNet 0.6657 0.6581 0.4867 0.5596 0.6296 0.5428 3.5M 0.255
ACM-Unet 0.7748 0.7635 0.7996 0.7811 0.6730 0.5639 5M 0.159
TBC-Net 0.7230 0.8571 0.379 0.7325 0.7248 0.6294 5M 0.049
TAAANet 0.7863 0.8072 0.6114 0.6958 0.7523 0.6758 18.24M 0.12
IST-TransNet  0.7920 0.7935 0.7614 0.7771 0.7385 0.6441 7.0M 0.085
MTU-Net 0.7847 0.8023 0.7825 0.7923 0.7528 0.7246 7.5M 0.108
Ours 0.8057 0.8185 0.8038 0.8111 0.7981 0.7737 8.1M 0.096

The optimal and sub-optimal values of each index are shown in bold blue and red, respectively, and 1 indicates that the larger the index value, the
better the detection performance. The method in this paper obtains better results on nloU, Precision, F1-Measure, AUC metrics, and Cohen Kappa
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Fig.12 Detection results of different detection methods on the NUAA-
SIRST Datasets. In the figure, the location of the small target is zoomed
in, and the solid yellow box indicates “Target Successfully Detected”,
the dashed yellow box indicates “Target False Alarm”, and the red box

MADFF

In this paper, to set the effectiveness of the dilation con-
volution and to explore the combination of dilation rates
with the best detection performance, the dilation convolu-
tion with different dilation rates is included in Baseline for
comparison experiments. As shown in Table 3, the best detec-
tion performance is achieved when using the combination of
side-by-side convolutions with expansion rates of 1, 2, 4,
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indicates “Target Missed Detection”. The method in this paper does
not have false alarms and missed detections, and effectively retains the
target features and achieves better detection results

and 8 (containing expansion rates 1, 2, 4, and 8), and set to
Baseline-D.

In this paper, to verify the effectiveness of mutual attention
deep feature fusion module and compression operation, this
paper adds CBAM [64] attention module in Baseline-D and
sets it as Method A, replaces CBAM attention module in
Method A with Transformer module and sets it as Method
B, and adds compression operation in Method B and sets it
as Method C.
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Table 3 Detection performance of Baseline-D under different dilation
rate convolution combinations

Expansion nloU% F-Measuret AUCH
1 0.5374 0.4717 0.4263
1,2 0.5426 0.4934 0.4696
1,2,4 0.5704 0.5195 0.4783
1,2,4,8 0.5892 0.5347 0.5064

As shown in Table 4, due to the introduction of the mutual
attention deep feature fusion module and the use of the Trans-
former attention mechanism to enhance the understanding
of the global regional semantic relationship between the
target and the background, Method B improves the nloU, F-
Measure and AUC metrics in the nloU, F-Measure and AUC
metrics by 19.43%, 8.13% and 6.68%, respectively, com-
pared with Method A. As a result of the incorporation of the
a priori knowledge-based with the global attention compres-
sion mechanism, the nloU, F-Measure and AUC metrics are
improved by 3.01%, 6.69% and 4.59% respectively, and the
Params metric is reduced by 40.82%, which indicates that the
mutual attention deep feature fusion module proposed in this
paper is able to enhance the degree of association of global
features at the pixel level under the premise of reducing the
number of model parameters, and enhance the network to
captures long-range associations between pixels, thus retain-
ing more small target key detail information.

MaxPool compression method can only compress the
input feature map to a fixed proportion of the size, and will
lose some important but small values of the feature values;
Linear Attention [65] compression method in the attention
map is too smooth, it is difficult to focus on the local effec-
tive features, and at the same time, due to the low rank of the
attention map, it restricts the selfattention module output fea-
ture diversity. As shown in Fig. 13, compared with MaxPool
and Linear Attention, the compression mechanism based on
prior knowledge and global attention proposed in this paper
is able to customize the setting of the compression ratio and
reduce the information loss of the input image features in
the compression process; at the same time, in the face of the
high computational complexity, the need for a large amount
of training data, and the sensitivity to hyper-parameters, the
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Fig. 13 nloU for different compression methods at different compres-
sion rates

maximum compression ratio is achieved while achieve the
best detection effect.

