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Abstract
X-ray diffraction (XRD) is used for characterizing the crystal structure of molecular sieves after synthetic experiments.
However, for a high-throughput molecular sieve synthetic system, the huge amount of data derived from large throughput
capacity makes it difficult to analyze timely. While the kernel step of XRD analysis is to search peaks, an automatic way
for peak search is needed. Thus, we proposed a novel semantic mask-based two-step framework for peak search in XRD
patterns: (1) mask generation, we proposed a multi-resolution net (MRN) to classify the data points of XRD patterns into
binary masks (peak/background). (2) Peak search, based on the generated masks, the background points are used to fit an
n-order polynomial background curve and estimate the random noises in XRD patterns. Then we proposed three rules named
mask, shape, and intensity to screening peaks from initial peak candidates generated by maximum search. Besides, a voting
strategy is proposed in peak screening to obtain a precise peak search result. Experiments show that the proposed MRN
achieves the state-of-the-art performance compared with other semantic segmentation methods and the proposed peak search
method performs better than Jade when using f1 score as the evaluation index.

Keywords XRD · Peak search · Semantic segmentation · Multi-resolution net · High-throughput

Introduction

Molecular sieve is important in various aspects of industrial
chemical reactions, such as methanol-to-olefins (MTO) con-
version [1–4], methanol to dimethyl ether conversion [5, 6],

B Wenli Du
wldu@ecust.edu.cn

B Feng Qian
fqian@ecust.edu.cn

1 Key Laboratory of Smart Manufacturing in Energy Chemical
Process, Ministry of Education, East China University of
Science and Technology, 130 Meilong Road, Shanghai
200237, China

2 State Key Laboratory of Industrial Control Technology, East
China University of Science and Technology, 130 Meilong
Road, Shanghai 200237, China

3 Qingyuan Innovation Laboratory, 1 Qianhuangzhen Road,
Quanzhou 362801, China

4 State Key Laboratory of Green Chemical Engineering and
Industrial Catalysts, Sinopec Shanghai Research Institute of
Petrochemical Technology, 1658 North Pudong Road,
Shanghai 201208, China

propylene/propane separation [7], and nitrogen separation of
natural gas [8]. While molecular sieves with different crystal
structures have various catalytic performances for chemical
reactions, it is required to find new types of molecular sieves
that can provide economic benefits for the chemical plant.
Benefiting from the combination of robotics, control, and
computer science, high-throughput systems make it possible
to conduct experiments efficiently and in parallel. Naturally,
there stands away of combiningmolecular synthesis with the
high-throughput technique for an efficient molecular sieve
search [9–14].

However, the large amount of experimental data brings
challenges to the latter analysiswhich relies on experts. To lift
the processing efficiency of the analyzing step, an automatic
approach is needed.

In the analysis step, XRD patterns, an important analysis
method for characterizing molecular sieve crystal structure,
are applied to recognize the composition of products after
synthesis. Peaks that appear in the XRD patterns reveal
the subtle microstructure and the analysis seeks to extract
the peak information from the XRD patterns. In general,
the analysis flow of the XRD spectrum consists of three
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steps: background correction, peak search, and fitting peaks.
Although works on the first part and last part are well-
reported [15–18], there is little work in the area of peak
search.

A general peak search routine is provided by the commer-
cial software Jade. The rule-based peak search method of
Jade uses a series of subjective rules for peak search. In this
way, some parameters are changeable to adjust the result.
However, the parameters cannot sometimes be adjusted to
obtain satisfactory results. As well, marking the peaks manu-
ally offers amore preciseway. In this situation, it takes several
minutes to process oneXRDpatternwhile an automatic algo-
rithm needs only less than one second of processing time.

Motivated by this, we aim to develop a more efficient way
for peak search. In contrast, machine learningmethodswhich
have few explicit changeable parameters are user-friendly.
However, the dependency relationship between the model
and the training samples makes it prone to overfitting. As
well, in general, rule-basedmethods have high generalization
ability but face more complicated parameters. Additionally,
it is hard to extract proper rules sometimes. Thus, in our
method, the machine learning method is first used for seek-
ing complicated rules automatically. Then a series of simple
rules are used to yield more precise results. Therefore, high
generalization ability and few operation parameters can be
obtained simultaneously.

