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Abstract
This paper efficiently addresses the high-dimensional robust order scheduling problem. A novel algorithm named dynamic
cooperative coevolution based on an implicit decision variable classification approach (DCC/IDVCA) is developed to search
for robust order schedules. To significantly reduce the computational resources required for solving the high-dimensional
robust order scheduling problem, we propose decomposing the original decision variables through implicit classification
methods. First, a novel estimation method is introduced to evaluate the weighted contribution of variables to robustness.
This method utilizes historical information, including the variation of the overall mean effective fitness and the frequency
of variables being classified into highly robustness-related subcomponents in previous cycles, for evaluating their weighted
contribution to robustness. Then, based on the corresponding weighted robustness contributions, the original variables are
classified into highly andweakly robustness-related variables. Finally, these two types of variables are decomposed into highly
andweakly robustness-related subgroupswithin a dynamic cooperative coevolution framework andoptimized separately. In the
experimental section, the proposed algorithm is applied to two practical order scheduling problems in discrete manufacturing
industry. The experimental results demonstrate that the proposed algorithm achieves competitive outcomes compared to
state-of-the-art high-dimensional robust multi-objective optimization algorithms.

Keywords Implicit decision variable classification · Dynamic cooperative coevolution framework · Robust order scheduling ·
Weighted robustness contribution

Introduction

Order scheduling is a critical decision-making problem in
the supply chain management of the manufacturing industry.
The task of order scheduling is to allocate the orders received
from retailers to appropriate production lines based on the
delivery date of each order. Take apparel industry as an exam-
ple, manufacturers face significant demand volatility in their
received orders. Typically, these orders are received from
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retailers close to the selling season, involving a wide range
of product types with short lifecycles, resulting in increased
labor costs during the production process [1]. Therefore, by
making rational arrangements for order scheduling, it is pos-
sible to maximize resource utilization, reduce waiting times,
improve production efficiency, and lower production costs,
thereby enhancing the overall operational efficiency of the
supply chain and enabling enterprises to bemore competitive
in the global market [2, 3]. In addition, in practical produc-
tion, various disruptions often occur during order scheduling
[4], includingmachine failures and operator illnesses, among
others. As a result, the daily production quantities frequently
undergo changes throughout the production process. In this
case, robust order scheduling with respect to uncertain daily
production quantities becomes more practical and meaning-
ful.

The problem of robust order scheduling belongs to the cat-
egory of robust optimization problems. When searching for
candidate solutions capable of generating robust order sched-
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ules, evolutionary robust optimization has been proven to be
an effective method [5, 6]. Evolutionary robust optimiza-
tion refers to the utilization of evolutionary algorithms as a
framework for solving robust optimization problems. In [7],
the preproduction events in apparel manufacturing are taken
into consideration, and a robust order scheduling approach
is proposed by introducing robust multi-objective optimiza-
tion to address the order scheduling problem in the apparel
industry. In [8, 9], the influence of uncertain daily production
quantities on order scheduling is considered, while solv-
ing high-dimensional robust order scheduling problems. The
experimental results show that evolutionary robust optimiza-
tion exhibits significantly superior performance in finding
robust order schedules.

In practical scenarios, robust order scheduling problems
are commonly characterized as high-dimensional robust opti-
mization problems. For example, considering factors like
order splitting and learning effects, an order scheduling
problem with 30 orders and 6 production lines is a high-
dimensional problem with over 100 decision variables [8].
As the number of decision variables increases, determining
the robust region of the high-dimensional problem becomes
significantly more challenging due to the “curse of dimen-
sion” [10]. This phenomenon suggests that the performance
of evolutionary robust optimization approaches deteriorates
as the dimensionality of the search space increases. There-
fore, it is crucial to develop efficient approaches for solving
high-dimensional robust order scheduling problems.

