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Abstract
Short-term prediction of origin–destination (OD) flow is a primary but complex assignment to urban rail companies, which
is the basis of intelligent and real-time urban rail transit (URT) operation and management. The short-term prediction of
URT OD flow has three special characteristics: data lag, data dimensionality, and data malconformation, distinguishing it
from other short-term prediction tasks. It is essential to propose a novel prediction algorithm that considers the special
characteristics of the URT OD flow. For this purpose, based on deep learning methods and multi-source big data, a modified
spatial–temporal long short-termmemory (ST-LSTM)model is established. The proposedmodel comprises four components:
(1) a temporal feature extraction module is devised to extract time information within network-wide historical OD data; (2)
a spatial correlation learning module is introduced to address the data malconformation and data dimensionality problems,
which provides an interpretable spatial correlation quantization method; (3) an input control-gated mechanism is originally
proposed to solve the data lag problem, which combines the processed available OD flow and real-time inflow/outflow;
(4) a fusion module combines historical spatial–temporal features with real-time information to achieve accurate OD flow
prediction. We also further discuss the interpretability of the model in detail. The ST-LSTM model is evaluated by sufficient
experiments on two large-scale actual subway datasets from Nanjing and Beijing, and the experimental results demonstrate
that it can better learn the spatial–temporal correlations and exceed the rest benchmarking methods.
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Introduction

With the urban rail transit (URT) system becoming increas-
ingly complex, its intelligent construction has attracted sub-
stantial attention. As one of the essential tasks of intelligent
transportation systems (ITS), short-term origin–destination
(OD) forecasting has generated more and more research
interest due to its realistic impact on both operators and pas-
sengers [53]. For metro operators, accurate OD prediction
results are helpful to better monitor the dynamic spatial–
temporal distribution of passengers, hence providing support
for the decisions on network management tasks. Accurate
prediction results of short-term OD flow can also contribute
to the appropriate staffing in stations, according to which the
operators can reasonably evacuate passengers in advance to
avoid or improve accidents that can damage numerous pas-
sengers. Moreover, for passengers, good prediction results of
short-term OD flow are conducive to arranging travel routes
rationally, thus saving travel time and improving the travel
experience.
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The short-term passenger flow prediction of URT at the
network-scale level can be categorized into inflow/outflow
prediction, OD flow prediction, and passenger flow distri-
bution prediction [30, 55]. Inflow/outflow prediction refers
to predicting the passenger flow entering or leaving stations,
which has been extensively studied [21, 44, 45]. Short-term
OD prediction can be performed after obtaining the real-time
inflow/outflow passenger flow data [53]. Finally, passenger
flow distribution prediction aims to predict the specific travel
path passengers select from the starting station to the terminal
station. Since acquiring individual travel trajectories in URT
is challenging, the OD flow is commonly used as the funda-
mental input, and the traffic assignment model is employed
to estimate travelers’ route choice behavior. In summary, OD
flow prediction acts as a bridge between inflow/outflow pre-
diction and passenger flow distribution prediction, playing a
crucial role in short-termURTprediction at the network-scale
level. Accurate OD flow prediction results can provide valu-
able spatial–temporal flow patterns between subway stations
and contribute to a better understanding of passenger travel
behavior [40]. Therefore, this paper studies the short-term
URT OD flow prediction.

Heretofore, short-term traffic forecasting has been stud-
ied extensively. Various prediction models and algorithms
have been proposed to predict road traffic flow, ride-hailing
demand, and the inflow/outflow of URT. As far as we know,
there is limited research on short-term URT OD flow, pri-
marily due to some characteristics that set URT OD flow
forecasting tasks apart from other tasks. The unique char-
acteristics of URT OD flow pose significant challenges in
current research. These characteristics are listed as follows:

– Data lag. Real-time traffic data are accessible for the
majority of short-term traffic prediction tasks. For exam-
ple, in the ride-hailing OD demand forecasting task,
the real-time OD demand can be obtained as users are
required to specify the origin and destination when they
initiate the services [13]. Likewise, we can also obtain
the URT inflow/outflow and the traffic speed in real-
time. Significantly, when predicting real-time road OD
demand, the prediction model typically relies on road
traffic volumes as input, which can be acquired in real
time [40]. For these tasks, when the short-term traffic
prediction is conducted, the practical traffic data within
the past several time intervals are available. Neverthe-
less, since it always takes travel time from the origin to
the destination, the real-time URT OD data are unavail-
able. The ODmatrix is available only after all passengers
arrive at the destination and swipe their cards to exit the
station.

– Data dimensionality. Assuming that n represents the
total number of stations within the URT system, and the
number of OD flows is n2. This dramatically increases

the difficulty of forecasting OD flows. For instance, in
the case of Beijing, there are 405 URT stations and the
dimensionality of the OD flow to a staggering 164025.
Thus, it is evident that the dimensionality of the OD flow
far surpasses the cardinality of transportation networks.

– Data malconformation. Because OD flows have large
dimensionality, the total traffic gets distributed across
various OD pairs, resulting in an extremely imbalanced
passenger flow distribution, and many OD pairs have
either small or zero flows. Although road traffic and
ride-hailing services’ OD predictions also face data
malformation issues, they are less severe than those
encountered in rail transit. This is because of the rela-
tively large traffic volume and the availability of real-time
passenger flow information. On the other hand, there
is a significant volume of traffic in the corresponding
URT inflow/outflow, road flow, and ride-hailing demand.
These areas experience dense traffic and have relatively
high passenger volumes.

Table 1 presents the features of various traffic flow predic-
tion techniques. It is evident that theURTODflow prediction
task stands out as it necessitates meticulous model input
design while also facing challenges related to data dimen-
sionality and malformation. Despite the valuable insights
offered byURTODdemand, research on short-termODflow
prediction specifically for URT is scarce.

In summary, this paper is driven by the need to tackle
challenges encountered in short-termODprediction forURT.

– First, the travel patterns are time-varying. For instance,
there are notable distinctions in travel patterns between
weekdays and weekends. Thus, the time information
should be explicitly consideredwhenpredicting real-time
OD flow.

– Second, obtaining the real-time OD matrix is not feasi-
ble. Using OD matrices from the last few time spans as
model inputs is impractical. Therefore, determining the
appropriate range of input historical data becomes the
second challenge in real-time OD prediction.

– Third, existing methods often overlook the correla-
tion between inflows/outflows and OD flows in URT.
Therefore, it is necessary to explicitly consider their rela-
tionships when developing forecasting models.

– Fourth, most previous deep learning studies in OD flow
prediction learn spatial correlations through CNN-based
methods. These methods consider one OD flow to be
influenced by all the other OD flows [3, 36, 53] or by
its local neighboring OD flows [13, 46], which signif-
icantly reduces the prediction accuracy by introducing
excessively irrelevant information or failing to extract the
global spatial correlations. Therefore, how to accurately
extract spatial correlationswhile considering data dimen-
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Table 1 Summary of the features of various traffic flow prediction techniques

Prediction method Data lag Data dimensionality Data malconformation References

Road flow ✓ ✓ ✓ Wang et al. [35] and Guo et al. [5]

Road speed ✓ ✓ ✓ Ma et al. [24, 25]

Road OD demand ✓ • • Lu et al. [22]

Ride-hailing OD demand ✓ • • Chu et al. [3]

Ride-hailing demand ✓ ✓ ✓ Jin et al. [11] and Wang et al. [33]

URT inflow/outflow ✓ ✓ ✓ Han et al. [6] and Zhang et al. [54]

URT OD flow • • • This study

“✓” indicates issue not present, while “•” represents issue present

sionality and malconformation issues is another crucial
issue.

– Finally, in the existing literature, the time interval for
short-term OD flow prediction ranges from 5min to 1
week. The choice of prediction time span directly impacts
the accuracy of the forecasts. Consequently, determining
the appropriate prediction time interval is another crucial
aspect that requires further exploration.

