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Abstract
In recent years, the field of bionics has attracted the attention of numerous scholars. Some models combined with biological
vision have achieved excellent performance in computer vision and image processing tasks. In this paper, we propose a new
bio-inspired lightweight contour detection network (BLCDNet) by combining parallel processing mechanisms of bio-visual
information with convolutional neural networks. The backbone network of BLCDNet simulates the parallel pathways of
ganglion cell–lateral geniculate nucleus and primary visual cortex (V1) area, realizing parallel processing and step-by-step
extraction of input information, effectively extracting local features and detailed features in images, and thus improving
the overall performance of the model. In addition, we design a depth feature extraction module combining depth separable
convolution and residual connection in the decoding network to integrate the output of the backbone network, which further
improves the performance of the model. We conducted a large number of experiments on BSDS500 and NYUD datasets,
and the experimental results show that the BLCDNet proposed in this paper achieves the best performance compared with
traditional methods and previous biologically inspired contour detection methods. In addition, BLCDNet still outperforms
some VGG-based contour detection methods without pre-training and with fewer parameters, and it is competitive among all
of them. The research in this paper also provides a new idea for the combination of biological vision and convolutional neural
networks.
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Introduction

As one of the low-level tasks in the field of computer vision
[1], contour detection plays a crucial role in enhancing the
performance of various mid-level and advanced vision tasks.
These tasks include target detection [2], semantic segmenta-
tion [3], saliency detection [4] and occlusion reasoning [5],
among others.
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Traditional edge detection methods, such as Prewitt [6],
Sobel [7], and Canny [1], primarily extract edges by calculat-
ing local gray-level changes in the image using differential
operators. During the image edge extraction process, these
methods concentrate on detecting the underlying image
features [8], but often struggle to differentiate important
background and texture. This limitation results in lower
accuracy and performance in contour extraction, failing to
meet the requirements of certain mid-level and advanced
visual tasks. Hence, many experts and scholars have started
to explore high-performance contour detection methods. In
addition, as one of the new research hotspots, contour detec-
tion has also attracted the attention of the field of biology
[9].

Inspired by the early discovery and suggestion by Hubel
andWiesel [10] that primary visual cortex (V1) neurons have
the function of detecting edges and lines, several experts and
scholars have proposed many bionic contour detection mod-
els based on the biological visual mechanisms effective for
contour detection [11, 12]. For example, Grigorescu et al.
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[13] used theGabor operator, Gabor energy operator, and dif-
ference of Gaussian (DOG) operator to simulate simple cell
response, complex cell response, and non-classical receptive
field (nCRF) inhibitory characteristics on classical receptive
field (CRF), and proposed a new contour detection model.
Yang et al. [14] proposed the biomimetic contour detection
model, double-opponency and spatial sparseness constraint
(SCO), based on color antagonism mechanism and spatial
sparseness constraint strategy (SSC). Akbarinia et al. [15]
realized target edge extraction based on the color opposi-
tion mechanism from the retina to the visual cortex (V1)
and the surround modulation characteristics of the receptive
field of cells in the V1 area. Although the contour detection
model, which simulates the biological vision mechanism,
achieves better performance by reducing the background and
texture to a certain extent compared to traditional methods,
there are still some issues worthy of investigation. In previ-
ous methods, researchers typically employed mathematical
formulas to simulate visual mechanisms or biological char-
acteristics effective for contour detection in biological vision
systems for extracting image contours. However, interactions
between neurons in biological vision systems are typically
complex and diverse. Thus, relying solely on a single math-
ematical function to simulate their functions is evidently
inappropriate [8]. To this end, Tang et al. [8] proposed a
method combiningbiological visionwith deep learning.Tang
et al. designed a learnable contour detection model using
convolution kernels of different sizes to simulate nCRF and
CRF’s processing of feature maps. At the same time, the
combination of image pyramids achieves the fusion of fea-
ture information at different scales, which further increases
the complexity and diversity of the model and also provides
new ideas for the design of bionic contour detection models.
Later, Lin et al. [16], inspired by the effective mechanism of
contour detection in the biological vision system, combined it
with convolutional neural networks and self-attention mech-
anisms to propose a multi-level interactive contour detection
model, MI-Net, achieving good performance.

In the past period of time, the end-to-end contour detection
model based on the convolutional neural network [17–22] has
made breakthrough progress. For example, on the BSDS500
[23], the detection performance has been boosted from 0.598
[24] to 0.828 [22] in ODS (optimal dataset scale) F-measure.
Recently, a transformer-based edge detection model [25]
has achieved higher performance with an ODS of 0.848.
However, although these methods achieve the best perfor-
mance, they generally have high complexity, a large number
of parameters, and slow processing speed, occupying a large
number of computing resources. Furthermore, researchers
incorporate parameters trained on ImageNet [26] into their
models during training to achieve enhanced performance
through the application of transfer learning. To minimize
computational resource consumption and enhance model

processing speed, some researchers have initiated inves-
tigations into achieving high-performance image contour
extraction under conditions of a simple model, minimal
parameters, fast operation speed, and low resource consump-
tion while examining contour detection models based on
transfer learning. Later, inspired by the lightweight mod-
els in other visual tasks [27–29], some researchers proposed
a lightweight model for contour detection. For example,
Wibisono et al. [30] proposed a lightweight edge detec-
tion model called fast inference network for edge detection
(FINED) by using expansion convolution to design a back-
bone network. Combinedwith the steps of edge extraction by
traditional contour detection methods, a lightweight contour
detection model traditional method inspired deep neural net-
work (TIN2) [31] is proposed. Su et al. [32] proposed pixel
difference network (PiDiNet), a simple and efficient edge
detection network based on pixel difference, and achieved
the best results in the lightweight model.