To the best of our knowledge, the research on high-
dimensional robust optimization, especially high-dimensional
robust multi-objective optimization, has received relatively
limited attention in the field of evolutionary computation.
Among these studies, a seminal method is the recently
proposed decision variable classification-based framework
for high-dimensional robust evolutionary multi-objective
optimization, which is named constrained non-dominated
sorting differential evolution based on decision variable clas-
sification (CNSDE/DVC). CNSDE/DVC classifies decision
variables into highly andweakly robustness-related variables
based on their contributions to the robustness of candi-
date solutions [8, 9]. Encouraging experimental results are
reported in [8] and [9]. However, it adopts an explicit averag-
ing technique, specifically by generating additional sample
points [6], during the process of decision variable decom-
position to compute the robustness indicator. The process
of classifying decision variables based on their robustness
requires significant computational cost, since each decision
variable needs to be perturbed dimension-by-dimension and
evaluated. When utilizing this algorithm to address robust
order scheduling problems with higher dimensions, the com-
putational cost incurred bydecomposing decision variables is
unacceptable. Hence, it is important to exploremore effective

approaches to solve high-dimensional robust order schedul-
ing problems with lower computational costs.

The implicit averaging technique [6], by utilizing previ-
ously sampled points to compute robustnessmetrics, presents
promising prospects in the field of high-dimensional robust
optimization due to its significant computational resource
savings. However, the limited stability of the implicit aver-
aging technique hinders its application. To increase the
reliability of the implicit averaging technique for robust
single-objective optimization problems, a novelmetric called
confidence measure is proposed in [11]. Nevertheless, the
effectiveness of this approach has only been validated on low-
to medium-dimensional robust single-objective test func-
tions. It is noteworthy that efficient methods with lower
computational costs, such as the implicit averaging tech-
nique, have not received sufficient attention in the context of
high-dimensional robust order scheduling. To systematically
capture the interacting variables for a more effective problem
decomposition in large-scale single-objective optimization
problems, a novel technique called the delta method is intro-
duced based on the cooperative coevolution framework in
[12]. This method measures the average difference of each
variable across the entire population. Subsequently, decision
variables are sorted in descending order according to their
corresponding delta values and partitioned into pre-defined
equally sized subgroups. The key point is that the delta
method’s variable grouping process does not require extra
fitness evaluations through perturbations or other means.
Inspired by the delta method [12] and CNSDE/DVC [9],
high-dimensional robust order scheduling problems can be
addressed by implicitly decomposing decision variables into
highly and weakly robustness-related variables without con-
suming additional fitness evaluations.

Based on the above discussion, this paper proposes
a novel algorithm named dynamic cooperative coevolu-
tion based on the implicit decision variable classification
approach (DCC/IDVCA), which tackles high-dimensional
robust order scheduling problems by classifying decision
variables implicitly, thereby significantly conserving com-
putational resources. During the optimization process of
DCC/IDVCA, an approach called estimation of dimensional
contribution to robustness (ECR) is used to estimate the
weighted contribution of each variable to robustness. Sub-
sequently, IDVCA divides the decision variables into highly
and weakly robustness-related variables based on the mag-
nitude of their weighted contributions to the robustness of
candidate solutions. This classification approach eliminates
the need for extra fitness evaluations. Then, these two types
of variables are decomposed into highly robustness-related
subgroups and weakly robustness-related subgroups within
DCC. Moreover, the sizes of these subgroups dynamically
change in DCC, which helps ECR to estimate the weighted
contributions of each variable to robustness more accu-
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rately. Finally, different types of subgroups are optimized
using different strategies in DCC. The proposed approach
is applied to two order scheduling problems formulated as
high-dimensional robust multi-objective optimization prob-
lems and experimental results demonstrate its effectiveness.
The contributions of thiswork can be summarized as follows:

• Wefirst attempt to decompose high-dimensional decision
variables into highly and weakly robustness-related vari-
ables using an implicit decomposition approach named
IDVCA. This initial endeavor significantly reduces the
computational resources required and greatly enhances
the efficiency of solving high-dimensional robust order
scheduling problems.