To tackle these challenges, this paper suggests a solution
in the form of an enhanced long short-termmemory (LSTM)
model called spatial–temporal long short-term memory (ST-
LSTM).Themodel learns spatial–temporal correlations from
multi-source data across the network to provide short-term
OD flow predictions. Here, ’spatial correlation’ means the
internal relationship and mutual influence between different
origin–destination pairs, and ’temporal correlation’ refers to
the changing relationships of OD flows across different time
periods and the interactions and influences between those
periods. In the proposed model, we establish a temporal
feature extraction module to capture all the necessary time
information for subsequent processes. We originally intro-
duce a data inflow control gate to determine the scope of
historical data and available OD data and enable the integra-
tion of OD flow information with real-time inflow/outflow
data, effectively addressing the issue of data lag. Consid-
ering the data dimensionality and malconformation issues,
we innovatively introduce an interpretable spatial correla-
tions learning method, which leverages passenger flow data,
OD matrices, and URT network geographic information to
extract spatial correlations among OD pairs in URT systems.
A comprehensive index is established to assess the spatial
correlations between OD pairs across the entire network,
considering the impact of trend changes, passenger flow
interactions, and distance distribution. Subsequently, based
on the index parameters, OD pairs are ranked in descending
order. During the prediction process, the data of ODs with
a strong correlation is selected as part of the input. By eval-
uating the spatial correlation among ODs within the entire
network,we effectively address the issue of incomplete infor-

mation extraction. Additionally, in the prediction phase, we
take into account pre-selected strongly correlated OD pairs
to tackle the problem of introducing redundant data. Further-
more, this paper examines prediction time intervals of 15min,
30 min, and 60 min, discussing the forecast results for each
time scale. Experiments conducted on real-world datasets
from the Nanjing Subway and Beijing Subway demonstrate
the effectiveness of the ST-LSTM model. In summary, the
main contributions of this work can be summarized as fol-
lows:

– We provide an overview of the characteristics and chal-
lenges associated with short-term OD prediction in URT.
Additionally, we introduce a deep learning-based OD
flow prediction model that explicitly takes into account
the unique attributes of URT.

– We propose a temporal feature extraction module to
extract time information and select historical data for
training.

– We introduce an input control-gated mechanism that
helps determine the available real-time OD data range.
This mechanism also enables the aggregation of OD flow
information and real-time inflow/outflow information.

– In the spatial correlation learning module, we not only
account for the spatial relationships within a fixed topol-
ogy, but also consider the characteristics of OD flow to
extract dynamic spatial correlations across the entire net-
work.

– We perform extensive experiments on two real-world
subway datasets to identify the suitable prediction time
interval and showcase the effectiveness of our approach.

The rest of this paper is structured as follows. In “Related
work” section, we provide a review of the relevant litera-
ture. Next, in “Preliminaries” section, we define key terms
and explain LSTM. The methodology utilized in this study
is outlined in “Methodologies” section, followed by the pre-
sentation of experimental details and results in “Experiment”
section. Finally, the conclusion of our work is presented in
the last section.
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Related work

Traffic inflow and outflow predictions

The prediction of traffic inflow and outflow has received
extensive attention in research. Various models have been
proposed, ranging from traditional statistical models to artifi-
cial intelligence-basedmodels. The latter category has shown
greater effectiveness in practical applications due to the
availability of large-scale passenger travel data and advance-
ments in deep learning techniques. Since Ma et al. [24] first
applied LSTM networks to the field of traffic prediction in
2015, numerous deep learning models have been introduced,
including StackedAuto-Encoder (SAE) [23], classical CNN-
based models [25], and ST-GCN [49]. It is hard to say that
one approach is consistently superior to the others in any
situation. Therefore, researchers are increasingly exploring
combinations of two or more models, such as ConvLSTM
[21], SA-DNN [32], and 1DCNN-LSTM-Attention [35].
Some of these models are designed for individual or multiple
subway stations [19, 45], while others aim at network-wide
predictions [49]. Some utilize historical static data for predic-
tion [2], while others leverage real-time dynamic data [47].

Overall, different models are developed to cater to vari-
ous scenarios. However, all of these models focus on traffic
inflow or outflow forecasting and differ significantly from
OD flow prediction in terms of data lag, data dimensionality,
and data malformation, as mentioned in the introduction sec-
tion. Therefore, it is essential to establish prediction models
that account for URT OD flows’ unique characteristics.

Traffic OD flow prediction

Obtaining accurate OD flow predictions is significantly more
challenging than predicting traffic inflow or outflow due to
data dimensionality and malformation issues. This applies
to various OD flows, such as road OD flow, ride-hailing OD
flow, and URT OD flow.

Asmentioned in the introduction section, OD flow predic-
tion differs from traffic inflow or outflow predictions. Based
on the prediction models and prediction objectives, related
studies can be categorized as follows.

Regarding the prediction models, OD flow prediction
can be classified into traditional methods and deep learn-
ing methods. A traditional method involves treating OD
flow as time series data [34] and applying commonly used
time-series algorithms. Li et al. [17] developed an enhanced
ARIMI-based model to predict passenger demand variaton
fluctuations within hotspot areas. Moreira-Matias et al. [28]
integrated ARIMA model, weighted time-varying Poisson
model and time-varying Poisson model, which belong to
time-series analysis methods, to forecast passenger demand.
Other traditional methods utilize classical machine learning

approaches such as back-propagation neural networks and
support vector machine (SVM). Li et al. [18] established the
least squares support vector machine (LS-SVM) to predict
short-term traffic demand. However, these traditional meth-
ods fail to capture nonlinear spatial–temporal relationships
accurately, leading to significant prediction errors. Addition-
ally, they consume substantial computing resources and pose
challenges for practical applications.

To address these issues, deep learning methods have been
successfully applied to various research domains in recent
years. Some researchers employed the LSTMmodel to fore-
cast OD flow. Based on the LSTM network, Ye et al. [48]
predicted the OD flow of various transportation modes using
multi-source data. Jiang et al. [10] combined LSTM with
the recursive Bayesian to capture the dynamic temporal cor-
relations of OD flows. However, these approaches do not
consider the differentiation of passenger travel patterns in
historical data, introducing noise while learning temporal
correlations and thus reducing the model’s performance. To
address this issue, Yang et al. [42] constructed an improved
LSTMmodel (ELF-LSTM) to enhance the ability to capture
long-term temporal features, focusing only on the tempo-
ral relationships between OD flows in the same time period
(daily/weekly intervals). However, this method is only effec-
tive when a sufficiently large amount of data are available.
Additionally, the above methods do not explicitly consider
spatial relationships. To simultaneously capture the spatial
and temporal correlations among all OD pairs, Ke et al.
[12] utilized a ConvLSTM model. They stacked multiple
ConvLSTM layers and CNN layers to handle historical OD
demand data and travel time data, respectively. Similarly,
Chu et al. [3] developed a multi-scale convolutional LSTM
(MultiConvLSTM) network to predict taxi demand. Bai et al.
[1] employed a cascade graph convolutional recurrent neu-
ral network to capture spatial–temporal relationships within
passenger demand data across the entire city. However,
these methods have the disadvantage of including redun-
dant data from weakly correlated regions. This introduces
irrelevant information during the extraction of spatial corre-
lations, leading to decreased forecasting accuracy. To address
this issue, Yao et al. [46] developed a “local CNN” model
that extracts spatial relationships only within geographically
close regions. Ke et al. [13] proposed a spatial–temporal
model for predicting ride-sourcing OD demand, which cap-
tures spatial correlations only within OD pairs with close
origins and/or destinations. However, these methods over-
look the hidden relationships between geographically distant
regions.

Concerning the prediction objectives, short-term OD flow
predictions can be categorized into road OD flow prediction
[1], taxi OD flow prediction [3, 33], bus OD flow predic-
tion [50, 51], and URT OD flow prediction [15, 31, 39, 42].
Different prediction objectives result in variations in data
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availability. In road networks, obtaining real-time OD flow
data or actual ODflowdata is impossible. However, real-time
cross-section passenger flow is avialable, and an optimiza-
tion model can be used to estimate the road OD flow. Due
to the lack of real OD flow data for comparison, evaluating
the accuracy of predicted road OD flow becomes challeng-
ing [43]. For taxi OD demand, existing methods typically
divide the entire research area into transportation analysis
zones (TAZs) due to the absence of fixed pick-up and drop-
off points. The real OD flow between TAZs can be obtained
in such cases, but real-time OD flow data is unavailable. In
the bus system, due to the extensive scale of bus networks,
existing research usually focuses on predicting the OD flow
for one or several routes. Moreover, data availability differs
among bus systems, as some systems record boarding and
alighting stations, while others only record boarding stations.
In the URT network, the real OD flow can be obtained based
on the swiping records of smart cards, as the subway sta-
tions are fixed and passengers must swipe their cards when
entering and exiting the station. However, as mentioned in
the previous section, real-time OD flow is unavailable due to
the time passengers travel from the inbound to the outbound
station.

In summary, some of the existing models overlook the
temporal variability of passenger travel patterns, and some
have issueswith redundant or insufficient information extrac-
tion in capturing spatial correlations. In URT, research on
using deep learning methods to predict OD flow is limited,
whereas most models are more suitable for road networks.
Therefore, developing an OD flow prediction model specif-
ically tailored to URT systems that can effectively extract
spatial–temporal correlations is necessary.

Preliminaries

The objective of this study is to predict the OD flow in
the next time slot using historical information, with a time
span defined as 15 min in this work. The OD flow M and
inflow/outflow F can be obtained from automatic fare col-
lection (AFC) data in URT. Assuming an urban rail transit
network consists of n stations and a day is divided into H time
slots. Our prediction target is theODvolume in the time slot t
on day d.We can representM and F as one-dimensional time
series, as shown in Eqs. (1)–(5). It is worth noting that the
OD flow in each time slot is based on the time slot in which
passengers enter the stations, as passengers entering at the
same time may have different exit times. The inflow/outflow
sequences are extracted based on the corresponding passen-
ger entry and exit times.

