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Abstract
Recently, discriminative and robust identification information has played an increasingly critical role in Person Re-
identification (Re-ID). It is a fact that the existing part-based methods demonstrate strong performance in the extraction
of fine-grained features. However, their intensive partitions lead to semantic information ambiguity and background interfer-
ence. Meanwhile, we observe that the body with different structural proportions. Hence, we assume that aggregation with
the multi-scale adjacent features can effectively alleviate the above issues. In this paper, we propose a novel Discriminative
Multi-scale Adjacent Feature (MSAF) learning framework to enrich semantic information and disregard background. In sum-
mary, we establish multi-scale interaction in two stages: the feature extraction stage and the feature aggregation stage. Firstly,
a Multi-scale Feature Extraction (MFE) module is designed by combining CNN and Transformer structure to obtain the dis-
criminative specific feature, as the basis for the feature aggregation stage. Secondly, a Jointly Part-based Feature Aggregation
(JPFA) mechanism is revealed to implement adjacent feature aggregation with diverse scales. The JPFA contains Same-scale
Feature Correlation (SFC) and Cross-scale Feature Correlation (CFC) sub-modules. Finally, to verify the effectiveness of the
proposedmethod, extensive experiments are performed on the common datasets ofMarket-1501, CUHK03-NP, DukeMTMC,
and MSMT17. The experimental results achieve better performance than many state-of-the-art methods.
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Introduction

With the rapid advancement of surveillance technologies and
the exponential growth of video data, there is an increasing
need to accurately and efficiently identify individuals across
multiple cameras and locations. As a result, the task of person
re-identification (Re-ID) [1–3] emerged, providing the capa-
bility to identify the same individual from diverse databases
captured by different cameras. Specifically, the person Re-
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ID technology assists in the identification and tracking of
suspicious or wanted individuals in crowded public spaces,
airports, transportation hubs, and other high-security areas.
By accurately matching individuals in real-time, security
personnel can rapidly respond to potential threats and take
appropriate measures to ensure public safety. Overall, the
person Re-ID technology plays a critical role. However, the
person Re-ID task faces major challenges, including camera
parameters, lighting conditions, viewpoint variations, pedes-
trian posture diversities, and so on.

Studies [4–6] have highlighted the importance of extract-
ing discriminative features in the context of the person Re-ID
task. However, solely focusing on extracting global-level
discriminative features may lack the supervision required
for capturing fine-grained features. Furthermore, within the
same image, there is variation in the proportion of different
body parts, such as the head and legs. Additionally, there is
an inconsistency in the representation of pedestrians cap-
tured by multi-camera systems with different viewpoints.
To address these challenges, researchers have proposed
part-based methods [7, 8] that utilize a general structural
partitioning approach. This involves splitting the featuremap
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into several horizontal blocks to extract limb information for
each part. Although this slicing scheme can provide richer
fine-grained local features, it suffers from the fragmenta-
tion of contextual information in adjacent blocks, including
blocks that may contain mostly background information.
Moreover, increasing the number of partitions leads to a
lack of semantic information within each block and network
redundancy due to excessive partitioning. Given these limi-
tations, it is promising to explore effective approaches that
facilitate interactions between adjacent feature blocks tomit-
igate the loss of semantic information.

On the other hand, these part-based methods [2, 4] adopt
Convolutional Neural Networks (CNNs) [9, 10] for generic
feature extraction. These methods employ partition schemes
in the high-level and abstract representation space, which
results in the lack of informative cues at the low-level fea-
tures. Nevertheless, low-level features play a critical role
in discrimination tasks, e.g., clothes, backpacks, or even
shoes. In general, low-level features can provide more spe-
cific information, while high-level features contain more
semantic information with less specific information. There-
fore, it is beneficial to exploit the complementary strengths
of different-level features in an effective way. However, sim-
ple fusion operations deteriorate aggregation performance,
e.g., addition operation or concatenation operation. Recently,
Transformer [11–14] originating from Natural Language
Processing (NLP), has shown excellent performance in com-
puter vision tasks. With its self-attention mechanism, Trans-
former [15, 16] effectively captures long-range dependencies
among image tokens and maintains a global perspective. In
contrast, CNNs suffer from a limited receptive field due to the
inherent nature of convolutional operations. To address this
limitation, a promising approach involves integrating CNNs
and Transformers, leveraging the respective strengths of both
architectures to extract discriminative information from fea-
tures at different levels.

In this paper, we propose a novel Discriminative Multi-
scale Adjacent Feature (MSAF) learning framework to
address semantic information ambiguity and background
interference due to intensive partition. It can further extract
discriminative identification information and implement
adjacent feature interactions with diverse scales. To obtain
discriminative information from different-level features, we
design a Multi-scale Feature Extraction (MFE) module by
combining CNN and Transformer structure, and it contains
in terms of intra-scale and inter-scale. Moreover, we propose
a Jointly Part-based Feature Aggregation (JPFA) approach.
As shown in Fig. 1, to adapt to the different proportions of the
limbswithin the same image and the inconsistent percentages
of pedestrianswithin different viewpoints, we adopt a diverse
division scheme to enhance the robustness of identification.
Specifically, the Same-scale Feature Correlation (SFC) sub-
module is proposed to link adjacent blocks within the same