• In the proposed DCC/IDVCA, we evaluate the weighted
contribution of each variable to robustness using a non-
perturbative approach named ECR. Subsequently, we
allocate the variables decomposed by IDVCA to pre-
defined sizes of highly and weakly robustness-related
subgroups using the DCC. It is worth noting that the sizes
of these subgroups dynamically changewithin successive
cycles in theDCC,which is completely different from the
existing CC frameworks based on static grouping.

• The proposed algorithm is applied to solving two high-
dimensional robust order scheduling problems and com-
paredwith five state-of-the-art multi-objective evolution-
ary algorithms. Extensive experimental results demon-
strate that DCC/IDVCA can efficiently solve high-
dimensional robust order scheduling problems, partic-
ularly with substantial computational resource savings
achieved through its implicit decomposition approach.

The rest of the paper is organized as follows. “Background
Information” provides background information on robust
multi-objective optimization and the traditional CC frame-
work. “The Proposed DCC/IDVCA” presents the details of
DCC/IDVCA. A series of comprehensive and systematic
experiments are conducted in “Experiments”. Finally, “Con-
clusion” provides a concluding discussion.

Background information

In this section, we first introduce the background informa-
tion of robust multi-objective optimization. Subsequently, to
facilitate a better comprehensionof the proposedDCCframe-
work in this paper, we present the background information
of the CC framework.

Robust multi-objective optimization

In [6], a novel approach was employed to introduce robust-
ness to multi-objective optimization problems by optimizing

the mean effective objective functions instead of the original
objective function. Furthermore, two categories of multi-
objective robust solutions were defined in [6]. In the follow-
ing paragraphs,wewill provide a comprehensive explanation
of these relevant definitions.

Multi-objective robust solution of Type I: A solution x∗ is
called a multi-objective robust solution of type I, if it is
the globally feasible Pareto-optimal solution to the follow-
ing multi-objective minimization problem (defined about a
δ-neighborhood (Bδ(x)) of a solution x):

minimize
(
f eff1 (x), f eff2 (x), . . . , f effM (x)

)
,

subject to x ∈ �,

}
(1)

where f effi (x) is defined as follows:

f effi (x) = 1

|Bδ(x)|
∫

y∈Bδ(x)
fi (y)dy, (2)

where� indicates the feasible search space;Bδ(x) represents
a δ-neighborhood of a solution x, |Bδ(x)| denotes the associ-
ated hypervolume of the neighborhood; x = [x1, x2, ..., xD]T
denotes a decision vector whose dimensionality is specified
by D; f effi (x) represents the ith (1 ≤ i ≤ M) mean effective
objective function.

However, when it comes to practical applications, practi-
tioners are often more interested in controlling the level of
robustness according to the specific problem requirements.
Consequently, the second type of robustness is defined as
follows:

Multi-objective robust solution of Type II: A solution x∗ is
called a multi-objective robust solution of type II, if it is
the globally feasible Pareto-optimal solution to the following
multi-objective minimization problem:

minimize f (x) = ( f1(x), f2(x), ..., fM (x)),
subject to

∥∥ f eff(x) − f (x)
∥∥ ≤ η,

x ∈ �,

⎫
⎬

⎭
(3)

where f eff(x) = ( f eff1 (x), f eff2 (x), . . . , f effM (x)); ‖·‖ applies
to any appropriate norm measure; parameter η provides the
practitioners with direct control over the desired level of
robustness. This research has adopted the second type of
robustness due to its greater practicality.

Cooperative coevolution (CC) frameworks

It is widely recognized that CC frameworks have been exten-
sively utilized to address high-dimensional single-objective
optimization problems. In the traditional CC framework,
a high-dimensional decision vector is decomposed into
multiple low-dimensional subcomponents using a specific
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decomposition strategy. Each of these subcomponents is
optimized in a round-robin manner by its corresponding sub-
population in each CC cycle. An initial effort to develop a
universal divide-and-conquer framework was carried out in
[13]. A genetic algorithm based on the CC framework was
proposed to decompose the original D-dimensional problem
into D subcomponents, each ofwhichwould be optimized by
a subpopulation in a round-robin manner. It is evident that
the performance of the divide-and-conquer strategy in the
traditional CC framework strongly depends on the adopted
variable grouping approach to suitably decompose the origi-
nal high-dimensional problem. An inaccurate decomposition
may result in the emergence of a pseudo-minimum [14].
Numerous decomposition strategies have been devised to
partition the original high-dimensional problem into a set of
subcomponents.Most of the existing decompositionmethods
in the traditional CC framework adopt static decomposition
strategies.