Md
i j =

{
md,t−h

i j ,md,t−h+1
i j , . . . ,md,t−1

i j ,md,t
i j

}
, (1)

Md−y
i j =

{
md−y,1

i j ,md−y,2
i j , . . . ,md−y,H−1

i j ,md−y,H
i j

}

, y = 1, 2, . . . , d − 1, (2)

Fd
i =

{
f d,t−h
i , f d,t−h+1

i , . . . , f d,t−1
i , f d,t

i

}
, (3)

Fd−y
i =

{
f d−y,1
i , f d−y,2

i , . . . , f d−y,H−1
i , f d−y,H

i

}

, y = 1, 2, . . . , d − 1, (4)

f d,t
i =

n∑
j

md,t
i j (inflow) or f d,t

j =
n∑
i

md,t
i j (outflow) ,

(5)

where md,t
i j denotes the OD flow from station i to station

j in the time slot t on day d.
∑n

j m
d,t
i j is the sum of OD

flows entering station i in the time slot t on day d, and f d,t
i

represents the inflow/outflow entering/exiting station i in the
time slot t on day d. It is important to note that there are
strong correlations between OD flows and inflows/outflows,
as shown in Eq. (5). The inflow/outflow for a station equals
the sum of all corresponding inbound/outbound OD flows
from that station.

Passengers’ travel patterns exhibit variations based on
both time and location. Therefore, to achieve highly accurate
prediction results, it is necessary to consider not only the tem-
poral characteristics of OD flow but also capture the spatial
correlation between OD pairs. In the URT network, the pas-
senger flow of different OD pairs can influence each other.
For instance, a positive correlation may exist between pas-
senger flows from the same station to different stations since
they are all influenced by outflows from the same station.
Furthermore, when the originating and terminating stations
are situated in areas with similar functions (e.g., residen-
tial or commercial areas), passenger flows between different
originating and terminating stations may still demonstrate
similar travel patterns. Taking into account these considera-
tions, we design a matrix that incorporates both the temporal
and spatial features of the historical data for different OD
flows. In Eq. (6), each row of the matrix represents the tem-
poral aspect of one OD flow, while each column represents
the spatial aspect.

M =

⎡
⎢⎢⎢⎢⎣

M1
11 M2

11 . . . Md−y
11 . . . Md−1

11 Md
11

M1
12 M2

12 . . . Md−y
12 . . . Md−1

12 Md
12

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.

M1
nn M2

nn . . . Md−y
nn . . . Md−1

nn Md
nn

⎤
⎥⎥⎥⎥⎦
n2×d

=

⎡
⎢⎢⎢⎢⎣

m1,1
11 m1,2

11 . . . md−y,H−1
11 md−y,H

11 . . . md,t
11

m1,1
12 m1,2

12 . . . md−y,H−1
12 md−y,H

12 . . . md,t
12

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

m1,1
nn m1,2

nn . . . md−y,H−1
nn md−y,H

nn . . . md,t
nn

⎤
⎥⎥⎥⎥⎦
n2×[H(d−1)+t]

.

(6)

Furthermore, predicting one flow using all the historical
passenger data from every OD pair in the URT network is
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unnecessary and overly complicated. For instance, in the
case of the Beijing metro, travel patterns differ significantly
between weekdays and weekends, and festivals also signifi-
cantly impact traveler behavior. Additionally, someODflows
exhibit little correlation due to their corresponding stations
belonging to different railway lines and having considerable
physical distances between them. Therefore, it is crucial to
select historical data that has similar travel patterns to the
predicted day and identify in advance the OD pairs that cor-
relate with the OD pair for which the passenger flow volume
is being predicted. This approach allows us to build a matrix
M that contains more valuable information.

Regarding short-term OD forecasting, previous studies
typically used OD flows from the last several time slots
as model inputs to forecast the OD flow in the subsequent
time interval [20, 37]. However, obtaining real-timeURTOD
flow is not feasible due to travel duration. As a result, these
approaches cannot be applied to real-time OD predictions in
URT. However, real-time inflow/outflow data are available.
Therefore, in this study, we propose an input control-gated
mechanism that determines the range of OD data inputs and
combines it with real-time inflow/outflow information. This
allows us to make more accurate and real-time predictions
for URT OD flows.

To address the need for a stable and flexible forecasting
model that can effectively handle spatial–temporal features
while considering the unique characteristics of the URT
system, we propose an enhanced spatial–temporal LSTM
(ST-LSTM). This model aims to predict the passenger vol-
ume between OD pairs. The inputs to the model include
historical data onODflow, inflow/outflow, physical distance,
and relevant operation data from the URT network. The out-
put is an estimatedODpassenger flowvolume for the specific
OD pair under consideration. The symbols used in our model
are shown in Table 2.

Methodologies

Recurrent neural network and the long short-term
memory

The recurrent neural network (RNN) is a type of neural net-
work commonly used for processing sequential data. It takes
sequential data as input, connects the current output with the
previous input/output, and retains a certain memory to store
processed information. Figure 1 illustrates the basic structure
of an RNN.

In Fig. 1, Xt represents the input at time step t . ht is
the hidden layer state at time step t , which serves as the
“memory” of the network. Ot denotes the output at time step
t . The input, transfer, and output weights are represented
by U , W , and V , respectively. It can be observed that the

RNN structure is repetitive, with shared weights. While the
RNN adds connections among the hidden layers to provide
memory to the neural network, it suffers from issues such as
gradient disappearance and explosion. These problemsmake
it challenging to associate forecast information with related
information that exceeds a certain distance.

To overcome these challenges, Hochreiter and Schmidhu-
ber introduced theLSTM(long short-termmemory) network,
which can effectively handle and forecast events with rel-
atively long time-series intervals or delays [7]. The basic
structure of LSTM is illustrated in Fig. 2. The main differ-
ence between LSTM and RNN is the addition of a structure
for determining the relevance of information. This structure
is called a cell and consists of three gates: the forget gate, the
input gate, and the output gate. Additionally, LSTM incor-
porates a cell state C to retain long-term information. The
working principle of LSTM can be divided into four steps:

C̃t = tanh(Wc[ht−1, Xt ] + bc), (7)

whereWi and bi represent the input gate’s weight matrix and
bias term, respectively. Similarly,Wc andbc represent the cal-
culated cell state’s weight matrix and bias term, respectively.

Step 1:When new information Xt is input into the LSTM,
the forget gate determines which old information should
be discarded. This process can be expressed using Eq.
(8):

ft = σ(W f [ht−1, Xt ] + b f ), (8)

where W f and b f represent the forget gate’s weight
matrix and bias term, respectively. [ht−1, Xt ] is a vec-
tor formed by combining ht−1 and Xt , and σ represents
the sigmoid function.
Step 2: The input gate determines the extent to which
the current input Xt is retained in the current cell state
Ct to avoid storing irrelevant information. This process
involves two tasks:

(i) The sigmoid layer determines the amount of infor-
mation that needs to be retained:

it = σ(Wi [ht−1, Xt ] + bi ). (9)

(ii) Tanh generates the candidate C̃t :

Step 3: Combine the above two steps to update the old
cell state Ct−1. The sigmoid function selects the update
content, and the tanh function generates the candidate
for the update. The new cell state Ct is obtained by dis-
carding insignificant information and incorporating new
information, as shown in Eq. (10):
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Table 2 Symbols explanation in
the model

Notations Definitions

Variables

md,t
i j The OD flow from station i to station j in the time slot t on day d

f d,t
i The inflow/outflow entering/exiting station i in the time slot t on day d

mu
i j The total ridership from station i to station j on day u

wi j The travel time limit from station i to station j , indicating that all the passengers
complete their journey from station i to station j within wi j time slots

fs(inflow) The total inbound ridership from station s in the training set

fe(outflow) The total outbound ridership from station e in the training set

mi j The total OD flow from station i to station j in the training set

fi The total ridership at station i in the training set

di j The geographical distance between station i and station j

ii j The interaction strength between station i and station j

pi j The trend correlation between OD i–j and the OD to be predicted (OD s–e)

qi j The ridership contribution of OD i–j to OD s–e

ri j The location correlation between OD i–j and OD s–e

vi j The variable obtained after performing max–min normalization on the variable qi j
gi j The variable obtained after performing max–min normalization on the variable ri j
zi j The ultimate measure of spatial correlation between OD i–j and OD s–e

Sets

Md
i j The set of OD flows from station i to station j in different slots on day d

Fd
i The set of inflows/outflows entering/exiting station i in different slots on day d

