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Abstract
Since the impressive superior performance demonstrated by deep learning methods is widely used in histopathological image
analysis and diagnosis, existing work cannot fully extract the information in the breast cancer images due to the limited high
resolution of histopathological images. In this study, we construct a novel intermediate layer structure that fully extracts
feature information and name it DMBANet, which can extract as much feature information as possible from the input
image by up-dimensioning the intermediate convolutional layers to improve the performance of the network. Furthermore,
we employ the depth-separable convolution method on the Spindle Structure by decoupling the intermediate convolutional
layers and convolving them separately, to significantly reduce the number of parameters and computation of the Spindle
Structure and improve the overall network operation speed. We also design the Spindle Structure as a multi-branch model
and add different attention mechanisms to different branches. Spindle Structure can effectively improve the performance of
the network, the branches with added attention can extract richer and more focused feature information, and the branch with
residual connections can minimize the degradation phenomenon in our network and speed up network optimization. The
comprehensive experiment shows the superior performance of DMBANet compared to the state-of-the-art method, achieving
about 98% classification accuracy, which is better than existing methods. The code is available at https://github.com/Nagi-
Dr/DMBANet-main.
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Introduction

The task of automatic classification for breast cancer histo-
pathological images is a theme that deserves our deliberation.
It is worthwhile for researchers to contrive a model to effec-
tuate the accurate evaluation of breast cancer and automatic
classification of breast cancer histopathological images. In
recent years, deep learning methods have made significant
progress and achieved remarkable performance in the field
of computer vision and image processing [36, 44], inspiring
many scholars to implement the technique for histopatholog-
ical image classification [1]. Convolutional neural networks
(CNNs) are not only themost widely used type of deep learn-
ing networks, but they also have superior performance in
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image classification and image feature extraction [2], which
have laid the foundation for the application of convolutional
neural networks in histopathological image classification.

Humanvision can easily ignore low-value information and
quickly find valuable key information. Inspired by the human
visual system,manyworks [8, 10] have apply attentionmech-
anism to the classification of histopathological images. There
are two main types of attentional mechanisms [39]: 1) Chan-
nel Attention, such as SeNet [7], which focuses on allowing
the network to learn what to pay attention; 2) Spatial Atten-
tion, such as self-attention [24], which focuses on allowing
the network to learn where to pay attention. Furthermore,
there are some composite attentionmechanisms, which com-
bine channel attention and spatial attention, such as CBAM
[31]. Due to the high resolution of histopathological images,
using the attention mechanism can help us quickly target to
the valuable regions and effectively improve the performance
of the network.

In addition, due to limited GPU resources, it is not possi-
ble to directly input high-resolution histopathological images
into the CNN for classification. The high resolution not
only results in substantial computational costs but also sig-
nificantly prolongs the network’s training time, requiring
preprocessing of raw data [42, 43]. However, downsampling
the image to a lower resolution is not practical either since
it results in significant loss of valuable image information,
which is especially critical in medical imaging, where the
available data is already limited. Therefore, we developed
a deep spindle structure in our network that can effectively
address this challenge by breaking down the image into mul-
tiple patches, and then conducting feature extraction and
processing in parallel on eachpatch to fully capture the salient
information.

To address the aforementioned challenges, this study pro-
poses a deep multi-branch attention model that optimizes
information extraction in three ways: (a) the multi-branch
structure consists of three different branches, enabling the
network to focus on a wider range of information scales;
(b) the addition of spatial attention and channel attention
to different branches allows the network to pay attention to
different key information; and (c) through the deep spindle
structure, the middle layer’s up-dimensioning significantly
enhances the network’s information extraction ability. Topre-
process the original histopathological images, we cut them
into small patches and input these patches into the network.
Evaluated on the PathoIMGdata set, ourmethod outperforms
existing state-of-the-art methods and significantly improves
the classification accuracy of breast cancer histopathological
images.

The main contributions of this study are summarized as
follows:

1. This study constructs the Deep Spindle Structure that
extracts as much information as possible from patholog-
ical images to reduce the waste of feature information.
It improves the accuracy without additionally increas-
ing the number of parameters of the network, facilitating
the deployment of the network on platforms with limited
resources.

2. Wedesign amulti-branchmodel throughadd residual con-
nections to the Deep Spindle Structure that allows the
network to heed more scales of information and extract
richer features, which effectively solves the degradation
phenomenon of the network so that the network can stack
deeper and get a better result.

3. We add channel and spatial attention mechanism to the
multi-branch model to help the network better notice
and extract key information. Channel and spatial atten-
tion in different branches make the network pay attention
to more noteworthy channels and information in indi-
vidual channels, respectively, which allows the network
to extract more critical information hidden in the patho-
logical images and effectively improve the classification
accuracy of the network.

The remainder of this study is organized as follows. We
start with a review of the related work that contain a number
of deep ConvNets applied to the field of histopathological
image classification and efficient attention mechanisms in
the section“Related work”. We present the proposed a novel
deep ConvNets which combined with multi-branch struc-
ture and attentionmechanism, and explain the specific design
ideas in detail in the section“Proposed method”. In the sec-
tion“Experiments”, We compare our approach with several
current state-of-the-art deep neural networks based on the
PathoIMG breast cancer data set. The conclusions of this
study and future works are given in the section“Conclusion”.