Concerning the static grouping strategy, decision variables
are decomposed into amultitude of subcomponents through a
deterministic procedure, which remains unchanged through-
out the entire optimization process. For instance, CC with
variable interaction learning (CCVIL) utilizes perturbation
techniques to classify interacting variables into subcompo-
nents [15]. Another classic grouping strategy is differential
grouping (DG), which adopts a deterministic interaction
detection operator to group interacting variables into the
same subcomponent [16]. In addition, by utilizing a param-
eter adaptation technique and reusing sampling points, DG2
[17] has enhanced the accuracy and efficiency of variable
grouping compared to the original DG. Nonetheless, these
static grouping methods will consume a substantial amount
of additional computational resources. Moreover, this paper
adopts a dynamic CC framework, with the specific reasons
detailed in “The Proposed DCC/IDVCA”.

The proposed DCC/IDVCA

This paper proposes a high-dimensional robust EMO algo-
rithm called DCC/IDVCA, which consists of three main
parts: (1) estimation of dimensional contribution to robust-
ness (ECR), (2) dynamic cooperative coevolution (DCC),
and (3) implicit decision variable classification approach
(IDVCA). The detailed pseudocode of DCC/IDVCA is listed
in Algorithm 1. Line 1 shows the initialization of the popula-
tion. Lines 2–12 describe the random grouping optimization
phase of DCC/IDVCA. First, the original high-dimensional
decision variables are randomly divided into several equally
sized subgroups. Then, these subgroups are further optimized
based on theCC framework.After optimizing each subgroup,
the weighted contribution vector W is updated using ECR

method. In this phase of DCC/IDVCA, random grouping
optimization is conducted for RN iterations.

Lines 13–15 demonstrate the process of calculating the
mean value of the weighted contributions to robustness for
each variable, obtained after RN times of random grouping
optimization. This can potentially mitigate the influence of
random grouping on the accuracy of the grouping process.

Lines 17–22 describe the dynamic grouping optimization
of DCC/IDVCA. Line 18 represents that IDVCA classi-
fies the original high-dimensional variables into highly and
weakly robustness-related variables based on weighted con-
tribution vectors. Line 19 denotes that in DCC, these two
types of variables are decomposed into several subgroups
that are highly and weakly robustness-related. Unlike tradi-
tional optimization algorithms based on the CC framework,
the size of each subgroup varies across adjacent optimiza-
tion cycles. In the odd-numbered cycles of DCC, the sizes
of the dynamic subgroups are all ON , whereas in the even-
numbered cycles of DCC, the sizes of the dynamic subgroups
are EN . This setup of subgroup sizes aids ECR in enhanc-
ing the precision of estimating the weighted contributions
of variables to robustness. Finally, each subgroup of differ-
ent types is optimized separately using different optimization
strategies based on DCC framework.

Algorithm 1 The framework of DCC/IDVCA
Require: N P (population size), POP (current population), D (dimen-

sion size of decision variables), RN (number of random grouping
optimization), ON (dynamic subgroup size during odd-numbered
cycles), EN (dynamic subgroup size during even-numbered cycles)

Ensure: x∗, f (x)∗ //The Pareto-optimal solutions that satisfy the
robustness constraints and their corresponding variable values.