TheXRD peak search task could be simplified to a seman-
tic segmentation task that separates the points on XRD
patterns into binary classes: peak and background. Works
on the segmentation task of X-ray images which are partly
similar to ours have been reported [19, 20]. However, due
to that XRD patterns are not in image format, there is lit-
tle work in the area of XRD pattern segmentation. Hence,
we have reviewed existing popular semantic segmentation
methods. In the early stage of semantic segmentation, the
full convolution network (FCN) [21] was proposed which
was derived from the visual geometry group (VGG) net [22].
It substituted the fully connected layer of VGG net with a
1x1 convolution layer. FCN which consists of convolution
layers only is a popular framework for semantic segmen-
tation nowadays. Subsequently, considering that the sparse
feature mapwas insufficient for the final segmentation result,
DeepLabV1 [23] modified the stride of the convolution ker-
nel from2 to 1 in the latter layer ofVGGnet to achieve a dense
feature map and introduced the conception of hole convolu-
tion which controls the receptive field. Then, DeepLabV2
[24] made a fusion of the hole convolution layer with differ-
ent hole rates to integrate the influence of different receptive
fields and reach a better performance compared with V1.
DeepLabV3 [25]modified the hole rate of different hole con-
volution layer to avoid the situation in which the hole rate
of different layers have a common factor. In this situation,
the central information of hold is not used. Furthermore, the

network derives from VGG, SegNet [26] proposed a new
encoder–decoder framework. Then, based on SegNet, extra
skip connections from the same level between the encoder
and decoder were added and formed the Unet [27] which was
named by the shape of its network architecture. The extra
path for information transmission made a fine segmentation
result. There remain two variants of Unet called Unet++ [28]
and Unet3+ [29] which designed more complicated ways of
assembling features from different levels.

Based on the semantic segmentation model, a rough mask
that describes which area refers to a peak is generated. The
benefits of the separation of background and peaks we could
focus on those peak areas which show more important infor-
mation. However, the binary mask is insufficient for peak
search for the reason that accurate locations of peaks are not
shown. Thus, extra refined rules are needed. In conclusion, to
solving the problems that the recognizing accuracy of exist-
ing methods is unsatisfactory and it is had to configure the
complex parameters, the main contributions of the proposed
method are:

1. We proposed a novel semantic mask-based two-step
framework for peak search in XRD patterns. First, the
mask generation step uses a semantic segmentationmodel
to recognize the peak and background area, then the peak
search step gives the precise peak location by screening
the maximum candidates with mask, intensity, and shape
screening rules.

2. We proposed a multi-resolution net (MRN) for semantic
segmentation, it ensures that both large and small peaks
can be detected by considering the characteristics of XRD
patterns at different resolutions.

Preliminaries

Considering thedifferences in semantic segmentationbetween
XRDpatternswith natural images, a brief description is given
introducing the characteristics of the XRD patterns. Then,
an extra reconstruction step is applied to normalize different
XRD data to a uniform size. Subsequently, the basic segmen-
tation methods and the specific task definition are explained.
Finally, the loss function used for training segmentationmod-
els and the evaluation index are listed.

XRD pattern

AnXRDpattern (Fig. 1) consists of continuous data pairs that
contain two dimensions data of 2θ (scanning angle of X-ray
diffractometer) and corresponding intensity. Compared with
RGB images, XRD patterns vary along with only one inde-
pendent dimension and have a single data channel. Therefore,
they could be regarded as 1-dimensional grayscale images.
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Fig. 1 Demonstration of XRD patterns with plot image

Fig. 2 Architecture of Unet

Meanwhile, objects in the real world could be mapped to
those steeppeaks in theXRDpattern.However, actual objects
share ambiguous outlines while peaks in the XRD pattern
hold more regular shapes. In this way, the complexity of ana-
lyzing an XRD pattern is lower.

Basic semantic segmentationmodellingmethods

In general, a semantic segmentation task is: given an image,
for each pixel output a classification result which refers
to the specific object categories. and objects with dissim-
ilar semantic meanings are separated. In this work, the
first step of the peak search task could be defined as fol-
lows: for each data point in the XRD pattern, categorize to
background/peak class. For the reason of simple, extensible
structure, and excellent performance,we chose to improve on
the Unet method. Besides, the Unet offers a proper structure
to extract multi levels of features which could be integrated
with multi-resolution mechanism and made it compatible to
the proposed MRN.

Figure 2 shows a 3-depth Unet in which the depth is a
hyperparameter that determines the model structure. Here
the number of different feature levels from top to bottom
indicates the depth and features in the same level are the
same size. Subsequently, the whole network could be divided

Fig. 3 Architecture of Unet++

Fig. 4 Architecture of Unet3+

into two parts encoder and decoder respectively. Besides,
there remain extra skip connections (grey arrows) between
the encoder and decoder. In the encoding period, a given
input passes from the top to the bottom and the feature size
decreases as the channels increase. Then, during the decod-
ing step, the bottom feature upsamples into the original input
size step by step. When the feature passes to a different layer
of the decoder, it receives extra semantic information from
the encoder by the skip connection. Finally, a pixel-wise seg-
mentation result is produced.

Based on Unet, the Unet++ modifies the passing routine
of the skip connections and forms a nested architecture, as
shown in Fig. 3. Compared with Unet, Unet++ considers
a more complicated topological structure that generates a
dense hierarchical net. Besides, extra supervision is added
from the first feature level. The addition of the latter two out-
puts in the first feature level forms the final output. Benefits
from the supervision of different information flow, Unet++
achieved better performance compared with Unet.