Fig. 1 Division Scheme. a Existing part-based works concentrate on
the information within the same-scale partition scheme and ignore the
associations between multi-scale adjacent feature blocks. b The associ-
ation of adjacent feature blocks in our framework. The solid line means
the cross-scale edge in Cross-scale Feature Correlation (CFC), and the
dotted line indicates the same-scale edge in Same-scale Feature Corre-
lation (SFC)

slicing scheme. The Cross-scale Feature Correlation (CFC)
sub-module is designed to adapt body parts’ proportions
under different scales. To further aggregate diverse adjacent
features inCFC,we adopt theGraphAttention (GAT)mecha-
nism [17] to learn discriminative information. In this way, the
JPFA can effectively enrich semantic information and disre-
gard background noise. Combined with MFE and JPFA, the
identity representation can be more discriminative, thereby
enhancing the retrieval performance in the personRe-ID task.
The main contributions of this paper can be summarized as
follows:

• The Multi-scale Feature Extraction (MFE) module is
designed by combining CNN and Transformer structure
to obtain the discriminative specific information from
different-level features.

• The Jointly Part-based Feature Aggregation (JPFA)
mechanism is revealed to implement adjacent feature
interactions with diverse scales, which contains Same-
scale Feature Correlation (SFC) and Cross-scale Feature
Correlation (CFC) sub-modules. Furthermore, it can
effectively alleviate semantic information ambiguity and
background interference.

• Extensive experiment results on the open public chal-
lenging datasets illustrate the proposed method achieves
better results than many state-of-the-art methods, e.g.,
Market-1501, CUHK03-NP, DukeMTMC,
and MSMT17.
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Related work

Part-based feature for person Re-ID

Nowadays, there are various ways [7, 18, 19] to extract part-
based features on personRe-ID tasks. Thesemethods involve
dividing the featuremap into horizontal blocks to extract limb
information for each part. For example, Sun et al. [7] pro-
poses a Part-Based Convolutional Baseline (PCB) network,
which employs a uniform segmentation strategy with a CNN
structure to capture local detail information. Considering the
intensive partitioning, which can lead to ambiguity in seman-
tic information and interference from the background, some
researchers drawattention to exploring the integration of both
local and global features. Towards this, Luo et al. [18] pro-
pose AlignedReID++, which learned both local and global
features while dynamically aligning local information. Sim-
ilarly, to incorporate richer multi-scale information, Wang et
al. [4] introduces the Multiple Granularity Network (MGN),
which consists of multiple global branches and various local
branches for capturing multi-granularity feature representa-
tions.

However, these existingmethods have a limitation in terms
of aggregating multi-scale features effectively. For instance,
MGN [4] relies on using a varying number of stripes in each
local branch to achieve the desired multi-granularity. How-
ever, this approach treats the feature representation of each
branch independently, overlooking potential interactions and
correlations across different scales. As a result, there is a risk
of suboptimal utilization of multi-scale information, leading
to the lack of identity discrimination in the feature repre-
sentations. Differing from these, we propose a novel Dis-
criminative Multi-scale Adjacent Feature (MSAF) learning
framework to extract discriminative identification informa-
tion by implementing adjacent feature interactions across
diverse scales. By considering the relationships between
adjacent features at different scales, our approach aims to
capture more comprehensive and contextually rich represen-
tations.

Feature aggregation for person Re-ID

Feature aggregation plays a crucial role in computer vision
tasks, as it aims to capture both detailed and semantic
information [20]. Several studies in the field of person
Re-ID have attempted to incorporate feature aggregation
within the network [16, 20–22]. For instance, Chen et al.
[21] utilizes cascaded aggregated features to extract salient
identification information. Liu et al. [22] designs aHierarchi-
cal Bi-directional Feature Perception Network (HBFP-Net),
which integrates relatively low-level features into subsequent
levels. Besides, some researchers design various pyramidal
structures [23, 24] to aggregate multi-scale features. These

structures capture discriminative information from distinct
spatial scales, with each layer focusing on specific semantic
levels. Zheng et al. [24] proposes a coarse-to-fine pyramid
structure for accurate bounding box predictions, while Mar-
tinel et al. [23] highlights the ability of pyramid structures to
extract multi-scale representations and decompose them into
distinguishing features at different semantic levels.

In recent years, Transformer [11] has shown excellent
performance in capturing long-range dependencies, which
provides new opportunities for feature aggregation. Inspired
by this, Zhang et al. [16] leverage theTransformer framework
to aggregate multiple features, enabling enhanced details
while preserving semantic information. In ourwork, we draw
inspiration from the effective feature aggregation capabili-
ties demonstrated in these studies. Specifically, we propose a
novel approach that combines CNN and Transformer struc-
tures to obtain discriminative and specific features from
different levels.

Attentionmechanism for person Re-ID

To emphasize important features and suppress irrelevant
ones, some studies [25–28] proposed to introduce an atten-
tionmechanism in the network. Especially, inRe-ID [29–31],
leveraging the relationship between different limb parts
is beneficial for person feature extraction. For example,
Zhang et al. [29] introduces the Relation-Aware Global
Attention (RGA) model to learn the discriminative rep-
resentation, which incorporates both spatial attention and
channel attention. Moreover, Huang et al. [1] proposes
a Three-Dimensional Transmissible Attention Network to
learn identity-related information in a three-dimensional per-
spective. Zhu et al. [14] describes the concept of part tokens
with Transformer to automatically locate limb and non-limb
parts. Furthermore, He et al. [32] integrates a sequence of
image patches with non-visual clues and employs the Trans-
former to extract robust features. In this paper, we focus on
the utilization of multi-scale adjacent features to facilitate
the extraction of discriminative identification information.
Specifically, we explore the GAT [17] mechanism to further
aggregate adjacent features across diverse scales.