To sum up, it can be found that the design of the
lightweight model is becoming a new research hotspot,
attracting the attention of more and more researchers.
For contour detection, although the lightweight model has
achieved better performance than the traditional methods
and some CNN-based models [17–19], there are still some
problems to be solved. As we know, the emergence of CNN
is inspired by the biological vision system [35], while the
current lightweight model is mainly designed based on the
experience of researchers, lacking the guidance of relevant
biological visionmechanisms.Therefore, this paper proposes
a new bio-inspired lightweight contour detection network
(BLCDNet) combining biological vision and deep learning
technology. Among them, our backbone network simulates
three parallel channels formed by ganglion cells, lateral
geniculate nucleus (LGN), and primary visual cortex (V1) in
the biological visual system [33, 34], and simulates the dif-
ferent characteristics of the three parallel channels to achieve
visual information processing and feature extraction. The
transmission process of visual information from the retina
to LGN to V1 is shown in Fig. 1. In addition, we also design
a depth feature extraction module by using the depth sepa-
rable convolution [29] which is widely used in lightweight
networks. By further processing the output of the backbone
network, we can comprehensively extract feature informa-
tion and enhance the overall performance of the model. It is
worth noting that ourmethod has achieved themost advanced
performance in the bionic contour detection model, and our
method of combining biological vision with deep learning
also provides new ideas for future research. Our contribu-
tions are summarized as follows:

1. We simulated the three parallel pathways formed by gan-
glion cells, LGN, and the primary visual cortex (V1) in
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Fig. 1 The information transfer
process of retina to LGN to V1.
The formation of parallel
channels starts from retinal
ganglion cells (redrawn from the
Refs. [33, 34]) V1
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the biological visual system and designed correspond-
ing backbone networks. These include the large receptive
field network simulating the pathway from ganglion cells
to the V1 area with large cells, the small receptive field
network simulating the pathway with small cells, and the
hybrid network simulating the color pathway from gan-
glion cells to theV1 area. Finally,we combine the outputs
of these three pathways to comprehensively extract and
fuse the feature information.

2. We design the deep feature extraction module using deep
separable convolutions. By further processing the fea-
tures output by the backbone network, the contextual
information is fully integrated and the overall detection
performance of the model is improved.

3. We combine a backbone network that models parallel
pathways with a designed deep feature extraction mod-
ule to propose a biologically inspired lightweight contour
detection network with simple structure and high effi-
ciency and accuracy.

Related work

This paper mainly involves contour detection, biological
vision mechanism, and lightweight network. We will briefly
review the work in these three aspects.

Contour detection

The existing contour detection methods can be divided into
traditional contour detection methods, bio-inspired contour
detection methods, and learnable contour detection methods.
Among them, the learnable contour detectionmethods can be
divided into traditional machine learning methods and deep

learning methods. The traditional contour detection methods
[1, 6, 7] mainly calculate the local gradient change of the
image by the derivative of the differential operator to detect
the edge. While these early contour detection methods can
extract contours in images, their performance and accuracy
are lacking. They struggle to precisely differentiate between
the background and the image contours, making them sus-
ceptible to noise interference. In contrast, the bionic contour
detection method [13–15] simulates the characteristics of a
specific area or cell in the biological vision system using
mathematical formulas. To some extent, thismethod achieves
background and texture suppression in the image, resulting
in commendable performance. Methods based on traditional
machine learning [23, 36–38] use supervised learning and
manual design features to extract contour. They regard the
contour detection task as a binary classification task, classify
the target image at pixel level by using the designed features
and extract the target contour from the image successfully.
For example, the oriented edge forests (OEF) algorithmbased
on a random forest classifier proposed by Hallman et al. [38]
achieves the probability fusion of edges according to pixel
points and then obtains image edges. The deep learning-
basedmethod [17–22] utilizes the excellent feature extraction
capability of a convolutional neural network to fully extract
feature information and achieve better contour detection
performance. Xie et al. [17] first proposed an end-to-end
detection model based on CNN, which extracted the target
contour by outputting the features of themiddle layer and fus-
ing the features of different scales. Liu et al. [18] improved
on this basis and proposed a contour detection model RCF
with richer features. He et al. [22] improved model perfor-
mance to a higher level by designing cascade networks and
scale enhancement modules. Amaren et al. [39] proposed
a new framework based on VGG16 by designing the fire
module and incorporating residual learning. The framework
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achieves a significant reduction in network complexity and
can increase the depth of the network while preserving its
low-complexity characteristics. Fang et al. [40] designed a
novel local contrast loss to learn edge mapping as a repre-
sentation of local contrast, addressing the edge ambiguity
problem extracted by the current method. This design results
in clear edge extraction and achieves good performance.
Recently, Pu et al. [25] proposed a new contour detection
model using transformer as the backbone network, which
achieved better performance than bi-directional cascade net-
work (BDCN) [22].

