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Abstract
Community detection is an important method to analyze the characteristics and structure of community networks, which
can excavate the potential links between nodes and further discover subgroups from complex networks. However, most of
the existing methods only unilaterally consider the direct link topology without comprehensively considering the internal
and external characteristics of the community as well as the result itself, which fails to maximize the access to the network
information, thus affecting the effectiveness of community detection. To compensate for this deficiency, we propose a new
community detection method based on multi-constraint non-negative matrix factorization, named orthogonal regular sparse
constraint non-negative matrix factorization (ORSNMF). Based on the network topology, the ORSNMF algorithm models
the differences of the outside of the community, the similarities of the nodes inside the community, and the sparseness of the
community membership matrices at the same time, which together guides the iterative learning process to better reflect the
underlying information and inherent attributes of the community structure in order to improve the correct rate of dividing
subgroups. An algorithm with convergence guarantee is also proposed to solve the model, and finally a large number of
comparative experiments are conducted, and the results show that the algorithm has good results.

Keywords Community detection · Non-negative matrix factorization (NMF) · Community dissimilarity · Node similarity

Introduction

In real life, community networks are ubiquitous, and they
consist of highly interconnected entities from the natural
world and society [1]. These networks typically share a com-
mon characteristic: closely related or similar nodes within a
community network often belong to the same category, while

B Zigang Chen
chenzg@cqupt.edu.cn

B Tao Leng
lengtao@iie.ac.cn

1 School of Cyber Security and Information Law, Chongqing
University of Posts and Telecommunications, Chongqing
400065, China

2 Intelligent Policing Key Laboratory of Sichuan Province,
Sichuan Police College, Sichuan 646000, China

3 Department of Computer Science and Engineering, Santa
Clara University, Santa Clara, CA 95053, USA

4 School of Cyberspace Security, Beijing University of Posts
and Telecommunications, Beijing 100876, China

nodes with weaker connections or opposing characteristics
tend to belong to different categories. Based on these char-
acteristics, we can extract valuable feature information from
community networks to achieve clustering effects, ultimately
applying them in relevant fields. For instance, in the field of
bioinformatics, we can partition biological molecules to dis-
cover those with similar structures and functions or identify
protein complexes within protein–protein interaction (PPI)
networks. In the realm of social media, we can perform opin-
ion analysis, recommend products to users, and find potential
friends [2]. Therefore, analyzing these community networks
holds significant importance.However, community detection
is an effective means to analyze the characteristics and struc-
ture of community networks, and important features such
as explicit and implicit of community networks are mined
by optimizing the community detection method to achieve
the effect of effective division of community structure, so
the study of community detection is of great significance to
understand the deeper characteristics and functions of the
network.
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In recent years, the field of community detection has
attracted the attention of many researchers and many com-
munity detection methods have been proposed [1, 3–5], such
as modularization and minimal cut [6]. In addition, non-
negative matrix factorization algorithm (NMF) is also an
important method for community detection, which aims to
decompose a high-dimensional matrix into two or several
low-dimensional non-negative matrices, whose product can
be approximated equal to the original matrix. Comparedwith
other methods, NMF has the following main advantages in
the application of community detection [7]: (1) high inter-
pretability: by representing the community network using
an adjacency matrix and utilizing this matrix as the feature
matrix in NMF, each value in the community result matrix
obtained through factorization can be understood as the prob-
ability that a node belongs to the corresponding community.
For example, in the community result matrix, Zi j represents
the probability or strength of node Vi belonging to commu-
nityC j . This enhances the interpretability and explainability
of the results; (2) high adaptability: real-world networks
come in various forms, including overlapping and non-
overlapping networks, directed and undirected networks,
attribute networks, dynamic networks, and more. and the
NMF and its related variants can be applied to any of the
above networks. For example, in the case of overlapping
networks, it only requires setting a probability threshold to
detect nodes’ membership in multiple communities; (3) high
integration: existing information within the community net-
work can be incorporated into the NMF learning process to
improve the accuracy of community detection. For instance,
existing attributes or node labels in the network can be inte-
grated into the objective function to iteratively learn more
refined results. Building upon these advantages, researchers
have conducted in-depth studies on the application ofNMF in
community detection. For topological networks [8, 9], which
exclusively contain structural information, such as directed
or undirectednetworks,NMFcanbedirectly applied to detect
communities. Many researchers have further improved this
by modeling communities [3] or enhancing performance by
incorporating additional information [10]. For signed net-
works [11, 12], i.e., the relationship between nodes can be
expressed as positive or negative correlation, where positive
correlationmeans that the nodes are friends and negative cor-
relation means that the nodes are enemies, and thus the adja-
cency matrix is a matrix with sign. Compared to traditional
networks, signed networks not only consider the closeness
between nodes but also require positively correlated nodes to
be in the same community and negatively correlated nodes
to be in different communities. For attribute networks [13,
14], where nodes possess labels or attribute information in
addition to link structure, these attribute details often better
represent unique node characteristics and complement topo-
logical information for achieving high-quality community

detection. It is evident that NMF and its variants can address
community detection problems in various types of networks,
playing a crucial role in community mining.

Although current research has achieved certain effective-
ness, mining potential information in community networks
remains insufficient, mainly due to the following shortcom-
ings: (1) lack of consideration of homology among all nodes
within the community: somenodesmaynot have a direct rela-
tionship, but through commonneighbor nodes, potential rela-
tionships between them can be discovered. Typically, nodes
with a large number of common neighbors are more closely
related than those with few or no common neighbors, mak-
ing them more likely to be assigned to the same community.
For example, if both Paper 1 and Paper 2 cite Paper 3, while
Paper 4 has no citation or referencing relationship with the
aforementioned three papers, Papers 1 and 2 are more likely
to be classified into the same topic category with a higher
probability, indicating a potential common theme. However,
it is uncertain whether Paper 4 shares a common theme with
the aforementioned three papers. This illustrates the poten-
tial relationships that can be uncovered through common
neighbor nodes. Therefore, considering common neighbors
in calculating similarity is particularly important; (2) Lack of
consideration for heterogeneity between communities (i.e.,
between communities): community detection aims not only
for nodes within communities to have more similar features
but also for differences between communities to be more dis-
tinct. The greater the differences between communities, with
more focused featureswithin each community, the clearer the
community detection partition and the better the results; (3)
Lack of optimization for the communitymembershipmatrix:
for the probability matrix obtained from community detec-
tion, we often assign the community with the highest prob-
ability as the belonging community for the corresponding
node. However, due to constraints from initialization meth-
ods and the number of iterations, the values in the probability
matrix often lack clear distinctiveness. In summary, consid-
ering the three elements mentioned above simultaneously
during the model learning process is crucial for commu-
nity detection. Optimization from the internal, external, and
inherent characteristics of community networks can enhance
the effectiveness of community detection. However, address-
ing these aspects simultaneously is often challenging and
represents a research problem that urgently needs solutions.