Proposedmethod

In this section, we introduce the framework of Discrimi-
native Multi-scale Adjacent Feature (MSAF), as shown in
Fig. 2. Overall, our proposed MSAF (Multi-scale Feature
Aggregation) framework comprises two main modules: the
Multi-scale FeatureExtraction (MFE)module and the Jointly
Part-based Feature Aggregation (JPFA) module.

The MFE (left part in Fig. 2) module combines the archi-
tectures of Convolutional Neural Networks (CNNs) and
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Fig. 2 The illustration of our proposed Discriminative Multi-scale
Adjacent Feature (MSAF) network. Among them, the ResNet50 is uti-
lized as the backbone. InMFE, the SOA [33] and Transformer structure
[12] are designed to implement intra-scale and inter-scale feature extrac-
tion respectively. To align the size of the feature map extracted from
different-layer, the Scale Alignment module simply contains the com-

bination of Bottleneck andMaxPooling. In JPFA, we integrate SFC and
CFC submodules to aggregate adjacent information from Specific Fea-
ture Map. Finally, Module Output is used to supervise the network with
a multi-loss function in the training stage, while denoting identification
information for each image in the test stage

Transformers to extract discriminative and specific features.
Specifically, this module operates in two ways: intra-scale
and inter-scale. For intra-scale, we adopt Second Order
Attention (SOA) block mines contextual relevance to high-
light salient features. This allows the model to focus on the
fine-grained characteristics.On the other hand, the inter-scale
process is implemented by themanner of Transformer, which
captures the contextual and holistic information by consid-
ering the relationship between different scales. This enables
the model to understand the global structure and appearance
of the person.

To facilitate effective interactions between adjacent fea-
tures with diverse scales, we introduce two sub-modules
within the JPFA (right part in Fig. 2) module: the Same-scale
Feature Correlation (SFC) and the Cross-scale Feature Cor-
relation (CFC) sub-modules. The SFC sub-module enables
the model to capture correlations and dependencies between
features within the same scale. This benefits in preserving
the detailed information and local characteristics within each
scale. The CFC sub-module, on the other hand, facilitates
the exploration of correlations and interactions between fea-
tures across different scales. This allows themodel to capture
the relationships between different body parts across various
scales.

By incorporating the MFE and JPFA modules within our
MSAF framework, we aim to obtain discriminative feature
representation that combines both fine-grained details and
global contextual information.

Multi-scale feature extraction

Considering the powerful feature representation of CNN, we
adopt the ResNet50 [34] as the backbone. In general, we
obtain the feature map Xl ∈ R

Cl×Hl×Wl from l-th layer of
ResNet50, where Cl , Hl and Wl respectively indicate the
number of channels, the height, andwidth of the featuremap.
Firstly, we simply introduce an intra-scale feature extraction
scheme. Inspired by [33], the Second Order Attention (SOA)
block mines contextual relevance to highlight salient fea-
tures. To take advantage of this, the SOA module is adopted
to enable intra-scale alignment for feature map Xl .

Xl = SOA(Xl). (1)

where SOA is the self-attention block proposed in [33].
After the intra-scale extraction within hierarchical layers, we
obtain Intra Feature Map Xtra ∈ R

C5×H5×W5 .
For inter-scale extraction in MFE, we define hierarchi-

cal feature maps from different scales as X1, X2, . . . , Xn .
To achieve consistent spatial dimensions for different scales,
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we employ a Scale Alignment module simply consisting of
Bottleneck andMaxPooling layer. Bottleneck [34] involves a
series of stacked residual blocks. And theMaxPooling opera-
tion reduces all featuremaps to the same spatial size, denoted
as h × w.

X j = Max Pooling(Bottleneck(X j )). (2)

where Bottleneck is originated from [34]. After that, we con-
catenate the hierarchical features.

F = Concat(X1, X2, ...Xn). (3)

In this way, we obtain the hierarchical feature F ∈ R
c×h×w,

where c = ∑n
i=1 Cl . Then, we utilize the Transformer struc-

ture to interact with information obtained in F . As shown
in Fig. 2a, the feature map F is sliced into N = (h ×
w)/R2 image patches with each patch of (R × R) size. The
image patches are then projected into D-dimensional vec-
tor sequences by the linear projection layer. On meanwhile,
the learnable parameters named class tokens are embedded
to extract global features. For the purpose of enriched spa-
tial position information, we also add the learnable position
parameter in the vector sequence. After Position Embed-
ding, we obtain the vector sequences Z ∈ R

L×D , where
L = N + 1. In [12], the classic Transformer Encoder layer
(TEL) contains stacked Multi-Head Self-Attention (MSA),
Multi-Layer Perceptron (MLP), Layer Normalization (LN),
and other blocks. The number of the Transformer Encoder
layer mentioned above is set as d. For example, the output of
l-th TEL is generated as follows:

Zl = Trans f ormer(Zl−1). (4)

where Z0 is the original vector sequences after Position
Embedding, Zl ∈ R

c′×N . c′ denotes the dimension of output
from the l-th TEL. Following Eq.4, we gain both global iden-
tification information fgl and Inter Feature Map Xter , where
fgl ∈ R

c′×1 retrieved from class token and Xter ∈ R
c′×h×w

extracted from imagepatcheswith reshapeoperation. Finally,
the Specific Feature Map X f ∈ R

c f ×h×w is concatenated
from Intra Feature Map Xtra and Inter Feature Map Xter ,
where c f = C5 + c′. Furthermore, the Specific Feature Map
X f is forwarded into the Jointly Part-based Feature Aggre-
gation (JPFA) module to interact with adjacent features with
diverse scales, which is consistent with the structure of dif-
ferent proportions of the human body.