Mi j The set of OD flow between OD i–j in the training set

Ck The set of operating days belonging to class k

L The set of all class l operating days before day d

HL
Ox

The set of historical ridership for OD Ox on the days belonging to set L

FL
s(inflow) The set of inbound ridership from station s on the days belonging to set L

FL
e(outflow) The set of outbound ridership from station e on the days belonging to set L

Matrices

Mu The OD matrix on day u

W The matrix of travel time limit between ODs

Parameters

n The number of stations in urban rail transit

H The number of time slots that one day is divided into

h The number of time slots corresponding to the real-time data used for model input

u The number of days for which the training set contains data

k The number of classifications obtained by clustering operational days

a The number of days contained in set L

x The number of ODs that have a higher spatial correlation with OD s–e

Ct = f � Ct−1 + it � C̃t , (10)

where � represents multiplication by elements.
Step 4: The output gate determines the current output
value ht , which is related to the current cell state Ct .
Equations (11) and (12) express this process:

Ot = σ(Wo[ht−1, Xt ] + bo), (11)

ht = Ot � tanh(Ct ), (12)

whereWo and bo are the output gate’s weight matrix and
bias term, respectively.
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Fig. 1 Recurrent neural
network (RNN) structure

Fig. 2 The basic structure of LSTM

Model development

Typically, LSTMmodels use a vector that represents the his-
torical data of theOD tobe predicted as input.However,when
applying LSTM to predict OD flow, only the data from a sin-
gle OD are considered, disregarding the interactions between
ODs. This approach fails to account for the complex network
structure of URT systems in major cities like Beijing, where
certain ODs exhibit close connections regarding passenger
flows. Consequently, LSTM has inherent limitations. In con-
trast, our proposed model takes two-dimensional matrices
as inputs, representing historical flows across different ODs
and time periods. This approach captures the OD flow data’s
spatial and temporal features.

Figure 3 illustrates the framework of our proposed predic-
tion method based on the improved long short-term memory
(ST-LSTM). The framework consists of four main compo-
nents: the temporal feature extraction module, the spatial
correlation learning module, the data inflow control gate,
and the fusion and prediction module. The temporal fea-
ture extraction module aims to cluster the operating days and
extract the travel timebetweenorigin–destination (OD) pairs,
which is used to determine the time range of the input data for

subsequent modules. The spatial correlation learningmodule
measures the spatial correlationbetweenODpairs using three
indicators and filters ODs with a stronger correlation to the
OD pair being predicted. The data inflow control gate takes
time information and real-time data as inputs and outputs
available real-time data through the data control mechanism.
The fusion module receives processed historical and real-
time data and combines them into a two-dimensional matrix
for the prediction module. The output of this module is the
predicted OD flow for the OD pair being predicted. In the
following subsections, we elaborate on these main modules.

Temporal feature extractionmodule

Time feature pertains to attributes used to describe temporal
changes. Specifically, this module focuses on extracting two
attributes: date and travel time. Typically, previous works
utilize extensive continuous historical data to predictODflow
[1, 13]. However, these approaches often include irrelevant
information fromoperating dayswith different travel patterns
and fail to incorporate real-time data in OD predictions. To
overcome these challenges, we have designed the temporal
feature extraction module. It aims to filter out more effective
training data and determine the range of available real-time
data for improved prediction accuracy.

To identify more effective training data, we classify oper-
ating days based on their daily travel patterns. First, we
extract the network-wide origin–destination (OD) matrix
from the training set data, which includes u days with a com-
plete operating day (i.e., 24h) as the time interval. This results
in obtaining u matrices of size n × n. The expression for the
OD matrix on the day u is given by Eq. (13).

Mu =

⎡
⎢⎢⎢⎢⎢⎣

mu
11 mu

12 mu
13 . . . mu

1n
mu

21 mu
22 mu

23 . . . mu
2n

mu
31 mu

32 mu
33 . . . mu

3n
...

...
...

. . .
...

mu
n1 mu

n2 mu
n3 . . . mu

nn

⎤
⎥⎥⎥⎥⎥⎦
n×n

, (13)
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Fig. 3 The overview of
ST-LSTM framework

where mu
i j is total ridership from station i to station j on day

u.
To implement the clustering algorithm, we begin by delet-

ing the diagonal elements of eachmatrix. Then, we transform
each matrix into an (n × (n − 1)) column vector, where n
represents the total number of stations and (n×(n−1)) is the
total number of ODs. Next, we combine the network-wide
OD flows for u days into a matrix of size (n(n − 1) × u),
denoted as OdData, which is expressed in Eq. (14).

OdData =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1
12 m2

12 m3
12 . . . mu

12
m1

13 m2
13 m3

13 . . . mu
13

.

.

.
.
.
.

.

.

.
. . .

.

.

.

m1
i j m2

i j m3
i j . . . mu

i j
.
.
.

.

.

.
.
.
.

. . .
.
.
.

m1
n,n−1 m2

n,n−1 m3
n,n−1 . . . mu

n,n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n(n−1)×u

,i �= j,

(14)

Finally, we apply an improved K-means clustering algo-
rithm based on the elbow method [9] to cluster the matrix
OdData. Thismethod automatically determines the optimal
number of clusters, denoted as k, and classifies the operat-
ing days into k classes. The resulting clustering results are
represented by the symbol C :

C = {C1,C2, . . . ,Ck}, (15)

whereCk denotes the set of operating days belonging to class
k.

As mentioned earlier, obtaining the OD matrix in the last
few time intervals is impossible in URT (real-time urban traf-
fic). Therefore, it is crucial to determine the range of available
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real-time OD data. To tackle this challenge, we introduce
a parameter called OD travel time limit (W ), which draws
inspiration from the concept of the 85th percentile speed
commonly used as the limit speed in traffic scenarios.

The 85th percentile speed is the speed belowwhich 85%of
the vehicles on the road are traveling and is commonly used
as the maximum speed limit [26]. To study the distribution
pattern of OD travel time, we present the cumulative fre-
quency distribution curve of OD travel time using one month
of Beijing Metro data, as shown in Fig. 4. From Fig. 4a,
it can be observed that the growth trend of the cumulative
frequency distribution curve significantly slows down when
the ordinate value reaches 95%. This indicates that 95% of
passengers’ travel time between this OD falls within 16 min
(corresponding to the horizontal value), while the travel time
for others is longer and more uneven. Figure 4b illustrates
the cumulative frequency distribution curves of travel time
for 30 randomly selected ODs. It can be observed that the
curves exhibit a similar pattern for different ODs. Therefore,
we determine the travel time limit by dividing the horizontal
coordinate value of the inflection point on the cumulative fre-
quency distribution curve of eachOD (i.e., the corresponding
OD travel time) by the time span and rounding it up to an inte-
ger. This paper defines the travel time limit as the maximum
allowable travel time for passengers traveling between OD
pairs. For example, in the case of Beijing Metro mentioned
above, W corresponds to the 95th percentile travel time for
each OD. The OD travel time limit (W ) is expressed by Eq.
(16).

W =

⎡
⎢⎢⎢⎢⎢⎣

w11 w12 w13 . . . w1n

w21 w22 w23 . . . w2n

w31 w32 w33 . . . w3n
...

...
...

. . .
...

wn1 wn2 wn3 . . . wnn

⎤
⎥⎥⎥⎥⎥⎦
n×n

, (16)

where wi j represents the travel time limit from station i to
station j , indicating that all the passengers complete their
journey from station i to station j within wi j time slots.

Spatial correlation learningmodule

Previous studies have made assumptions regarding the influ-
ence of passenger flow between OD pairs and have proposed
different approaches to capture these influences. Some stud-
ies utilize ConvolutionalNeural Networks (CNNs) to capture
global spatial influences over the entire network [3, 12]. Oth-
ers focus on local influences, considering OD pairs with
origins and destinations in close geographical proximity [13,
46]. Different from these existing works, we introduce a
comprehensive indicator thatmeasures the spatial correlation
between OD pairs across the entire network. Our approach

considers both the travel pattern and geographical location to
provide a more comprehensive understanding of the spatial
correlations between OD pairs.

In our proposed method, we introduce three indicators,
namely p, q, and r , to measure the spatial correlations based
on passenger flow data, ODmatrix, and geographical data of
the rail network. Let us consider OD s–e as the OD pair to be
predicted. First, we use pi j to represent the trend correlation
between OD i–j and OD s–e. The expression for pi j , derived
using the Pearson Correlation Coefficient, is shown in Eq.
(17).

pi j =
∣∣∣∣
Cov(Mse, Mi j )

σ (Mse)σ (Mi j )

∣∣∣∣ , (17)

where Mse represents the sequence of all OD flow used for
analysis for training sets between OD s–e. Cov denotes the
covariance function, and σ represents the standard deviation
calculation function. The value range of pi j is [0, 1], where
a larger value indicates a stronger trend correlation between
the OD pairs.