Biological visual mechanisms

In the biological visual system, the processing and transmis-
sion process of visual information from the retina to LGN to
V1 is called the first visual pathway [41]. In this pathway,
visual information undergoes transformation and processing
by the retina before being transmitted through ganglion cells
to the LGN. The LGN receives and processes visual informa-
tion from the retina, subsequently transmitting the processed
information to area V1. Within area V1, the visual informa-
tion received from the LGN undergoes further processing
and integration [33, 34]. As a research hotspot in the field of
computer vision, contour detection has received much atten-
tion in the field of physiology. Studies have shown that there
are many biological visual mechanisms in the first visual
pathway that have been proved to be important for contour
detection. For example, the modulation of CRF by nCRF in
neurons in area V1 [13], the color antagonism mechanism in
retina to V1 [14], and the dynamic modulation mechanism
in the receptive field after neurons in area V1 are stimulated
[42]. In addition, Hubel and Wiesel [10] also found and pro-
posed in an earlier study that neurons in the V1 region of
the biological visual system have the function of detecting
edges and lines.At present, the research on the bionic contour
detection model is mostly focused on the first visual path-
way. Recently, Fan et al. [43] proposed a hierarchical scale
convolutional neural network for facial expression recogni-
tion. In this method, they not only use enhanced kernel scale
information extraction and high-level semantic features to
guide low-level learning, but also propose amethod tomimic
human cognitive learning with knowledge transfer learning
(KTL). The KTL process shares similarities with human
cognitive ability in that it can be progressively enhanced
by knowledge acquired from other tasks. In contrast, our
approach takes inspiration from the parallel processing in
biological vision and the step-by-step handling of visual
information. Simultaneously, by integrating the character-
istics of convolutional neural networks, we have designed
a new backbone network. The network achieves good con-
tour detection performance by extracting and fusion feature
information step by step.

Lightweight network

Recently, to solve the problems of the contour detection
method based on deep learning [17–22], such as complex
models, a large number of parameters, and slow calculation
speed, researchers proposed a lightweight network for con-
tour detection [30–32]. They design the backbone network
using existing experience or by combining traditional con-
tour detection methods, thus reducing the complexity of the
model, reducing the parameters of the model, and increas-
ing the computational speed of the model. For example,
Wibisono et al. [31] designed a convolutional neural network
framework corresponding to the traditional edge detection
scheme inspired by the edge extraction step in traditional
methods. Su et al. [32] combined traditional central dif-
ference, angular difference, and radial difference with 2D
convolution to propose differential convolution operation and
construct pixel difference network (PiDiNet) for edge detec-
tion. Among them, the PiDiNet proposed by Su et al. [32]
achieves the best performance.

Based on the above analysis, we combined the design of a
lightweight network with a biological visual mechanism and
designed a new lightweight network for contour detection
(BLCDNet) by simulating the processing and transmission
process of visual information from the retina ganglion cells
to LGN to V1. BLCDNet has the characteristics of low com-
plexity, less parameter number, and less memory resource
occupation, and achieves good results without the need
for pre-training. Compared with other bio-inspired contour
detection models, the results are the most advanced. In addi-
tion, this approach of combining lightweight networks based
on deep learningwith biological visionmechanisms also pro-
vides a new direction for further research.

Proposedmethods

Information processing and transmission
mechanism from ganglion cells to LGN toV1

Physiological studies have revealed that ganglion cells in
mammalian retinas can be categorized based on appear-
ance, connectivity, and electrophysiological properties. In
both the macaque monkey retina and the human retina, three
primary types of ganglion cells have been identified: large
M-type ganglion cells, smaller P-type ganglion cells, and
non-M–non-P ganglion cells [33, 44–46]. As shown in Fig. 2.
They have different visual response characteristics and play
different roles in visual perception. Among them, M-type
ganglion cells have a larger receptive field, which is con-
sidered to be of great significance for the detection of motor
stimulation. P-type ganglion cells have small receptive fields,
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Fig. 2 The transmission process
of visual information. Ganglion
cells to LGN to V1 (redrawn
from the Refs. [33, 34])
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which are very suitable for distinguishing tiny details. Non-
M–non-P cells are equally sensitive to different wavelengths
of light, and they and some P-type ganglion cells are also
known as color-opponent cells, reflecting the phenomenon
that the response of a neuron’s receptive field centers to one
color is canceled out by another color around the receptive
field. In non-M–non-P ganglion cells, the two opponent col-
ors information are blue and yellow [33]. Then the visual
information processed by different ganglion cells is projected
to the LGN layer.

The research shows that LGN can be divided into six lay-
ers, starting from the most ventral layer and superimposed
layer by layer [33, 47]. The detailed structure is shown in
Fig. 2. Among them, the ventral layers 1 and 2 contain larger
neurons, which are called large-cell LGN layers, and cor-
respondingly receive the output from M-type ganglion cells.
The neurons of dorsal layer 3–6 are called the small-cell LGN
layers, which receives the output from P-type ganglion cells.
Many tiny neurons on the ventral side of each of layers 1–6
make up koniocellular LGN layers to receive the output from
non-M–non-P ganglion cells. Furthermore, through physio-
logical experiments, the researchers concluded that neurons
in LGN have similar characteristics to their corresponding
ganglion cells. Specifically, large-cell LGN neurons share
similarities withM-type ganglion cells, small-cell LGN neu-
rons are akin to P-type ganglion cells, and koniocellular LGN
layer neurons resemble non-M–non-P-type ganglion cells
[33].