In this paper, to verify the effectiveness of the CLFEF
module and to form a comparison method, this paper uses a
simple jump connection to fuse the feature maps of the same
size in the feature extraction part and the decoder part on
the basis of Method C and sets it as Method D; at the same
time, this paper adds the context fusion module designed in
this paper on the basis of Method C and sets it as Method
E. As shown in Table 5, thanks to the context fusion module
can dynamically guide the shallow local feature enhancement
and fusion according to the deep pre-proposed features, so
as to strengthen the characterization ability of the fused fea-
tures on the position information of small targets, Method
D improves 3.17%, 6.72% and 2.87% in the three indexes
of nloU, F-Measure and AUC, respectively, compared with
Method C without feature fusion; meanwhile, Method E
improves 3.17%, 6.72% and 2.87% in the three indexes of
nloU, F Measure and AUC metrics improved by 3.37%,
4.04% and 1.95%, respectively. The asymmetric local con-
textual feature fusion module proposed in this paper not only
introduces a nonlinear activation method, but also is able
to perform dynamic adaptive, context-aware feature refine-
ment of the output features, suppressing irrelevant features
and emphasizing relevant features at an early stage in the

Table 4 Results of the ablation

experiments of MADFF, 1 Method Module nloU? F-Measuret AUC?H Params

indicates that the larger the Baseline - 0.5497 0.4982 0.4726 -

value of this indicator, the better .

the detection performance Baseline-D w/DConv 0.5892 0.5347 0.5064 -
Method A w/CBAM 0.6052 0.6291 0.6616 -
Method B w/MADFF 0.7228 0.6803 0.7058 9.8 M
Method C w/EGF 0.7446 0.7258 0.7382 59M
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Table5 Results of the ablation experiments of CLFEF, 4 indicates that
the larger the value of this indicator, the better the detection performance

Method Module nloU 4t  F-Measure ¥  AUC 1
Method D w/o CLFEF  0.7682 0.7746 0.7594
Method E~ w/ CLFEF 0.7941 0.8059 0.7742

Table 6 Results of the ablation of EFEM, 1 indicates that the larger
the value of the index, the better the detection performance

Method Module nloU ¢ F-Measure 1 AUC ¢t
Method F w/o EFEM 0.8011 0.8187 0.7984
Method G w/ EFEM 0.8125 0.8302 0.8068

low-layer network, which makes the network able to encode
high-level semantics more effectively.

EFEM

In this paper, to verify the EFEM and to form a comparative
method, this paper adds the Sobel edge feature extraction
operation on shallow image features on the basis of Method
E and sets it as Method F. At the same time, the edge feature
module is added on the basis of Method E and sets it as
Method G.

The Sobel and Laplace operators in the EFEM are able to
obtain primary edge features, the distance transform func-
tion is able to suppress the background noise, and the
spatio-temporal attention mechanism is able to obtain the
dependency of rough small targets on the whole image, which
helps the network to supervise the training of the subsequent
feature maps. As shown in Table 6, the edge feature mod-
ule with the addition of single-layer Sobel operation only
improves 0.88%, 1.59%, and 1.05% in the three metrics of
nloU, F-Measure, and AUC compared to Method E. How-
ever, Method G with the addition of the edge feature module
improves 2.31%, 3.01%, and 3.01% in the three metrics of
nloU, F-Measure, and AUC compared to Method E. The edge
feature module is a good example of a method that can be
used to improve the performance of the network in the three
metrics of the nloU and AUC. 2.31%, 3.01% and 4.21%. The
edge feature module proposed in this paper can effectively
solve the loss and blurring of key information in the convo-
lution process of small targets during the training process of
the network due to the scarcity of features, which leads to
inaccurate predicted location and structure information. As
shown in Fig. 14, Method G with the added edge feature mod-
ule can continuously optimize the edge and shape features of
the small targets as the training process proceeds.
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FEM

In this paper, to verify the effectiveness of FEM and to form
a comparison method, this paper uses the structure of the
feature extraction module but removes the BlurPool filter
on the basis of Method G. MaxPool2D is still used as the
downsampling layer and is set up as Method I. At the same
time, the BlurPool filter is used as the downsampling layer
on the basis of Method I.

Due to the streamlining of cascade jump connections in the
feature extraction module and the use of dilation convolution
to expand the network sensory field, multi-scale contextual
features are extracted, as shown in Table 7, method I improves
3.06%, 1.39% and 2.41% in the three metrics of nloU, F-
Measure and AUC, respectively, compared to method G.
Meanwhile, due to the incorporation of BlurPool filter, it
improves network Meanwhile, due to the addition of the Blur-
Pool filter, which improves the network translation isotropy
and reduces the loss of sparse features, method J improves
another 1.80%, 2.03% and 7.90% compared with method I,
respectively. The feature extraction module proposed in this
paper is able to gradually extract different levels of feature
information while reducing the target diagnostic bias and
retaining more effective and critical small target features.

To further demonstrate the effectiveness of adding Blur-
Pool, as shown in Fig. 15, the BlurPool-based FEM designed
in this paper can effectively reduce the loss of target features,b
and attenuate the effect of feature offset (the red dots indi-
cate the center-of-mass position of the target). Meanwhile, to
overcome the blurring problem, this paper adds a multilevel
cascade operation to the FEM, which can compensate for the
lost high-frequency target features and eliminate the effect
of low-pass filtering.