Let us consider fs(inflow) as the total inbound ridership
from station s and fe(outflow) as the total outbound ridership
from station e in the training set, as shown in Eq. (18).

fs(inflow) =
u∑

d=1

n∑
j=1

md
sj , (18a)

fe(outflow) =
u∑

d=1

n∑
i=1

md
ie. (18b)

Here, qi j represents the ridership contribution of OD i–j
to OD s–e, as shown in Eq. (19).

qi j = mie

fe(outflow)

+ msj

fs(inflow)

,

mie =
u∑

d=1

md
ie; msj =

u∑
d=1

md
sj , (19)

where md
sj represents the total ridership from station s to

station j on day d, msj is the total OD flow from station s to
station j in the training set.

We define the maximum value as qmax and the minimum
value as qmin. ODs are weakly correlated if both their origins
and destinations are far apart [1]. Inspired by the distance
decay theory [27, 38], indicator i is used to express the inter-
action strength between stations, as shown in Eq. (20):

ii j = fi f j
di j2

, fi = fi(outflow) + fi(inflow);
f j = f j(outflow) + f j(inflow), (20)
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Fig. 4 Cumulative frequency distribution curves of OD travel time. a, b shows the curves for single OD and 30 ODs respectively

where ii j represents the interaction strength between station i
and station j . di j is the geographical distance between station
i and station j , and f j denotes the total ridership at station j .
Additionally, ri j represents the location correlation between
OD i–j and OD s–e, as shown in Eq. (21).

ri j = 1

4
(irs + i je + iie + i js). (21)

We define the maximum value as rmax and the minimum
value as rmin. To ensure that indicator q and indicator r are
on a common scale, we normalize them using the following
two equations:

vi j = qmax − qi j
qmax − qmin

, (22a)

gi j = rmax − ri j
rmax − rmin

, (22b)

where qmax, qmin, rmax, and rmin represent the maximum and
minimum values of the two indicators. vi j and gi j denote the
normalized values of the two indicators. Next, we transform
the three indicators into one using the linear weighted com-
promise method. The final indicator is expressed in Eq. (23).

zi j = ω1 · pi j + ω2 · vi j + ω3 · gi j . (23)

After sorting zi j and selecting the top x OD pairs as O1,
O2, . . . , Ox , it becomes evident that these top x OD pairs
exhibit the highest spatial correlation with the OD pair to
be predicted. Additionally, there exist strong correlations
between inflows/outflows and OD flows, as shown in Eqs.
(1)–(5). Taking this relationship into account, the outputs of
the spatial correlation learning module include the strongly
correlated OD pairs O1, O2, . . . , Ox , as well as stations s
and e.

Data inflow control gate

Asdiscussed in the previous section, obtaining theODmatrix
in the last few time intervals is impossible due to travel time
constraints. Therefore, it is crucial to consider how to incor-
porate real-time data into OD predictions. The OD travel
time limit (W ), obtained from the temporal feature extrac-
tion module, is utilized by the data inflow control gate to
determine the range of available OD data. This allows us to
obtain the available real-time OD flow, as shown in Eq. (24).

Md
i j =

{
m

d,t−wi j−h
i j ,m

d,t−wi j−h+1
i j , . . . ,

m
d,t−wi j−1
i j ,m

d,t−wi j
i j

}
, (24)

wherewi j represents the travel time limit for passengers from

station i to station j , and m
d,t−wi j
i j represents the OD flow

from station i to station j in the time slot x on day d. Based
on the discussion in “Temporal feature extraction module”
section, this paper assumes that all passengers complete their
trip from station i to station j within wi j time slots. This
means all passengers have finished their journey within the
t−wi j time slot and the time slot before, so the OD flow data
for these time slots are complete and available. It is important
to note that, to maintain consistency in the dimensions of the
input data, the data selected for day d do not start from the
first time slot but instead select the latest h time slot data for
input.

Moreover, motivated by the relationship between inflows/
outflows and OD flows, we simultaneously incorporate the
real-time inflows/outflows, as shown in Eq. (25). This fusion
allows us to combine the inflow/outflow data with the avail-
able real-time OD data for further processing in the next
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module.

Fd
s(outflow) =

{
f d,t−h−1
s , f d,t−h

s , . . . , f d,t−2
s , f d,t−1

s

}
,

(25a)

Fd
e(inflow) =

{
f d,t−h−1
e , f d,t−h

e , . . . , f d,t−2
e , f d,t−1

e

}
.

(25b)

Fusion and predictionmodule

After obtaining the spatial–temporal features of the historical
data and available real-time data from the previous modules,
it is necessary to integrate these datasets before making pre-
dictions.

First, we fuse historical data based on their spatial–
temporal features. Asmentioned earlier, the temporal feature
extractionmodule classifies the operating days into k classes,
while the spatial correlation learning module outputs the first
x OD pairs with high spatial correlation, as well as the ori-
gin and destination of the OD pair, to be predicted. Let us
assume that the day to be predicted (denoted as d) belongs
to the class l operating days, i.e., d ∈ Cl (Cl represents the
set of operating days belonging to class l). For convenience,
let L = {d1, d2, d3, . . . , da} represent the set of all class l
operating days before day d, where the subscript denotes the
sequential number in the set. The fused historical data are
then obtained using Eq. (26):

HL
O1

=
{
Md1

O1
, Md2

O1
, . . . , Mda

O1

}
, (26a)

HL
O2

=
{
Md1

O2
, Md2

O2
, . . . , Mda

O2

}
, (26b)

HL
Ox

=
{
Md1

Ox
, Md2

Ox
, . . . , Mda

Ox

}
, (26c)

HL
se =

{
Md1

se , Md2
se , . . . , Mda

se

}
, (26d)

FL
s(outflow) =

{
Fd1
s , Fd2

s , . . . , Fda
s

}
, (26e)

FL
e(inflow) =

{
Fd1
e , Fd2

e , . . . , Fda
e

}
, (26f)

where HL
Ox

represents the set of historical ridership for OD
Ox on the days belonging to set L , which containsa elements.
Mda

Ox
represents the ridership sequence of OD Ox on day da

which contains H elements, and FL
s(outflow) denotes the set of

outbound ridership from station s on the days belonging to
set L .

Next, we process the real-time data obtained from the data
inflow control gate, which needs to be converted into an array
with the same number of dimensions as Eq. (26). The real-
time data array is obtained by combining the output of the

spatial correlation learning module, as shown in Eq. (27).

Md
O1

=
{
m

d,t−wo1−h
o1 ,m

d,t−wo1−h+1
o1 , . . . ,

m
d,t−wo1−1
o1 ,m

d,t−wo1
o1

}
, (27a)

Md
O2

=
{
m

d,t−wo2−h
o2 ,m

d,t−wo2−h+1
o2 , . . . ,

m
d,t−wo2−1
o2 ,m

d,t−wo2
o2

}
, (27b)

Md
Ox

=
{
m

d,t−wox −h
ox ,m

d,t−wox −h+1
ox , . . . ,

m
d,t−wox −1
ox ,m

d,t−wox
ox

}
, (27c)

Md
se =

{
md,t−wse−h

se ,md,t−wse−h+1
se , . . . ,

md,t−wse−1
se ,md,t−wse

se

}
, (27d)

Fd
s(outflow) =

{
f d,t−h−1
s , f d,t−h

s , . . . , f d,t−2
s , f d,t−1

s

}
,

(27e)

Fd
e(inflow) =

{
f d,t−h−1
e , f d,t−h

e , . . . , f d,t−2
e , f d,t−1

e

}
.

(27f)

Finally, the historical data and real-time data are fused
to obtain a two-dimensional matrix, as shown in Eq. (28).
This matrix is then passed into the prediction module, and
the output is the predicted ridership for OD pair s–e.

I nput =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HL
O1

Md
O1

HL
O2

Md
O2

...
...

HL
Ox

Md
Ox

H L
se Md

se
FL
s(outflow) Fd

s(outflow)

FL
e(inflow) Fd

e(inflow)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(x+3)(aH+h)

. (28)

Optimization and training

The output of the model is the predicted OD flow. During
the training process, we aim to minimize the error between
the predicted OD flow and the actual OD flow. To achieve
this, we employ the mean squared error (MSE) as the loss
function, which can be written as follows:

L(θ) = 1

n

n−1∑
i=0

(mt+i − m̂t+i )2, (29)

where m̂t+i represents the predicted OD flow, while mt+i

represents the actual OD flow. The parameter θ encompasses
all the learnable parameters in our network, which can be
obtained through the back-propagation algorithm and Adam
optimizer [14].
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Table 3 Data description

Description MetroNJ2018 MetroBJ2019

Data March 1, 2018–March 31, 2018 September 1, 2019–September 30, 2019

Time 05:00–23:00 05:00 to 23:00

Data record 52 million 138 million

Station number 175 351

OD number 175 × 175 351 × 351

Time interval 15 min 15 min

Timestamp number in a day 72 72

Experiment

In this section, we perform comprehensive experiments on
two real-world datasets to evaluate our proposed model
and compare it with benchmark methods. The experimen-
tal results are further analyzed from various perspectives.