Related work

In recent years, researchers have been exploring the applica-
tion of convolutional neural networks to histopathological
image classification of breast cancer, leveraging CNN’s
excellent performance in computer vision and natural lan-
guage processing. Breakhis [3] is a breast cancer histopatho-
logical image data set with two major classes, benign and
malignant, each subdivided into four subclasses. The author
combines AlexNet networks and different integration strate-
gies and then perform classification on the Breakhis data
set with improvement in classification accuracy over tra-
ditional machine learning methods. BiCNN [4] treats class
labels and subclass labels in the data set as prior knowledge
and uses a combination of data augmentation methods and
migration learning strategies in the training process. BiCNN
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effectively improves the robustness and generalization of the
network. Yan et al. [5] sliced the original histopathologi-
cal images into small patches and utilized GoogleNet V3
and bi-directional LSTM for classification. In addition, they
published the PathoIMG data set in their paper. Previous
approaches have overlooked the intricate high-dimensional
relationships among multiple views. In response, Pan et al.
[45] introduce a novel method called Low Rank Tensor Reg-
ularized Graph Fuzzy Learning (LRTGFL) for processing
multi-view data. Although previous works have made vari-
ous efforts to improve classification accuracy, unfortunately,
the classification accuracy of these works is still unsatisfac-
tory.

The attention mechanism has been successfully applied
to various image classification tasks [7] because it enables
the network to ignore low-value information easily and
learn more valuable features. Attention by Selection [8] uses
DeNet, which consists of a hard attention mechanism, to
select valuable regions in the original image, and then passes
these valuable regions as input to the soft attention domi-
nated SaNet network for further processing and feedback.
ARL–CNN [9] (attention residual learning convolutional
neural network) is a method for skin lesion classification.
It consists of multiple residual blocks incorporating an atten-
tion mechanism and using a self-attentive mechanism, that
widely used in the natural language processing. DA-MIDL
[10] (dual attention multi-instance deep learning network)
uses spatial attention to extract useful information and com-
bines it with multi-instance learning (MIL) pooling to enable
the network. DA-MIDL achieve better classification perfor-
mance in terms of accuracy and generalization. CA-Net [11]
is an attention-based network model that makes extensive
use of multiple attentions. multiple attentions allowing the
network to simultaneously attend to the most important spa-
tial location and channel information by combining different
attention mechanisms to obtain superior network perfor-
mance and interpretability.

Since AlexNet [12] popularize deep convolutional neu-
ral networks by winning the ImageNet challenge: ILSVRC
2012 [13], excellent convolutional neural networks start to
emerge [14–17]. GoogleNet [18] demonstrate the superiority
of the multi-branch structure by utilizing the width structure
of Inception, leading to its widespread use in subsequent
network designs. Moreover, it introduce the depthwise sepa-
rable convolution to significantly reduce the number ofmodel
parameters, which laid the foundation for the development
of lightweight network models. After ResNet [19] proposed
residual connectivity, it has been widely used in the design
of network models, which improves the performance of the
network on the one hand, and effectively solves the prob-
lem of network degradation on the other hand, allowing the
network to be stacked very deeply.

MobileNet [20, 21, 37] and ShuffleNet [22, 38] achieve
network lightweighting with guaranteed network perfor-
mance, the former mainly by deep separable convolution
and inverse residual structure, while the latter reduces the
number of parameters of the network using Channel Shuffle
in group convolution. EfficientNet [23] uses Neural Archi-
tecture Search (NAS) technique in the parameter space to
searches for a rationalized configuration of three parameters:
image input resolution, network depth, and Channel width,
and then uses the compound scalingmethod to obtain a series
of well-performing networks.

Moreover, the transformer structure has recently started
to show great strength, and ViT [24] has become a mile-
stone work in the application of transformer in CV field
because of its simple, scalable and effective structure, which
has triggered subsequent related research. ConvNeXt [25],
based onResNet-50 andResNet-200, borrowed the advanced
ideas of swin transformer [26] from five perspectives: Macro
Design, Group Convolution & Deep Separable Convolution,
Inverted Bottleneck layer, Large Kernel Sizes, and Micro
Design, respectively, to effectively improve the performance
of CNNs.

Proposedmethod

In this section, we describe in detail the methodological
strategies applied to the core layer of the DMBANet in four
dimensions: (1) Specific design of Deep Spindle Structure;
(2) multi-branch attention; (3) optimizer and learning rate
decay; and (4) overall structure of DMBANet. We describe
the design ideas for theDMBANet in the previous three parts,
and show the overall structure of the DMBANet in the last
part.

Deep spindle structure

Bottleneck block is a structure widely used in many neural
networks, such as ResNet [19]. It reduces the dimensionality
of the input feature map by first 1 × 1 convolutional kernel,
and up-dimensions the output featuremapby end1×1 convo-
lutional kernel. The bottleneck block has many advantages,
such as it can stack the network easily without calculating the
size of the feature map when we want to deepen the network
structure.

Regrettably, Although bottleneck block gets some bene-
fits by first reducing the dimension and then raising it. But in
this process, the ability of bottleneck block to extract feature
information isweakened. Thus, the first thingwe have to do is
to improve the bottleneck block while preserving the crucial
residual connection. We have designed Deep Spindle struc-
ture that is the opposite of bottleneck block, it up-dimension
the input feature map in first 1× 1 convolutional kernel, and
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Table 1 Specific parameters of
Bottleneck Module and Spindle
Structure are shown in the table,
where DW conv means
depthwise convolution and PW
conv means pointwise
convolution

Module Input Operator Output

Bottleneck H × W × 4C 1 × 1 conv, ReLU H × W × C

Module H × W × C 3 × 3 conv, ReLU H × W × C

H × W × C 1 × 1 conv, ReLU H × W × 4C

Spindle H × W × C 1 × 1 conv, ReLU6 H × W × 4C

Module H × W × 4C 3 × 3 DW conv, ReLU6 H × W × 4C

H × W × 4C Linear 1 × 1 PW conv H × W × C

downscale them by last 1× 1 convolutional kernel. Because
the number of channels in themiddle 3×3 convolutional ker-
nel is high enough, Deep Spindle structure allows the input
features to be fully extracted and the original information to
bemore fully utilized.However, sinceDeepSpindle structure
performs the up-dimension first, it will inevitably increase
the number of Spindle Structure parameters. The detailed
parameters of the two modules are shown in Table 1.