Motivated by existing community detection methods
based on NMF, this study aims to address the follow-
ing issues: (1) addressing the homogeneity issue, we will
consider the similarity between nodes and measure the sim-
ilarity in various ways to uncover hidden information in the
network; (2) In order to address the disparities between com-
munities, we will introduce orthogonal constraints to ensure
diversity between communities. We will guide the learning
process of the objective function with a mutual constraint

123



Complex & Intelligent Systems

relationship between the diversity between communities and
the homogeneity among nodes, aiming for improved detec-
tion results; (3) For optimizing the result matrix, we will
add constraints to the community membership matrix. This
will lead to learning better results during each iteration,
producing more very small and some larger values, mak-
ing the probability of nodes belonging to communities more
distinct. In summary, we propose a newmulti-constraint non-
negative matrix factorization community detection method,
named orthogonal regular L1-norm sparsity constrained non-
negative matrix factorization (ORSNMF). Building on the
foundation of traditional network topology modeling, we
simultaneously model the diversity between communities,
the similarity among nodes, and the sparsity of the commu-
nity membershipmatrix. This comprehensive modeling aims
to better characterize the features of community structures.
Finally, we incorporate these three aspects into the objective
function for joint-constrained learning, resulting in improved
community detection. Our main contributions can be sum-
marized as follows:

• Based on the NMF of orthogonal regular L1-norm spar-
sity constraint, a new community detection model based
on non-negative matrix factorization is proposed. The
proposed scheme simultaneously models the differences
between communities, the similarity between nodes and
the sparsity of community member matrix in directed
networks in order to obtain the attributes of community
structure to the greatest extent.

• An algorithm with convergence guarantee is proposed to
optimize the model.

• Extensive experiments on synthetic and real data sets
show that our proposed model has better performance
on three metrics: jaccard similarity, normalized mutual
information (nmi) and accuracy [15].

The rest of this article is organized as follows. We intro-
duce related works in Sect.“Related works”, elaborate on
the related issues of community detection in Sect. “Problem
description” , and detail our proposed orthogonal regular
L1-norm sparsity constraint non-negative matrix factoriza-
tion model in Sect. “Orthogonal regular and L1-norm sparse
constrained NMF”. Comprehensive experiments are per-
formed to validate the effectiveness of the proposed scheme
in Sect. “Experiment and analysis”, followed by conclusions
in Sect. “Conclusion”.

Related works

For the community networks existing in real life, how tomine
the effective information and then identify the community to
promote more practical applications, such as movie recom-

mendation, advertisement pushing, etc., is a basic problem of
network analysis, and the process is also known as commu-
nity detection. In recent years, various community detection
methods have emerged, with significant attention given to
those based on NMF [3, 5, 16–22]. These methods have
gradually become a new direction in the field of community
detection

NMF is a classic low-rank matrix decomposition model
proposed by Lee et al. [23, 24]. The process involves decom-
posing a non-negative matrix into the product of two or more
non-negative matrices. The goal is to find a non-negative
base matrix and its corresponding non-negative coefficient
matrix, which, when multiplied, approximates the original
data matrix (i.e., the matrix before decomposition). NMF
possesses a unique functionality, namely, inherent cluster-
ing capability. He et al. [25] demonstrated that NMF and its
related improvements have similar effects to some classical
clustering algorithms [26–28]. Community detection, fun-
damentally, is a clustering problem on complex networks. In
addition to its clustering capability, NMF also has advantages
such as interpretability. When using NMF for community
detection, the adjacency matrix in the community network
can be used as the feature matrix of NMF, and the decom-
posed results represent the community member matrix and
the community feature matrix, respectively, which can be
viewed as the probability value that the node belongs to the
community in the communitymembermatrix, so as to extract
the relationship between the node and the community, which
makes the results easier to understand and convince people,
based on the above advantages, NMF is very suitable for
community detection.

Most existing community detection methods based on
NMF focus on enhancing the performance of the NMF
algorithm to achieve better results in community detec-
tion. For example, Wang et al. [3] proposed symmetric
non-negative matrix factorization (SNMF), asymmetric non-
negativematrix factorization (ANMF) and joint non-negative
matrix factorization (JNMF), respectively, for undirected
networks, directed networks and composite networks to
solve the problem of community discovery. The pairwise
constrained symmetric non-negative matrix factorization
method (PCSNMF) proposed by Shi et al. [29] considers
the symmetric community structure of undirected networks,
but also some pairwise constraints for basic information
generation. Ye et al. [9] proposed homophilic positive non-
negative matrix factorization (HPNMF), which models not
only the topology of links but also takes into account the
homogeneity of nodes in the network, providing a better
reflection of the inherent structural properties of commu-
nities. Ye et al. [10] propose to learn an affinity matrix
adaptively, which can capture the intrinsic similarity between
nodes accurately, and therefore benefit the community detec-
tion results. Shi et al. [21] proposed a Bayesian non-negative
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matrix factorization (NMF) method for adaptive community
detection. In the decomposition process, the use of Bayesian
methods allows not only for capturing the most appro-
priate number of communities in large networks through
shrinkage but also for finding optimal thresholds for assign-
ing nodes to communities in ambiguous situations. Tosyali
et al. [30] proposed regularized asymmetric non-negative
matrix factorization (RANMF) for directed network clus-
tering based on the prior information of the network and
the pairwise similarity of nodes. Zhang et al. [31] proposed
homophilic non-negative matrix factorization (HNMF) to
model bidirectional relationships between links and commu-
nities. From the community-to-link perspective, the method
assumes that nodes with common communities have a higher
probability of establishing links than nodes without common
communities, applying a preference-based pairwise func-
tion. From the link-to-community perspective, the method
assumes that linked nodes have similar community repre-
sentations, introducing a novel network embedding-based
community representation learning approach. Liu et al. [32]
introduced a symmetric and graph-regularized non-negative
matrix factorization (SGNMF)method. This approach incor-
porates multiple latent factors to enhance its representation
learning capabilities and introduces regularization terms to
account for the symmetry of undirected networks, ultimately
improving community detection performance. Luo et al.
[33] proposed a novel constrained fusion-induced symmetric
non-negative matrix factorization (CFS) model. This model,
designed for undirected networks, introduces a graph reg-
ularization factor that preserves the intrinsic geometry of
the network’s local invariance. This incorporation allows the
proposed detector to effectively understand the community
structure within the target network.