1: POP=Population_I ni tiali zation(N P, D)

2: for i = 1 → RN do
3: {x1, x2, . . . , xM } ← Random Grouping(D);
4: for k = 1 → M do
5: POP ← optimizer(xk );
6: updateW ← ECR(xk , f eff (x), f eff (y), archive, N P, D,m);
7: k ← k + 1;
8: update f es;
9: end for
10: H(i, :) ← W;
11: i ← i + 1;
12: end for
13: for i = 1 → D do
14: Wi = mean(H(:, i)); //computation of the mean value of Wi

after RN rounds of random grouping optimization.
15: end for
16: cycle = 1;
17: while ( f es < FEsmax) do
18: {DV1,DV2} ← IDVCA(W,D, archive, a, η);
19: (POP, W) ← DCC(W, EN , ON ,DV1,DV2, cycle);
20: cycle = cycle + 1;
21: update f es;
22: end while
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ECR

ECR estimates the weighted contribution of each variable
to robustness by utilizing the historical information of the
changes in f eff values and the frequency with which the
decision variable has been classified as highly robustness-
related in previous cycles, which does not require additional
computational cost. Because the present contribution-based
CC (CBCC) frameworks only compute the contributions of
each subcomponent, without being able to determine the con-
tributions of individual variables within each subcomponent.
Therefore, to accurately classify the decision variables in the
proposed algorithm of this paper, it is necessary to design a
novel method that can estimate the contributions of individ-
ual variables within each subcomponent. It is worth noting
that our ultimate goal is to achieve an accurate classification
of the decision variables. Therefore, if the proposed contribu-
tion calculation criterion is capable of ranking the impact of
each variable on robustness, thereby accomplishing its ulti-
mate goal, obtaining the precise contribution of each variable
to robustness becomes unnecessary. Following this line of
thought, we design the ECR to estimate the weighted contri-
bution of each variable to robustness.

Algorithm 2 ECR
Require: Sc (the current subcomponent being optimized), f eff (x) (the

mean effective fitness function values of individuals in the current

population), f eff (y) (the mean effective fitness function values of

individuals in the previous population), archive (an archive of the

frequency with which the decision variable x has been classified as a

highly robustness-related variable in previous cycles), N P (popula-

tion size), D (dimension size of decision variables), m (the number

of objectives)

Ensure: W //The contribution vector that archives the weighted con-

tributions of each variable to the robustness

1: �F ← 1
N P

∑m
i=1

∑N P
j=1

∣∣
∣ f eff (xij) − f eff (yij)

∣∣
∣;

2: for i = 1 → D do
3: if xi ∈ Sc then
4: Wi ← archive(i)a ·�F ;

5: else
6: Wi ← Wi ;

7: end if
8: end for

The pseudocode for ECR method, as shown in Algorithm
2: Line 1 calculates the average absolute change in the f eff

values of m objectives for all individuals in the population
between two consecutive cycles, which is denoted as �F.
The specific formula is shown in Eq. (4). Lines 2–8 indicate
that if xi belongs to Sc, the weighted contribution of xi is
updated; otherwise, the weighted contribution of xi remains
unchanged. In the pseudocode, Sc = {x1, x2, . . . , xT } rep-

resents the current subcomponent being optimized. W =
(W1,W2, . . . ,WD) denotes the contribution vector that
archives the weighted contributions of each variable to the
robustness, whereWi tracks the contribution of the ith vari-
able xi to the robustness. The calculation of the weighted
contribution of xi to robustness can be summarized as Eq.
(5)

�F = 1

N P

m∑

i=1

N P∑

j=1

∣
∣∣ f eff(xij) − f eff(yij)

∣
∣∣ , (4)

where m represents the number of objectives in the robust
MOPs, NP denotes the population size, and f eff(xij) and

f eff(yij) refer to the mean effective fitness function values
of the jth individual on the ith objective in the current and
previous population, respectively

Wi =
{
archive(i)a · �F if xi ∈ Sc

Wi otherwise,
(5)

where archive(i) represents the number of times the decision
variable xi has been categorized as a highly robustness-
related variable in previous cycles. Parameter a can introduce
non-linear effects when estimating the weighted contribution
of decision variables to robustness. The value of parameter a
determines the intensity of this non-linear effect, and it can
be set by algorithm practitioners based on a specific problem
context.