Due to the dramatic increase in the number of parameters
in Spindle Structure, we have to combine the depth-separable
convolution for feature extraction. Depth-separable convo-
lution is a key component of many neural networks with
excellent performance [18, 20, 30]. The basic idea of it is
to replace the full convolution operator with a decomposed
convolution operator that decomposes the convolution into
two separate layers. The first layer, known as the depthwise
convolution, employs a group convolution where the convo-
lution kernel is fully decoupled. This lightweight convolution
extracts features by applying a single filter to each input chan-
nel. The second layer is a 1 × 1 convolution referred to as
pointwise convolution, which recouples the output features
extracted by the decoupled convolution kernel. The applica-
tion of this factorization yields a significant reduction in both
computational requirements and model size. Figure1 shows
how the standard convolution is decomposed into depthwise
convolution and pointwise convolution.

The standard convolutional layer takes a feature mapping
S of size Ds × Ds × M as input, uses a convolutional kernel
K of size Dk × Dk × M × N to extract feature information
from the input S, and produces a feature mapping E of size
De × De × N as output. Where Ds is the spatial length and
width of the input feature S, M is the number of channels of
the input feature S, Dk is the spatial length and width of the
convolutional kernel K , De is the spatial length and width of
the output feature E , and N is the number of channels of the
output feature E .

The output feature mapping for standard convolution is
calculated as follows:

Ek,n =
∑

i, j,m

(Ki, j,m,n × Sk+i−1,k+ j−1,m). (1)

The cost of the standard convolution is

Cst = Dker × Dker × M × N × Din × Din, (2)

where the computational cost dependsmultiplicatively on the
number of input channels M , the number of output channels
N , the convolution kernel size Dker × Dker and the size of
the input feature mapping Din × Din .

Depth-separable convolution consists of two parts: depth-
wise convolution and pointwise convolution. We first use
depthwise convolution to apply a single filter to each input
channel to extract the features in the input channel individ-
ually. Pointwise convolution (a simple 1 × 1 convolution)
is then used to couple the new output combinations. In this
paper, Batch normalization and the Rectified Linear Unit are
used for both depthwise convolution and pointwise convolu-
tion.

The computation of the feature mapping for depthwise
convolution can be written as

Êk,n =
∑

i, j

(K̂i, j,m × Sk+i−1,k+ j−1,m), (3)

where K̂ is a depthwise convolution kernel of size Dk×Dk×
m, where the mth filter in the depthwise convolution kernel
K̂ is applied to the mth channel in the input feature S and
produces the mth channel of the output feature mapping E
after convolution.

The cost of depthwise convolution and pointwise convo-
lution is

Cdw = Dker × Dker × M × 1 × Din × Din, (4)

Cpw = 1 × 1 × M × N × Din × Din . (5)

In the comparison with standard convolution, depthwise
convolution is very effective. However, depthwise convo-
lution only convolves the decoupled input channels and
cannot recouple the channel correlations between these fea-
ture information. Therefore, to generate these new feature
combinations, an additional pointwise convolution layer is
needed to couple the linear combinations of the depthwise
convolution outputs through a 1 × 1 convolution kernel.
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Fig. 1 Illustration of the three
convolution methods

(a) standard convolution

(b) depth-wise convolution

(c) point-wise convolution
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The two components, depthwise convolution and point-
wise convolution, are collectively referred to as depth-
separable convolution, which originally introduced in Xcep-
tion [18]. Overall cost of depth-separable convolution is

Cdep = Cdw + Cpw. (6)

By decomposing the standard convolution into a two-step
process of depthwise convolution and pointwise convolution,
we can reduce the computational effort by

Ratio = Cdep

Cst
= 1

N
+ 1

D2
ker

. (7)

In this study, the depth-separable convolution use a con-
volution kernel of size 3 × 3, which is 8–9 times less
computationally intensive than standard convolution, but
only slightly less accurate. It must be noted that factorization
in space does not consume much computational resources.
Therefore, depth-separable convolution only needs a little
computational resources to reduce the number of parameters
significantly.

Multi-branch attention

In recent years, more and more researchers have noticed the
excellent performance of attention mechanism and applied
it to various application scenarios of deep learning [7, 27,
28]. In different types of tasks, such as image processing,
speech recognition or natural language processing, attention
mechanism can be well integrated and perform well. In addi-
tion, since GoogleNet proposed the Inception [17] structure
in 2015 and found that neural networks incorporating multi-
scale feature information can perform well, Inception-like
multi-branch structure has become a regular guest in various
network models [29]. The residual connection proposed in
ResNet has been widely used in various networkmodels, and
the residual connection is a typical multi-branch structure.

Naturally, we integrated the concept of a multi-branch
structure into the design of the Deep Spindle architecture.
Specifically, we incorporated both channel attention and spa-
tial attention [31] to account for different types of attention
and inserted them into separate branches. Furthermore, we
added a residual connection to the network to further enhance
its overall performance.