Data description

Two datasets, namely the Nanjing Subway and Beijing Sub-
way, were used in the experiments, as shown in Table 3.
TheNanjing dataset (MetroNJ2018) contains over 50million
records from 175 stations in March 2018 in Nanjing, China.
Similarly, the Beijing dataset (MetroBJ2019) contains over
130 million records from 351 stations in September 2019
in Beijing, China. Each record includes information such
as the card number, entry-station name, exit-station name,
entry time, and exit time. Inflows/outflows and OD flows are
extracted every 15 min based on Eqs. (1) and (3). A single
operating day consists of 72 time periods, starting from 5:00
and ending at 23:00. To ensure standardization, all data is
normalized using the min–max scaler.

Due to the limitations of computational resources, we
encountered difficulties in evaluating themodel using theOD
flows of the entire network. Therefore, we employed strati-
fied sampling to select a subset of OD samples for analysis.
TheODflowswere classified into three levels (high,medium,
and low) based on their ridership. We extracted 20% of OD
samples from each level for further analysis. We used the last
seven days of data as testing data, while the remaining data
was utilized for training.

Experiment settings

To expedite the learning and convergence duringmodel train-
ing, we perform min–max normalization to scale the data
within the range of [0, 1], as depicted in Eq. (30).

z = q − min(q)

max(q)−min(q)
. (30)

Basedonparameter tuning results, ourfinalmodel consists
of two hidden layers with a hidden size of 64 for each layer.
We utilize the Adam optimizer during the training process
with a learning rate 0.0005 and a batch size of 12. As for the
comparisonmodels, we carefully tuned themand selected the
best parameters. Our model is implemented using PyTorch
1.1.0, and all deep learning models were executed on an
NVIDIA GeForce RTX 3060 Laptop GPU.

In this study, we have selected three commonly used met-
rics to evaluate the performance of our model: root mean
square error (RMSE), mean average error (MAE), and mean
absolute percentage error (MAPE).

RMSE =
√√√√1

ε

ε∑
i=1

(mi − m̂i )2, (31)

MAE = 1

ε

ε∑
i=1

‖mi − m̂i‖ , (32)

MAPE = 1

ε

ε∑
i=1

∥∥∥∥
mi − m̂i

mi

∥∥∥∥ , (33)

where ε represents the total number of predicted values, mi

refers to the actualODridership, and m̂i denotes the predicted
OD ridership.

Methods for comparison

To evaluate the performance of our model, we compare it
with several other models, namely LSTM, ARIMA, SVR,
RNN, ConvLSTM, and NAR. Additionally, we construct
five additional models based on our approach to showcase
the effectiveness of the proposed temporal feature extraction
module, spatial correlation learning module, and data inflow
control mechanism. For all these models, apart from the con-
trol component, all other parameters remain the same as those
in ST-LSTM. The detailed information for the comparison
methods is listed below:
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Table 4 Comparison of
performances of different
models

Models MetroNJ2018 MetroBJ2019

RMSE MAE MAPE RMSE MAE MAPE

SVR 6.595 4.051 0.2669 7.068 4.269 0.2828

ARIMA 6.329 3.883 0.2575 6.777 4.075 0.2739

RNN 5.026 3.158 0.2093 5.516 3.527 0.2271

NAR 4.480 3.011 0.1884 5.049 3.206 0.2109

LSTM 4.677 2.999 0.1926 5.298 3.181 0.2124

ConvLSTM 4.499 2.926 0.1898 5.083 3.068 0.2098

ST-LSTM (no temporal feature) 3.281 1.913 0.1090 3.539 2.321 0.1346

ST-LSTM (no spatial correlation) 3.236 1.903 0.1071 3.462 2.282 0.1323

ST-LSTM (no data inflow control) 3.217 1.877 0.1060 3.417 2.228 0.1289

ST-LSTM (no inflow) 3.157 1.851 0.1044 3.362 2.213 0.1273

ST-LSTM (no outflow) 3.110* 1.834* 0.1022* 3.338* 2.198* 0.1259*

ST-LSTM (ours) 3.070 1.812 0.1006 3.284 2.175 0.1233

Improvements 1.31% 1.19% 1.50% 1.61% 1.05% 2.08%

Fig. 5 Comparison of performances of different models

– LSTM [39, 56]: This model is a recurrent neural network
designed for handling sequential data. It consists of two
hidden layers, and the hidden sizes for both layers are set
as 64. The learning rate is set to 0.0005, and the batch
size is 12.

– ARIMA [4]: This model is a mathematical modeling
approach for time-series prediction. Based on parameter
tuning results, the optimal model selected for ARIMA is
(2, 1, 0).

– SVR [8]: Support vector regression is a regression fore-
casting model. Here, we complete the experiment with
the SVR with the RBF kernel.

– RNN [25]: The recurrent neural network is a deep learn-
ingmethod that analyzes sequential data. The hidden size
is 64, the learning rate is 0.0005, and the batch size is 12.

– ConvLSTM[29]:Convolutional LSTMis a deep learning
method designed explicitly for spatial–temporal analysis.
It replaces the fully connected layer in LSTM with a
convolutional structure. There are two layers with 8 and 1
filters, respectively. The kernel size is 3× 3. The learning
rate is 0.0005. The batch size is 12.

– NAR [16, 41]: Nonlinear AutoRegressive is a time series
prediction model designed to capture complex patterns
anddynamic features in time-series data. TheNARmodel

utilizes a neural network as the nonlinear function, with
two hidden layers and 64 neurons in each layer. The delay
order is set to 10.

– ST-LSTM (No temporal feature): We remove the tempo-
ral feature extraction module to assess its impact on the
model’s effectiveness. The input is the historical data.

– ST-LSTM(No spatial correlation):We remove the spatial
correlation learning module to verify its effectiveness. In
this case, the input consists of the data of the OD pairs to
be predicted.

– ST-LSTM (No data inflow control): We remove the data
inflow control mechanism to demonstrate its impact on
the model’s effectiveness.

– ST-LSTM (No inflow): We remove the inbound pas-
senger flow branch to evaluate the effectiveness of the
inflow-gated mechanism.

– ST-LSTM (No outflow): We remove the outbound pas-
senger flow branch to evaluate the effectiveness of the
outflow-gated mechanism.

– ST-LSTM: The whole model we propose in “Methodolo-
gies” section.
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Experimental results

Overall performance

The experimental results are shown in Table 4 and Fig. 5, and
the best results for each evaluation metric are highlighted in
bold.

Based on Table 4 and Fig. 5, it can be observed that non-
deep learning methods such as SVR and ARIMA exhibit
weaker performance compared to deep learning methods
across all evaluation metrics. This could be attributed to the
limited ability of non-deep learning methods to capture the
complex spatial–temporal features involved in OD flow esti-
mation. Moreover, our ST-LSTM model achieves the best
performance among the compared models. Specifically, on
theMetroNJ2018 dataset, ourmodel outperforms othermod-
els by at least 1.31%, 1.19%, and 1.50% in terms of RMSE,
MAE, andMAPE, respectively.On theMetroBJ2019dataset,
the improvement ratios for RMSE, MAE, and MAPE are at
least 1.61%, 1.05%, and 2.08%, respectively. These results
further validate the effectiveness of our proposed ST-LSTM
model for OD flow estimation.

The proposed temporal feature extraction module, spatial
correlation learning module, and data inflow control mecha-
nism are proven effective in improving model performance.
When comparing ST-LSTM (no temporal feature) to TS-
LSTM, the RMSE is improved by 6.44% for MetroNJ2018
and 7.20% for MetroBJ2019. Similarly, when comparing
ST-LSTM (no spatial correlation) to ST-LSTM, the RMSE
is improved by 5.16% for MetroNJ2018 and 5.13% for
MetroBJ2019. Additionally, when comparing ST-LSTM (no
data inflow control) to ST-LSTM, the RMSE is improved
by 4.59% for MetroNJ2018 and 3.89% for MetroBJ2019.
Regardless of the case, ST-LSTM consistently performs the
best, benefiting from its architecture incorporating the tem-
poral feature extraction module, spatial correlation learning
module, and data inflow control mechanism.