In summary, most existing community detection methods
can achieve good results under certain conditions, especially
when considering node attributes or labels as prior knowl-
edge, which can effectively enhance detection accuracy.
However, many models do not comprehensively consider
the characteristics of the community’s internal, external, and
inherent properties. They only derive limited inherent prop-
erties of community structures from the community structure
itself, without maximizing the extraction of network infor-
mation. As a result, this can impact the effectiveness of
community detection.

Problem description

A community network can be represented as a graph G =
(V , E), where node set V = {V1, V2, . . . , Vn}, Vi represents
a node and n = |V | represents the number of nodes in the

community network, edge set E = {ei j |Vi ∈ V ∩ Vj ∈ V },
ei j represents the edge between nodes Vi and Vj , m =
|E | represents the number of edges in the network. Net-
works are usually divided into undirected networks and
directed networks, there are many clustering methods for
undirected networks, while there are relatively few stud-
ies on directed networks. Therefore, this article focuses
on directed unweighted network clustering. In general, a
directed network G can be described by an adjacency matrix
A = [Ai j ]n×n , Ai j represents the relationship between node
Vi and node Vj , when there is a connection between Vi to
Vj (i.e. ei j ∈ E )Ai j = 1, otherwise, Ai j = 0. Suppose
the network G consists of k communities, and C denotes the
community set of G, that is, C = {Ci |Ci �= ∅, 1 ≤ i ≤ k},
where Ci represents the i th community and it is not empty.
The purpose of community detection is to divide these nodes
into k different groups according to the network topology, so
that the number of edges within any specific group are max-
imized, while the number of edges across different groups
are minimized. In this study, we focus on non-overlapping
community detection, that is, the community set C should
satisfy the condition Ci ∩C j = ∅ if i �= j , which means that
different communities Ci and C j have no common nodes.

Recently, NMF has become the important method of com-
munity detection [5, 9, 16, 18–20, 34], which mainly has the
following advantages:

• Better interpretability: given a network, after the non-
negative matrix decomposition, a community member
matrix will be obtained. Each element in the matrix can
be understood as the probability or intensity that the node
belongs to the corresponding community, which makes
the results of community detection more interpretable.

• Convergence node-related information: NMF can inte-
grate node- related information (such as node similarity
information) as regularization constraints into the objec-
tive function, and jointly guide the iterative optimization
of the objective function to improve the clustering per-
formance.

In view of this, we adopt NMF for community detection.
Specifically, the problem is defined as follows:

Given a directed and unweighted network G = (V , E),
using A to represent the adjacencymatrix of this network, the
individual nodes in the network can be divided into disjoint
clusters by optimizing the following objective function:

minL(Z , H) = ‖X − ZH‖2F , s.t Z ≥ 0, H ≥ 0, (1)

where X ∈ Rn×m+ is the original non-negative matrix, Z ∈
Rn×k+ is the basis matrix, H ∈ Rk×m+ is the coefficient matrix,
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k < min{n,m},‖•‖2F is the Frobenious norm,whose purpose
is to find the optimal low-rank non-negative matrices Z and
H , making ZH infinitely close to X .

WhenNMF is leveraged for community detection, the cor-
responding adjacencymatrix A in the networkwill be used as
the characteristicmatrix for decomposition, that is, A ≈ ZH ,
where H and Z represent the community characteristic
matrix and the community member matrix, respectively. Fur-
thermore, k represents the number of communities (clusters);
and Zi j represents the probability (strength) that the node Vi
belongs to the community C j (i.e. 1 ≤ j ≤ k ).

The discussion above is the traditional NMF model for
community detection. However, in the above model, the con-
nectivity between communities is not considered, so Wang
et al. [3] propose to integrate the information between com-
munities into the objective function, and set H = CZ
 so
that the original optimization problem is converted to the
following optimization problem:

minL(Z ,C) = ‖A − ZCZ
‖2F , s.t Z ≥ 0,C ≥ 0, (2)

where A ∈ Rn×n+ is the adjacency matrix, including n nodes,
Z ∈ Rn×k+ is the community member matrix, storing the
probability values of nodes belonging to communities, where
Zi j stores the probability of node Vi belonging to community
C j , C ∈ Rk×k+ is the cluster matrix representing the connec-
tivity between two communities. For example, in a directed
network, if the i th community points to the j th commu-
nity, then Ci j is a non-zero value; Z and C are non-negative
asymmetric matrices. In addition, researchers have also stud-
ied a variety of non-negative matrix factorization variants
in this area. For example, Relative Pairwise Relationship
constrained non-negative matrix factorisation (RPR-NMF)
proposed by Jiang et al. [35].

A good clustering method should result in more sim-
ilar nodes within communities and less community-to-
community associations, i.e., themore pronounced the differ-
ences between communities. Nevertheless, the studies above
only consider the network connections/edges while ignoring
the similarity between nodes, that is, the tightness between
nodes with similar features is often greater than that between
nodes with different features. Therefore, in this study, we add
similarity information to the objective function, that is, node
similarity constraints.We study non-overlapping community
detection, in order to determine the community to which the
i th node belongs. We take the index angle of the maximum
value in the i th row of the community member matrix Z as
the community to which the i th node belongs. In order to
obtain a better community member matrix Z , we will add a
constraint to Z to produce only a few large values with most
other values very small.

Orthogonal regular and L1-norm sparse
constrained NMF

We develop a new orthogonal regularized L1-norm sparse
constrainednon-negativematrix factorizationmodel (ORSNMF),
which considers the differences between communities, node
similarity and how to obtain a better community membership
matrix. In this study, we first model the above three aspects
separately and then combine them into a unified model.