In summary, the proposed ECR method is capable of
ranking the impact intensity of each variable on robustness,
enabling IDVCA to classify variables. As a result, obtaining
accurate contribution values of each variable to robustness
becomes less necessary, which is the central idea behind the
development of ECR method.

DCC

In DCC, the input highly and weakly robustness-related vari-
ables are allocated to several pre-defined sizes of highly
and weakly robustness-related subgroups. Following this,
different optimization strategies are employed to optimize
different types of subgroups. Furthermore, the sizes of these
subgroups dynamically change within successive cycles in
DCC, thereby improving the precision of ECR. The idea
behind DCC is to treat the original high-dimensional robust
multi-objective optimization problem as a series of dynamic
subcomponents for optimization. Each subcomponent is
dynamically constructed during the optimization process
based on the weighted contribution ranking of each deci-
sion variable to the robustness of candidate solutions. The
detailed pseudocode for DCC is presented in Algorithm 3.
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Fig. 1 Schematic diagram of
optimization based on DCC
framework
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Algorithm 3 DCC
Require: W (the contribution vector), EN (the subgroup size during

an even-numbered cycle), ON (the subgroup size during an odd-
numbered cycle), DV1 (highly robustness-related variables), DV2
(weakly robustness-related variables), cycle (the count of the opti-
mization cycle)

Ensure: POP,W //The current population and the updated contribution
vector

1: sort(W, descending);
2: if cycle%2 = 0 then
3: subgroupsi ze = EN ;
4: end if
5: if cycle%2 = 1 then
6: subgroupsi ze = ON ;
7: end if
8: HS =‖ DV1 ‖ / subgroupsi ze;
9: WS =‖ DV2 ‖ / subgroupsi ze;
10: DR =‖ DV2 ‖ % subgroupsi ze;
11: t = 1;
12: for i = 1 → WS do
13: for j = 1 → subgroupsi ze do
14: WRSG(i) ← variable index corresponding toWt ;
15: t = t + 1;
16: end for
17: end for
18: if DR = 0 then
19: for i = 1 → HS do
20: for j = 1 → subgroupsi ze do
21: HRSG(i) ← variable index corresponding toWt ;
22: t = t + 1;
23: end for
24: end for
25: end if
26: if DR �= 0 then
27: HS = HS + 1;
28: for i = 1 → HS do
29: for j = 1 → subgroupsi ze do
30: HRSG(i) ← variable index corresponding to

W(‖DV 2‖−DR+t);
31: t = t + 1;
32: end for
33: end for
34: end if
35: for i = 1 → HS do
36: POP=HRR optimization(POP,HRSG(i)); /*Optimizing

highly robustness-related subgroups*/
37: updateW ← ECR;
38: end for
39: for i = 1 → WS do
40: POP=WRR optimization(POP,HRSG(i));
41: updateW ← ECR;
42: end for

In Algorithm 3, Line 1 indicates that DCC first sorts the
contribution values of each dimension in theweighted contri-
bution vector W in ascending order. Lines 2–7 demonstrate
how to determine the size of subgroups during different opti-
mization cycles. When the count of the optimization cycle,
denoted as cycle, is an odd number, the subgroup size is set
to ON ; conversely, when it is an even number, the subgroup
size is set to EN . In static grouping methods, subcompo-
nents are predetermined using specific grouping techniques

