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Abstract
Facial expression manipulation has gained wide attention and has been applied in various fields, such as film production,
electronic games, and short videos. However, existing facial expression manipulation methods often overlook the details of
local regions in images, resulting in the failure to preserve local structures and textures of images. To solve this problem,
this paper proposes a local semantic segmentation mask-based GAN (LSGAN) to generate fine-grained facial expression
images. LSGAN is composed of a semantic mask generator, an adversarial autoencoder, a transformative generator, and an
AU-intensity discriminator. Our semantic mask generator generates eye, mouth, and cheek masks of face images. Then, our
transformative generator integrates target expression labels and corresponding facial region features to generate a vivid target
facial expression image. In this fashion, we can capture expressions from target face images explicitly. Furthermore, an AU-
intensity discriminator is designed to capture facial expression variations and evaluate quality of generated images. Extensive
experiments demonstrate that our method achieves authentic face images with accurate facial expressions and outperforms
state-of-the-art methods qualitatively and quantitatively.

Keywords Semantic segmentation · Fine-grained expression manipulation · Generative adversarial network

Introduction

Facial expressionmanipulation aims to convert facial expres-
sion of target images into source images while maintaining
the image’s original identity information. It has gained
significant potential in various applications, such as film
production, electronic games, and short videos. Researches
in the field of artificial intelligence has made significant
progress [1–4]. However, since face expression is complexed
and would bring ambiguous for face structure, it is chal-
lenging to produce accurate facial expression images with
photo-realistic textures and faithful structures.
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State-of-the-art facial expression manipulation methods
can be divided into two categories: message judgment meth-
ods and sign judgment methods.

(i) Message judgment methods focus on directly encoding
expression features and thus learning expression patterns
of face images. For example, StarGAN [5] is proposed
to transfer expressions between different image domains
under the guidance of discrete expression labels, e.g.,
happy, angry, or sad. However, message judgment meth-
ods fail to perform continuous expression editing and
cannot guarantee the quality of generated images.

(ii) Sign judgment methods estimate facial action unit (AU)
signals to synthesize expressions. For example, Pumarola
et al. [6] utilized AU intensities as guidance to synthesize
facial expression images. They incorporated attention
mechanisms into the generator’s last layer, enabling
the manipulation of images with complex backgrounds.
However, labeling AU for face datasets consumes enor-
mous labor. Meanwhile, solely learning global AU fea-
tures would limit local expression edition performance.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-024-01401-7&domain=pdf
http://orcid.org/0000-0003-4098-2339


Complex & Intelligent Systems

Research [7] has shown that human attention naturally
focuses on special facial regions when recognizing and dis-
tinguishing facial expressions. For example, the eyes play
a vital role in fear analysis, while the mouth is crucial for
identifying happiness. Driven by this analysis, we propose
to extract local facial features of key facial regions, i.e., eye,
mouth, and cheek regions, and then inject target AU signals
into local facial features for facial expression manipulation.
In this fashion, expression features could be integrated into
corresponding facial regions purposefully and thus facilitate
fine-grained facial expression manipulation.

Previousmethodsmainly focus on thewhole face, neglect-
ing local facial parts, resulting in overlapping and blurring of
local facial regions in the generated results. Toward this prob-
lem, we propose a local semantic segmentation mask-based
GAN (LSGAN). Our LSGAN captures texture details of key
facial regions by designing several networks based on local
semantic regions, and uses reconstruction networks to further
preserve the structural information of the image. Based on
the above, our LSGAN comprises a semantic mask generator
(SMG), an adversarial autoencoder (AAE), a transformative
generator (TG), and an AU-intensity discriminator (AUD).
First, we design the SMG to generate masks of key facial
regions of source facial images, i.e., eye, mouth, and cheek
regions. Then, we propose the AAE to map facial masks into
structured latent codes. Specifically, we introduce the ME-
graphAU [8] to predict the AU intensity of target images.
Afterward, our TG integrates target AU-intensity labels and
corresponding source facial region codes to generate desired
facial expression images. Furthermore, we design AUD to
capture facial expression variations and evaluate the quality
of generated images. During training, we introduce recon-
struction losses to preserve generated faces’ identity and
structure information. The researches [9, 10] have made sig-
nificant contributions to function optimization, and based on
these studies, we adopt adaptive moment estimation (Adam)
solver to optimize the loss function of each module.

The main contributions of our work are threefold:

• We propose a facial expression manipulation method,
dubbed LSGAN, to generate target facial expression
images with photo-realistic textures and faithful struc-
tures. LSGAN combines key facial region masks with
target AU-intensity labels to achieve facial expression
manipulation.

• We design a AAE to generate latent codes of facial
semantic masks. In particular, our TG integrates latent
codes with target expression labels to generate desired
facial expression images, thus alleviating the correspon-
dence ambiguity between source and target expression
faces. We introduce self-reconstruction and cyclic recon-
struction with same local network structure as generator
to ensure the stability of our generated network andmain-

tain the feature and structural invariance of unrelated
regions.