LGN-processed visual information was projected to the
primary visual cortex (V1) [44, 47]. Region V1 is divided
into six layers according to its cell arrangement and struc-
ture and Brodmann’s [33, 48] convention that the neocortex
has six layers of cells. As shown in the rightmost part of
Fig. 2, the IV layer contains three sub-layers (IVA, IVB,
IVC), and the IVC sub-layer contains two sub-layers (IVCα,

IVCβ). In the same way that LGN receives output from gan-
glion cells, some of the different layers in V1 receive output
from LGN’s different layers. Among them, the IVCα layer
receives the projection from the large-cell LGN layer, the
IVCβ layer receives the projection from the small-cell LGN
layer, and part of the cells in the III layer receive the pro-
jection from koniocellular LGN layers. ###Then, the visual
information processed by the IVCα layer was transferred to
the IVB layer, and the visual information processed by the
IVCβ layer was transferred to the III layer. It is notewor-
thy that the region of V1 receiving visual information has
similar characteristics to the corresponding LGN neuron. In
addition, through relevant experiments, the researchers found
that visual information began to mix after being transmitted
to the III and IVB sub-layers of the V1 region, and before
that, they were independent in the processing transmission
process of ganglion cells to LGN to V1.

In summary, we can find that visual information is
processed by different channels in the processing and trans-
mission process of ganglion cells to LGN to V1 [33, 34, 47].
That is, M-type ganglion cells, LGN layer of large cells and
IVCα layer of V1 region form a large cell channel, which has
the characteristics of a large receptive field and is more sen-
sitive to motor stimulation. P-type ganglion cells, LGN layer
of small cells and IVCβ layer of V1 region constitute small
cell channels, which have small receptive fields and are sen-
sitive to detailed information. Non-M–non-P ganglion cells,
koniocellular LGN layers, and some regions in layer III of the
V1 area constitute yellow–blue antagonistic color channels,
which are sensitive to blue–yellow antagonistic information.
Inspired by this, this paper simulates three parallel channels
composed of ganglion cells, LGN, and the V1 area. It mod-
els the characteristics of these three channels in processing
visual information to design a new lightweight contour detec-
tion network with commendable performance.
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Fig. 3 Overall structure diagram
of BLCDNet. The green part on
the left is the backbone network,
whose overall detailed structure
is introduced in “Backbone
network”. The right part is the
decoding network, in which
DFEM is the depth feature
extraction module proposed in
this paper. We introduced it in
detail in “Depth feature
extraction module”
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Figure 3 shows the overall structure of BLCDNet, which
includes two parts: the backbone network and the decoding
network. The backbone network is responsible for extract-
ing feature information of different scales and inputting the
extracted features into the decoding network. It is inspired by
three parallel pathways in the retinal ganglion cells to LGN
to V1 region. In the decoding network part, we designed a
new feature extraction module named DFEM (depth feature
extractionmodule). It uses residual error and depth separable
convolution to further process the output of the backbone net-
work, which realizes the feature extraction and fusion more
fully and improves the overall performance of the model.

Backbone network

Figure 4 shows the detailed structure of our backbone net-
work, corresponding to the green section in Fig. 3. In the
biological visual system, visual information processed by
the retina is transmitted to the LGN through different types
of ganglion cells. Upon receiving this visual information, the
LGN processes it once again and transmits it to the primary

visual cortex, V1. After that, the V1 region consciously pro-
cesses the received visual information, and after the initial
processing is completed, it is transmitted to the higher regions
via the ventral and dorsal pathways. It is worth noting that
the process of processing and transmitting visual information
from ganglion cells to LGN to V1 is divided into three par-
allel channels, and each channel has different characteristics
and features, which do not interfere with each other when
processing visual information. As the end point of parallel
pathways and the starting point of ventral and dorsal path-
ways, the V1 region also plays a crucial role in the conscious
processing of visual stimuli.

Inspired by this, in this paper, we designed a new back-
bone network named parallel path feature extraction network
(PFENet) by using a convolution neural network to simulate
three parallel paths of ganglion cells to LGN to V1. Their
detailed composition is shown in a–e inFig. 5, the large recep-
tive field feature extraction network is composed of a dilated
convolution with a convolution kernel size of 3 × 3 and a
dilated rate of 5, and a maximum pooling layer, which simu-
lates the magnocellular pathway in ganglion cells to LGN to
V1. The feature extraction network of a small receptive field
consists of conventional convolution and pool layer with a
convolution kernel size of 3 × 3, which simulates the parvo-
cellular–interblob pathway in ganglion cells to LGN to V1.
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Fig. 4 Detailed diagram of
backbone network structure. The
blue part corresponds to the big
cell channel from ganglion cells
to V1, the green part corresponds
to the small cell channel, and the
gold part corresponds to the color
antagonistic channel. Block_b,
Block_s, Block_c, Block_S_C
and Block_C_M are different
structures, which are explained in
detail in Fig. 5. 32,64,128
indicates the number of channels
in the feature map
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The color adversarial feature extraction network is composed
of a conventional convolution with a convolution kernel size
of 3× 3, a dilated convolution with a convolution kernel size
of 3×3, and adilated rate of 5, and apooling layer, simulating
the blob pathway in ganglion cells to LGN to V1. Although

conventional convolution and dilated convolution have con-
volution cores of the same size, we set the dilation rate of
dilated convolution to 5. Therefore, dilated convolution has
a larger receptive field [49]. In addition, as in [17, 18, 50], we
used the pooling layer to divide the network, and divided the
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Fig. 6 The receptive field of
conventional convolution and
dilated convolution. a A
conventional convolution with
convolution kernel size 3 × 3,
that is, the dilated rate is 1. b A
dilated convolution with
convolution kernel size 3 × 3,
and the dilated rate is 5

(a) kernel size is 3ⅹ 3, r=1 (b) kernel size is 3ⅹ 3, r=5

large receptive field feature extraction network, small recep-
tive field feature extraction network, and color adversarial
feature extraction network into three stages, corresponding
to retinal ganglion cells, LGN andV1, respectively. This also
reflects the feature of extracting feature information step by
step in the biological vision system.