The Channel Attention Module, depicted in Fig. 2a, oper-
ates as follows: the input feature map undergoes global
max pooling and global average pooling based on its width
and height, respectively. These features are then processed
through a shared multilayer perceptron. The features pro-
cessed by the Max pooling and Average Pooling operations
within the shared multilayer perceptron undergo an element-

wise summation operation, followed by a sigmoid activation
operation to generate the final channel attention feature map.

In simpler terms, channel attention compresses the fea-
ture map in the spatial dimension, generating a functional
one-dimensional vector. To achieve this spatial compression,
we employ techniques like average pooling and maximum
pooling, gathering spatial information within the feature
map. These compressed features are then directed to the
sharedmultilayer perceptron, further compressing the spatial
dimensions of the input feature maps. The resulting vectors
undergo elementwise summation and merging, creating a
channel attention graph. In the featuremap, channel attention
enables our model to focus on elements that are more critical
and important, this is beneficial for the model to learn infor-
mation related to categories that require heightened attention.

Channel Attention can be expressed as follows:

CA(F) = σ(FC2(FC1(FMax )) + FC2(FC1(FAvg))),

(8)

where σ denotes the Sigmoid activation function, FMax and
FAvg denote the input that has undergone the MaxPool and
AvgPool operations, Shared multilayer perceptron consists
of FC1 and FC2, FMax and FAvg share the parameters of
FC1 and FC2.

The Spatial Attention Module, as illustrated in Fig. 2b,
operates in the following manner: first, global max pooling
and global average pooling are applied based on the chan-
nel. These results are concatenated based on the channel to
generate the spatial attention feature map using a sigmoid
activation function. Finally, this feature map is multiplied by
the input feature of the module to obtain the final generated
feature.

The spatial attention module efficiently condenses chan-
nels by employing both average pooling and maximum
pooling operations across the channel dimensions. To be
more specific, the average pooling operation calculates the
mean across all channels a number of times corresponding to
the product of the height and width. Subsequently, the result-
ing feature maps from the preceding channels are merged, or
duplicated in the case of a single channel, resulting in a two-
channel feature map. Channel attention plays a crucial role
in enabling the network to discern valuable location infor-
mation, ensuring the extraction of critical texture details.

Spatial Attention Module can be expressed as follows:

SA(F) = σ(Ker7×7(Avg ⇐ MaxF )), (9)

where σ denotes a sigmoid operation, Ker7×7 denotes a con-
volution kernel of size 7 × 7, Avg ⇐ MaxF indicates that
the MaxPool operation is perform on the input F first, and
then perform the AvgPool operation.
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Fig. 2 Overview of channel attention and spatial attention. The purpose of a channel attention is make the network pay attention to those channels
which contain critical information. b Spatial attention can play a complementary role to channel attention, it pay attention to critical information
on key channels

Optimizer and learning rate decay

The role of an optimizer in deep learning is to guide the
backpropagation process by appropriately updating each
parameter of the loss (objective) function in the correct direc-
tion, with the aim ofminimizing the value of the loss function
and approaching the global minimum.

The Adam optimizer is widely adopted in various fields
due to its superior performance in deep learningoptimization.
It offers the advantage of automatically adjusting parame-
ter learning rates, which results in faster convergence and
improved overall network stability. However, despite these
benefits, Adam has several drawbacks [32–34]. For instance,
Adam converges faster than other optimization algorithms
and also tends to reduce the learning rate to a negligible
value during the later stages of training, which may result
in non-convergence and suboptimal performance. Moreover,
compared to stochastic gradient descentmethods, Adammay
produce poorer results in some cases.

Therefore, we propose using the SGD algorithm as the
optimization algorithm for our network, and supplement it
with momentum to facilitate quicker convergence. In addi-
tion, to address the issue of slow convergence, we employ the
lambda learning rate decay algorithm, which is characterized
by the following decay equation:

lr = lambda(x) = 1 + cos( x×π
Epochs )

2
× (1 − lr f ) + lr f .

(10)

where lr denotes the initial learning rate, and lr f represents
the learning rate update parameter.

The lambda learning rate decay algorithm is designed to
counteract slow convergence by allowing for a larger ini-
tial learning rate that speeds up early stage convergence. As
the network continues to train, the learning rate gradually
decreases, which prevents the network from converging pre-

Fig. 3 Specific structure of the Deep Spindle module

maturely to a local optimal solution and instead yields better
overall training results.

Architecture of the DMBANet

In this section, we provide a detailed description of our
architecture. As mentioned earlier, our fundamental building
block is a spindle-shaped residual module based on depth-
separable convolution. The structure of this module can be
observed in Fig. 3. Table 2 provides an overview of the com-
plete architecture of our model. We utilize ReLU6 as the
nonlinear activation function due to its ability to maintain
stability during low precision computations [22]. For mod-
ern networks, we typically employ a kernel size of 3 × 3 and
include batch normalization [35] in the training process.