To determine whether there is a significant performance
difference between the proposed model and the benchmark

Table 5 The t-test results between the ST-LSTMmodel and the bench-
mark models

Models MetroNJ2018 MetroBJ2019

t-value p-value t-value p-value

SVR 4.047 0.000 5.116 0.000

ARIMA 4.061 0.000 4.461 0.000

RNN 3.491 0.001 3.874 0.000

NAR 2.817 0.004 2.608 0.009

LSTM 2.782 0.005 2.930 0.003

ConvLSTM 2.237 0.026 2.322 0.020

Table 6 The performance of ST-LSTM at different time spans on
MetroNJ2018

Time span RMSE MAE MAPE Time requires

5min 4.790 3.066 0.1578 332.076s

10min 3.205 2.079 0.1053 198.740s

15min 3.070 1.812 0.1006 158.432s

30min 5.661 3.341 0.1856 97.586s

60min 9.596 5.664 0.1931 61.353s

models, we conducted a t-test to compare the prediction error
RMSE of themodels at different periods. Table 5 presents the
statistics (t-value) and significance index (p-value) between
the ST-LSTM and benchmark models.

Table 5 shows that the p-values corresponding to the
benchmark models are less than 0.05 (given the significance
level α = 0.05) for all data sets. This indicates a signifi-
cant difference between the ST-LSTM and the benchmark
model, thereby validating the effectiveness and reliability of
the ST-LSTM model.

Prediction performances of individual OD pairs

To evaluate the performance of predictionmodels on individ-
ual OD flows, we selected several OD flows and compared
the actual ridership with the predicted ridership, as shown
in Figs. 6 and 7. As can be seen, OD_1 and OD_4 are char-
acterized by peak flows during evening hours. Whether it is
MetroNJ2018 or MetroBJ2019, the ST-LSTM model accu-
rately captures the variations throughout the day and even
accurately predicts the peak flows. For OD_2 and OD_5,
which exhibit peak features during morning hours and varia-
tions during evening hours, the ST-LSTM model accurately
captures the overall trend despite certain variations. Further-
more, for OD_3 and OD_6, both of which represent small
OD flows without peak features but significant variations
throughout the day, the ST-LSTM model performs well, as
depicted in Fig. 7. In conclusion, our proposed ST-LSTM
model demonstrates good performance at an individual level
for most cases in these two real-world metro datasets.

Performance under different temporal scenarios

We have demonstrated that ST-LSTM outperforms other
models in various spatial scenarios. Next, we evaluate our
proposed model under different temporal scenarios. First,
we carefully choose the prediction time span to evaluate
our model. It is common in various short-term OD predic-
tion studies to use 15 min [15, 52], 30 min [46, 53], or
60 min [1, 13] as the prediction time span. This selection
allows for easy comparison and benchmarking with existing
research findings. Additionally, the choice of time span aims
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Fig. 6 The actual and predicted flows comparison of selected OD pairs in MetroNJ2018

Fig. 7 The actual and predicted flows comparison of selected OD pairs in MetroBJ2019

Table 7 The performance of prediction models at different time steps on MetroNJ2018

Models 15 min 30 min 60 min
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

SVR 6.595 4.051 0.2669 11.982 7.361 0.3600 14.732 9.050 0.3826

ARIMA 6.329 3.883 0.2575 11.940 7.325 0.3579 14.511 8.902 0.3684

RNN 5.026 3.158 0.2093 9.268 5.824 0.3220 12.672 7.963 0.3453

NAR 4.480 3.011 0.1884 7.730 4.888 0.3206 12.751 7.799 0.3250

LSTM 4.677 2.999 0.1926 7.523 4.824 0.3098 12.143 7.786 0.3316

ConvLSTM 4.499 2.926 0.1898 7.188 4.707 0.3054 11.628 7.514 0.3230

ST-LSTM (no temporal feature) 3.281 1.913 0.1090 5.773 3.483 0.1917 9.649 5.676 0.2186

ST-LSTM (no spatial correlation) 3.236 1.903 0.1071 5.769 3.392 0.1909 9.633 5.665 0.2174

ST-LSTM (no data inflow control) 3.217 1.877 0.1060 5.768 3.382 0.1901 9.630 5.618 0.2150

ST-LSTM (no inflow) 3.157 1.851 0.1044 5.763 3.379 0.1892 9.618 5.640 0.2092

ST-LSTM (no outflow) 3.110 1.834 0.1022 5.742 3.378 0.1886 9.614 5.668 0.2071

ST-LSTM (ours) 3.070 1.812 0.1006 5.661 3.341 0.1856 9.596 5.664 0.1931

to balance prediction accuracy and computational efficiency.
To illustrate this point, we present the prediction results of
the ST-LSTM for different time spans using MetroNJ2018
in Table 6 and the best results are in bold. It is evident
that the program’s running time increases with decreasing
time span, while the prediction accuracy reaches its high-
est point at a time span of 15 min. This outcome suggests
that a smaller time granularity may lead to fluctuations in
OD flow data, making it more challenging for the model
to learn passenger flow patterns effectively. Conversely, the
model performs relatively worse when the time span is set
at 60 min, which could be attributed to the longer time span,
resulting in a reduced volume of training data and, thus,
hampering themodel’s learning capacity. These observations

imply the importance of selecting an appropriate time span
in achieving optimal prediction accuracy while considering
computational resources. We observed longer computation
times and suboptimal prediction results when using a time
span of 5 min or 10 min. To ensure operational efficiency
for subsequent comparative experiments, we set the predic-
tion time spans as 15 min, 30 min, and 60 min, and test and
compare the models accordingly. The results are presented
in Table 7 and Table 8 and the best results for each metric are
in bold.

We observed that among the various models evaluated,
ST-LSTM exhibited the best performance, while LSTM and
NARmodels showcased similar performance on this dataset.
Conversely, the SVR model displayed the worst perfor-
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Table 8 The performance of prediction models at different time steps on MetroBJ2019

Models 15 min 30 min 60 min

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

SVR 7.068 4.269 0.2828 12.435 7.694 0.3773 15.185 9.383 0.3952

ARIMA 6.777 4.075 0.2739 12.408 7.653 0.3737 14.979 9.231 0.3819

RNN 5.516 3.527 0.2271 9.723 6.136 0.3466 13.127 8.275 0.3559

NAR 5.049 3.206 0.2109 8.014 5.181 0.3310 12.547 8.238 0.3401

LSTM 5.298 3.181 0.2124 7.983 5.153 0.3321 12.602 8.116 0.3410

ConvLSTM 5.083 3.068 0.2098 7.657 4.972 0.3271 12.035 7.885 0.3396

ST-LSTM (no temporal feature) 3.539 2.321 0.1346 6.005 3.807 0.2196 9.881 6.029 0.2500

ST-LSTM (no spatial correlation) 3.462 2.282 0.1323 6.004 3.739 0.2224 9.868 6.022 0.2489

ST-LSTM (no data inflow control) 3.417 2.228 0.1289 5.986 3.710 0.2165 9.849 6.019 0.2414

ST-LSTM (no inflow) 3.362 2.213 0.1273 5.985 3.708 0.2140 9.839 6.019 0.2404

ST-LSTM (no outflow) 3.338 2.198 0.1259 5.984 3.706 0.2140 9.860 6.006 0.2364

ST-LSTM (ours) 3.284 2.175 0.1233 5.888 3.670 0.2117 9.823 5.993 0.2243

mance. Furthermore, we noticed a consistent trend across all
prediction models, where the 15-min time span yielded the
highest performance, while the 60-min time span resulted in
the lowest performance. This observation can be attributed
to the fact that the dataset for the 60-min time span con-
tained fewer data points than other time spans. These findings
emphasize the importance of selecting an appropriate time
span. Moreover, the availability of sufficient data is crucial
in enabling models to capture complex patterns accurately.

To further validate ourmodel’s performance during differ-
ent time periods, we divided the two datasets into rush hours
and non-rush hours based on specific time intervals. Specif-
ically, we defined rush hours as 7:00–9:00 and 17:00–19:00
on weekdays, while all other time periods were considered
non-rush hours. The experimental results are presented in
Table 9 and Table 10, and the best results for each evaluation
metric are highlighted in bold. Additionally, Fig. 8 illustrates
the trend of average evaluation metrics for the MetroNJ2018
dataset over time. We have listed several key findings below:

– Despite the high travel demand and the unpredictability
of traffic conditions during rush hours, our ST-LSTM
model consistently outperforms other models. These
results provide strong evidence for the stability and reli-
ability of our proposed ST-LSTM model.

– Based on Fig. 8, we can observe that the performance of
different models in various time intervals follows sim-
ilar patterns to the overall performance. Notably, the
ST-LSTMmodel consistently outperforms other models,
both during rush hours and non-rush hours. These results
indicate the superior adaptability of the ST-LSTMmodel
across different time periods.

– In non-rush hours, the models demonstrate stable perfor-
mance. However, during rush hours, there is a significant

performance gap, suggesting that the ST-LSTM model
can better capture ridership variations. This finding high-
lights the robustness of the ST-LSTMmodel in accurately
predicting and adapting to changes in ridership patterns
during high-demand periods.