Community differencemodeling

Given a network, its topology contains rich information,
therefore, it can serve as an essential starting point of commu-
nity analysis. We know that orthogonality constraints ensure
interpretability and maintain sparsity constraints to avoid
some trivial solutions [36]. In practice, we hope that the vec-
tors of cluster matrix C are different from each other. Since
if the vectors are more orthogonal, the differences between
communities aremore significant, leading to better clustering
results. Therefore, we add orthogonality constraints to clus-
ter matrix C and integrate them into the objective function
as follows:

minLO = ‖A − ZCZ
‖2F + γ ‖C
C − I‖2F ,

s.t γ ≥ 0, Z ≥ 0,C ≥ 0 (3)

where A ∈ Rn×n+ represents the adjacencymatrix of the com-
munity network, n represents the total number of nodes in the
community; Z ∈ Rn×k+ represents the community member-
ship matrix obtained after learning, k represents the number
of communities, and Zi j represents the probability value of
node Vi belonging to community C j ; C ∈ Rk×k+ represents
the community matrix, and Ci j represents the strength of the
relationship between community Ci and community C j ; Z

represents the transpose of matrix Z , ‖ • ‖2F represents the
Frobenius norm, γ is an orthogonalization parameter used
to balance the first error term and the sparsity of the second
term, I represents the identity matrix, andmatrices A, Z , and
C are all non-negative matrices.

Node similarity modeling

In practice, we can observe that the relationship between a
pair of nodes with similar characteristics is much stronger
than that between a pair of nodes with different character-
istics. Therefore, we consider adding a regularization term
to the objective function to include the node similarity. The
regularization is specified as follows:

minLR = λ

2

n∑

i=1

n∑

j=1

d(zi , z j )Si j , s.t z ≥ 0, (4)
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where λ is the regularization parameter; S ∈ Rn×n is the sim-
ilarity matrix, which is a symmetric matrix; Si j represents
the similarity between node i and node j ; d(zi , z j ) repre-
sents the distance between two nodes. In particular, since
nodes in the same community are closer to each other, their
distance should be smaller, while on the other hand, the dis-
tance between nodes from different communities should be
larger. The commonly used method to represent the distance
between two nodes is the Euclidean distance, which is cal-
culated as follows:

d(zi , z j ) = ‖zi − z j‖2. (5)

Next, we will introduce three methods to calculate the
similarity between nodes.

Adjacency similarity

The simplest approach to calculate node similarity is the adja-
cency similarity, represented by Si j , which is calculated as
the number of associations between nodes Vi and Vj :

S = A + A
 + I , (6)

Since this study focuses on directed networks, the rela-
tionship between node Vi and node Vj needs to consider
direction. Similarly, when calculating similarity, all relation-
ships between two nodes need to be taken into account.
Therefore, when using the adjacencymatrix to calculate sim-
ilarity, A + A
 should be used. In addition, each node is
strongly related to itself, so the identity matrix I is also
included in the consideration.

Katz centrality

In a network, the centrality of a node is used to measure its
importance in the network. Katz centrality calculates the rel-
ative influence of a node in a network by measuring its direct
neighbors (first-level neighbors) and the number of connec-
tions to all other nodes through these direct neighbors in the
network. Katz centrality considers not only the contribution
of the node’s neighbors to it, but also the size of the contribut-
ing neighbors. In addition, a constant is added to represent
the node itself. Therefore, Katz centrality is also often used
as a similarity measure. Katz centrality is defined as

S = (I − δ · A)−1η, (7)

where δ is the weight parameter, usually 0 ≤ δ ≤ 1 [30], and
η represents the constant of the node itself. In this article, the
node’s own constants are all set to 1 [30].

Cosine similarity

Cosine similarity measures the similarity between two nodes
by calculating the number of common neighbors between
them. Specifically, it is expressed by dividing the number of
common neighbors of node i and node j by the geometric
mean of their degrees [37], which is calculated as follows:

Si j = v

i v j

‖vi‖ · ‖v j‖ , (8)

where vi , v j are the vectors corresponding to nodes Vi and
Vj in the adjacency matrix A, v


i v j represents the number of
common neighbors between node Vi and node Vj , and ‖vi‖
represents the geometric mean of the degrees of node Vi .

Community membership matrix sparsity modeling

Given the community member matrix Z in non-overlapping
community detection, Zi j represents the probability (inten-
sity) of node Vi belonging to community C j . The method of
assigning the i th node to a community is to take the index
angle of the maximum value in the i th row of the community
member matrix Z as the community to which the i th node
belongs. Tomake this result better andmore obvious, wewill
add L1-norm sparsity constraints to each row of the commu-
nity membership matrix Z to ensure that only a few larger
values are generated while all other values are very small so
that each node captures the community to which it belongs.

The L1-norm sparsity constraint is the sum of the absolute
values of all elements in the vector, which makes the algo-
rithm tend to push the absolute values of someweights to zero
during optimization, generating only a small number of larger
values and achieving sparsity. This is because optimization
algorithms like gradient descent, during the minimization of
the objective function, apply gradients to each weight. The
gradient of the L1-norm is non-differentiable at zero but con-
stant at non-zero points. This implies that if the initial value
of a weight is non-zero, the gradient will push it towards
zero during the optimization process, leading to many small
or zero values in the result, highlighting a few larger val-
ues. This makes the results more pronounced, interpretable,
and robust. This is particularly useful for feature selection,
as it retains only a few features most relevant to the target in
the final model, pushing the weights corresponding to other
features towards zero. In contrast, other sparse constraints
like L2-norm sparse constraint is the square root of the sum
of squares of all elements in the weight vector, encouraging
weights to be distributed across all dimensions, attempting
to make each feature contribute somewhat to the predicted
value and preventing excessively large weights, thus aiding
in preventing overfitting. For the result matrix in this arti-
cle, the goal is to push some unimportant weights towards
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zero, making nodes more likely to capture the community
to which they belong, facilitating interpretability. Therefore,
we apply L1-norm sparse constraint to the result matrix Z .
Specifically, it is expressed as follows:

minLS = α

n∑

i=1

‖zi ·‖21, z ≥ 0, (9)

where Zi · represents the i th row of Z , ‖zi ·‖1 represents the
L1-norm applied on Zi ·, which is the sum of the absolute
values of each element on Zi ·, and α is the sparse parameter,
which is used to balance the sparse termand the error between
A and ZCZ
.

Orthogonal regular L1-norm sparse constrained
non-negative matrix factorizationmodel (ORSNMF)

In summary, we consider the community difference model
in Eq. (3), the node similarity model in Eq. (4) and the com-
munity member matrix sparsity model in Eq. (9) into the
objective function to establish a unified model, so the over-
all objective function of our propose ORSNMF model is as
follows:

min
Z≥0,C≥0

L = LO + LR + LS

= ‖A − ZCZ
‖2F + γ ‖C
C − I‖2F
+λ

2

n∑

i=1

n∑

j=1

d(zi , z j )Si j + α

n∑

i=1

‖zi ·‖21,

(10)

By introducing the orthogonality constraint term LO , the
regularization constraint term LR , and the L1-norm sparsity
constraint term LS , we aim to fully capture the potential
relationships among nodes in the network and the inherent
properties of communities. These constraints are jointly iter-
atively learned to obtain improved result matrices.