a–e in Fig. 5 are represented by the following equation:

(1)

Block_ b � C3×3, 5
(
C3×3, 5

(
C3×3, 5

(
C3×3, 5

(
Iinput

))))

− C3×3, 5
(
Iinput

)
,

(2)

Block_ s � C3×3 ∗ (
C3×3 ∗ (

C3×3 ∗ (
C3×3 ∗ Iinput

)))

− C3×3 ∗ Iinput,

(3)

Block_ c � C3×3, 5 ∗ (
C3×3 ∗ (

C3×3, 5 ∗ (
C3×3 ∗ Iinput

)))

− C3×3 ∗ Iinput,

Block_ S_ C � Block_ s
(
(IG − IR) + Iinput

)
, (4)

Block_ C_ M � Block_ c

((
(IG + IR)

2
− IB

)
+ Iinput

)
,

(5)

Iinput is the input image. C3×3, 5 and represents a dilated
convolution with a convolution kernel size of 3 × 3 and dila-
tion of 5. It is equivalent to a conventional convolution with a
convolution kernel size of 11 × 11 and has a large receptive
field. C3×3 is a conventional convolution with a convolution
kernel of size 3 × 3. Figure 6 shows the conventional convo-
lution kernel dilated convolution with the same convolution
kernel size. IR, IG and IB represent the three channels of the
color image. (IG+IR)

2 indicates the yellow information. “∗”
represents the convolution.

Depth feature extraction module

As shown in Fig. 3, the right part is the new decoding network
proposed in this paper. Different from the previous decod-
ing networks, we design a depth feature extraction module
(DFEM) in the new decoding network to enhance the overall
performance of the model. In previous methods [17, 18], the
decoding network adjusts the number of channels through 1
× 1-conv after receiving the input from the backbone net-
work and then restores the output feature graphs of different
scales to the original image size for fusion through decon-
volution or other up-sampling methods, so as to obtain the
final contour output. However, in our decoding network, the
input from the backbone network is processed by DFEM to
further extract and fuse the feature information, while the
number of channels is adjusted using 3 × 3-conv convolu-
tion. Finally, the output feature maps of different scales are
resized to the original image size through deconvolution and
then fused to obtain the final contour output. The feature
information processed by DFEM incorporates more effec-
tive details, reducing unnecessary background and texture.
This enhancement contributes to an overall improvement in
the model’s performance. In the experiments conducted in
“Ablation study”, we validated the effectiveness of this mod-
ule.

As shown in Fig. 7, DFEM is the depth feature extraction
module proposed by us. It consists of a 1 × 1 conventional
convolution, a 3 × 3 conventional convolution, and a 3 × 3
depth separable convolution. The input from the backbone
network is firstly processed by 1 × 1-conv to increase the
number of channels and then processed by 3 × 3 depth sep-
arable convolution to further extract the feature information.
After that, the output of the depth separable convolution is
added with the result of 1 × 1-conv, and the final output is
obtained after a 3 × 3 convolution.

The calculation formula of DFEM is shown as follows:
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Fig. 7 a The detailed structure
diagram of DFEM. b The output
results before and after DFEM
processing. We use red ellipses
for simple marking

Output3

Output2

Output1

DFEM

1ⅹ 1-conv

Depth separable

convolution, 3ⅹ 3

+

3ⅹ 3-conv

(a) (b)

DFEM processing

Fout � C3×3 ∗ [
DSC3×3 ∗ (

C1×1 ∗ Outputi
)
+ C1×1 ∗ Outputi

]
.

(6)

Among them, Fout is the output after DFEM processing,
Outputi (i � 1, 2, 3) is the side output of backbone network,
Cm×n is the conventional convolution, m, n � (1, 2, 3, ……)
is the size of the convolution kernel, andDSCm×n is the depth
separable convolution, m, n � (1, 2, 3, ……) is the size of
the convolution kernel, “∗” represents the convolution.

Loss of function

To illustrate the effectiveness of the method proposed in this
paper, we choose the same strategy as the previous method
[21], and use the class-balanced cross-entropy loss function
to solve the unbalanced distribution of positive and negative
samples. The threshold η is introduced to distinguish positive
and negative sample sets in consideration of the problem of
labels being tagged by multiple people. η is set to 0.2. For a
true edge graph Y � (

y j , j � 1, ..., |Y |), y j ∈ {0, 1} we
define Y + � {

y j , y j > η
}
and Y− � {

y j , y j � 0
}
. How-

ever,when0 < y j ≤ η, this point is considered controversial,
so we ignore this point, that is, it does not belong to the posi-
tive sample or the negative sample. Y + and Y− represent the
positive and negative sample sets. Therefore, l(·) is calcu-
lated as follows:

l(P , Y ) � −α
∑

j∈Y−
log

(
1 − p j

) − β
∑

j∈Y +

log
(
p j

)
. (7)

In Eq. (3), P represents the predicted contour, and p j rep-
resents the value processed by a sigmoid function at pixel j.

α � λ · |Y +|
|Y +|+|Y−| and β � |Y−|

|Y +|+|Y−| are used to balance the

positive and negative samples, and λ (λ � 3.0) is the weight
that controls the coefficient.

As can be seen from Fig. 3, the network uses multiple
losses for training. We formulate the total loss as follows:

L �
3∑

i�1

(ωi · l(Pi , Y ))+ωfuse · l(Pfuse, Y ). (8)

In the above formula, ωi (i � 1, 2, 3) and ωfuse, respec-
tively, represent the weight of loss of three side output
results and the weight of loss of final prediction results, Pi
represents three different outputs, Pfuse represents the final
contour prediction, and Y represents the real contour map.
ωi � ωfuse � 0.25.