DMBANet leverages a multi-branch structure and atten-
tion mechanism to facilitate the efficient extraction of fea-
tures frommedical images. Initially, we optimize the residual
block to give rise to the inverted residual structure. This
architectural choice entails upscaling the intermediate con-
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Table 2 Detailed structure of the network

Input Size Operator Layer Details Stride Output Size

224 × 224 × 3 Conv2d Kernel Size = 3 × 3 2 112 × 112 × 64

112 × 112 × 64 Deep Spindle

⎧
⎪⎪⎨

⎪⎪⎩

[
1 × 1, 64

Spatial Attention

]
+

⎡

⎢⎢⎣

1 × 1, 64
Channel Attention

3 × 3, 256
1 × 1, 64

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
× 2 1 112 × 112 × 64

112 × 112 × 64 Deep Spindle

⎧
⎪⎪⎨

⎪⎪⎩

[
1 × 1, 128

Spatial Attention

]
+

⎡

⎢⎢⎣

1 × 1, 128
Channel Attention

3 × 3, 512
1 × 1, 128

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
× 3 2 56 × 56 × 128

56 × 56 × 128 Deep Spindle

⎧
⎪⎪⎨

⎪⎪⎩

[
1 × 1, 256

Spatial Attention

]
+

⎡

⎢⎢⎣

1 × 1, 256
Channel Attention

3 × 3, 1024
1 × 1, 256

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
× 5 2 28 × 28 × 256

28 × 28 × 256 Deep Spindle

⎧
⎪⎪⎨

⎪⎪⎩

[
1 × 1, 512

Spatial Attention

]
+

⎡

⎢⎢⎣

1 × 1, 512
Channel Attention

3 × 3, 2048
1 × 1, 512

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
× 3 2 14 × 14 × 512

14 × 14 × 512 Adaptive AvgPool – 1 × 1 × 512

1 × 1 × 512 Flatten + Fully Connected Layer + Softmax – 1 × NumClass

It is worth noting that the Deep Spindle layer consists of plural Deep Spindle blocks, and when the stride of the Deep Spindle layer is 2, it only
means that the stride of the first Deep Spindle block in the layer is 2, which is used for downsampling the feature map, while the stride of the
remaining Deep Spindle blocks is still 1

volutional layers, enhancing the network’s performance by
maximizing the extraction of feature information from the
input feature map. Furthermore, the introduction of depth-
separable convolution within the inverted residual structure
achieves the decoupling of intermediate convolutional lay-
ers, enabling channel-by-channel convolution. This strategic
move markedly diminishes network parameters and compu-
tations, leading to an improvement in the overall operation
speed of the network. DMBANet adopts a multi-branch
design, incorporating diverse attention mechanisms into dis-
tinct branches. The key branches include the inverted residual
branch combined with the channel attention mechanism, sig-
nificantly enhancing network performance as the primary
branch of DMBANet. The spatial attention branch excels
at capturing feature information overlooked by the primary
branch, while the residual connections in another branch
serve to minimize neural network degradation and expedite
training speed.

Experiments

Implementation details

To implement our designed model, we leverage the PyTorch
framework and conduct training on an RTX 3080Ti. The
evaluation of our model’s performance is carried out on the
PathoIMG data set. Since this data set is not inherently par-

titioned into training and test sets, we manually perform the
split, allocating 80% of the histopathological images to the
training set and the remaining 20% to the test set. Specific
details regarding the training configuration used in our exper-
iments are provided in Table 3.

For comparison purposes, we selected several state-of-
the-art models for testing in this study. These models include
ResNet [19], ResNeXt [29], MobileNet [21, 37], ShuffleNet
[22], EfficientNet [23, 46], Vision Transformer (ViT) [24],
and ConvNeXt [25]. As shown in Table 3, all of these models
are trained under the same experimental conditions, configu-
ration settings, and hyperparameters. The only variation was
that the batch size was dynamically chosen based on GPU
memory utilization.

In evaluating the performance of our method, we utilized
accuracy (Acc), which is one of the most widely adopted
metrics in classification tasks. Thismetric provides a straight-
forward indication of a model’s efficacy by calculating the
ratio between the number of correctly classified samples and
the total number of samples. The accuracy metric can be
expressed as

Acc = Srig
Sa

, (11)

where Srig is the number of samples correctly classified in
the test data and Sa is the total number of samples in the test
data.
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Table 3 PathoIMG data set
training settings

Training config Our approach Contrast model

Optimizer SGDM SGDM

Weight decay 4E-5 4E-5

Optimizer momentum 0.9 0.9

Learning rate schedule Lambda Decay Lambda Decay

Base learning rate 0.01 0.01

Learning rate update coefficient 0.1 0.1

Batch size 16 32-256

Training epochs 200 200

Learning rate warmup None None

Table 4 Summary of the PathoIMG data set

Class Numbers

Normal 299

Benign 1106

In situ carcinoma 1066

Invasive carcinoma 1300

Color model RGB

Resolution size 2048×1536 pixels

Type of label Imagewise

Data set

The PathoIMG data set [5] comprises 3771 meticulously
curated high-resolution histopathological images of breast
cancer, meticulously stained with hematoxylin and eosin.
Hematoxylin serves to accentuate the nucleus, while eosin
highlights other vital structures. All images adhere to con-
sistent acquisition conditions, with a magnification of either
10x or 20x. The histopathological sections are prepared using
the standard paraffin filming method, a widely adopted prac-
tice in hospitals. Each image in the data set is meticulously
labeled based on the type of tumor depicted in the histopatho-
logical section, encompassing categories such as normal,
benign, in situ carcinoma, or invasive carcinoma. PathoIMG
stands out as a classical data set in the realm of medical
images. It encapsulates quintessential features inherent to
medical imaging, including high image resolution, variations
in tissue and cell morphology, instances of cell overlap, and
color distribution heterogeneity. Notably, it boasts an exten-
sive data set, making it an ideal benchmark for evaluating the
efficacy of our models.

The histopathological images of breast cancer in the
PathoIMG image data set were labeled by two experienced
pathologists. Any images with objections were reviewed and
confirmed by the head of the histopathological department.
The quantitative distribution of the 3771breast cancer images
in the data set is presented in Table 4, along with a summary

description. The format of each histopathological image in
the data set is also defined. The different classes of breast
cancer images included in the data set can be seen in Fig. 4.