Update rules

To optimize the objective function (10), for the LS in the
target formula, we know that ‖zi ·‖21 is the absolute value
of each element in the i th row of Z summed and then
squared. The non-negative constraint characteristic of non-
negative matrix decomposition makes every element in Z is
non-negative value, so ‖zi ·‖21 is the sum and square of the
elements in the i th row of Z . Consequently,

∑n
i=1 ‖zi ·‖21

is calculated as the sum of the elements of each row of Z ,
then squared, and finally summed up. Therefore, we can get∑n

i=1 ‖zi ·‖21 = tr(ZH Z
), where H ∈ 1k×k is a matrix of
k × k with all 1.

For theLR part in the target expression, it can be rewritten
as

min
Z≥0

LR = λ

2

n∑

i=1

n∑

j=1

d(zi , z j )Si j

= λ

2

n∑

i=1

n∑

j=1

‖zi − z j‖2Si j

= λ

2

n∑

i=1

n∑

j=1

(zi − z j )

(zi − z j )Si j

= λ

2

n∑

i=1

n∑

j=1

(z
i zi + z
j z j )Si j − λ

n∑

i=1

n∑

j=1

z
i z j Si j ,

(11)

Since S is a symmetric matrix, Eq. (11) can be simplified as
follows:

min
Z≥0

LR = λ

⎛

⎝
n∑

i=1

z
i zi Dii −
n∑

i=1

n∑

j=1

z
i z j Si j

⎞

⎠

= λtr(Z
DZ) − λtr(Z
SZ)

= λtr(Z
LS Z), (12)

where tr(·), the trace of the matrix, equals to the sum of
the elements of the main diagonal of the matrix, the Lapla-
cian matrix LS = D − S, D is the diagonal matrix, Dii

represents the sum of values in the i th row of matrix S, i.e.
Dii = ∑n

j=1 Si j . In this way, the regularization term in the
similarity matrix S is integrated into the objective function
to jointly guide the optimization objective function.

In summary, our objective function can be rewritten as

min
Z≥0,C≥0

L = LO + LR + LS

= ‖A − ZCZ
‖2F + γ ‖C
C − I‖2F
+λtr(Z
DZ) − λtr(Z
SZ) + αtr(ZH Z
),

(13)

The optimization problem in Eq. (13) is not simultaneously
convex on the variables Z andC , therefore, finding the global
minimum is difficult. Therefore, we use the multiplicative
update rule to obtain the local optimal solution. Minimize
the objective function in (13) using gradient descent, using
β and θ as Lagrangian multiplier numbers for constraints
Z ≥ 0 and C ≥ 0, Lagrangian L is defined as

L = ‖A − ZCZ
‖2F + γ ‖C
C − I‖2F + λtr(Z
DZ)

−λtr(Z
SZ) + αtr(ZH Z
) + tr(βZ
) + tr(θC
)

= tr(A
A) − 2tr(A
ZCZ
) + tr(ZC
Z
ZCZ
)
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+γ tr(C4 − 2C2 + I ) + λtr(Z
DZ) − λtr(Z
SZ)

+αtr(ZH Z
) + tr(βZ
) + tr(θC
),

(14)

L calculates the partial derivative of Z and C , respectively:

∂L
∂C

= −2Z
AZ + 2Z
ZCZ
Z + 4γC3 − 4γC + θ,

(15)
∂L
∂Z

= 2(ZCZ
ZC
 + ZC
Z
ZC) + 2αZH + β

−2(A
ZC + AZC
) + 2λ(D
Z − S
Z), (16)

According to the KKT condition, we know that βir zir = 0
and θr jCr j = 0, so there are

[Z
ZCZ
Z ]r j cr j + 2γ (C3)r j cr j − 2γ (C)r j cr j

−(Z
AZ)r j cr j = 0, (17)

(ZCZ
ZC
 + ZC
Z
ZC)ir zir + λ(D
Z − S
Z)ir zir

+α(ZH)ir zir − (A
ZC + AZC
)ir zir = 0, (18)

Similar to the basic NMF, the multiplicative update rule of
the objective function can be obtained:

cr j ← cr j
[Z
AZ + 2γC]r j

[Z
ZCZ
Z + 2γC3]r j , (19)

zir ← zir
[A
ZC + AZC
 + λS
Z ]ir

[ZCZ
ZC
 + ZC
Z
ZC + λD
Z + αZH ]ir ,

(20)

The proof of convergence is shown in the appendix A.

Overall procedure of ORSNMF algorithm

Given the adjacency matrix A, similarity matrix S, factor-
ization rank (number of communities) k and the stop criteria
of a directed network, we first use the modified non-negative
double singular value decomposition (MNNDSVD) [30] ini-
tialization to obtain the initial decomposition Z0 andC0, then
use the multiplication iteration update rule in Eqs. (19) and
(20) to update Z and C until the stop criterion is met, and
finally return to Z and C . The specific algorithm is shown in
Algorithm 1.

Experiment and analysis

In this section, we conduct experiments to demonstrate
the effectiveness of the proposed algorithm for commu-
nity detection in directed networks, which are done on
both synthetic and real data sets. We compare the proposed

Algorithm 1 ORSNMF algorithm
Input: A ∈ Rn×n : adjacency matrix; S ∈ Rn×n : similarity matrix; k:

number of communities; γ λ α: equilibrium parameter;
Output: Cluster matrix C ; Community membership matrix Z ;
1: Initialize Z0 and C0
2: while L ≥ ε do
3: Update C according to equation(19)
4: Update Z according to equation(20)
5: end while
6: return C Z

ORSNMF algorithm with SGNMF [32], CFS [33], SNCMF
[38], HPNMF [9], RANMF [30], ANMF [3], Spectral clus-
tering [39] and NCut [40] for community detection. All
experiments were performed in Matlab.

Comparative algorithms

• ORSNMF: ORSNMF is the model proposed in this
study. It is abbreviated as ORSNMF in Table 1 and as
ORSNMFR and ORSNMFM in Table 2, with the final
letters R and M representing random initialization and
MNNDSVD initialization, respectively.