• Our experiments demonstrate that LSGAN can achieve
better facial expression manipulation performance. The
average MSE of the 16 AU intensities in our method is
0.018, which is lower than the state-of-the-art methods.
We also demonstrate the importance of the special facial
region partition in facial expression synthesis.

Related work

Given two unpaired images (Ii , It ), ourmain goal is to gener-
ate new image˜Ii with facial expression of It while preserving
the identity information in the original image Ii . Due to
the fact that differences in facial expressions often occur
in key areas such as the eyes and mouth, rather than uni-
formly across the entire face, it has prompted us to perform
attribute classification on faces to capture the features of these
key regions. Subsequently, these key region features are con-
sidered and utilized during the process of facial expression
manipulation. Therefore, the related work mainly includes
two aspects: facial attribute classification and facial expres-
sion manipulation.

Facial attribute classification

Yang et al. [11] focused on facial attribute recognition
through the utilization of deep convolution neural networks.
The primary objective of this study is to attain a heightened
response within facial regions, consequently generating can-
didate windows of faces. However, the complexity of the
CNN structure results in significant time costs when imple-
mented practically. To address this limitation, Zhang et al.
[12] proposed a novel framework that integrated face detec-
tion and alignment tasks by employing unified cascaded
CNNs andmulti-task learning. This approach aims to stream-
line the process and improve efficiency. While the afore-
mentioned method effectively acquires feature points for
facial attributes, the resultant attribute regions often encom-
pass redundant components. Aggarwal [13, 14] applied deep
learningmethod to crop segmentation and achieved relatively
complete region segmentation results.

To enhance accuracy and alleviate the impact of overlap-
ping regions, Zhao et al. [15] utilized a semantic segmen-
tation method for facial attribute classification. This article
introduces a global pyramid pooling, which offers addi-
tional contextual information. Moreover, it also proposes a
deep supervised optimization strategy designed for ResNet-
based fully convolutional networks (FCNs). To tackle the
drawbacks associated with employing hole convolution in
semantic segmentation, Lin et al. [16] proposed a multi-path
reinforcement network called RefineNet, which explicitly
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incorporates all the information derived from the downsam-
pling process and employs remote residual connections to
achieve accurate high-resolution predictions. RefineNet only
utilizes the residual layer of a conventional ResNet, thereby
avoiding the computational costs associated with hole con-
volution.

To further reduce the computational time of semantic
segmentation networks, Yu et al. [17] introduced a bilat-
eral segmentation network, known as Bilateral Segmentation
Network (BiSeNet), with the objective of striking a balance
between accuracy and speed. As an enhancement to BiSeNet,
Yu et al. [18] proposed BiSeNetV2, which features a more
concise bilateral structure. This article introduces multiple
auxiliary training branches to enhance the feature extrac-
tion capabilities of various shallow networks. Moreover, the
authors designed an efficient feature fusion module to effec-
tively integrate spatial detail information with high-level
semantic information. However, the utilization of a simplis-
tic feature extraction framework in their methods lead to a
decline in accuracy.Additionally, there is potential for further
improvement in enhancing the attention framework within
the network.

Facial expressionmanipulation

Generative adversarial networks have emerged as the prevail-
ing approach in facial expression manipulation. Expanding
upon classic GAN architectures, numerous variants have
been devised to further improve performance. One such vari-
ant is conditional GAN (cGAN), which introduces additional
condition information to control the distribution of generated
data. In recent years, there has been a proliferation of studies
utilizing cGAN for facial expression synthesis.

Prominent approaches, such as StarGAN [5] and AttGAN
[19], employ generator networks that utilize input images
and target domain information to generate images in diverse
domains. For instance, StarGAN [5] utilizes facial images
and target facial attributes to enable attribute editing through
a single generator and discriminator. On the other hand,
AttGAN [19] adopts an encoder-decoder architecture simi-
lar to StarGAN but represents facial attributes using latent
representations. Ding et al. [20] modeled the intensity of
facial expressions to generate a wider range of expressions,
but the global expression in the method only describes the
overall facial emotion, resulting in limited ability to cap-
ture fine details. Geng et al. [21] used 3D Morphable Model
(3DMM) to fit an image and then re-render the image with
desired expression. Another model, namely LGP-GAN [22],
employs a two-stage cascaded structure and integrates both
local and global perception to generate facial expressions.
However, the complexity of facial expressions, especially
microexpression with complex local details, presents signif-
icant challenges for these methods.

The facial action coding system (FACS) [23] provides
commonlyuseddescriptors such as raised cheeks or depressed
lips in expressionmanipulation approaches. Tools likeOpen-
Face [24] have been developed to achieve the recognition
of Action Units (AUs). Additionally, a recent work called
ME-graphAU [8] introduces a deep learning-based approach
for modeling AU relationships explicitly. This method aims
to describe the intricate connections between different AUs
and provide a more comprehensive understanding of facial
expressions.