The raw histopathology images in the PathoIMG data
set boast a resolution of up to 2048 × 1536 pixels, ren-
dering them unsuitable for direct utilization as inputs for
a neural network. This limitation stems from two primary
reasons. First, employing high-resolution images as inputs
results in an escalation of parameters in the convolutional and
fully connected layers during convolutional operations. This
amplifies the computational resource consumption, reaching
potentially impractical levels. Second, the constrained mem-
ory of GPUs necessitates a reduction in batch sizes when
deploying high-resolution images, significantly impeding the
network training speed. To circumvent these challenges, a
viable solution involves slicing the original histopathological
images into smaller patches with lower resolution, which can
then serve as input. This strategy ensures the comprehensive
extraction of feature information without overwhelming the
network. Given that the raw data in the PathoIMG data set is
labeled at the image level, we can conveniently crop the raw
data. In this scenario, we opt to partition the original image
into 12 patches, each patch with a resolution of 512 × 512
pixels. This tactical approach retains the crucial features of
the original image while downsizing it to a manageable scale
suitable for neural network input.

It is crucial to note that the structure and function of the
breast change significantly throughout a woman’s life due to
various factors such as puberty, sexual maturity, pregnancy,
lactation, and old age. Therefore, to ensure the diversity
of data and enable machine learning algorithms to learn
a sufficient number of representative features, it is essen-
tial to include a wide range of histopathological images
from patients of different ages. Doing so adequately reflects
the morphology of the breast tissue at different stages of a
woman’s life. Therefore, PathoIMGdata set strive to cover as
many histopathological images of different patients and ages
as possible to ensure diversity. By including images from
different age groups, PathoIMG data set can better represent
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Fig. 4 Example of
histopathological images of
breast cancer from the
PathoIMG data set

(a) Normal (b) Benign

(c) In situ carcinoma (d) Invasive carcinoma

the morphological diversity of the breast tissue and improve
the accuracy of the machine learning algorithm.

Results under basic benchmark

In thiswork,we employ advanced techniques such as residual
connections and deep separable convolution [18]. To evalu-
ate the effectiveness of ourmodel, we compare it with several
state-of-the-art deep learning networks such as ResNet [19],
MobileNet [21], ShuffleNet [22], EfficientNet [23], and ViT
[24]. To ensure fairness in our evaluation, we consider the
difference in parameters and computation cost for different
networks. By running each network using the same mem-
ory limits, we can compare their performance under similar
conditions. Thus, we perform the comparison by adjusting
the batch size of each network (32–256) so that it consumes
precisely the entire memory of a RTX 3080Ti. This approach
enables us to provide a fair comparison of the various models
in terms of their efficiency and accuracy.

The outcomes illustrated in Table 5 unequivocally estab-
lish the superior performance of our DMBANet model in
comparison to other cutting-edge deep learning models, par-
ticularly in terms of accuracy. We attribute the efficacy of
our model to two key factors: First, the introduction of the
Deep Spindle Structure enables the up-dimensioning of the
intermediate layer (using a 3×3 depthwise convolutional ker-

nel), which was originally down-dimensioned. This unique
structure facilitates the comprehensive extraction of feature
information from histopathological images, mitigating the
risk of accuracy loss due to information loss. Second, our
approach involves employing diverse sizes of convolutional
kernels, attention mechanisms, and varying branch depths
across different branches of the Deep Spindle Structure. This
strategy imparts the network with a rich array of multi-scale
feature information, further enhancing accuracy. Further-
more, we present the confusion matrix for different models,
specifically at 12 times the cutoffmultiplication rate, inFig. 5.
Thematrix distinctly indicates that our model not only excels
in accuracy but also outperforms in additional metrics such
as precision and recall. In summary, these results strongly
affirm that our DMBANet model constitutes an effective and
efficient solution for histopathological image classification.

After analyzing the confusion matrix results, a com-
parative assessment between DMBANet and EfficientNet
unfolds. EfficientNet, acclaimed as the standout performer
among the models under consideration, not only excels in
terms of accuracy but also demonstrates remarkable effi-
ciency inmanaging parameters and computational resources.
The detailed performance outcomes, meticulously presented
in the ensuing Table 6, unmistakably highlight DMBANet’s
superiority across all evaluated dimensions. In each facet of
evaluation, ranging from accuracy to the Precision, Recall,
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Table 5 Compared with other
state-of-the-art models on the
basis of slicing the original
histopathological images into 12
patches

Methods Details Batch size Accuracy (%)

ResNet [19] ResNet-50 [19] 96 96.1

ResNet-101 [19] 64 96.5

ResNeXt [29] ResNeXt-50, Groups = 32
Width Per Group = 4

80 97.3

ResNeXt-101, Groups = 32
Width Per Group = 8

32 96.7

MobileNet-V2 [21] α = 1.0 96 96.7

MobileNet-V3 [37] Samll 256 95.0

Large 128 96.8%

ShuffleNet-V2 [22] Width Coefficient = 0.5 256 94.1

Width Coefficient = 1.0 256 95.6

EfficientNet-V1 [23] B0 96 97.1

EfficientNet-V2 [46] Small 48 97.4

Middle 32 97.2

ViT [24] Base, Embed Dim = 768 48 93.6

ConvNeXt [25] Tiny, Depths = [3, 3, 9, 3] 64 92.9

Samll, Depths = [3, 3, 27, 3] 48 92.7

Base, Depths = [3, 3, 27, 3] 32 93.6

DMBANet – 16 98.1

Specificity, F1-score and so on, DMBANet emerges as the
superior choice. This comprehensive comparison solidifies
the position of DMBANet as a formidable model, surpass-
ing EfficientNet in all aspects and affirming its prowess in
real-world applications.