• SGNMF: Liu et al. [32] proposed a symmetry and graph-
regularized non-negative matrix factorization (SGNMF)
method, leveraging multiple latent factor matrices to
represent an large-scale undirected network, thereby
enhancing its representation learning ability. In Tables
1 and 2, it is abbreviated as SGNMF.

• CFS: Luo et al. [33] proposed a constraints fusion-
induced symmetric non-negative matrix factorization
(CFS) model, incorporating a symmetry-regularizer that
preserves the symmetry of the learnt low-rank approxi-
mation to the adjacencymatrix into the loss function, thus
making the resultant detectorwell-aware of the target net-
work’s symmetry. In Tables 1 and 2, it is abbreviated as
CFS.

• SNCMF: Yuan et al. [38] proposed a symmetric and
non-negative constrained matrix factorization (SNCMF)
community detection model based on undirected net-
works. Thismodel introduces a graph regularization term
to preserve the intrinsic geometric local invariance of the
network, allowing the implemented detector to gain a
comprehensive understanding of the community struc-
ture within the target network. In Tables 1 and 2, it is
abbreviated as SNCMF.

• HPNMF: Ye et al. [9] proposed a homophily preserving
NMF (HPNMF). This method models the network’s link
topology while also capturing the homogeneity of net-
work nodes to better reflect the community structure. In
Tables 1 and 2, it is abbreviated as HPNMF.

• RANMF: Tosyali et al. [30] proposed a regularized
asymmetric non-negativematrix factorization (RANMF)
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algorithm. In a given directed network, RANMF utilizes
the pairwise similarity of nodes, guided by network prior
information, to assign similar nodes to the same cluster.
In Table 1, it is abbreviated as RANMF, and in Table 2,
it is abbreviated as RANMFR and RANMFM, with the
final letters R and M representing random initialization
and MNNDSVD initialization, respectively.

• ANMF: Wang et al. [3] proposed an asymmetric non-
negativematrix factorization (ANMF)method for detect-
ing communities in directed networks. Due to the asym-
metry of the adjacency matrix and the weight matrix, the
resulting matrix is not forcefully constrained. Instead,
normalization of the resultmatrix is achieved bypassing a
diagonal matrix between the result matrix and the weight
matrix. This approach aims to enhance the effectiveness
of community detection. In Table 1, it is abbreviated
as ANMF, and in Table 2, it is abbreviated as ANMFR
and ANMFM, with the final letters R and M represent-
ing random initialization and MNNDSVD initialization,
respectively.

• Spect: Hespanha et al. [39] proposed a spectral
decomposition-basedgraphpartitioning algorithm, closely
related to the Markov chain state aggregation algorithm
introduced by Phillips and Kokotović [41]. This algo-
rithm can be applied to the field of community detection
to assess its effectiveness. In Tables 1 and 2, it is abbre-
viated as Spect.

• NCut: Shi et al. [40] proposed a method based on percep-
tual grouping. This method focuses not on local features
of the problem but extracts information globally, sub-
sequently introducing a normalized cut criterion. The
aim is to measure the overall dissimilarity between dif-
ferent groups and the overall similarity within groups.
This method can be applied to community detection and,
to some extent, enhances the detection effectiveness. In
Tables 1 and 2, it is abbreviated as Ncut.

Data sets

Wefirst compare the various clustering algorithmsmentioned
above on the LFR synthetic graphs. In the LFR synthetic
graphs, the network topology complexity is controlled by the
mixing parameter μ, which controls the connection between
communities. The larger the mixing parameter, the better the
connectivity between communities, the more complex the
network topology, themore difficult the community detection
is.

In addition, we also selected the World Wide Knowledge
Base (WebKB) data set, a real world data set, to test our pro-
posed algorithm. This data set hasmore connections between
communities, which increases the complexity of community
detection and can better test our proposed algorithm. This

data set contains web page hyperlink information collected
by four universities in Cornell, Wisconsin, Texas and Wash-
ington University. The specific meaning of the network is:
nodes representwebpages, anddirected edges represent links
information between web pages. The web pages are divided
into 5 categories, including students, courses, staff, projects,
and teachers.

Evaluation indicators

There are various methods for evaluating and comparing dif-
ferences between algorithms [42]. In this study, to accurately
assess the effectiveness of clustering algorithms, we adopted
three evaluation metrics, namely jaccard similarity, nmi and
accuracy [15].

The jaccard similarity is utilized here to compare the simi-
larity between predicted results and true results. The similar-
ity is assessed by calculating the ratio of the number of com-
mon elements in both the predicted and true results to the total
number of elements in their union, as defined by Eq. (21):

j(PL, T L) = |PL ∩ T L|
|PL ∪ T L| = |PL ∩ T L|

|PL| + |T L| − |PL ∩ T L| . (21)

where PL represents the predicted results, T L represents
the true results, both PL and T L are 1 × n vectors, n rep-
resents the number of samples, PL and T L are used to
store the predicted categories and true categories of each
sample, respectively. |PL ∩ T L| indicates the number of
samples where the true results match the predicted results,
and |PL ∪ T L| represents the total number of different sam-
ples between the true results and the predicted results.

nmi is an external measure used to judge the quality of
clustering. It is used to measure the similarity of two cluster-
ing results. The calculation is performed as Eq. (22):

nmi(C,CT ) = I (C,CT )√
H(C)H(CT )

, (22)

where C is a set of k clusters obtained after clustering,
with each class represented as C = {C1,C2, . . . ,Ck}, and
containing several samples after clustering. CT represents
the true class labels, with CT = {CT1,CT 2, . . . ,CTk} and
each CTi containing all the samples belonging to that class.
I (CT ,C) represents themutual information betweenCT and
C , H(CT ) and H(C), respectively, represent the entropy of
CT and C .