Jointly part-based feature aggregation

The Jointly Part-based Feature Aggregation (JPFA) module
contains the Same-scale Feature Correlation (SFC) and the
Cross-scale Feature Correlation (CFC) sub-modules, both of

Fig. 3 The example graphwith slicing scheme DIV SI ON = {S2, S3}
in CFC. The vertex set consists of feature blocks under different slic-
ing schemes. For the pair of vertex, an undirected edge exists if their
bounding boxes intersect. Specifically, each vertex has a self-loop

which are based on partition. To begin with, we introduce
the slicing scheme DIV I SI ON = {S1, S2, ...SN }, where
Sd(d ∈ {1, ...N }) indicates that horizontally dividing fea-
ture map X f into d pieces of equal size. {Sd,1, Sd,2, ...Sd,d}
denotes each piece respectively.

Same-scale feature correlation

This sub-module describes the correlation of adjacent fea-
tures within the same slicing scheme. For slicing scheme Sd ,
we obtain d feature blocks {Sd,1, Sd,2, ...Sd,d}with the same
size. Firstly,we squeeze the spatial dimension of per-block by
MaxPooling operation to obtain each discriminative identifi-
cation, denoted as Smax

d, j ∈ R
c f ×1×1( j ∈ {1, ...d}). To enrich

semantic information and disregard background noise, we
propose the aggregation of adjacent feature. Then, we also
utilize MaxPooling layer to enhance salient information for
segmented adjacent blocks. It can be represented as:

Smax_ad j
d,i = Max Pooling(Smax

d,i−1, S
max
d,i ). (5)

where Smax
d,i−1 and Smax

d,i represent discriminative information
of adjacent blocks and i ∈ {2, ...d}. In this way, we obtain
Smax_ad j
d ∈ R

c f ×(d−1) for slicing scheme Sd by concatenat-

ing all the Smax_ad j
d,i . Finally, we extract same-scale features

f dss from Smax_ad j
d with a fully connected layer.

Cross-scale feature correlation

In this sub-module, we explore the correlation of the adjacent
feature under various scales. Various parts of the body have
distinctive scales. So it is worthwhile to associate different
scales of body parts. Same as SFC, we obtain feature blocks
Smax
d by MaxPooling for each slicing scheme Sd . For this

purpose, we design a graph-based self-attention mechanism
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to aggregate the above information. We construct the graph
G(V , E), whereV and E represent the set of vertex and edge,
respectively. As for vertex set V , vi, j is viewed as the vertex
of the graph obtained from slicing scheme DIV I SI ON ,
where i denotes the i-th slicing scheme(Si ) and j denotes the
j-th block in Si . For example, v3,2 denotes the second block
in the slicing scheme S3. Besides, we define the weight Zi, j

of vertex vi, j as follows:

Zi, j = Max Pooling(Smax
i, j ). (6)

where Zi, j ∈ R
c f . As for edge set E , the edge (vi1, j1 , vi2, j2)

exits if the bounding box of two vertices intersects. In our
work, the bounding box(B) is defined as the border of the
sliced block. In other words, vertex vi1, j1 and vertex vi2, j2
are neighbors when and only when Bi1, j1

⋂
Bi2, j2 �= ∅,

as shown in Fig. 3. On the basis of the softmax [35], we
adopt the graph-based [17] approach to aggregate adjacent
features. The attentionweightsα are obtained by normalizing
the aggregation of all neighbors.

so f tmaxgraph−G(αi, j ) = eWi, j

∑
k∈Nei(Vi ) e

Wi,k
. (7)

where i represents the vertex in graph G for simplicity,
Nei(Vi ) indicates the set of neighboring vertices for vertex
i , and W denotes the weight matrix. In summary, our graph-
based self-attention process can be described as follows.

GAT (Q, K , V ) = so f tmaxgraph−G

(
QKT

√
D

)

V . (8)

where Query, Key, and Value are obtained from a sequence
of vectors through different linear project: Q = DmaxWQ ,
K = DmaxWK , V = DmaxWV and

√
D denotes the regular-

ization terms. Similarly to [36], we also follow a multi-head
manner. After GAT, Ẑi, j is the output information of the
vertex vi, j aggregated with neighborhoods. As with the SFC
sub-modules, we similarly utilize the fully connected layer to
extract the cross-scale feature f dcs from Ẑd , where d denotes
the number of block pieces in the slicing scheme Sd .

Loss function

In this paper, we adopt a common loss function for the person
Re-ID task, which includes Cross-entropy Loss with label
smooth [37] and Hard Triplet Loss [38]. Among these, the
cross-entropy loss function can enhance network classifica-
tion performance.