Figure6 visually illustrates the effectiveness of our met-
hod, which outperforms other methods not just in accuracy,
but also features smoother performance without significant
fluctuations. To enhance the aesthetics of the graph, only the
last 100 epochs of the training process are presented.

The choice of a batch size of 16 for the DMBANet model
is not solely based on the number of model parameters.
Instead, it is influenced by several other factors related to
the architecture and memory requirements of the network.
One key consideration is the stride of the first deep spindle
block, which is set to 1. This results in a larger overall fea-
ture map size for the model. Consequently, all subsequent
deep spindle blocks operate on a larger feature map, leading
to a significant increase in the memory footprint of the net-
work. This larger memory requirement can impact the batch
size selection.Moreover, the construction of the deep spindle
structure, along with the increase in remaining connections,
leads to longer GPU memory usage per convolution pro-
cess. This prolonged memory usage can result in additional
performance degradation. However, it is important to note
that including these remaining connections remains benefi-
cial, as observed in the results of RepVGG [41]. While a
smaller batch size might alleviate the memory constraints, it
is essential to find a balance that considers both memory lim-

itations and model performance. Through experimentation
and empirical analysis, a batch size of 16 was determined to
be a suitable compromise that effectively manages memory
consumption while still achieving favorable results with the
DMBANet model.

Results at other cutoff multipliers

To extract the complete feature information from the histo-
pathological image, we divided the original image into 12
smaller patches. We conducted three comparison tests in this
study to verify the reliability and validity of this process.
These tests include: “Original”, which uses the original data,
“2 patches", which uses 2 patches of the original data, and
“4 patches", which uses 4 patches of the original data.

Table 7 shows that our proposed method is consistently
more effective than the comparison models, regardless of
whether the original image is sliced or how many patches it
is divided into. This confirms the efficiency of our approach
in extracting feature information. In addition, using the orig-
inal data as network input resulted in the worst performance
for all models. However, when we sliced the image, the per-
formance of all models improved. Interestingly, the more
patches the image is divided into, the better the performance.
Our proposedmethod achieved the best resultswhen the orig-
inal image was sliced into 12 patches, as demonstrated in the
previous section.

It is natural to question whether better performance can
be achieved by slicing the original image into more patches.
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(a) ResNet50 (b) ResNeXt50 (c) MobileNet-V2

(d) MobileNet-V3-large (e) ShuffleNet-1.0 (f) EfficientNet

(g) VIT (h) ConvNeXt-base (i) DMBANet

Fig. 5 Confusion matrix for different models at 12× cutoff multiplier, we have selected the optimal version of each SOTA model based on their
performance

Table 6 Comparison of DMBANet and EfficientNet results on precision, recall, specificity, F1-Score, etc

DMBANet EfficientNet

Precision Recall Specificity F1-Score Precision Recall Specificity F1-Score

Benign 0.988 0.992 0.995 0.990 Benign 0.980 0.983 0.992 0.981

Insitu 0.977 0.979 0.991 0.978 Insitu 0.960 0.975 0.984 0.967

Invasive 0.982 0.977 0.990 0.980 Invasive 0.975 0.964 0.987 0.969

Normal 0.962 0.960 0.997 0.961 Normal 0.960 0.941 0.997 0.950
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Fig. 6 For aesthetic reasons, each state-of-the-art model selects only one version for visualization. The left figure represents the entire training
process, while the right figure displays the accuracy for the last one hundred epochs of training

Table 7 Compared with other models on different slice magnification of the histopathological images

Methods Details Parameters Flops Original (%) 2 Patches (%) 4 Patches (%)

ResNet [19] Layers = 50 23.516M 4.132G 92.8 94.8 96.0

Layers = 101 42.508M 7.864G 91.4 93.8 95.3

ResNeXt [29] ResNeXt-50, Groups = 32
Width Per Group = 4

22.988M 4.286G 94.0 95.0 96.2

ResNeXt-101, Groups = 32
Width Per Group = 8

86.751M 16.537G 92.0 94.3 95.7

MobileNet-V2 [21] α = 1.0 2.229M 326.276M 93.9 95.9 96.0

MobileNet-V3 [37] Samll 1.522M 61.17M 90.6 92.0 94.0

Large 4.207M 232.962M 93.5 94.1 96.0

ShuffleNet-V2 [22] Width Coefficient = 0.5 345.862K 43.552M 89.5 91.6 92.4

Width Coefficient = 1.0 1.258M 151.689M 90.7 93.8 94.4

EfficientNet-V1 [23] B0 4.013M 411.555M 94.3 96.1 96.5

EfficientNet-V2 [46] Small 20.183M 2.897G 95.4 96.1 96.9

Middle 52.863M 5.439G 92.3 94.8 95.5

ViT [24] Base, Embed Dim = 768 85.65M 16.863G 85.9 86.3 91.6

ConvNeXt [25] Tiny, Depths = [3, 3, 9, 3] 27.802M 4.455G 71.9 79.3 85.9

Samll, Depths = [3, 3, 27, 3] 49.416M 8.683G 72.9 82.4 87.6

Base, Depths = [3, 3, 27, 3] 87.514M 15.354G 74.8 86.86 90.0

DMBANet – 10.559M 6.065G 96.8 97.0 97.9

Original(%) indicates that the original image is directly used as the network input, and X-patches represents the number of patches of the histopatho-
logical image after slicing

However, our experiments show that this is not the case. Slic-
ing the original image into 48 patches (256 × 256) resulted
in worse performance than using 12 patches. The reason for
this is that the simple slicing operation leads to blank areas in
some patches, which impacts the feature extraction process.
We believe that conducting pathological screening on the
sliced patches could improve the results, but would increase
manual labor costs. Moreover, due to the large amount of
data generated using 48 patches, running experiments takes
significantly longer (around four to five days), ultimately

limiting computational resources. Therefore, we conducted
only a few experiments using our proposed method, which
resulted in worse performance than with 12 patches.