The accuracy is used to compare the obtained labels with
the true labels provided by the original data, and is specifi-
cally defined as Eq. (23):

acc(TL, PL) =
n∑

i=1

δ(TLi ,map(PLi ))

n
, (23)
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Fig. 1 On the LFR data set, with α set to 0, the impact of the parameter
γ in the ORSNMF model was analyzed by varying it from 10−3 to
103. a–c are the effect plots obtained using the adjacency matrix, the

Katz similarity computation similarity matrix and the cosine similarity
computation similarity matrix, respectively

Fig. 2 With γ fixed at the optimal value obtained in Fig. 1, the impact of
the parameterα in theORSNMFmodel was analyzed by varying it from
10−3 to 10−1. Three similarity calculation methods were experimented

with, including a–c, representing the effectiveness of similarity matri-
ces calculated using the Adjacency matrix, Katz, and Cosine similarity,
respectively

Table 1 Performance
comparison on the LFR
synthetic networks (bold
numbers represent best results)

Algorithm Initialization Similarity matrix jaccard nmi Accuracy

Spect – – 0.58682 0.8579 0.785

Ncut – – 0.82331 0.9688 0.891

ANMF Rand – 0.09925 0.4456 0.2753

ANMF MNNDSVD – 0.84398 – 0.912

RANMF Rand – 0.06145 0.35804 0.2337

RANMF MNNDSVD Cos 0.76843 0.93509 0.872

RANMF MNNDSVD Katz 0.83701 0.95956 0.915

RANMF MNNDSVD Adj 0.7979 0.94971 0.888

HPNMF Rand – 0.42922 0.79585 0.637

SNCMF Rand – 0.76603 0.91849 0.885

CFS Rand – 0.029744 0.24584 0.146

SGNMF Rand – 0.029105 0.24223 0.144

ORSNMF Rand – 0.03242 0.24982 0.15205

ORSNMF MNNDSVD Adj 0.94045 0.98764 0.969

ORSNMF MNNDSVD Katz 0.9179 0.98918 0.953

ORSNMF MNNDSVD Cos 0.94055 0.98775 0.97
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Fig. 3 Visual comparison
results of the conducted
experiments on the LFR data
set, corresponding to the
visualized table 1

where PLi is the label after clustering; TLi is the ground truth
label; n is the total number of data samples; and map(·) rep-
resents the optimal redistribution of class labels to ensure the
correctness of statistics. Generally, the optimal redistribution
can be realized by the Hungarian algorithm, so as to solve the
task (label) assignment problem in polynomial time. δ rep-
resents the indicator function, which is defined as Eq. (24):

δ(x, y) =
{
1 if x = y
0 otherwise

. (24)

The larger the value of the above three evaluation indica-
tors, the better the clustering performance.

Experimental results

We conduct multiple experiments on the LFR networks data
set and the World Wide Knowledge Base (WebKB) data set
(Cornell, Wisconsin, Texas, and Washington). In addition
to our proposed ORSNMF algorithm, there are also eight
algorithms of SGNMF, CFS, SNCMF, HPNMF, RANMF,
ANMF, Spectral clustering and NCut for comparative exper-
iments.

LFR networks

For the LFR networks data set, we use μ = 0.5 [43],
|V | = 1000, |E | = 15,249, k = 33 to create a commu-
nity network structure. We use Adjacency similarity, Katz
centrality, and Cosine similarity as the similarity matrix of
the LFR networks data set to test their performance. Using
λ = 0.1 [30], we set different values for the parameters γ

and α to test the algorithm. Inspired by the parameter set-
ting method proposed by Ye et al. [9], we adopt the same
method in this experiment to test the parameters in the range
of {10−3, 10−2, 10−1, 100, 101, 102, 103}, so that the param-
eters take valueswith better effect.We first evaluate the effect
of γ on the model by fixing α to 0, as shown in Fig. 1.

As can be seen fromFig. 1, nomatterwhichmethod is used
to calculate the similaritymatrix, the three evaluation indexes
of the model gradually increase with the increase of γ when
γ ≤ 10, and then tend to be stable. These results allow us to
draw a conclusion: the algorithm is sensitive to the parameter
γ to a certain extent. To obtain more effective results, it is
necessary to consider community differences.We choose the
better value among them as the final value of parameter γ .
We make γ = 0.1 when using adjacency similarity as the
similarity matrix, γ = 0.5 when selecting Katz centrality,
and γ = 0.1 when selecting Cosine similarity.

We then evaluate the effect of α on clustering by fixing
the value of γ (such that γ is equal to the figure of merit
obtained above), the results are shown in Fig. 2.

Clustering performance drops sharply after α = 0.1, so
we only select data less than 0.1 to draw the result graphs.
It can be seen from the above results that no matter which
method is selected as the similarity matrix, the effect is the
best when α = 0.1. So under this data set, we take α = 0.1.

In addition to using the above-obtained parameter val-
ues to carry out this algorithm experiment, a comparison
experiment with SGNMF, CFS, SNCMF, HPNMF, RANMF,
ANMF, Spectral clustering and NCut algorithms was also
carried out. The specific results are shown in Table 1, and the
corresponding visualization results are shown in Fig. 3.

It can be seen from Table 1 and Fig. 3 that no matter which
similarity metric is used, our proposed algorithm achieves
better results than other algorithms. Bold values indicate that
the effect of this algorithm is better than that of other algo-
rithms.

WebKB data set

In addition to comparative experiments on the LFR networks
data set, we also conduct comparative experiments on the
World Wide Knowledge Base (WebKB) data set (Cornell,
Wisconsin, Texas, and Washington). Among them, Cornell
contains 195 nodes and 304 directed edges. Texas contains
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187 nodes and 328 directed edges. Wisconsin contains 265
nodes and 530 edges. Washington contains 230 nodes and
446 directed edges. Cosine similarity was used as the simi-
larity matrix for the data sets collected by Cornell University
and the University of Texas, Katz centrality was used as the
similarity matrix for the data sets collected by the University
of Washington, and the adjacency matrix was used as the
similarity matrix for the data sets collected by the University
ofWisconsin. The values of the parameters λ, γ and α are the
same as the above processing methods, let λ = 0.1, α = 0
to evaluate the influence of γ on it, and the results are shown
in Fig. 4.

It can be concluded fromFig. 4 that for the Cornell data set
weuseγ = 0.001,Texas data set useγ = 0.001,Washington
data set γ = 0.1, Wisconsin data set γ = 0.1. Now we fix
the figure of merit γ obtained above to test the effect of α on
it, and the results are shown in Fig. 5.

It can be seen from Fig. 5 that the Cornell data set achieves
a better value at α = 10, and then it starts to fall, so we take
α = 10. The performance of the Texas data set increases
slowly when α = 0.1, but declines after α = 0.1, so we take
α = 0.1. Washington data set has effects before α = 0.1,
but starts to decline after that, so we take α = 0.1. When
the adjacency matrix is used as the similarity matrix of the
Wisconsin data set, performance starts to drop after α = 0.1,
so we take α = 0.1.

After selecting all parameters, we will compare experi-
ments with the eight algorithms of SGNMF, CFS, SNCMF,
HPNMF, RANMF, ANMF, Spectral clustering and NCut.
The results are shown in Table 2, and the corresponding visu-
alization results are shown in Fig. 6. The bold values in Table
2 indicate the best performance. As can be seen from the
table, the performance of our proposed algorithm is better
than that of the other algorithms.