Experiment

In this section, we introduce the building environment of the
model and the related parameter settings of the model. And
experimental analysis is carried out on several publicly avail-
able data ets. For example, BSDS500 [23], NYUD [51]. In
addition, we validate the effectiveness of the proposed back-
bone network and depth feature extraction module through
ablation experiments. Finally,we compare themwith existing
lightweight contour detection models and contour detection
models based on deep learning.

Datasets

BSDS500 and NYUDv2 are the two publicly available
datasets and the most commonly used datasets in the field
of contour detection.

As one of the most commonly used datasets in the field of
contour detection, the BSDS500 dataset contains a total of
500 images. Among them, there are 200 pictures of the train-
ing set, 100 pictures of the verification set, and 200 pictures
of the test set. We adopt the same strategy as in [18–22] to
enhance the training set and verification set through rotation,
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flipping, and random scaling and finally obtain the amplified
BSDS500 dataset. In addition, to further enhance the dataset,
the researchers mixed the amplified BSDS500 dataset with
the flipped PASCAL VOC Context dataset [52] to obtain the
mixed training set BSDS500-VOC.

NYUDv2 dataset, like the previous methods [17, 18, 20,
22], we rotated the 381 training pictures, 414 verification
pictures, and their corresponding annotation information by
four different angles (0, 90, 180, 270) and flipped the rotated
results, thus increasing the number of training sets. In addi-
tion, because theNYUDv2 dataset contains RGB images and
HHA images, we train and test BLCDNet models on the two
images, respectively, and finally average the outputs of RGB
and HHA as the final contour output. The NYUDv2 dataset
has more test images than the BSDS500 dataset, and it con-
tains 654 test images.

Implementation details

Parameter setting

We completed the design of BLCDNet in the PyTorch envi-
ronment. In the training, we do not use the method of transfer
learning to load other model parameters but train the model
from the beginning. We used the SGD optimizer to update
the parameters, setting the global learning rate to 1 × 10−6,
momentum and weight decay to 0.9 and 2 × 10−4, respec-
tively. When training on the BSDS500-VOC dataset and the
NYUD-v2 dataset, we use the original image size and do not
crop. We set the maximum allowable error distance between
BSDS500 dataset contour prediction and true contourmatch-
ing to 0.0075 during the evaluation process according to
different datasets. Since the images in NYUD-v2 are larger
than those in BSDS500, the maximum allowable error dis-
tance is set to 0.011. We used the same loss function as [17,
18, 22] to ensure the fairness of the experiment. All the exper-
iments are conducted on a NVIDIA GeForce3090 GPU with
24GB memory.

Performance metrics

Similar to the previous method [17–22], we first perform
non-maximum suppression on the results of network output,
so as to obtain the final contour output.We then evaluated the
final contours using common evaluation metrics, including
the optimal dataset scale (ODS), optimal image scale (OIS)
and average precision (AP).

Optimal dataset scale (ODS). The F-score of each image
in the dataset is tested at a fixed threshold and the average
is calculated. Different average F-score can be computed at
different fixed thresholds, and the maximum of all average

F-score is the ODS. The threshold range for calculating F-
score is [0,1].

Optimal image scale (OIS). The F-score of each image in the
dataset is tested at different thresholds and the maximum F-
score corresponding to each image is calculated.At this point,
the threshold is also the optimal threshold for the image. OIS
is the average of the F-score under the optimal threshold for
each image.

Average precision (AP). AP is the average precision between
the given threshold ranges [0, 1], and is the area under the
precision–recall (PR) curve.

Precision–recall curve. The abscissa and ordinate of the PR
curve are Recall and Precision, respectively. Recall and pre-
cision are calculated as in Eqs. (11) and (10). PR curve can
reflect the classification performance of the model [53].

The F-score is calculated as follows:

F-score � (P × R)

[(1 − α) + αR]
. (9)

α is the weight, generally 0.5. P and R stand for precision
and recall, respectively.

P is calculated as follows:

P � TP

(TP + FP)
. (10)

TP and FP represent the correct number and false number
of contour pixels.

R is calculated as follows:

R � TP

(TP + FN)
(11)

TP and FN represent the correct number and missed num-
ber of contour pixels.

In addition, the recent lightweight method [30–32]
tested the parameters, floating-point operations per second
(FLOPs), and frame per second (FPS) of themodel. To verify
the competitiveness of the model, we also tested the param-
eters, FLOPs, and FPS of BLCDNet in this paper.

Ablation study

In this section, we conduct a detailed experimental analy-
sis and evaluation of the backbone network of BLCDNet
using the BSD500 dataset. First, we trained only the large
receptive field feature extraction network (LRF-FENet), the
small receptive field feature extraction network (SRF-FENet)
and the color confrontation feature extraction network (CC-
FENet) under the same conditions and tested their output
results. The experimental results are shown in Table 1. Sub-
sequently, we proceeded to train and test the results of
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Table 1 Test results of network
on BSDS500 without using
mixed training set, SS denotes
single scale