With the help of these tools, Pumarola et al. [6] intro-
duced a technique that utilizes AUs to guide the synthesis of
facial expressions. This approach allows for precise control
over the strength of individual AUs and their combination to
form a cohesive expression. However, it only learns global
AU features, which limits its performance in editing local
expression details. Wang et al. [25] added a path for predict-
ing an appearance flow to align the input image to the target
expression. Wu et al. [26] proposed a cascaded expression
focal GAN that progressively modifies facial expressions by
emphasizing local expression features. On the other hand,
considering the distinct structured appearances of facial
expressions, Song et al. [27] and Qiao et al. [28] proposed
geometrically guided Gans that leverage facial markers to
define the facial geometry and generate facial expressions.
Nevertheless, aligning landmarks from source images with
target images that possess distinct facial shapes is a sig-
nificant challenge and frequently results in the presence of
artifacts within the generated images. These approaches typi-
cally rely on global expressions, AUpredictions, or landmark
predictions and lack the ability to estimate them automat-
ically. Ling et al. [29] improved generator architecture in
GANimation and used relative AUs as input. With relative
action units, the generator learns to only transform regions
of interest which are specified by non-zero-valued relative
AUs. To further preserve identity information and edit rele-
vant areas, Wang et al. [30] added an attention module to the
generator for facial expression manipulation, and obtained
long-range dependencies in the image by using self atten-
tion blocks instead of direct skip connections. In order to
improve the performance of expression transfer, Shao et al.
[31] disentangled the input image into twofine-grained repre-
sentations (AU-related and AU-free features), and proposed
an EET framework to explicitly transfer fine-grained expres-
sions by straightforwardly mapping the unpaired input to
two synthesized images with swapped AU-related features.
Tang et al. [32] introduced an end-to-end expression-guided
GAN in theirwork, enabling themanipulation of fine-grained
expressions and synthesis of continuous intermediate expres-
sions between source and target expressions. However, these
methods still overlooks the role of details in local regions in
preserving the local structure and texture of the image.
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Fig. 1 The architecture of our framework, which consists of a mask
generator, a AAE, a transformative generator and an AU-intensity dis-
criminator. Given a source face image Ii and a target AU intensity vector

ut : {ute , utm }, we concatenate each latent codes from local region with
corresponding AU vector to generate a new image ˜Ii

Method

Our LSGAN consists of a semantic mask generator (SMG),
an adversarial autoencoder (AAE), a transformative genera-
tor (TG), and anAU-intensity discriminator (AUD), as shown
in Fig. 1. Our SMG receives input image Ii and produces the
key facial region masks, i.e., Ieye, Imouth, and Ipart. Then,
our AAE formulates local latent codes for the facial region
masks. Afterward, our TGgenerates a new facial imageswith
target expression. During this procedure, our AUD forces the
generated facial expression images to lie on the same mani-
fold as real frontal faces.

Semantic mask generator (SMG)

Through observation, it is found that facial expressionmanip-
ulation often occurs in key facial regions, such as mouth and
eyes. Therefore, we design SMG to locate eye and mouth
regions and generate corresponding local facial part masks.

Our SMG consists of three modules, a spatial path mod-
ule, a context path module, and a feature fusion module. The
spatial path module encodes affluent spatial information, and
the context path module provides sufficient receptive field.
Our spatial path module consists of a convolutional layer
and two basic blocks. Here, we introduce the Resnet [33]
architecture, which includes a residual branch and a short-cut
branch, to design our basic blocks. Our context path mod-

ule includes two basic blocks and two attention refinement
modules (ARM). Inspired by [34], we design the attention
refinement module, which leverages pooling layers along the
horizontal and vertical coordinate directions to capture con-
textual information. The components of ARM is shown in
Fig. 2b. By performing pooling on the input feature map of
size C×H×Win horizontal and vertical directions, we obtain
the following feature maps:

zhc (h) = 1

W

∑

0≤i<W

xc(h, i),

zwc (w) = 1

H

∑

0≤ j<H

xc( j, w).

(1)

Then, with the following formula f = δ(F1(|zh, zw|)),
we concatenate zh with zw, and perform the F1 operation on
the concatenated result, which involves dimension reduction
and activation using a 1×1 convolutional kernel. Along the
spatial dimension, we split f into f h ∈ R

C/r×H×1 and f w ∈
R
C/r×1×W . We perform dimension expansion using a 1×1

convolutional kernel, and finally apply the sigmoid activation
function to obtain the final attention weights gh ∈ R

C×H×1

and gw ∈ R
C×1×W in both directions:

gh = σ(Fh( f
h)),

gw = σ(Fw( f w)).
(2)
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Fig. 2 An overview of SMG. a Network architecture. b Components of attention refinement modules

Finally, the output formula of ARM can be expressed as
follows:

yc(i, j) = xc(i, j) × ghc (i) × gw
c ( j), (3)

whereas, xc(i, j) and yc(i, j) correspond to the input and
output features, respectively. Furthermore, our feature fusion
module is composed of a convolutional layer and an attention
refinement module. It fuses the output features of the former
two modules and generates face segmentation results (see
Fig. 2).