The Unet3+ was also inspired by changing information
flow (as shown in Fig. 4). To be specific, it passed all levels
of the feature to every layer of the decoder instead of passing
the same level of feature in the Unet. In this way, Unet3+ is
fully connected.
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Evaluation index and loss function

Before training a semantic segmentation model, the loss
function and the evaluation index should be determined. In
our method, it is required to ensure precision and recall same
time. Therefore, choosing the dice coefficient as the evalua-
tion index is suitable for first mask generating step. Hence, to
keep the consistency with model training and evaluation, we
used dice loss as the loss function instead of cross-entropy
loss. Our peak locating work could be defined as a binary
classification task (N = 2). The following shows that the
formula of the dice coefficient and dice loss, where Yi indi-
cates the label and ̂Yi refers the predicted value, that is,

Dice = 1

N

N
∑

i=1

(

2 · Yi · ̂Yi
Yi + ̂Yi

)

(1)

Loss(Y , ̂Y ) = 1 − Dice (2)

In addition, we used the f1 score to evaluate the per-
formance of the whole two-step peak search method. The
following shows that the formula of f1 score, where the
T P, FN , FP indicates true positive, false negative, and
false positive samples respectively, that is,

Recall = T P

T P + FN
(3)

Precision = T P

T P + FP
(4)

F1 = 2 · Reacall · Precision
Recall + Precision

(5)

Semantic mask-based two-step peak search

Before the processing period, we applied a simple interpola-
tion for reconstructing the XRD pattern to a uniform size (as
shown in Algorithm 1).

Then, the proposed method is shown in Fig. 5. The pro-
cessing flow of peak search consists of two steps. First,
recognizing the peak area, a simple but hardly described task
with mathematics is completed by a semantic segmentation
network in which rules are learned implicitly and automati-
cally. Then, a background curve is reconstructed from those
data pointswhich aremarkedwith 0.Besides, the background
data points are used to estimate the distribution of noise so
that truly valid peaks can be detected from noisy data with
a threshold. Finally, a maximum search is used to gener-
ate initial candidates of peak. Afterward, a set of screening
rules including intensity, shape, andmask are used to remove
incorrect peaks.

Algorithm 1 Reconstruction of XRD Pattern
Input:
S: Original XRD pattern, in which Sx (i),Sy(i) refer to the angle and
intensity of ith point.
l: length of the reconstructed XRD pattern

Output: Reconstructed XRD pattern Sreconstructed
Initialize: Sreconstructed = {}
find the minimum xmin and maximum xmax of x value of S
generate Sxreconstructed from xmin to xmax with arithmetic sequence of
length l
for i = 1 to l do

i = i + 1
finding the index n in which Sx (n) <= Sxreconstructed (i) < Sx (n+

1)
set the value of Syreconstructed (i) with (Sxreconstructed (i) − Sx (n)) ∗

(Sy(n + 1) − Sy(n))

end for
return Sreconstructed

Mask generation

Inspired by that objects could be recognized in images with
different resolutions, the introduction of extra perspectives
with lower-resolution images might be positive for semantic
segmentation. Therefore, an integration framework, which
assembles several subnets with diminishing resolutions, is
proposed and named as a multi-resolution net (MRN).

When processing a visual image, people are preferredwith
global information such as the outline so that the texture
information is ignored. Therefore, peaks inside an XRD pat-
tern could be recognized even in very small resolution for the
reason that the outline information is preserved. On the other
hand, machine learning methods are sensitive to local infor-
mation, so details demonstrated in high-resolution images
would disturb the final segmentation result and might cause
confusion.

To solve this problem, reducing the resolution of the input
image might force the network to catch more global infor-
mation, and a multi-resolution mechanism, which considers
the perspective of different resolutions comprehensively in
semantic segmentation, is introduced. The MRN consists of
several subnets with receiving inputs of diminishing resolu-
tion as shown in Fig.5a. Further, the subnet structure is not
fixed.When an input to be processed is given, the first subnet
of MRN would output a segmentation result with the same
size as the origin input. Subsequently, the resolution of the
last input would shrink 2 times and feed as the input of the
next subnet. Due to the resolution reduction between differ-
ent subnets, an extra upsample step is added to restore the
corresponding output of every subnet to the original input
size.

The final output is then:

Out f inal = 1

N

N
∑

i=1

Outi (6)
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Fig. 5 a structure of MRN, b the work flow of peak search, c example of XRD peak search

There remains a slight difference between our task and
the image semantic segmentation task. To be specific, con-
sidering the XRD pattern as a 2-D image is not necessary for
the reason that only the point on the curve is truly valid.
Therefore, the blank areas are redundant and cause extra
computation expense. Thus, the XRD pattern is considered
as a 1-D image and all 2-D convolution operations in tradi-
tional image semantic segmentation were converted to 1-D
in MRN.