Method ODS OIS AP

Test results for a single network

LRF-FENet SS 0.769 0.783 0.612

SRF-FENet SS 0.758 0.776 0.610

CC-FENet SS 0.779 0.796 0.597

The two paths are combined with the results of the test

LSRF-FENet SS 0.779 0.795 0.543

LCRF-FENet SS 0.780 0.794 0.555

SCRF-FENet SS 0.779 0.796 0.553

The three paths are combined with the results of the test

BLCDNet SS 0.784 0.800 0.537

BLCDNet-w/o-DFEM SS 0.776 0.791 0.531

BLCDNet-w/o-DFEM indicates that the DFEM module is not used

Fig. 8 The output result of
BLCDNet and
BLCDNET-w/o-DFEM. We
make simple markings in the
same places with red ovals Image

Ground

Truth

BLCDNet-

w/o-DFEM

BLCDNet

combining two different networks. The experimental out-
comes are presented in Table 1. Specifically, LSRF-FENet
signifies the fusion of the large cell feature extraction network
and the small cell feature extraction network; LCRF-FENet
denotes the fusion of the large cell feature extraction network
and the color confrontation feature extraction network; while
SCRF-FENet represents the fusion of the small cell feature

extraction network and the color confrontation feature extrac-
tion network. Finally, we trained and tested our entire model
in the same way that the three channels in biological vision
are parallel. The results show that the three channels are pro-
cessed in parallel, and the final fusion achieves the best result
ODS � 0.784.
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Table 2 The quantitative comparison results of the proposed method and other methods on BSDS500 test set

Type Method ODS OIS AP

Bio-inspired contour detection method BLCDNet-SS 0.799 0.816 0.697

Tang [8] 0.762 0.778 0.809

Multiscale integration [54] 0.680 – –

SCO [14] 0.670 0.710 0.710

Contrast dependent [55] 0.630 – –

Multifeature based [56] 0.620 – –

SED [15] 0.710 0.740 0.740

Adaptive inhibition [57] 0.580 – –

Lightweight contour detection method PiDiNet [32] 0.807 0.823 –

BLCDNet-SS 0.799 0.816 0.697

TIN2 [[30] 0.772 0.795 –

FINED [31] 0.790 0.808 –

BDCN2 [22] 0.766 0.787 –

BDCN3 [22] 0.796 0.817 –

Deep learning contour detection method DeepContour [58] 0.757 0.776 790

DeepEdge [59] 0.753 0.772 787

HED [17] 0.788 0.808 0.840

RCF [18] 0.806 0.823 0.839

CED [19] 0.794 0.811 0.847

LPCB [20] 0.808 0.824 –

DRNet [21] 0.802 0.818 0.800

DSCD [60] 0.813 0.836 0.847

MI-Net [16] 0.820 0.837 0.873

LRDNN [39] 0.825 0.840 –

LLCED [40] 0.805 0.818 –

Non-deep learning contour detection method gPb [23] 0.729 0.755 0.745

OEF [38] 0.746 0.770 0.815

SE [61] 0.743 0.764 0.800

MCG [62] 0.744 0.777 –

SCG [37] 0.739 0.758 0.773

Sketch tokens [63] 0.727 0.746 0.780

Bold shows our results

In addition, we also verify the effectiveness of the pro-
posed DFEM on the BSDS500 dataset, as shown in Table 1
are the results of our experiments. BLCDNet indicates that
the DFEM module is used in the decoding network, and
BLCDNet-w/o-DFEM indicates that the DFEM module is
not used in the decoding network. It can be seen from Table 1
that the performance of BLCDNet using DFEM is higher
than that of BLCDNet without DFEM, with ODS exceeding
0.8%. The results show that DFEM blocks achieve further
feature extraction and improve the overall performance of
the model. Figure 8 is the output result of BLCDNet and
BLCDNET-w/o-DFEM. As noted in the red box in Fig. 8,

we can see that the DFEM treatment reduces the texture in
the output and adds more useful details.

Comparison with other works

BSDS500

We trained BLCDNet on the BSDS500-VOC hybrid training
set and conducted a detailed experimental analysis and evalu-
ation of the test results. We compare the results of BLCDNet
with previous contour detection methods, including bio-
logically inspired contour detection methods, lightweight
contour detection methods, deep learning contour detection
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Fig. 9 Performance comparison between the proposed method BLCD-
Net and some existing contour detection methods. The green axis on
the left indicates the number of parameters and corresponds to the bar
graph in the figure. The red axis on the right indicates ODS (optimal
dataset scale), corresponding to the red fill above the bar chart in the
figure

methods, and non-deep learning contour detection methods.
For example, Tang [8], multiscale integration [54], SCO
[14], contrasts-dependent [55], multifeature based [56], SED
[15], adaptive inhibition [57]. PiDiNet [32], FINED [30],
TIN2 [31], BDCN2 [22], BDCN3 [22]. DeepContour [58],
DeepEdge [59], HED [17], RCF [18], CED [19], LPCB
[20], DRNet [21], DSCD [60], MI-Net [16], LRDNN [39],
LLCED [40], gPb [23], OEF [38], SE [61], MCG [62],
SCG [37], and sketch tokens [63]. In addition, Tang [8],
PiDiNet [32], FINED [30] and so on can also be deep learning
methods. Table 2 shows the quantitative comparison results
between BLCDNet and other methods.

According to the results in Table 2, it can be found
that BLCDNet achieves the best result among all biologi-
cally inspired contour detection models, with ODS � 0.799,
exceeding Tang [8] 3.7%. Combining the results in Table 2,
Figs. 9 and 10, it can be seen that BLCDNet also achieves
good results among all lightweight models, just below the
best PiDiNet. In addition, the results still exceed some deep
learning-based contour detection methods when the number
of model parameters is small, the calculation is simple and
the pre-trained model is not used. ODS exceeds HED and
CED by 1.1% and 0.5%, respectively. It further proves that
our model has strong competitiveness. The PR curves of our
method and other methods are shown in Fig. 11. As can be
seen from the figure, our method is closest to the test results
of humans and is competitive among all methods. Among
them, the vertical coordinate represents the precision rate,
and the horizontal coordinate represents the recall rate. The
area under the curve represents AP in the performance indi-
cator.