LCE (p, q) =
k∑

i=1

−pi log(qi ). (9)

where k, p, and q indicate the number of person categories,
predict value, and ground truth, respectively. In addition, the
parameter in label smooth is set to 0.1. Hard Triplet Loss
can better extract distinguishing identification information,
closer to the same identification and farther away from dif-
ferent identification.

LTri (a) = [Sap − San + α]+. (10)

where Sap and San respectively denote positive and negative
samples.α is defined asmargin distance. Function [·]+ means
max(·, 0). Combining Eq.9 and Eq.10, the multi-loss func-
tion Lreid is obtained as follows:

Lreid = LCE + LTri . (11)

Finally,We leverage features fgl , f dss and f dcs to obtain overall
loss function L of whole framework:

L = Lreid( fgl) +
∑

d∈DIV I SI ON

(Lreid( f
d
ss) + Lreid( f

d
cs)).

(12)

Experiments

In this section, we conduct extensive experiments on com-
monly public Re-ID datasets with the aim of verifying the
effectiveness of our method, which includes Market-1501
[39], CUHK03-NP [40], DukeMTMC [41] and MSMT17
[42]. Firstly, we describe our experimental environment
and related evaluation metrics. Then, typical person Re-
ID datasets are introduced in the following. Finally, we
demonstrate the advantages of ourmethod compared to state-
of-the-art models, while validating the effectiveness of each
sub-module through ablation experiments.

Implementation details

Training: In our study, ResNet50 is employed as the back-
bone for end-to-end training, where the stride of the last layer
of ResNet50 is set to 1. We set the batch size to 64, in which
a total of 16 distinctive identifications, each with 4 different
images respectively.

For the image pre-processing step, we standardize the res-
olution of all images to 256×128 pixels to ensure consistency
throughout the dataset. Additionally, we employ various aug-
mentation techniques to further enhance the data. These
techniques include randomcropping, horizontal flipping, and
random erasing. By applying these operations, we introduce
diversity and variability into the training data, which in turn
enhances the model’s ability to generalize and improve its
overall performance.
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For the parameter optimization,we train ourmodel for 180
epochs using the Adam optimizer. Specifically, we employ a
warmup strategy where the learning rate is linearly increased
from 5×10−6 to 4×10−4 within the first 10 epochs. Starting
from the 50th epoch, the learning rate is adjusted downward
every 30 epochs by a factor of 0.4.As for the hyperparameters
in the Multi-scale Feature Enhancement (MFE) module, we
set R (the size of patch size) as 1 according to the literature
[16] and l (the number of layers) as 6. These values are chosen
based on empirical observations and experimental results to
achieve optimal performance in our model.

Testing: During the testing stage, we extract the feature rep-
resentation of each image by passing it through our proposed
MSAF network. When conducting a query image, we com-
pare the feature representation of the query image with the
feature representations of all images in the gallery set using
Euclidean Distance as the measurement metric. Based on the
similarity scores calculated using the EuclideanDistance, we
retrieve the top-Kmost similar images from the gallery set as
the potential matches for the query image. It is important to
note that we do not employ re-ranking as a post-processing
step in our approach.

Besides, following previous work [16, 43], the cumula-
tive matching characteristic (CMC) and the mean Average
Precision (mAP) are adopted in our experiments. The code
is implemented on PyTorch with 4 NVIDIA GeForce RTX
2080Ti.

Datasets

Weverify the effectiveness of ourmethod by extensive exper-
iments under public Re-ID datasets, including Market-1501
[39], DukeMTMC [41], CUHK03-NP [40], and MSMT17
[42].

Market1501: It is composed of 32,668 images collected on
campus from 1,501 pedestrians in total. The dataset contains
12,936 training images of 751 identities, 3,368 query images
and 15,913 gallery images of other 750 identities. In this
dataset, the pedestrian bounding boxes are detected with the
Deformable Part Model (DPM) detector [44].

DukeMTMC: There are a total of 1,402 identities from 8
different cameras in the dataset, which is divided into 702
identities for training and another 702 identities for testing.
It contains 16,522 training images, 2,228 query images, and
17,661 gallery images.

CUHK03-NP: In literature [45], the new testing protocol
is proposed with 14,097 images of 1,467 pedestrians from
5 pairs of cameras with different views. The 767 identities
served as the training set and another 700 identities as the test-
ing set. Besides, the dataset provides two types of bounding
boxes generated by manual human annotation and automatic

detection with the pedestrian detector, which are simplified
as Labeled and Detected, respectively.

MSMT17: In literature [42], a mostly challenging Re-ID
dataset with complicated scenes is established. It exploits 15
cameras to obtain images of pedestrians in various weather
conditions. Based on Faster RCNN detector [46], it obtains
altogether 126,441 images from 4101 identities. Through its
random division, it includes 1,041 identities with 32,621
training images and 3,060 identities with 11,659 query
images and 82,161 gallery images.

Comparison with state-of-the-art models

We compare our method with the state-of-the-art models and
the results are shown in Table 1. We can observe that our
model achieves outstanding performance on most datasets.
Market1501: As shown in Table 1, we obtain comparable
performance in Market1501 dataset. In detail, our approach
achieves 90.3% mAP and 96.2% Rank-1. There is near sat-
uration in the performance of this dataset.