Algorithm 2 Determining the Optimal Number of Subnets
Input:
1: D: Data sets for training segmentation model
2: Mn : MRN with n subnet
3: t : Performance threshold for termination
4: pn : Performance of model Mn
Output: optimal number of subnet
5: Initialize: n = 2,t = 0.1
6: train M1,M2 with D using 5-fold cross-validation
7: evaluate the performance p1 and p2
8: while pn-pn−1 > t do
9: n = n + 1
10: training Mn with D using 5-fold cross-validation
11: evaluating the performance pn of Mn
12: end while
13: return n

While the framework of MRN has been shown in the last
section, the optimal subnet number, which refers to a spe-
cific MRN structure, should be determined. There exists a
limitation of subnet number along with the reduction of res-
olution. Networks cannot acquire any useful information in
a one-point pattern at the extreme.When a large enough sub-

Fig. 6 Demonstration of background correction step

net number is given, the subnet added would not benefit the
final segmentation result for the reason that the lower reso-
lution input of the latter subnet offers no valid information.
Therefore, an algorithm to determine the optimal number of
subnets is proposed (as shown in Algorithm 2). The thresh-
old to estimate the convergence of model performance could
be set with demand. A small threshold leads to a more com-
plicated route for model searching, while more computation
costs would be spent.

Peak search

When the mask is generated, the background data points can
be separated from the original data X. Then a 10-order poly-
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nomial is applied to these data points fitting a background
curve B (as shown in Fig. 6). The background correction
removes the influence of background disturbance from the
XRD pattern, and the corrected data is given (as shown in Eq.
7). Subsequently, the residual error of the background can be
computed. Considering the distribution of noise in XRD data
is not exactly a normal distribution, we used the "p%-rule"
rather than "3σ -rule". That is, by sorting the absolute value
of residual error from smallest to largest, the cut-off value
contains p% smaller data is considered as the threshold t.

Xcor = X − B (7)

Based on corrected XRD patterns, a Gaussian filter F
(given in Eq.8) with length l is used for data smoothing.
Where theσσσ is a changeable parameter that controls the shape
of the Gaussian filter. Then, a maximum search step is used
to generate initial peak candidates P from smoothed XRD
pattern Xs.

F[i] = exp

(

− (i − l − 1)2

2σ 2

)

(8)

Xs[i] =
∑2l+1

n=1 (X [i − l − 1 + n] · F[n])
2l + 1

(9)

Xs[i] = Xs[i]
max(Xs)

(10)

Then, we proposed two rules of mask and intensity for
screening peak candidates (as shown in Eqs. 11 and 12
respectively). WhereM refers to the mask generated by first
step and S, S

′
refers to the unscreened set and screened set

respectively.

S
′ = {i ∈ S|M[i] = 1} (11)

S
′ = {i ∈ S|Xs[i] > t} (12)

Besides, the shape factor is proposed ensuring that
detected peaks keep the trend that increases on the left and
then decreases on the right. Based on shape factor Sf , the
shape screening rule is given as follows, where sp indicates
the threshold for screening and lw refers to the length of
detecting window.

sle f t [i] =
{

1 Xs[i] < Xs[i + 1]
0 Xs[i] < Xs[i + 1]

}

(13)

sright [i] =
{

1 Xs[i] > Xs[i + 1]
0 Xs[i] > Xs[i + 1]

}

(14)

S f [i] =
∑i

n=i−lw+1 sle f t [n] + ∑n=i+lw−1
i sright [n]

2lw
(15)

S
′ = {i ∈ S|S f [i] > sp} (16)

The final peak search result used a voting strategy (as
shown in Algorithm 3) to unite three screening rules.

Algorithm 3 Voting Strategy for Peak Screening
Input:
1: P: candidates of peaks
2: M : mask of XRD pattern
3: S f : shape factor
4: Xs : smoonthed XRD pattern
5: F : zeros filled array with the same length as P
6: l p: size of P
7: sp: threshold for shape screening
8: t : threshold for intensity screening
Output: screened peaks
9: Initialize:
10: for i = 1 to l p do
11: if M[i] > 0 then F[i] = F[i] + 1
12: end if
13: if S f [i] > sp then F[i] = F[i] + 1
14: end if
15: if Xs [i] > t then F[i] = F[i] + 1
16: end if
17: end for
18: P = {P[i]|F[i] > 1}
19: return P

Experiments and discussion

Data sets for semantic segmentation

XRD Data used in this work derives from the cumula-
tive experiments on a 48-channel high-throughput molecular
sieve synthesis and characterization system. This system
consists of eight hardware units, including solid weigh-
ing, sol preparation, crystallization reaction, separation
and washing, atmosphere treatment, tablet pressing and
screening, XRD characterization, SEM characterization, and
nine units of a dedicated executive software and database
system.

The X-ray diffractometer used for characterization is
PANalytical XṔert PRO. Since Cu Kα2 was removed by a
monochromator, Cu Kα1 radiation was applied. The voltage
and the current were 40 kV and 40 mA, respectively.