Since facial expression manipulation would cause large
shape changes of facial component, we enlarge the size of
eyes, eyebrows, andmouth areas and divide the source image
Ii into eye region masks Ieye, mouth region masks Imouth and
cheek region masks Ipart. In this way, we can provide facial
semantic priors for following procedures.

Adversarial autoencoder (AAE)

After obtaining the local facial part masks, encoding their
latent codes becomes crucial for our task. Therefore, we

introduce an AAE [35] to encode the latent code for local
facial part masks.

Our AAE is composed of an encoder E , a decoder, and a
discriminator Dz , as shown in Fig. 3. The encoder generates
latent codes z = E(x) ∼ qz from source images x , and x can
be the original image Ii or local image Ieye, Imouth, etc. The
decoder reconstructs input source images with 5 convolution
layers and a fully-connected layer. The discriminator judges
whether the latent code arises from the predicted code of
the autoencoder or from a sampled distribution specified by
the user. We employ a latent adversarial loss Lz

adv to learn
the structured latent mapping between the latent space and
Gaussian distribution:

Lz
adv = Ez′∼pz

[log Dz(z
′
)]

+ Ez∼pdata [log(1 − Dz(E(x)))],
(4)

where z is sampled from the image domain pdata and z
′
fol-

lows the Gaussian distribution pz . We pretrain the AAE and
introduce the encoder into our LSGAN. In this manner, we
can estimate latent codes for different regions, namely ze for
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Fig. 3 An overview of AAE

the eye region, zm for themouth region, and z p for sub critical
regions.

After obtaining the latent code of each region, we proceed
to divide the target AU-intensity vector ut into two subsets:
ute for the eye region and utm for themouth region,while z p is
still cascadedwith ut . This paper uses the target AU-intensity
vector as a conditional variable to construct ˜Ii = G(z|ut ) to
generate an imagewith the expected expression. Here z is the
set of latent code for each region. We cascade the latent code
with the corresponding AU vector to obtain representations
of different regions: Re for the eye region, Rm for the mouth
region and Rp for sub critical regions.

Transformative generator (TG)

Our TG is proposed to construct facial images with target
expression by explicitly exploiting facial semantic priors of
source images and AU intensity of target images. Our TG
comprises three distinct generation structures, as shown in
the Fig. 1. The input to the generator is the local represen-
tation of different regions. Specifically, the upper layer is
primarily responsible for facial expression changes in the
eye region and surrounding areas, while the middle layer
focuses on expression changes in the mouth area. The lower
layer is utilized for expression changes in sub critical regions,
such as the nose, cheeks, and chin. Each layer contains 6 up-
sampling residual blocks, resulting in respective outputs ˜Ie,
˜Im , and ˜Ip. Subsequently, these outputs are fused based on
their corresponding local masks to generate the final image
˜Ii .

To improve the structural stability of our TG, we recon-
struct the original image Ii and generated image ˜Ii based on
the origin image’s AU-intensity vector ui . In this manner,
we can obtain cyclic-reconstruction image Icyc and self-
reconstruction image Ir .

AU-intensity discriminator (AUD)

Our AUD has two tasks: (1) discriminating generated images
by TG from real ones; and (2) assessing the expression inten-
sity of the generated image relative to its target AU-intensity

vector. We utilize Dadv to complete the first task. For the
second task, we introduce Dcls to AUD to ensure the accu-
rate transmission of AU changes throughout the generation
process. The structure of our AUD is composed of 6 con-
volution layers with a stride of 2. Through the above design
of our AUD, it can more effectively evaluate the authentic-
ity and quality of generated images, while simultaneously
controlling the changes in facial expressions.

Loss function

Our approach focuses on generating facial images that accu-
rately reflect the expected facial expression while preserving
the underlying identity structure of the original image. To
this end, our generator loss function encompasses not only
the expression vector loss, but also the loss of identity infor-
mation. We pretrained two networks (Gexp, Cid) to obtain
the identity and facial expression information of the current
image. And the architecture of these two networks is inspired
by the traditional Visual Geometry Group 19-layer (VGG19)
network [36]. Furthermore, to enhance the stability of our
generator network, we incorporate self-reconstruction loss
and cyclic-reconstruction loss into our overall loss function.
Self-reconstruction uses the origin image as input and output
image. While the input of cyclic reconstruction is the gener-
ated image, and its output is the origin image. The network
for image reconstruction is consistent with the original gen-
erated networkwhich consists of three hierarchical networks.
Reconstruction loss acts as a regularization term that helps
prevent overfitting. By compelling the network to capture
key features during the reconstruction process, the recon-
struction loss helps enhance the network’s ability to represent
input data, thereby improving its stability. Furthermore, inte-
grating the reconstruction loss with other losses allows for a
balance between different objectives, enhancing the overall
model’s stability and generalization capabilities.