DukeMTMC: As shown in Table 1, it is noticed that our
method still achieves the best performance among previous
methods on DukeMTMC. In terms of data, our method out-
performs NFormer [57] by 0.2% mAP and 2.8% Rank-1. In
particular, compared to the previous part-based approaches
without correlation under multi-scale adjacent features, e.g.,
ALignedReID++ [18], GCP-F [31], our method holds a sig-
nificant advantage.

CUHK03-NP: Table 1 shows that the proposed approach
achieves outstanding performance both on Labeled and
Detected datasets. In Labeled CUHK03-NP, our approach
achieves 85.5% mAP and 83.4% Rank-1. Meanwhile, we
obtain 80.7%mAPand83.3%Rank-1onDetectedCUHK03-
NP.More specifically, when comparing our proposedmethod
to advanced HAT [16] and GCP-F [31], we observe signifi-
cant improvements. For instance, on the Labeled CUHK03-
NP dataset, our method achieves the improvement of 3.4%
mAPand 2.9%Rank-1. Similarly, on theDetectedCUHK03-
NP dataset, we observe the improvement of 5.2% mAP and
4.2% Rank-1. These results demonstrate the superior perfor-
mance of our approach compared.

MSMT17:As shown in Table 1, our approach obtains 63.4%
mAP and 83.7% Rank-1 on MSMT17. Specifically, in terms
of the Rank-1 metric, our method surpasses TransReID [32]
by a margin of 1.0%. However, our mAP result falls slightly
short by 0.5% compared to TransReID. When compared to
Nformer [57], we outperform them by at least 3.6% and 6.4%
in Rank-1 accuracy and mAP, respectively. Therefore, our
proposed approach is still competitive.

The MSMT17 dataset is notable for its collection of
12 outdoor cameras and 3 indoor cameras, resulting in

123



4564 Complex & Intelligent Systems (2024) 10:4557–4569

Table 1 Comparison with
state-of-the-art methods on
Market1501, DukeMTMC,
CUHK03-NP, MSMT17
datasets. Red, green, and blue
represent the top-3 ranking
scores respectively

Methods
Market-1501

CUHK03-NP
DukeMTMC MSMT17Labeled Detected

mAPRank-1 mAPRank-1 mAPRank-1 mAPRank-1 mAPRank-1
ABDNet [47] 88.3 95.6 - - - - 78.6 89.0 60.8 82.3
SFT [48] 87.5 94.1 - - 71.7 74.3 79.6 90.0 58.3 79.0
HPM [49] 82.7 94.2 - - 57.5 63.9 74.3 86.6 - -

Pyramid [24] 88.2 95.7 76.9 78.9 74.8 78.9 79.0 89.0 - -
CAMA [50] 84.5 94.7 66.5 70.1 64.2 66.6 72.9 85.8 - -
JDGL [51] 86.0 94.8 - - - - 74.8 86.6 52.3 77.2

AlignedReID++ [18] 79.1 91.8 - - 59.6 61.5 69.7 82.1 43.7 69.8
HBFPNet [22] 89.8 95.8 79.4 81.3 77.5 80.0 80.2 89.5 - -

ISP [52] 88.6 95.3 74.1 76.5 71.4 75.2 80.0 89.6 - -
RGA-SC [29] 88.4 96.1 77.4 81.1 74.5 79.6 - - 57.5 80.3
SNR [53] 84.7 94.4 - - - - 73.0 85.9 - -

GCP-F [31] 88.9 95.2 75.6 77.9 69.6 74.4 78.6 89.7 - -
HAT [16] 89.5 95.6 80.0 82.6 75.5 79.1 81.4 90.4 61.2 82.3
CDNet [54] 86.0 95.1 - - - - 76.8 88.6 54.7 78.9
PAT [55] 88.0 95.4 - - - - 78.2 88.8 - -
APD [56] 89.1 95.8 77.2 79.9 75.3 78.1 81.1 90.7 61.2 82.4

3DTANet [1] 89.6 95.3 75.2 80.2 68.9 75.2 78.4 89.9 46.7 76.6
TransReID [32] 88.0 94.7 - - - - 81.2 90.1 63.9 82.7
AAformer [14] 88.0 95.4 79.0 80.3 77.2 78.1 80.9 90.1 65.6 84.4
NFormer [57] 91.1 94.7 78.0 77.2 74.7 77.3 83.5 89.4 59.8 77.3

Ours 90.3 96.2 83.4 85.5 80.7 83.3 83.7 92.9 63.4 83.7

a wide variation in the style of pedestrian images across
different cameras. Consequently, the incorporation of cam-
era/view variations plays a crucial role in capturing non-
visual information. However, different from TransReID[32]
and AAformer [14], our method disregards the consideration
of camera/view variations, which may limit its performance
in scenarios where such variations are significant. In our
work, despite the lackof variations as prior knowledge, robust
identification information is maintained due to discrimina-
tive multi-scale adjacent feature extraction. As a result, our
approach remains competitive in the MSMT17 dataset.

Ablation studies

For the purpose of demonstrating the effectiveness of the
proposed components, ablation studies are performed on the
DukeMTMC dataset. We adopt pure ResNet50 as the base-
line and set the stride of the last layer to 1. Besides, we
incorporateCross-entropyLoss andHardTriplet Loss to train
the network in all ablation experiments. To fully illustrate the
capacity of the components to represent features under differ-
ent granularities, we take DIV I SI ON = {S1, S3, S5, S7} in
some experiments.