The whole data sets used for semantic segmentation con-
tain 2222 samples. Each sample consists of a normalized
XRD pattern and a point-wise segmentation label. The data
point recognized as part of one peak was set with label 1 and
the background points were set with 0. Before model build-
ing, each XRD pattern was reconstructed to the data size
of 2048. Finally, to obtain a model with great generaliza-
tion performance, we used 5-fold cross-validation for model
training.
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Table 1 Peak search performance of our method and Jade

Method Ours Jade (w=7) Jade (w=11) Jade (w=15)

F1 score 87.99 73.08 78.42 82.87

The significance of bold means that it achieves the best model perfor-
mance among the different parameter configurations in corresponding
line

Peak search result compared to Jade

32 XRD samples are used to evaluate the performance of
different peak search methods. Of these samples, half have
been used in the training procedure of mask generation. The
rest parts are new samples which are obtained from Jade.
In contrast, manually marked peaks are used as the label.
While the interior algorithm of Jade has many changeable
parameters, we select the most important parameter, length
of slide window w, as a variable (set with 7, 11, and 15) for
a more comprehensive comparison and applied the default
parameter configuration to the rest. Table 1 shows that our
method performs better than Jade.

As shown in Fig. 7, the intuitive comparison is given. The
result shows that our method preserves the correct peaks as
much as possible and tiny peaks can be detected as well in the
situation of few mistakes. To investigate the generalization
ability, we computed f1 scores of the two parts of samples
in which one contains samples that had been used in MRN
and the other has not. Results are 85.37 (used samples) and
90.17 (unused samples). It indicates that even new unseen
data can achieve a satisfactory result which makes it possible
for general use.

In addition to testing on new samples obtained from Jade,
we collected 16 XRD patterns of different types of molecular
sieves from relative references. While the original data of
XRD pattern are not uploaded with corresponding papers,
we had reconstructed XRD patterns from the demonstrated
image. In this way, the resolution of reconstructed data is
low. Even so, Fig. 8 has shown the great performance of
our method in qualitative analysis (the rest can be found in
Appendix 6). It is ensured that our method can be applied to
most occasions.

Effect of changeable parameters

Although changeable parameters in our methods are few.
The parameter configuration is still important to peak search.
Changeable parameters in our method contains, σσσ , p, and sp.
As well, the threshold t for intensity screening is a dependent
variable to p so that it is not included. Besides, the length of
the filter and the detecting window for shape factor compu-
tation are changeable as well, but the influence on search

Table 2 Peak search performance ondifferent parameter configurations

σ p sp

0.1 0.3 0.5 0.7 0.9

1 0.66 51.92 52.28 57.62 71.46 74.85

0.96 67.46 68.15 73.79 81.35 82.09

0.99 69.03 69.78 76.10 83.31 83.27

2 0.66 70.14 70.22 73.20 82.99 85.44

0.96 83.21 83.24 84.59 87.97 87.78

0.99 84.05 84.08 85.11 87.38 86.34

3 0.66 74.47 74.55 77.02 83.33 84.08

0.96 83.38 83.40 84.43 85.77 85.20

0.99 83.44 83.50 84.27 85.00 83.72

4 0.66 72.47 72.80 76.56 82.42 82.79

0.96 80.83 81.10 82.79 84.19 83.69

0.99 80.91 81.24 82.68 83.06 81.89

5 0.66 69.13 69.73 74.18 80.23 80.26

0.96 78.03 78.50 80.38 81.49 80.96

0.99 78.21 78.75 80.09 80.54 79.36

The significance of bold means that it achieves the best model perfor-
mance among the different parameter configurations in corresponding
line

results by its variation is slight. Therefore, the experiments
are not shown and its value is set with 5 both of all.

For a comprehensive comparison, the σσσ is set with [1,
2, 3, 4, 5] and the sp is set with [0.1, 0.3, 0.6, 0.7, 0.9].
Besides, compared to the "3σ -rule" in a N (μ, σ ) gaussian
distribution, the p is set with [0.66, 0.96, 0.99] which refers
to the corresponding proportion of containing data.

Results are shown in Table 2. It indicates that a large sp
ensures the geometric shape of peak in the neighbouring area.
However, a large enough value of sp which refers to a strong
constraint eliminates the valid peaks as well so that 0.7 is
proper. Then, a large p is easily making mistakes with tiny
peaks and 0.96 is proper to eliminate the influence of noise
and preserve tiny peaks same time.

Exploration on the screening strategy

We explored the different combinations of screening rules
that form different screening strategies. When more than
one of the screening rules is used, the flow is sequential.
Besides, when both three rules are used, the voting strategy
(shown in Algorithm 3) offers a different way compared to
the sequential process (the voting strategy is marked with *
which distinguishes it from the sequential strategy). Results
are shown in Table 3. It indicates that, compared with a
single rule, the joint of two rules increases the model per-
formance. Besides, the voting strategy performs the best on
most occasions. The reason for the unsatisfactory result of
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Fig. 7 Comparison of peak search results from Jade and our method

the sequential strategy could be that the continuous screening
rules decrease the number of candidates gradually. Once the
number of screening rules is large, the remained candidates
are few. Therefore, aweak constraint is beneficial tomaintain
the number of candidates (eg. σ = 1, p = 0.66, sp = 0.7).
On the other hand, strong constraint is preferred for voting
strategy guaranteeing the quality of candidates produced by
different screening rules.