Adversarial loss

Ladv models the discriminator’s ability to correctly distin-
guish real or false facial expression images. The adversarial
loss is formulated as:

Ladv = EIi∼pdata [log D(Ii )]
+ Ez∼pl [log(1 − D(˜Ii ))], (5)

where Ii is the input image and corresponding latent code set
is z. And our AU-intensity discriminator D is composed of
Dadv and Dcls. Dadv discriminates generated images by TG
from real ones while Dcls ensures the accurate transmission
of AU changes.
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Expression loss

Since the expression is decomposed into a set of intensity
values of AUs, we need to use expression loss to align the
distribution of expressions in the generated image with the
target image’s AUs.

Lau = − 1

d

d
∑

j=1

m
∑

q=0

||Gexp(˜Ii ) − ut ||2, (6)

where Gexp was pretrained to generate each AU intensity
from multiple levels. ut is the facial expression of target
image.

Identity loss

We use identity loss to preserve the identity information in
the input image Ii :

L id = −
n

∑

k=1

1k=li log
(

C (k)
id (˜Ii )

)

, (7)

whereCid is pretrained to construct a mapping between input
images Ii and their identity labels li .

Self-reconstruction loss

To ensure the stability of image generation, generator G
should be able to self-reconstruct Ii . L1 norm often results
in structural distortion and image blurring, so we we apply
an L1 loss and a MS-SSIM loss [37] to constrain self-
reconstruction:

L rec = ||Ir − Ii ||1 + (1 − SSIM(Ir , Ii )), (8)

where Ir represents the imagegeneratedby self-reconstruction,
which should be as similar to the input image Ii as possible.

Cyclic-reconstruction loss

To further ensure the integrity of identity information, cyclic-
reconstruction losses have also been introduced into this
work:

Lcyc = ||Icyc − Ii ||1, (9)

where Icyc represents the image generated by cyclic recon-
struction, its input is the generated image ˜Ii by G.

Fig. 4 Generating images under different hyper-parameters

Overall objective function

Combining the losses introduced above, the full objective
function is formulated as:

L = Ladv + λauLau + λidL id + λrecL rec + λcycLcyc, (10)

where λau, λid, λrec and λcyc are the hyper-parameters that
represent the weight of each loss function.

Experiment

Datasets and settings

Datasets

To evaluate the effectiveness and generalization of our
approach, we conduct experiments on two widely used
datasets, namely RaFD [38] and DISFA [39]. The RaFD
dataset is composed of high-quality facial images of 67 mod-
els displaying eight distinct emotional expressions, namely
anger, disgust, fear, happiness, sadness, surprise, contempt,
and neutrality. Each expression is depicted in three different
gaze directions across five camera angles.

The DISFA dataset, established in 2013, contains AU
video samples obtained from 27 participants (15 males and
12 females) watching a 242-second video comprising nine
segments meant to elicit various emotions. During the video
recording, subjects’ facial expressions were captured from
the front with consistent environmental conditions, includ-
ing lighting and background. The video resolution was set
at 1024×768, with a frame rate of 20 fps. Each participant’s
data consisted of 4845 frames, each annotated by two FACS
experts with start and end times for 12 types of AUs and
corresponding intensity levels ranging from 0 to 5.

Implementation details

We implemented our network in PyTorch and the computer
configuration used in the experiment is intel core I7-8700
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Fig. 5 Some generated images
based on our LSGAN. The input
source image has a neutral
expression

CPU and NVIDIA 3090 GPU. In our experiments. Each
image is cropped to the size of 128 × 128. Due to the lack
of corresponding AU vectors in the RAFD dataset, we use
ME-graphAU [8] to annotate intensities of 16 AUs (1, 2, 4,
5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25 and 26) as continuous
expression labels.

We set the hyper-parameters as: λau = 100, λid = 60,
λrec = 50 and λcyc = 50. These parameters are subject to
a simple constraint condition. Generally speaking, λau is
approximately equal to the sum of λrec and λcyc. The value of
λid falls within the range of [50, 100]. The generated results
based on different parameters are shown in the Fig. 4, it can
be seen that when λrec is set to 10, the details of the eyebrows
and eyes appear incomplete. When λrec is 200, the changes
in facial expressions are not sufficiently prominent.

The adversarial learning in E , G, Dz and Dimg employs
the Adam solver and a learning rate of 10−4, whileGexp uses
a learning rate of 2× 10−4. We train our framework for 600
and 16 epochs on RaFD and DISFA datasets, respectively,
with a batch size of 8.

Evaluation metrics

To quantitatively evaluate our method for expression trans-
fer, we introduce mean square error (MSE) and intraclass
correlation coefficient (ICC) to measure the difference and
correlation between the AU intensities of generated images
with ground truth. To further compare the quality and struc-
tural similarity of images generated by different methods, we
introduce evaluation indicators such as peak signal to noise
ratio (PSNR) [40], structural similarity (SSIM) [40], Frechet
inception distance (FID) [41] and LPIPS distance [42].