Hyper-parameter validation

To further prove the effectiveness of the method designed in
this paper, the validity of the important hyperparameters in
the method is verified in this paper, including the number of
downsampling, the dilated convolution in MADFF, o and
o in the loss function.

To verify the effect of downsampling times (number of
FEM modules) on the detection effect in this paper’s method,
this paper evaluates the downsampling from 1 to 5 times
respectively. The detection effect of different downsampling
times in this paper is shown in Fig. 16a, as the number of
downsampling times increases, deeper semantic information
can be obtained, which helps to establish the global connec-
tion between the small target and the background and filter
out most of the clutter noise. However, when the downsam-
pling times are 4 and 5, the minimum feature map size in
the network is only 32x32, and the small target size in the
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Fig. 14 Ablation experiments of EFEM

Table 7 Results of ablation experiments for the FEM, 4 indicates that
the larger the value of this metric, the better the detection performance

Method Module nloU ¢ F-Measure 1 AUC ¢t
Method I w/o BlurPool 0.8374 0.8417 0.8263
Method J w/ BlurPool 0.8525 0.8588 0.8916

original image is smaller than 32x 32, which will lead to the
loss of target edges and detail information.

Different from the ablation experiments, to further ver-
ify the influence of different dilatation rate combinations on
the MADFF effect, this paper sets the dilatation rate combi-
nations of [1], [1,2,4] and [1,2,4,8]. The detection effect of
different dilution rate combinations is shown in Fig. 16b. The
[1,2,4,8] dilution convolution combination used in this paper
can effectively capture multi-scale information, combine dif-
ferent dilution rates to extract wider contextual information
within the perceptual field, and reduce the interference of
small target size change and complex background.

Fig. 15 The effect of BlurPool
on feature offset and feature
loss. The method in this paper
can effectively prevent
thephenomenon of feature offset
and retain the important features
of the target

W/0 W/ W/
EFEM EFEM EFEM
40 epoch 40 epoch 60 epoch

To verify the influence of the weighting coefficients of
edge loss and detection result loss in the loss function on
the detection effect, this paper has done several sets of com-
parison experiments on different combinations of weighting
coefficients. As shown in Fig. 16¢, the shallow edge features
can be more fully utilized when oy = 0.3 and o = 0.7,
and the shape and position information of small targets can
be better recovered.

Limitations

The proposed method in this paper achieves good results
on IRSTD-1k Datasets and NUAA-SIRST Datasets, but the
detection method is still problematic for practical applica-
tions.

The processing speed is still close to 0.1 s per image, and
the main reason for this problem is that the self-attentive
mechanism needs to introduce additional parameters to learn
the correlation between each location and other locations,
which leads to a significant increase in computational com-

BlurPool
(80 epoch)

Maxpool 2D
(80 epoch)

@ Springer
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Fig. 16 Detection effect of different hyperparameter choices on IRSTD-1k Datasets. Among the combinations of multiple hyperparameters, the
above three sets of hyperparameters set in this paper achieved the best detection results

plexity. Meanwhile, the number of publicly available infrared
small target detection datasets is limited due to institutional
constraints in the security domain. This scarcity of datasets
leads to problems such as unbalanced dataset distribution and
limited generalization ability during network training. Future
studies will be carried out in the above-mentioned issues.

Conclusions

This paper proposes “A Single-Frame Infrared Small Target
Detection Method based on Joint Feature Guidance”, which
exhibits excellent detection performance in infrared small
target detection.

First, we successfully mitigate the feature offset problem
by introducing BlurPool in feature extraction. In addition,
the high-frequency target features lost by blur processing
are supplemented by multi-level dense connectivity. Then,
MADFF, based on the self-attention mechanism, is able to
automatically model the long-range relationship between
background global features and target localization. Mean-
while, the cosine similarity index and low-dimensional
remapping are utilized to improve the computational effi-
ciency. Finally, we introduce CLFEF and EFEM for shallow
features, which utilize deep semantic features to guide the

@ Springer

enhancement and fusion of spatial information and edge tex-
ture features in shallow features, and enhance the ability of
adaptive characterization of shape and localization informa-
tion.

The future work is organized in the following two aspects.
First, to construct an infrared small target detection dataset
with high image quality, large data volume, and diverse
backgrounds, so that the detection method can learn diverse
target and background knowledge. Second, explore the fea-
ture compression method for the self-attention mechanism,
in addition to fully obtaining the dependence relationship
between the target and the complex background, to further
reduce the number of model parameters and computational
speed, to lay the foundation for subsequent practical engi-
neering projects.
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