Effect of MFE and JPFA in MSAF: As shown in Table 2,
we can observe that the MFE improves by 7.4%/5.6% on
mAP/Rank-1 compared to baseline. It is sufficient to demon-
strate that a multi-feature extraction approach can deliver
effective performance improvements. Table 2 shows that the
JPFA outperforms baseline with 2.5% in mAP and 3.4%
in Rank-1. From the above experimental result, we con-

clude that our proposed JPFA enables the effective extraction
of local features. This adequately describes the benefits of
multi-scale adjacent feature aggregation for mining identifi-
cation information.

Effect of intra-scale and inter-scale in MFE: As shown in
Table 3, we further analyze the effect of each feature extrac-
tion scheme: intra-scale and inter-scale.

For intra-scale, the results show that the intra-scale feature
extractionmethod can enhance the performance by 1.8% and
1.6% in mAP and Rank-1, respectively. And it also indicates
that the intra-scale scheme significantly improves the mAP
metric from 76.7% to 83.0% and the Rank-1 metric from
88.5% to 91.2%. Based on the above results, we infer that
learning more contextual information within the same level
can be extremely effective, which allows for better inter-scale
feature extraction. For inter-scale, it shows that the inter-scale
scheme gains 1.1% in mAP and 1.9% in Rank-1 benefit
compared to pure baseline. Besides, better performance is
obtained by joining inter-scale with intra-scale. In detail, the
MFE achieves a large margin(+5.6 % in mAP and 3.0% in
Rank-1) over a pure intra-scale scheme. Furthermore, we
compare the performance ofMFEand state-of-the-artmodels
shown in Table 1. The comparison shows that it outperforms
the second-best model 0.5% in mAP and 1.6% in Rank-1 on
the DukeMTMC dataset. Through the above analysis, it is
strongly demonstrated that integrating low-level detail infor-
mation and high-level semantic information is able to extract
pedestrian features effectively. Also, it illustrates the ability
of MFE to obtain discriminative-specific information.
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Table 2 Ablation studies of our modules on DukeMTMC. The slicing
scheme is set as DIV I SI ON = {S1, S3, S5, S7}
Method mAP Rank-1 Rank-5 Rank-10

Baseline(B) 75.6 86.6 94.3 96.4

B+MFE 83.0 91.2 96.0 97.4

B+JPFA 78.1 90.0 95.1 96.6

Ours(B+MFE+JPFA) 83.6 92.1 96.3 97.2

Table 3 Ablation studies of MFE on DukeMTMC. The slicing scheme
is set as DIV I SI ON = {S1, S3, S5, S7}
Method mAP Rank-1 Rank-5 Rank-10

Baseline(B) 75.6 86.6 94.3 96.4

B+MFE(Intra) 77.4 88.2 94.6 96.5

B+MFE(Inter) 76.7 88.5 94.4 96.0

B+MFE(Intra+Inter) 83.0 91.2 96.0 97.4

Table 4 Ablation studies of JPFA on DukeMTMC. The slicing scheme
is set as DIV I SI ON = {S1, S3, S5, S7}
Method mAP Rank-1 Rank-5 Rank-10

Baseline 75.6 86.6 94.3 96.4

w/o JPFA 83.0 91.2 96.0 97.4

w/o CFC 82.6 91.5 96.4 97.5

w/o SFC 83.1 91.6 96.1 97.0

Ours 83.6 92.1 96.3 97.2

Effect of CFC and SFC in JPFA: We also conduct exper-
iments to evaluate the benefit of JPFA, which contains SFC
and CFC sub-modules.

As shown in Table 4, we separately verify the effective-
ness of SFC and CFC. For SFC, the accuracy decreases by
0.5% mAP and 0.5% Rank-1 without the SFC sub-module.
It suggests that fusing adjacent features of the same slicing
scheme is critical. Meanwhile, the CFC sub-module which is
based on cross-scale adjacent features can improve the per-
formance of the whole framework by 1.0% mAP and 0.6%
Rank-1. These results show that cross-scale feature extrac-
tion adapts effectively to the proportions of different body
parts. The above experiments have shown that JPFA effec-
tively compensates for semantic information ambiguity and
background interference due to intensive partition.

Experiment analysis

Analysis of feature extraction in MFE from different-
level: As shown in Table 5, we further explore the perfor-
mance of feature extraction from different-level. Firstly, we
denote the l-th layer of ResNet50 as Xl . We conduct some
experiments of different combinations with {X3, X4, X5}.

Table 5 Ablation studies of feature aggregation layer in MFE on
DukeMTMC. The digit represents the layer of ResNet50. The slicing
scheme is set as DIV I SI ON = {S1, S3, S5, S7}
Method mAP Rank-1 Rank-5 Rank-10

{3, 4} 77.9 89.0 95.0 96.4

{3, 5} 81.6 91.2 95.9 97.2

{4, 5} 82.1 91.2 96.0 97.2

{3, 4, 5} 83.6 92.1 96.3 97.2

Table 6 Ablation studies of the slicing scheme in JPFAonDukeMTMC

Method mAP Rank-1 Rank-5 Rank-10

{∅} 83.0 91.2 96.0 97.4

{S1, S3} 83.0 91.8 96.1 97.1

{S1, S4} 82.7 91.8 96.0 97.2

{S1, S5} 83.0 92.0 96.1 97.4

{S1, S7} 82.8 91.6 96.5 97.2

{S1, S3, S4} 83.1 92.2 96.4 97.4

{S1, S3, S5} 83.3 92.4 96.1 97.3

{S1, S4, S5} 83.4 92.2 96.5 97.6

{S1, S3, S5, S7} 83.6 92.1 96.3 97.2

{S1, S3, S4, S5} 83.7 92.9 96.5 97.7

The digit represents the number of blocks uniformly sliced from the
feature map. Especially, ∅ means no slicing scheme