Fig. 6 Qualitative comparison of facial expression synthesis on RaFD
database (target facial expression from top to bottom: disgusted, sur-
prised and happy). The results of MASK are used in LSGAN

PSNR is a widely used metric for assessing the quality of
an image. It quantifies the degree of distortion in an image
by comparing the differences between the original and pro-
cessed/compressed versions. The higher the PSNR value,
the lower the level of distortion. The formula for calculat-
ing PSNR is expressed as follows:

PSNR = 10 · log10
(

MAX2

MSE

)

(11)

Here, MAX represents the maximum possible pixel value of
the image (e.g., for an 8-bit image, MAX = 255), and MSE
denotes the mean squared error, computed as the average of
the squared differences between corresponding pixels of two
images.
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Fig. 7 Facial expression
manipulation based on different
target facial expression images
of DISFA datasets

SSIM is another important metric for evaluating image
quality. Unlike PSNR, which focuses solely on pixel-wise
differences, SSIM also takes into account structural informa-
tion and texture similarity. It provides a more comprehensive
assessment of perceived image quality by considering both
local and global image characteristics. SSIM is ametric based
on three comparisons between samples x and y: luminance,
contrast, and structure, expressed by the following equation:

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ ], (12)

where l(x, y) represents luminance comparison, c(x, y) rep-
resents contrast comparison (reflecting the magnitude of
brightness changes in the image, i.e., the standard deviation
of pixels), and s(x, y) indicates structure comparison. The
parameters α, β, and γ are constants.

FID is a measure commonly employed to assess the dis-
similarity between two multivariate normal distributions. It
is often used in evaluating the performance of generative
models, such as GANs. The feature means μg and variances
Cg of generated images, along with the means μr and vari-
ances Cr of real images, are used to compute the distance
between feature vectors based on their means and variances.
This distance is termed as FID, defined as:

Fig. 8 Visual comparison of different expressions for EGGAN, GAN-
IMATION, LSGAN#1 with Cross entropy loss in Lau and LSGAN#2
with MSE loss in Lau in the DISFA dataset

FID
(

Pr , Pg
) = ||μr − μg||

+ Tr
(

Cr + Cg − 2
(

CrCg
)1/2

)

.
(13)

Here, Tr is the trace operation (the sum of the elements on
the main diagonal of a square matrix).

In contrast, LPIPS distance is a perceptual similarity met-
ric and has been demonstrated to correlate well with human
perceptual similarity. LPIPS distance has been widely uti-
lized in various computer vision tasks, including image
synthesis and style transfer. Given a reference block x from
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Table 2 Quantitative
comparison with FID (lower is
better), PSNR (higher is better)
and SSIM (higher is better) on
the generated images of
different methods

Method STARGAN [5] GANIMATION [6] EGGAN [32] LSGAN

FID 130.557 37.702 48.598 31.121

PSNR 20.587 21.352 20.086 23.417

SSIM 0.832 0.820 0.834 0.858

Fig. 9 Origin images and target
expressions for quantitative
evaluation. The original and
target images are used to
generate their corresponding
reconstructed images

the ground truth image and a distorted block x0 from a noisy
image, the formula for calculating LPIPS is as follows:

d(x, x0) =
∑

l

1

HlWl

∑

h,w

∣

∣

∣

∣

∣

∣wl � (ŷlhw − ŷ0
l
hw)

∣

∣

∣

∣

∣

∣

2

2
. (14)

Here, yl and y0l represent the feature maps of the l-th layer
of the images.

Qualitative evaluations

We divide the images in the RAFD dataset into 8 discrete
emotional expression categories: neutral, angry, contemptu-
ous, disgusted, fearful, happy, sad, and surprised. Figure5
shows the generation results of our LSGAN.

The results indicate that our method can generate various
types of images with target expressions. We do further eval-
uation to compare the performance of our LSGAN with the
current state-of-the-art approaches, as show in Fig. 6.

Among them, STARGAN [5] handles well for image
translation in different domains, but its results are a little
blurry with some artifacts. EGGAN [32] can achieve higher
quality results but still ignores the structural integrity of local
regions, such as the right eyebrow as shown in Fig. 6. Using
the generator targeting local semantic regions and reconstruc-
tion networks thatmaintain facial structure, it can be seen that
both global expressions and local muscle actions look natu-
ral in the generated images of our LSGAN. This proves that
our method has more complete details of local regions while
achieving expression transformation.

To conduct a more detailed analysis of AU-intensity
vector, we do further experiments on DISFA dataset. For
different target images and their expressions, the original

image achieved expression manipulation while retaining its
own identity features, as shown in the Fig. 7.

The comparison with other methods are shown in Fig. 8.
Based on a large amount of training data, the images gen-
erated by various methods have good results. However, we
find that GANIMATION [6] generates blurring and overlap
around local areas when there is significant facial deforma-
tion, such as fromopening themouth to closing themouth.By
introducing reconstruction networks, our method has slight
advantages in terms of structural integrity and local muscle
actions, such as texture details in the eye region. This demon-
strates the advantage of our method in controlling key facial
region details.