and remain unchanged throughout the optimization pro-
cess. However, in DCC, the newly constructed dynamic
subcomponents may differ from the previous dynamic sub-
components. It should be noted specifically that the size of
each dynamic subcomponent within the same cycle is equal,
but the size of dynamic subcomponents varies across adjacent
cycles. This design ensures that variables in the subcompo-
nents of adjacent cycles are different, thereby reducing the
impact of other variables in the same subcomponent on the
calculation of the robustness contribution of the evaluated
variables. For example, in the first cycle, a highly robustness-
related variable and a weakly robustness-related variable are
classified into the same subcomponent, and it is determined
byECRand IDVCA that both variables in this subcomponent
are highly robustness-related. As these two variables belong
to the same subcomponent, their weighted robustness contri-
bution values are the same. Therefore, in the next cycle, the
ranks of these two variables are similar. If the size of subcom-
ponents remains unchanged across adjacent cycles, there is a
high probability that these two variableswill still be classified
into the same subcomponent in the next cycle,whichwill neg-
atively affect the accuracy of subsequent grouping. However,
if the size of subcomponents varies across adjacent cycles,
this impact will be greatly reduced. Lines 8–10 calculate the
number of highly and weakly robustness-related subgroups
within each optimization cycle, as well as the remainder of
dividing the number of weakly robustness-related variables
by the subgroup size.

Lines 12–17 state that the variables corresponding to
the top WS ∗ subgroupsi ze weighted contribution rank-
ings inW are allocated sequentially to equally sized weakly
robustness-related subgroups based on their ascending order
of weighted contributions. WRSG(i) represents the i th
weakly robustness-related subgroup. Lines 18–25 state that
when the count of weakly robustness-related variables is a
multiple of the subgroup size, and since the total dimension of
the problem is also a multiple of the subgroup size, the count
of highly robustness-related variables is also amultiple of the
subgroup size. In this case, the variables corresponding to the
lower HS ∗ subgroupsi ze weighted contribution rankings
are allocated sequentially to equally sized highly robustness-
related subgroups based on their ranking order. HRSG(i)
represents the i th highly robustness-related subgroup. Lines
26–34 state that when the count of weakly robustness-related
variables is not a multiple of the subgroup size, the variables
corresponding to the rankings from (‖ DV 2 ‖ −DR + 1)th
to the last rank in terms of weighted contributions are allo-
cated sequentially to equally sized highly robustness-related
subgroups based on their ranking order. This indicates that
when the count of weakly robustness-related variables is
not a multiple of the subgroup size, the variables ranged
from (‖ DV 2 ‖ −DR + 1)th to the ‖ DV 2 ‖th position
based on their weighted contributions are allocated to the
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highly robustness-related subgroups. Since the allocation is
done in ascending order, the variables with higher rankings
among the weakly robustness-related variables have rela-
tively large weighted contributions. Therefore, classifying
these variables into highly robustness-related subgroups for
optimization is also considered appropriate.

Lines 35–38 show that the HRR optimization optimizer
is used to optimize each highly robustness-related subgroup.
The optimizer HRR optimization utilizes the DE/rand/1/bin
strategy from the classical differential evolution (DE) algo-
rithm. Specifically, robustness is employed as the selection
criterion. Lines 39–42 show that the WRR optimization
optimizer is used to optimize each weakly robustness-related
subgroup. The optimizer WRR optimization utilizes the
DE/rand/1/bin strategy from the classical differential evo-
lution (DE) algorithm. Specifically, non-dominated ranking
and crowding distance are, respectively, employed as the first
and second selection criteria.

Finally, to enhance the comprehension of the optimization
process based on DCC, a schematic diagram illustrating the
optimization process using DCC framework has been gen-
erated, as depicted in Fig. 1. First, IDVCA categorizes the
original high-dimensional decision variables into highly and
weakly robustness-related variables, based on the weighted
contribution vector W. Afterward, these variables are fur-
ther divided into the appropriateM groups (S1, S2, . . . , SM ).
Each variable group S j is associated with a subpopulation
Pj , where each subpopulation Pj generates a subpopulation
Oj by encoding solutions based on S j using evolutionary
operators. Hence, the search is performed only in a low-
dimensional variable space formed by the corresponding
variable group S j , rather than the entire original large-scale
variable space. This facilitates the use of the ECR approach
proposed in this paper to assess the weighted contribution
of each variable to robustness. The offspring solutions in Oj

are then cooperated with other subpopulations to evaluate the
objective function.