Compared {X3, X4} to {X3, X4, X5}, it can be observed
that the performance of mAP and Rank-1 significantly
decreases 5.7% and 3.1% respectively without high-level
feature. Through additional insights, {X3, X4, X5} combi-
nation is the worst performance of all the two different levels
selected. It adequately indicates that high-level semantic
information plays a fundamental role in identification ver-
ification. Similarly, compared {X4, X5} to {X3, X4, X5}, it
shows that low-level feature can enhance the accuracy by
1.5% mAP and 0.9 % Rank-1. From the above compari-
son, we infer that the inclusion of only higher-level semantic
information does not allow for the extraction of rich iden-
tification information. In other words, it demonstrates the
importance of low-level detail information to some extent.
The comparison of {X3, X5} and {X3, X4, X5} illustrates that
our model performs better with the assistance of mid-level
features. Therefore, we have experimentally shown that the
information is required at each level. It also shows that the
integration of detailed and semantic information can con-
tribute to improved discrimination and robustness.

Analysis of slicing scheme in JPFA: As shown in Table 6,
we further compare the effectiveness of various combina-
tions with different slicing schemes. Following previous
part-based methods, we uniformly slice the feature map into
horizontal blocks of equal size. In particular, the empty set
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Fig. 4 Visualization of our
proposed method. From left to
right, each column donates input
image, the visualization of the
baseline, MFE, JPFA, MSAF,
respectively

indicates that our slicing strategy is not employed and only
the global feature is utilized. For the metric of Rank-1, it
is seen that the results of {S1, S3} and {S1, S5} outperform
no slicing strategy by at least 0.6% margin. As illustrated
by extensive experiments, the part-based approach has the
capability to extract fine-grained local features with visi-
ble effects. However, excessively fine-grained local features
prevent the model from extracting discriminative features
and lead to network redundancy. From the comparison of
{S1, S5} and {S1, S7}, we observe reductions in performance
of mAP and Rank-1 by 0.2% and 0.4% respectively. On
the other hand, the performance of {S1, S3, S4, S5} surpasses
{S1, S3, S5, S7} by 0.1% mAP and 0.8% Rank-1. Therefore,
as the number of slices increases, we infer that the lack
of semantic information within each block leads to slight
or even deteriorating improvements in accuracy. Further-
more, we clearly notice that the addition of various rational
slicing options can enhance the performance, e.g., {S1, S3},
{S1, S3, S4} and {S1, S3, S4, S5}. Through comparison of the
above experimental results, it indicates that incorporating
diverse partition schemes effectively adapts to the proportion
of different limbs, while appropriately alleviating semantic
information ambiguity and background interference caused
by intensive partitions.

Visualization

As shown in Fig. 4, we visually compare the feature maps of
the proposed method with CAM [58] visualization. For each
identity image, it presents the result of the input image and

the visualization of the baseline, MFE, JPFA, and MSAF. It
can be seen that our MFE module provides access to more
pedestrian detail than the baseline. In addition, as viewed
in Fig. 4a, c, MFE can effectively filter the occlusion object
to extract more specific features, e.g., handbag. From the
column of JPFA, it is clear that the whole body of the
feature map has been focused on. It demonstrates that the
interactions with diverse scales effectively address semantic
information ambiguity and background interference caused
by intensive partitions. And it adapts to the different propor-
tions of body parts. However, feature aggregation is based on
feature extraction. It leads to the lack of salient clues at the
low-level by applying a partition scheme in the high-level and
abstract representation space. For example, Fig. 4c illustrates
that JPFA is concerned about a small amount of background
noise, and Fig. 4d shows limited attention to key body infor-
mation. From the last column, the result of visualization
shows that the combination of MFE and JPFA components
provides the ability to extract specific discriminative infor-
mation with different structural proportions. Therefore, our
method achieves better performance than many state-of-the-
art methods.

Conclusion

In this paper, we proposed a novel learning Discriminative
Multi-scale Adjacent Feature (MSAF) model for person Re-
ID to effectively alleviate semantic information ambiguity
and background interference. It contained feature extrac-
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tion and feature aggregation. In the feature extraction stage,
the MFE module was designed by combining CNN and
Transformer to effectively obtain discriminative specific
information from different-layer. In the feature aggregation
stage, the JPFA mechanism was revealed to implement adja-
cent feature aggregation with diverse scales by fusing the
SFC and CFC sub-modules. Besides, it could further extract
specific discriminative information from different structural
proportions to enhance the robustness of identification repre-
sentation. Ablation experiments proved the validity of each
component of the model. Experimental analysis and visual-
ization illustrated the rationality and interpretability of our
scheme. The extensive experiments on four public Re-ID
datasets demonstrated that our method outperformed many
state-of-the-art models. Further work will be carried out to
find higher efficiency as well as simplify the complexity of
the network for practical.
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