Quantitative evaluations

To quantitatively evaluate the expression manipulation, we
compute MSE and ICC between the AU intensities of gen-
erated images with ground truth. We use ME-graphAU to
estimate the AU-intensity vector for each image. Since the
comparison method only includes partial AU-intensity vec-
tor results, we choose 16 AU intensities near the eyes and
mouth. As shown in Table 1, although the latest diffusion
method [43] has shown good results in generating high-
quality images, it is difficult to capture the detailed changes
in facial expressions. It can be seen that our method is the
most accurate in predicting the AU-intensity vector near the
mouth area.Overall, ourmethod achieves higher average ICC
and lower averageMSE of 16 AU intensities. This proves the
effectiveness of our network based on different regions.

While considering facial expression transfer, we further
conduct a comparative analysis of image quality among var-
ious methods. We use FID, PSNR and SSIM to analyze the
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Table 3 Quantitative
comparison with FID (lower is
better) and LPIPS (lower is
better) on reconstructed images

Method FID (lower is better) LPIPS (lower is better)

EGGAN [32] LSGAN#1 LSGAN#2 EGGAN [32] LSGAN#1 LSGAN#2

FIG (1) 33.5 34.9 29.2 0.0272 0.0341 0.0238

FIG (2) 103.2 55.2 52.9 0.0626 0.0530 0.0437

FIG (3) 50.7 55.6 39.3 0.0504 0.0503 0.0388

FIG (Avg) 35.7 27.9 24.3 0.0347 0.0330 0.0268

FIG (1), FIG (2), FIG (3) corresponds to the three pairs of images in Fig. 9

Fig. 10 Illustration of the
effectiveness of different loss
terms. LSGAN is trained
without L id, L rec, Lcyc,
respectively

quality of generated images, as shown in Table 2. It can be
seen that compared to other methods, the images generated
by LSGAN are closer to the image quality and structural
similarity of the ground truth.

To further compare the stability and image quality of dif-
ferent networks, we use FID metrics and LPIPS distance to
evaluate the reconstructed image on the DISFA datasets. We
select 3 pairs of images for evaluation, as shown in Fig. 9.

The quantitative evaluation results of the reconstructed
images in Fig. 9 are shown in Table 3 below.

Among them, FIG(1), FIG (2) and FIG (3) correspond
to the three pairs of images in Fig. 9, respectively. And FIG
(Avg) is the average results of 50 pairs of test images. It indi-
cate that our method has better reconstruction performance,
that is, our LSGANcan achievemore stable image generation
while preserving the original image identity and structure. In
addition, the results of LPIPS reflect that our network is able
to maintain the features of invariant local regions well.

The ablation study

In this section, we evaluate the main components in our
LSGAN. Specifically, we investigate the effects of different
loss terms in our framework by examining their impact on
image generation. To accomplish this, we train the network

Table 4 Quantitative comparison with FID (lower is better)

Source E_wt I E_wt R E_wtC LSGAN

FID (a) 59.9 179.9 44.5 41.4

FID (b) 77.1 89.3 40.8 23.4

FID (c) 65.0 69.9 44.5 31.8

E_wt I w/oL id E_wt R w/oL rec E_wtC w/oLcyc
FID (a), FID (b), FID (c) correspond to three sets of images in Fig. 10

by removing one of three key loss terms: identity loss, self-
reconstruction loss, and cyclic reconstruction loss, which are
denoted as E_wt I , E_wt R, and E_wtC , respectively. Fig-
ure10 shows some of the results with target facial expression
of happiness.

We further evaluate the generated image and ground truth
with FID metrics, and the results are shown in Table 4. In
summary, the various losses used in our network are neces-
sary.

To further analyze the effects of different network archi-
tectural modules on our LSGAN, we conduct the ablation
study on LSGAN and its variants. The generated images
with disgust expressions of our LSGAN and its variants are
shown in Fig. 11. E_wtARM denotes the adoption of the
conventional channel attention network SENET instead of
ARM, whereas E_wtSMG signifies the utilization of global
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Fig. 11 Illustration of the
effectiveness of different
network structure module. We
compare LSGAN with its three
different network structure
variants (E_wtARM,
E_wtSMG, E_wt(AAE + TG)

Table 5 Quantitative
comparison with FID (lower is
better)

Source E_wtARM E_wtSMG E_wt(AAE + TG) LSGAN

FID (a) 47.8 54.8 68.2 41.1

FID (b) 41.7 71.9 62.6 27.5

FID (c) 63.2 71.3 68.8 52.4

FID (a), FID (b), FID (c) correspond to three sets of images in Fig. 11

Table 6 Quantitative evaluation
of expression manipulation for
our LSGAN and its variants on
RAFD dataset

AU MSE (lower is better)

E_wt I E_wt R E_wtC LSGAN E_wtARM E_wtSMG E_wt(AAE + TG)