Determining the subnets structure

The first mask generating step is the kernel of the pro-
posed peak search method, a high-quality mask is not only
beneficial for screening peaks but also offers more clean
background. Thus, we had compared the proposed MRN
with other semantic segmentation methods. Table 4 shows

the overall model performance comparison between MRN
and other semantic segmentation methods. Results show that
MRN achieves the best performance. Further, to explore the
influence caused by the subnet structure, experiments config-
uring the MRN with 13 types of subnet structure have been
made.Meanwhile, theMRNwith 1 subnet refers to the corre-
sponding original method. The results are shown in Table 5.
In terms of the dice coefficient, the best performance (84.25)
was achieved with the model assembled by 7 3-depth Unet.
For each type of subnet structure, the bestmodel performance
is shown in bold.

It indicates that, when choosing the Unet-like models as
the subnet, theMRNenhancesmodel performance compared
with basic methods. In addition, the integration of SegNet,
which shows a similar structure compared with Unet, has
increased model performance as well. However, compared

123



Complex & Intelligent Systems

Table 3 Effects on peak search
with different screening
strategies

Screening rules Strategy

Mask � ✗ ✗ � � ✗ � �∗

Shape ✗ � ✗ ✗ � � � �∗

Intensity ✗ ✗ � � ✗ � � �∗

σ = 1 p = 0.66 sp = 0.7 68.81 63.30 61.15 75.36 85.89 77.44 86.59 71.46

sp = 0.9 68.81 76.65 61.15 75.36 79.88 79.10 79.82 74.85

p = 0.96 sp = 0.7 68.81 63.30 80.48 81.64 85.89 87.99 87.78 81.35

sp = 0.9 68.81 76.65 80.48 81.64 79.88 81.57 79.80 82.09

p = 0.99 sp = 0.7 68.81 63.30 83.39 82.75 85.89 87.75 86.80 83.31

sp = 0.9 68.81 76.65 83.39 82.75 79.88 79.56 78.38 83.27

σ = 2 p = 0.66 sp = 0.7 83.51 58.25 76.73 85.26 84.77 78.20 85.42 82.99

sp = 0.9 83.51 68.50 76.73 85.26 83.37 79.18 83.52 85.44

p = 0.96 sp = 0.7 83.51 58.25 87.30 87.02 84.77 87.24 86.69 87.97

sp = 0.9 83.51 68.50 87.30 87.02 83.37 85.14 83.97 87.78

p = 0.99 sp = 0.7 83.51 58.25 86.16 85.52 84.77 85.76 85.08 87.38

sp = 0.9 83.51 68.50 86.16 85.52 83.37 83.53 82.49 86.34

σ = 3 p = 0.66 sp = 0.7 82.97 60.57 76.99 83.61 83.35 78.28 83.65 83.33

sp = 0.9 82.97 67.06 76.99 83.61 82.59 78.64 82.79 84.08

p = 0.96 sp = 0.7 82.97 60.57 84.91 84.60 83.35 84.95 84.26 85.77

sp = 0.9 82.97 67.06 84.91 84.60 82.59 83.89 82.99 85.20

p = 0.99 sp = 0.7 82.97 60.57 83.61 83.19 83.35 83.58 82.86 85.00

sp = 0.9 82.97 67.06 83.61 83.19 82.59 82.44 81.57 83.72

The significance of bold means that it achieves the best model performance among the different parameter
configurations in corresponding line

Table 4 Dice coefficient of
different semantic segmentation
methods

Methods Unet Unet++ Unet3+ DeepLabV3 SegNet MRN

Dice-coefficient 81.02 82.89 79.07 83.98 81.17 84.25

The significance of bold means that it achieves the best model performance among the different parameter
configurations in corresponding line

with Unet, SegNet lacks skip connections which passes extra
semantic information during the decoding period. Therefore,
the enhancement of MRN-SegNet is weak in terms of model
performance.

The integration of Deeplabv3 performs inversely asmodel
performance decreases with the subnet number. What causes
this phenomenon could be explained by the architecture of
DeepLabV3 (as shown in Fig. 9.). For a better understand-
ing, the DeepLabV3 can be divided into 2 parts an encoder
and a decoder. Due to the simplicity of the decoder which
only uses the deepest feature, the following subnets with
lower-resolution input would lose much information when
encoding and perform poorly during the decoding period.
In contrast, although the information reduction exists in the
encoder of the Unet-like model as well, the skip connection
between the decoder and encoder would offer extra informa-
tion to give a better segmentation result.