Model interpretability

To address the limitation of LSTM models in capturing spa-
tial information, we have introduced a spatial correlation
learning module to extract spatial features between origins
and destinations (ODs) within the entire network. To fur-
ther investigate the impact and significance of this module,
as well as the influence of different values for x (represent-
ing the number of ODs with higher spatial correlation to
the OD to be predicted), we conducted experiments using
the MetroNJ2018 dataset as an example. Specifically, we
focused on predicting the OD between Liuzhou East Road
Station and Nanjing Forestry University Xinzhuang Station
(LER-NFU). The data in Table 11 were obtained using equa-
tions (17)–(23), where pi j represents the trend influence on
LER-NFU, vi j denotes the normalized ridership contribution
to LER-NFU, and gi j signifies the normalized location cor-
relation. The weights of pi j , vi j , and gi j for each OD were
linearly calculated according to Eq. (23). Furthermore, by
tuning the parameters, we set ω1 = ω2 = 1 and ω3 = 0.8,
which allowed us to obtain a comprehensive ranking of the
spatial correlation index zi j . Finally, we identified the top 10
ODs with the highest correlation to LER-NFU, as presented
in Table 11.

We conducted experiments by setting x from 0 to 10 to
assess its impact on the model’s performance. Specifically,
when x is set to 0, the ST-LSTM model is equivalent to
the TS-LSTM (No Spatial Correlation) model, where the
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Table 9 The performance of
prediction models under
different temporal scenarios on
MetroNJ2018

Models Non-rush hours Rush hours

RMSE MAE MAPE RMSE MAE MAPE

SVR 6.098 4.138 0.2550 6.923 4.672 0.2785

ARIMA 5.870 3.944 0.2492 6.664 4.386 0.2708

RNN 4.585 3.177 0.1792 5.378 3.868 0.2289

NAR 4.310 3.018 0.1749 5.130 3.777 0.2168

LSTM 4.317 3.000 0.1775 5.103 3.755 0.2149

ConvLSTM 4.176 2.956 0.1747 4.993 3.697 0.2046

ST-LSTM (no temporal feature) 2.990 1.911 0.1008 3.854 2.669 0.1145

ST-LSTM (no spatial correlation) 2.946 1.893 0.0994 3.755 2.640 0.1131

ST-LSTM (no data inflow control) 2.930 1.871 0.0978 3.738 2.629 0.1135

ST-LSTM (no inflow) 2.873 1.840 0.0971 3.689 2.605 0.1126

ST-LSTM (no outflow) 2.825 1.818 0.0957 3.631 2.581 0.1101

ST-LSTM (ours) 2.787 1.666 0.0942 3.597 2.387 0.1076

Table 10 The performance of
prediction models under
different temporal scenarios on
MetroBJ2019

Models Non-rush hours Rush hours

RMSE MAE MAPE RMSE MAE MAPE

SVR 6.426 4.471 0.2787 7.238 5.005 0.3021

ARIMA 6.214 4.272 0.2714 6.996 4.714 0.2930

RNN 4.938 3.489 0.2039 5.719 4.180 0.2535

NAR 4.526 3.362 0.2003 5.484 4.126 0.2288

LSTM 4.678 3.330 0.1998 5.452 4.085 0.2372

ConvLSTM 4.479 3.222 0.1973 5.319 4.025 0.2361

ST-LSTM (no temporal feature) 3.160 2.235 0.1287 4.011 2.993 0.1424

ST-LSTM (no spatial correlation) 3.119 2.240 0.1309 3.916 2.987 0.1446

ST-LSTM (no data inflow control) 3.089 2.199 0.1242 3.884 2.957 0.1399

ST-LSTM (no inflow) 3.047 2.168 0.1283 3.851 2.933 0.1438

ST-LSTM (no outflow) 3.014 2.156 0.1250 3.808 2.918 0.1394

ST-LSTM (ours) 2.955 1.994 0.1254 3.753 2.715 0.1388

Fig. 8 The model performance comparison in different time intervals
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Table 11 The top 10 ODs with
the highest correlation with
LER-NFU

Rank OD Name pi j vi j gi j zi j

1 Tianrun City-Nanjing Forestry University 0.986 0.140 1.000 1.927

2 Liuzhou East Road-Wutang Square 0.973 0.285 0.692 1.811

3 Liuzhou East Road-Shangyuan Gate 0.985 0.220 0.681 1.750

4 Tianrun City-Wutang Square 0.988 0.137 0.632 1.631

5 Tianrun City-Shangyuan Gate 0.988 0.198 0.544 1.621

6 Tianrun City-Nanjing Station 0.982 0.168 0.547 1.588

7 Liuzhou East Road-Shanghai Road 0.975 0.124 0.415 1.431

8 Tianrun City-Xuanwu Gate 0.960 0.076 0.441 1.389

9 Liuzhou East Road-Bell Tower 0.953 0.170 0.297 1.361

10 Liuzhou East Road-Xian Gate 0.975 0.047 0.306 1.267

Table 12 The performance of
prediction model with different
inputs

Input Evaluation Indices Improvements Time requires (s)

x RMSE MAE MAPE RMSE (%) MAE (%) MAPE (%)

0 3.236 1.903 0.1071 0.00 0.00 0.00 21.618

1 3.138 1.858 0.1032 3.03 2.36 3.68 66.931

2 3.091 1.823 0.1016 4.50 4.22 5.18 113.218

3 3.070 1.812 0.1006 5.16 4.79 6.03 158.423

4 3.065 1.808 0.1003 5.29 5.00 6.35 204.821

5 3.061 1.804 0.1001 5.42 5.18 6.50 249.842

6 3.057 1.801 0.1000 5.55 5.36 6.65 297.099

7 3.049 1.798 0.0999 5.80 5.52 6.78 341.686

8 3.045 1.795 0.0997 5.93 5.67 6.91 384.887

9 3.041 1.792 0.0996 6.05 5.82 7.03 425.176

10 3.037 1.789 0.0995 6.15 5.97 7.12 471.383

spatial correlation learning module is removed. The results
are presented in Table 12. From the table, we can observe
that as x increases, the performance of the ST-LSTM model
improves. This finding further confirms the effectiveness and
significance of the proposed spatial correlation learningmod-
ule. However, as x increases, the program’s execution time
increases significantly. Therefore, we must balance perfor-
mance and computational efficiency and select a value that
provides acceptable performance and reasonable execution
time. We found that when x reaches 3, the performance
improvement rate decreases significantly. Hence, for this
paper, we chose x = 3 as the input value for the ST-LSTM
model.

Conclusion

This study presents an enhanced spatial–temporal long short-
term memory model (ST-LSTM) for conducting short-term
OD prediction in URT (urban rail transit). The proposed
model incorporates several innovative components, includ-
ing a temporal feature extraction module, spatial correlation

learning module, and data inflow control gate. These com-
ponents are specifically designed to address the unique
challenges associated with URT OD prediction. Using two
real-world datasets, we evaluated the model’s performance
across different spatial–temporal scenarios. The experimen-
tal results consistently demonstrate that the ST-LSTMmodel
outperforms other baseline models, showcasing its powerful
capability to learn and leverage spatial–temporal correlations
effectively.

The main findings of the study can be summarized as
follows: (1) Utilizing data that exhibit similar travel pat-
terns can enhance the model’s computational efficiency and
prediction accuracy; (2) Extracting spatial correlation in
large-dimensional and uneven OD flow is indeed a critical
challenge in urban rail transit (URT) research. To tackle this
problem, we propose a spatial correlation module that lever-
ages multi-source data to pre-select highly correlated OD
pairs from the entire network and integrates them into the
model input. This innovative approach significantly enhances
prediction accuracy. Moreover, this method also offers good
interpretability; (3)Real-timeODflowdata are often unavail-
able due to travel time. To address this issue, we introduce
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a data inflow control gate that combines the available OD
flow data with real-time inflow/outflow data. This integration
significantly improves the model’s performance by incorpo-
rating up-to-date information into the predictions; (4) The
prediction time slot significantly affects the model’s perfor-
mance. A short time slot enhances the randomness of OD
flow and reduces computational efficiency. However, a long
time slot reduces the training data, potentially leading to poor
model accuracy. Thus, it is essential to select an appropriate
time slot that strikes a balance between computational effi-
ciency and prediction accuracy.

However, this work does have some limitations. First,
due to the limited availability of only one month’s worth
of data, our study focused on extracting temporal features
at the daily level. However, with access to more extensive
data, future research could investigate incorporating differ-
ences in OD flow during various time slots within a day to
enhance prediction accuracy further. Second, we could only
sample a subset of the ODs for evaluating our model due
to computational resource constraints. As a result, there is
still a gap between the proposed model and its real-world
application. Moreover, since we lacked access to external
data, our model does not take into account the influence of
weather conditions, accidents, and other factors. In future
research, we plan to enhance and optimize our model to
ensure efficient application on a larger scale. Additionally,
incorporatingmulti-source data such asweather information,
festivals, and accident records can further enhance the per-
formance of the proposed model.
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