The effect between Adam and SGDM

To overcome the potential drawback of the Adam opti-
mization algorithm not converging, we used the SGDM
optimization algorithm in this study. We also employed the
lambda learning rate decay strategy to accelerate network
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Fig. 7 Difference between
SGDM and Adam’s results

(a) Accuracy (b) Mean Loss

Fig. 8 Convergence analysis with other methods

convergence and address the slow convergence of the SGDM
optimization algorithm. Figure7 presents the results of using
the Adam optimization algorithm and SGDM optimization
algorithm with lambda learning rate decay.

The results in Fig. 7 demonstrate that using the SGDM
optimization algorithm with the lambda learning rate decay
algorithm produces better performance for the network

model. First, using SGDM optimizer outperforms Adam
optimizer in terms of classification accuracy throughout the
training process, as shown in Fig. 7a. SGDM optimizer has
higher and more stable classification accuracy compared to
Adam optimizer which has lower accuracy and keeps fluctu-
ating until late stages of the training where large fluctuations
make it difficult to obtain a stable result. Second, as expected,
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the results in Fig. 7b show that Adam optimization algorithm
is difficult to converge, andmean loss remains very high even
after 200 epochs of training. In contrast, the SGDMoptimizer
with lambda learning rate decay algorithm successfully con-
verges the network after the same training run, and achieves
lower mean loss.

Convergence analysis

In Fig. 8, we performed convergence analysis to illustrate the
mean loss of our network compared to others. It is evident that
our DMBANet has the best convergence result and achieves
the highest accuracy at any point during the entire training
process. Our approach maintains high accuracy while also
achieving comparable convergence speeds with lightweight
networks. We set the number of epochs to 200 to maximize
the performance of transformer models such as ViT [24] and
ConvNext [25]. However, if the number of epochs is reduced
to 100 or even lower, as is commonly done in previous works
for convolutional neural networks, our method can achieve
an even greater lead compared to other models.

The exceptional convergence speed of the proposed
DMBANet suggests that it can effectively extract information
from the data to a greater extent. Moreover, Exceedingly fast
convergence confirms that the methods we proposed, includ-
ing the deep spindle structure and multi-branch attention, are
effective at improving the network’s ability to extract patho-
logical information from perspectives other than accuracy.

Ablation study

Table 8 demonstrates that experimental results are signifi-
cantly improved by optimizing the bottleneck structure to the
Deep Spindle structure while maintaining the same residual
connections. This improvement confirms that the bottleneck
structure can lead to a loss of image information due to its
initial dimensionality reduction. We incorporate dual chan-
nels with lighter channel attention and spatial attention in
the network to focus on different types of information. The
use of these attention mechanisms significantly improves the
classification accuracy of the network.

It needs to be noted that we do not conduct experiments to
remove the depthwise separable convolution in DMBANet,
because the resulting explosive increase in the number of
parameters would make it difficult to train the network on a
single 3080TiGPU.However, as shown inMobileNet, the use
of depthwise separable convolution can significantly reduce
the number of parameters in the network. Nonetheless, this
reduction can also have an impact on network accuracy.

Table 8 For runtime reasons, the ablation studywas done on the basis of
slicing the histopathological images to a resolution of 1024× 768pixels

Methods Deep Spindle CA and SA Accuracy (%)

ResNet-50 × × 96.0

DMBANet � × 97.0

DMBANet � � 97.9

Discussion

It is essential to note that the current study has some restric-
tions. First, the images in the PathoIMG data set have been
cropped and selected by a pathologist, which can help to
extract pathological information better. However, the model
has not yet been evaluated on the original entire slide data set.
Second, the size of the PathoIMG data set is relatively small,
with only 3771 histopathological images in total. Therefore,
the size of both the training set and test set is small, which
may introduce bias in the results. Third, the model has been
evaluated on only one data set in this paper. In future work,
we plan to extend our model to more histopathological data
sets to test its generalization ability. In conclusion, we aim to
evaluate our method on a larger histopathology image data
set to further improve the robustness of our model.

Conclusion

In summary, this paper presents a novel method for breast
cancer histopathological image classification using deep
spindle structure and multi-branch attention. The deep spin-
dle structure incorporated in the network addresses the
issue of losing feature information due to the large Whole
Slide Image resolution. This enables the network to effi-
ciently extract feature information from the histopathological
images, resulting in more accurate classification results.
Incorporating channel attention and spatial attention in dif-
ferent branches further enhances the network’s ability to
notice richer feature information, improving its overall per-
formance.

We test DMBANet on the PathoIMG data set, and com-
pare it not only with popular Convolutional Neural Networks
like ResNet, MobileNet, and EfficientNet, but also with
Transformer-based networks such as ViT and ConvNeXt. By
benchmarking against these high-performance networks, we
demonstrate that our approach outperforms the state-of-the-
art classification methods for breast cancer histopathological
images, implying the potential for our methodology to
achieve higher accuracy and efficiency in clinical practice.
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