As shown in Table 5, an Unet-like model is effective in
being chosen as the subnet in Multi-Resolution Net. While
the optimal dice coefficient for MRN-Unet++ and MRN-
Unet3+ models are 84.23 and 84.19 respectively which are
quite close, choosing the Unet as the basic model is suit-
able which offers a tradeoff between model performance and
model size (Table 6 shows the parameters a number of the
different MRN models).

Exploration of themulti-resolutionmechanism

To explore the multi-resolution mechanism, we have com-
paredMRNwith the basic Unet-like method. In this perspec-
tive, the extra subnet in MRN could be regarded as adding
one depth to the first subnet. Therefore, one MRN with n
m-depth Unet has the same number of feature levels as a
(m+n-1)-depth Unet. Figure 10 shows aMRNwith 3 2-depth
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Table 5 Dice coefficient of
MRN with different subnet
structure and subnet numbers

Subnet structure 2 subnets 3 subnets 4 subnets 5 subnets 6 subnets 7 subnets

2-depth Unet 81.46 82.40 83.44 84.02 84.02 84.22 ↑
3-depth Unet 82.48 83.53 84.12 84.07 84.20 84.25 ↑
4-depth Unet 83.38 83.75 83.99 84.05 84.04 83.84 ↑
2-depth Unet++ 81.52 82.65 83.63 84.08 84.16 84.20 ↑
3-depth Unet++ 82.73 83.74 84.06 84.14 84.23 84.15 ↑
4-depth Unet++ 83.70 84.06 84.03 84.08 83.18 83.22 ↑
2-depth Unet3+ 81.52 82.41 83.73 84.06 84.19 84.12 ↑
3-depth Unet3+ 82.69 83.55 84.00 84.10 84.15 84.15 ↑
4-depth Unet3+ 83.32 83.98 84.09 84.00 84.13 83.98 ↑
DeepLabV3-res18 80.22 79.71 79.91 79.41 79.57 79.23 ↓
DeepLabV3-res50 80.63 80.86 80.35 80.27 80.09 80.24 ↓
DeepLabV3-res152 82.01 81.85 81.80 81.69 81.84 81.92 ↓
SegNet 82.00 82.45 82.24 82.25 82.42 82.15 ↑
The significance of bold means that it achieves the best model performance among the different parameter
configurations in corresponding line

(a) [ 30 ] (b) [ 31 ]

(c) [ 32 ] (d) [ 33 ]

Fig. 8 Peak search results of XRD samples obtained from references (the front part in the title of picture refers the type of molecular sieves and
the rest part refers to its IZA code)
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Table 6 Parameter amount of
MRN-Unet models with
different number of subnets

Parameter amount 6 subnets 5 subnets 4 subnets 3 subnets 2 subnets 1 subnet

Depth 2 4.2M 3.4M 2.7M 2.0M 1.3M 0.7M

Depth 3 16.4M 13.6M 10.8M 8.1M 5.4M 2.7M

Depth 4 65.2M 54.2M 43.4M 32.5M 21.7M 10.8M

Table 7 Performance of
multi-resolution net with
original Unet-like method

Basic method Level of features Dice-Coefficient

Unet 3 MRN-2-2 Unet-3 / /

81.46 80.78 / /

4 MRN-2-3 MRN-3-2 Unet-4

82.40 82.48 81.02 /

5 MRN-2-4 MRN-3-3 MRN-4-2 Unet-5

83.44 83.53 83.75 81.82

Unet++ 3 MRN-2-2 Unet++-3 / /

81.52 81.71 / /

4 MRN-2-3 MRN-3-2 Unet++-4

82.65 82.73 82.89 /

5 MRN-2-4 MRN-3-3 MRN-4-2 Unet++-5

83.63 83.74 83.70 83.69

Unet3+ 3 MRN-2-2 Unet3+-3 / /

81.52 78.21 / /

4 MRN-2-3 MRN-3-2 Unet3+-4

82.41 82.69 79.07 /

5 MRN-2-4 MRN-3-3 MRN-4-2 Unet3+-5

83.73 83.55 83.32 79.59

The significance of bold means that it achieves the best model performance among the different parameter
configurations in corresponding line

Fig. 9 The architecture of the DeepLabV3

Unet subnets. The network in Fig. 10 can be seen as a variant
of 4-depth Unet.

Fig. 10 Feature levels demonstration of MRN

Table 7 shows the experimental results of MRN (here
the first number means the number of subnets and the sec-
ond number means the depth of the subnet) with Unet-like
models. In the situation of the same feature level number,
MRN-Unet and MRN-Unet3+ show better dice coefficient
compared to the corresponding original method. Meanwhile,
althoughMRN-Unet++ performsworse compared toUnet++
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Fig. 11 Changes in the relationship between model performance and
subnet number

Table 8 Parameters amount of MRN models with different Unet-like
subnets

Configurations Unet Unet++ Unet3+

Depth 2 with 4 subnets 2.7M 3.3M 5.7M

Depth 3 with 4 subnets 10.8M 14.2M 29.0M

Depth 4 with 4 subnets 43.4M 58.1M 173.2M

Depth 5 with 4 subnets 173.4M 234.2M 1198.3M

when the feature levels are 3 and 4, the best result 83.74 is
achieved by the MRN model.