1 0.062 0.178 0.032 0.032 0.046 0.048 0.122

2 0.058 0.106 0.020 0.022 0.046 0.056 0.085

4 0.104 0.141 0.100 0.086 0.141 0.100 0.192

5 0.023 0.316 0.025 0.023 0.051 0.034 0.178

6 0.006 0.012 0.005 0.004 0.006 0.025 0.021

7 0.036 0.038 0.018 0.024 0.028 0.018 0.062

9 0.024 0.058 0.020 0.010 0.015 0.021 0.044

10 0.023 0.035 0.018 0.021 0.014 0.029 0.054

12 0.002 0.017 0.002 0.001 0.001 0.007 0.008

14 0.005 0.006 0.004 0.003 0.006 0.007 0.009

15 0.001 0.008 0.001 0.001 0.001 0.001 0.009

17 0.015 0.083 0.033 0.013 0.017 0.033 0.079

20 0.002 0.004 0.003 0.003 0.003 0.002 0.004

23 0.004 0.011 0.003 0.004 0.003 0.003 0.006

25 0.047 0.014 0.016 0.011 0.020 0.026 0.023

26 0.058 0.099 0.027 0.034 0.038 0.051 0.095

Avg 0.029 0.070 0.020 0.018 0.027 0.029 0.062

Bold indicates the best results among various methods under the same evaluation metric in each AU
We compare MSE (lower is better) between 16 AU intensities of target images and generated images
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Table 7 Quantitative evaluation
of expression manipulation for
our LSGAN and its variants on
RAFD dataset

AU ICC (higher is better)

E_wt I E_wt R E_wtC LSGAN E_wtARM E_wtSL E_wt(AAE + TG)

1 0.570 0.052 0.802 0.799 0.702 0.667 0.292

2 0.364 0.025 0.821 0.793 0.515 0.427 0.154

4 0.367 0.058 0.334 0.430 0.162 0.284 0.045

5 0.872 0.013 0.867 0.885 0.742 0.793 0.281

6 0.959 0.899 0.959 0.971 0.957 0.772 0.815

7 0.856 0.829 0.929 0.898 0.879 0.925 0.738

9 0.706 0.172 0.749 0.893 0.822 0.742 0.375

10 0.893 0.813 0.921 0.904 0.935 0.857 0.711

12 0.990 0.900 0.991 0.994 0.995 0.961 0.951

14 0.364 0.106 0.417 0.591 0.105 0.100 0.201

15 0.544 0.482 0.613 0.735 0.715 0.687 0.444

17 0.806 0.180 0.522 0.825 0.734 0.470 0.072

20 0.361 0.148 0.017 0.086 0.256 0.232 0.102

23 0.293 0.136 0.627 0.414 0.578 0.540 0.048

25 0.861 0.958 0.954 0.968 0.941 0.922 0.923

26 0.495 0.208 0.784 0.720 0.693 0.567 0.254

Avg 0.644 0.374 0.707 0.744 0.671 0.622 0.400

Bold indicates the best results among various methods under the same evaluation metric in each AU
We compare ICC (higher is better) between 16 AU intensities of target images and generated images

images alone for sentiment operations without incorporating
local feature alignment. E_wt(AAE + TG) uses traditional
encoding and decoding structures in LSGAN instead of a
combination of AAE and TG. It can be seen that the variants
of LSGANhave a decrease in the quality of generated images
in key facial regions.

Similarly, we evaluate the generated image and ground
truth with FID metrics, as shown in Table 5. It is evident that
compared to its variants, LSGAN can alleviate issues such
as low resolution and image artifacts.

We also quantitatively evaluate different variants of
LSGAN in terms of transferring fine-grained expressions.
Tables 6 and 7 present the MSE and ICC between the AU
intensity of the ground truth and the generated image of
LSGAN and its variants, respectively. The absence of recon-
struction loss significantly diminishes the network’s capacity
to convey expression intensity labels. Moreover, when com-
pared to conventional encoding and decoding architectures,
the utilization of SMG, AAE and TG enables LSGAN to
effectively align the features extracted from the input image
with those of the target image. This alignment facilitates
the precise transfer of nuanced facial expressions, enhanc-
ing our network’s ability to faithfully capture fine-grained
expression details. In summary, LSGAN showcases superior
performance in fine-grained expressionmanipulation, as evi-
denced by its highest average ICC and lowest average MSE
among its variants. This demonstrates the effectiveness of

LSGAN in accurately manipulating facial expressions with
fine details.

Conclusion

This paper introduces a novel approach for fine-grained
facial expression manipulation, termed LSGAN. By inte-
grating facial expression images generated from various
facial regions, our approach is able to fully capture and
leverage region-specific information while preserving the
overall structural integrity of the image. At the same time,
our method ensures that the AU intensity of the generated
image is basically consistent with the target image. Our pro-
posed method has been rigorously evaluated through both
qualitative and quantitative analyses using publicly available
databases, demonstrating its high performance in generating
expression-specific facial images.
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