Fig. 10 FPS is the speed we achieved based on the P100. FLOPs are
calculated based on a 200 × 200 image. Some of the results are from
other relevant literature [30–32]

Fig. 11 PR curves of the proposed method and other methods on
BSDS500 datasets

NYUD

Like the previous methods [17, 18, 20, 22], we trained our
model on RGB images and HHA feature maps, and then
tested them, respectively. Finally, the test results were output
to obtain RGB, HHA, and RGB–HHA. Where RGB–HHA
is the average output of RGB and HHA. We compare the
three outputs with results from other methods. For example,
gPb-UCM [23], SE [61], gPb + NG [64], SE + NG + [65],
OEF [38], HED [17], RCF [18], LPCB [20], TIN2 [31], and
PiDiNet [32]. The experimental results are shown in Table 3.
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Table 3 Quantitative comparison results between the proposed method
and other methods on nyud-v2 test set

Method Input ODS OIS AP

gPb-UCM [23] RGB 0.631 0.661 0.562

SE [61] 0.695 0.708 0.719

gPb + NG [64] 0.687 0.716 0.629

SE + NG + [65] 0.706 0.734 0.549

OEF [38] 0.651 0.667 0.653

HED [17] RGB 0.717 0.732 0.704

HHA 0.681 0.695 0.674

RGB-HHA 0.741 0.757 0.749

RCF [18] RGB 0.729 0.742 0.693

HHA 0.705 0.715 0.650

RGB-HHA 0.757 0.771 0.749

LPCB [20] RGB 0.739 0.754 –

HHA 0.707 0.719 –

RGB-HHA 0.762 0.778 –

PiDiNet [32] RGB 0.733 0.747 –

HHA 0.715 0.728 –

RGB-HHA 0.756 0.773 –

TIN1 [31] RGB 0.706 0.723 –

HHA 0.661 0.681 –

RGB-HHA 0.729 0.750 –

TIN2 [31] RGB 0.729 0.745 –

HHA 0.705 0.722 –

RGB-HHA 0.753 0.773 –

BLCDNet RGB 0.726 0.741 0.696

HHA 0.703 0.717 0.650

RGB-HHA 0.751 0.766 0.758

Bold shows our results

Fig. 13 PR curves of the proposedmethod and othermethods onNYUD
datasets

According to the results in Table 3, our method also
achieves good performance on the NYUD dataset. It sur-
passes the results of all biomimetic contour detectionmodels.
It also exceeds some deep learning-based methods and
lightweight methods, such as HED [17] and TIN1 [31]. This
proves that our method shows consistent performance on
different data and is more competitive than other methods.
Figure 12 is the partial output result of our random selection.
It can be seen from the figure that BLCDNet can extract the
contour information of the input image relatively completely.
Figure 13 shows the PR curves of the proposed method and
other methods.

Fig. 12 The contour extracted
from the NYUD-V2 dataset by
our proposed model. From left to
right, the original image, HHA
features, real contour, BLCDNet
extraction results on HHA,
BLCDNet extraction results on
RGB, and BLCDNet extraction
results on RGB–HHA are
successively shown

Images HHA Ground Truth BLCDNet-HHA BLCDNet-RGB BLCDNet-HHA-RGB
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Conclusion

In this paper, we propose a novel biologically inspired
lightweight contour detection network, BLCDNet, by com-
bining biological vision mechanisms and convolutional neu-
ral networks. We perform experiments and tests on several
publicly available datasets, BSDS5000, NYUD, and the
results show that BLCDNet obtains an advanced perfor-
mance among all the biologically inspired models, which is
highly competitive among all the deep learning methods. In
addition, the combination of biological vision mechanisms
alsomakesBLCDNetmore interpretable than othermethods,
indicating the importance of visual mechanisms for future
research. In BLCDNet, we designed the corresponding net-
work structure by simulating three parallel pathways from
ganglion cells to V1. We designed a large receptive field
network with dilated convolution to simulate the large cell
channel from ganglion cells to the V1 region, designed a
small receptive field network with conventional convolution
to simulate the small cell channel from ganglion cells to the
V1 region, and designed a mixed network with conventional
convolution and dilated convolution to simulate the color
channel from ganglion cells to V1 region. Finally, the com-
bination of the three as the backbone network to achieve full
extraction of feature information. In addition, we designed
a depth feature extraction module by using deep separable
convolution and realize the full fusion of context information
by further processing the characteristics of the output of the
backbone network. Experiments and tests on publicly avail-
able datasets BSDS5000 and NYUD show that our method
achieves good performance and has strong competitiveness.
It is worth noting that although BLCDNet performs well in
all methods, in this paper we pay more attention to the three
parallel pathways from ganglion cells to V1, without further
exploration and research on the characteristics of neuronal
cells in them, which makes the performance of our model
limited to a certain extent. In future work, fully consider-
ing the overall structure and neuronal properties of visual
pathways will be the focus of our study. Furthermore, based
on the recent excellent performance of Transformer and the
connection between the selectivity mechanism in biological
vision systems and the attention mechanism in transformer,
it is our future direction to use transformer to improve the
proposed method.
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