Differences in model performance between MRN and
Unet-like models derive from the operation of the resolu-
tion reduction. Rather than deducing deep features from the
same input in Unet, deep features are derived from separated
inputs inMRN. In this way, each subnet is independent of the
others and the deeper feature extracted by the latter subnet is
unaffected by previous subnets. Then, although the pooling
operation in Unet could be regarded as resolution reduction,
deep features can obtain the missed information from other
channels of the shallow layer. As a result, the information
reduction of Unet is soft and incomplete.

From this perspective, the integration of a shallow depth
subnet performs better than adding the depth of the Unet-like
model directly. In terms of the advantages in model perfor-
mance, MRN holds a smaller model size as well. The model
size of MRN increases with subnet number linearly (0.7M,
1.3M, 2.0M). However, the model size of the Unet model
grows exponentially (0.7M, 2.7M, 10.8M) with depth.

Subnets number determination of MRN

In addition to the subnet structure, the number of subnets
affects the model performance as well. Figure 11 shows the
uptrend of model performance with subnets number. One

(a) MRN-Unet

(b) MRN-Unet++

(c) MRN-Unet3+

Fig. 12 Comparison of results from MRN with different number of
subnets and basic subnet structures
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Fig. 13 Black: raw XRD pattern; Red: manual label; Blue: semantic
segmentation output of different subnets in a 4-subent MRN

attractive point is that although MRN with different subnet
structures but the same method (changeable depth for Unet-
like models) shows different model performance when the
subnet number is set as 1, the model performance of MRN
would reach a similar level along with the increment of sub-
nets number. This is derived from the convergence of model
performance and the converge point is only affected by the
internal constitute of datasets.

Once the ratio of resolution reduction reaches the width
of the peak, the truly valid information about the peaks is
eliminated and extra subnets would not benefit the final seg-
mentation result which leads to the convergence of model
performance. Therefore, the proposed automatic framework
for searching optimal subnet numbers is effective. In our
work, it is suitable to set the threshold of convergence detect-
ing as 0.5.

In conclusion, themodel performanceofMRNwasmainly
affected by the number of subnets and holds a point of conver-
gence. For the reason of the existing convergence point,MRN
with a shallow depth subnet can obtain similar model per-
formance compared with MRN with a higher depth subnet.
Therefore, a shallow depth subnet is sufficient for MRN and
decreases the model size as well. Table 8 shows the parame-
ters amount of different models. To sum up, a 2-depth subnet
holds satisfactory model performance and a small model size
at the same time.

Validation of multi-resolutionmechanism

Figure 12 shows the mask generated by different MRNmod-
els. It indicates that the addition of extra subnets results in
a more accurate result which eliminates the wrong pattern
compared with a single subnet. Further, the segmentation
results derived from different subnets of oneMRN are listed,
as shown in Fig. 13. It shows that the subnet that received
higher resolution input was sensitive to tiny peaks which
could be noise sometimes. On the other hand, subnets with

lower-resolution input are more activated with large peaks.
In this way, the MRN considers the perspectives of different
resolutions, and peaks with various sizes could be detected
simultaneously.

Conclusion

In this paper, the two-step workflow offers a new way for
peak search in XRD patterns. By introducing the semantic
segmentation framework, the implicit rule of distinguishing
peak area and background area in an XRD pattern is learned
automatically. In addition, the multi-resolution mechanism
in MRN has shown benefits to model performance and pro-
duces a more accurate segmentation result. Subsequently,
the generated mask makes it possible to estimate the noise
distribution precisely so that peaks can be separated from
noise data. Finally, three types of screening rules are pro-
posed and experiments have shown their validity. Besides,
the voting strategy for joint screening rules gives a better
result than the sequential process. In conclusion, our method
has fewer parameters to adjust and performs better on peak
search than existing methods. In latter works, we will con-
sider the possibility of using instance segmentationmodel for
peak searching, in this way, a end-to-end and non-parametric
way for peak seatch is offered.Besides, it should be noted that
our framework is not only compatible with XRD patterns.
Theoretically, considering the similarity between XRD pat-
terns and other spectrum-based methods (eg. near-infrared
spectrum), the normal form of generating a mask first and
then specifying fine-grained tasks have the potential to be
applied to other spectrum-based methods and the possibility
would be investigated in the latter work.
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Appendix A Peak search results of reference
samples

(a) [ 34 ] (b) [ 35 ]

(c) [ 36 ] (d) [ 37 ]

(e) [ 38 ] (f) [ 39 ]

(g) [ 40 ] (h) [ 41 ]
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(i) [ 42 ] (j) [ 43 ]

(k) [ 44 ] (l) [ 45 ]
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