Conclusion

This study addresses the community detection problem by
proposing a new method, ORSNMF, within the fundamental
framework of NMF. This method models the directed net-
work topology, community distinctiveness, node homophily,
and sparsity in the community membership matrix. We
transform the objective of this model into an optimization
problem, develop an efficient learning algorithm, and obtain
a multiplicative update method to solve it.We conduct exten-
sive experiments on both synthetic and real networks to
demonstrate the superiority of the proposed model.

While themodel proposed in this study demonstrates good
performance, the primary focus is on directed, unweighted,
and non-overlapping networks. In reality, overlapping and
dynamic networks are prevalent. In community networks,
samples or individuals often exhibit multiplicity, allowing Ta
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Fig. 4 a–d, respectively, depict
the effectiveness of the
ORSNMF model on the Cornell,
Texas, Washington, and
Wisconsin data sets, where α is
set to 0, and the parameter γ

varies from 10−3 to 103

Fig. 5 a–d, respectively, depict
the effectiveness of the
ORSNMF model on the Cornell,
Texas, Washington, and
Wisconsin data sets, with γ

fixed at the optimal value
obtained in Fig. 4, and the
parameter α varies from 10−3 to
103
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Fig. 6 a–d, respectively, depict
the visualized comparative
experimental results on the
Cornell, Texas, Washington, and
Wisconsin data sets,
corresponding to the visualized
table 2

a sample to be assigned to multiple community categories.
This phenomenon is known as overlapping networks, where,
for example, an individual can simultaneously enjoy watch-
ing movies and playing basketball. Mechanically classifying
such individuals solely into the movie-watching community
would be overly simplistic. Therefore, detecting communi-
ties in overlapping networks becomes crucial. Due to the
diversity in community networks, it becomes challenging to
set a uniformnumber of attribution categories and probability
threshold values for various community networks. In addi-
tion, with the passage of time, the structural attributes in the
network are constantly changing, such as the number of cita-
tions of a paperwill increasewith the passage of time, and the
relationship between users will be established and dissolved
with the passage of time, so it can be seen that the dynamic
network appears to be more general and applicable than the
static network, and the community detection of the dynamic
network not only can effectively delineate the members of
the nodes of the network, but also can predict the develop-
ment trend of the network. In future research, the emphasis
will be on studying overlapping networks and dynamic net-
works. Furthermore, a variety of validation methods will
be employed to highlight significant statistical differences

among different algorithms [42], demonstrating the superi-
ority
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Appendix

Inspired by NMF, we can use the convergence proof of NMF
to prove that the update steps of L in Eqs. (19) and (20) are
non-incremental. We also use the auxiliary function to prove
the convergence of L.

Definition 1 Let G(c, c′) be an auxiliary function of F(c),
then:

G(c, c′) ≥ F(c), G(c, c) = F(c), (25)

This helper function has the following lemma.

Lemma 1 If G is an auxiliary function of F, then the
objective function F is non-increasing under the following
iteration rule,

c(t+1) = argmin
c

G(c, c(t)). (26)

Proof

F(c(t+1)) ≤ G(c(t+1), c(t)) ≤ G(c(t), c(t)) = F(c(t)) (27)

It is now shown that the update of C in Eq. (19) is equiv-
alent to the update of Eq. (26) under the condition of the
auxiliary function above.

Note in particular that ∀ cab ∈ C , Fab represents an
element in L that is only related to cab. Now find the first
derivative and the second derivative of the objective function
with respect to cab, as follows:

F ′
ab =

(
∂L
∂C

)

ab

=
[
2Z
ZCZ
Z − 2Z
AZ + 4γC3 − 4γC

]

ab
(28)

F ′′
ab =

[
2Z
Z Z
Z + 4γC2 − 4γ

]

ab
(29)

Since the nature of the update is elementwise, this is
enough to show that each Fab is non-incrementing under
the update step of Eq. (19), so we have the following lemma.

Lemma 2 The following function G(c, c(t)
ab ) is an auxiliary

function of Fab.

G(c, c(t)
ab ) = Fab(c

(t)
ab ) + F ′

ab(c
(t)
ab )(c − c(t)

ab )

+ (Z
ZCZ
Z+2γC3)ab

c(t)
ab

(c − c(t)
ab )

2 (30)

Proof ObviouslyG(c, c) = Fab(c), sowe only need to prove
G(c, c(t)

ab ) ≥ Fab(c). For this, we first consider the Taylor
expansion formula of Fab(c):

Fab(c) = Fab(c
(t)
ab ) + F ′

ab(c
(t)
ab )(c − c(t)

ab )

+F ′′
ab(c

(t)
ab )(c − c(t)

ab )
2 (31)

Substituting Eq. (29) into Eq. (31) has:

Fab(c) = Fab(c
(t)
ab ) + F ′

ab(c
(t)
ab )(c − c(t)

ab )

+[Z
Z Z
Z + 2γC2 − 2γ ]ab(c − c(t)
ab )

2 (32)

Comparing Eq. (30) with Eq. (32), to show that G(c, c(t)
ab ) ≥

Fab(c) is equivalent to proving:

(Z
ZCZ
Z + 2γC3)ab

c(t)
ab

≥ [Z
Z Z
Z + 2γC2 − 2γ ]ab
(33)

we know:

(Z
ZCZ
Z + 2γC3)ab

=
n∑

q=1

r∑

j=1

(Z
Z)aqc
(t)
q j (Z


Z) jb + 2γ
n∑

q=1

C2
aqc

(t)
qb

≥ (Z
Z)ar c
(t)
ri (Z
Z)ib + 2γC2

ar c
(t)
rb

≥ (Z
Z)ar c
(t)
ri (Z
Z)ib + 2γC2

ar c
(t)
rb − 2γ (34)

Therefore, the inequality G(c, c(t)
ab ) ≥ Fab(c) holds.

Replacing G(c, c(t)
ab ) in Eq. (26) with Eq. (30) yields the

following update rule:

c(t+1)
ab = c(t)

ab − c(t)
ab

F ′
ab(c

(t)
ab )

Z
ZCZ
Z + 2γC3

= c(t)
ab

[Z
AZ + 2γC]ab
[Z
ZCZ
Z + 2γC3]ab (35)

It follows that Fab is non-increasing under this update rule. It
can also be proved that the update rule of Z is also equivalent,
that is, the objective function (13) is non-increasing under the
iteration rule (20). ��
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