IDVCA

IDVCA utilizes the weighted contribution of each variable to
robustness estimated by ECR and compares it with a specif-
ically tailored self-adaptive threshold; thereby decomposing
the original high-dimensional decision variables into highly
and weakly robustness-related variables. It is worth noting
that, in contrast to the explicit decomposition method used
in CNSDE/DVC where each decision variable is perturbed
andevaluateddimension-by-dimension andfinally classified,
IDVCA employs ECR which utilizes the historical informa-
tion of the changes in f eff values and the frequency with
which the decision variable has been classified as highly
robustness-related in previous cycles. This allows for an
implicit decomposition of the variables. The processes of

implicit decomposition in IDVCA and the delta method [12]
are similar as they both perform this decomposition implic-
itly during the optimization process. This eliminates the
need for computationally costly approaches like perturba-
tion, which requires significant computational resources for
variable decomposition.

Algorithm 4 IDVCA
Require: W (the contribution vector), D (dimension size of decision

variables), archive (an archive of the frequency with which the deci-
sion variable x has been classified as a highly robustness-related

variable in previous cycles), a (the constant that introduces nonlin-

earity to the weighted contribution.), η (the constant that controls

the desired level of robustness)

Ensure: DV1,DV2 //highly and weakly robustness-related variables

1: for i = 1 → D do
2: if Wi > η · archive(i)a then
3: DV1 ← variable index corresponding toWi ;

4: end if
5: if Wi ≤ η · archive(i)a then
6: DV2 ← variable index corresponding toWi ;

7: end if
8: end for
9: Update the archive;

There are two key points in IDVCA approach: (1) the
input consists of theweighted contributionvectorW obtained
from ECR calculations; (2) the computation of self-adaptive
threshold. The specific details of IDVCA are illustrated in
Algorithm 4. Lines 2–4 indicate that if the weighted con-
tribution value corresponding to a particular dimension of
the decision variable is greater than the threshold, then this
decision variable is classified as a highly robustness-related
variable. Lines 5–7 indicate that if the weighted contribution
value corresponding to a particular dimension of the deci-
sion variable is less than or equal to the threshold, then this
decision variable is classified as a weakly robustness-related
variable. The self-adaptive threshold designed in IDVCA is
η · archive(i)a , where the constant η controls the desired
level of robustness. The algorithm practitioners can tailor
its value based on the specific problem. The constant a is
applied in IDVCA to introduce a non-linear impact on the
weighted contribution. The archive tracks the count of vari-
ables being classified into highly robustness-related variables
in previous cycles. The reason for considering the impact of
the archivewhen designing the threshold for IDVCA is that it
takes into account the non-linear weighting of the archive in
estimating the contribution of variables to robustness. If the
threshold does not take into account the non-linear weight-
ing of the archive, as optimization progresses, there will be
an increasing number of variables whose weighted contribu-
tions to robustness will grow. Consequently, more variables
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will have weighted contributions to robustness that exceed
the threshold. This will ultimately result in a deterioration of
the effectiveness of the threshold.

The process of classifying decision variables based on
their robustness in CNSDE/DVC requires significant compu-
tational costs, as each decision variable needs to be perturbed
dimension-by-dimension and evaluated. At the same time,
the process of classifying variables based on their robustness
using IDVCA significantly reduces computational costs, as
it primarily relies on the historical change information of
f eff(x) during the optimization process, without requiring
additional computational resources for variable classifica-
tion.

Comparative analysis of CNSDE/DVC and DCC/IDVCA

Similarities between CNSDE/DVC and DCC/IDVCA

The most significant similarity between CNSDE/DVC and
DCC/IDVCA is that both algorithms decompose the orig-
inal high-dimensional variable into highly and weakly
robustness-related variables, which are then optimized sep-
arately. Both algorithms are inspired by variable property-
based classification, and aim to address high-dimensional
robust multi-objective optimization problems by categoriz-
ing decision variables based on their contributions to the
robustness of candidate solutions.

Differences between CNSDE/DVC and DCC/IDVCA

The fundamental difference between CNSDE/DVC and the
proposed DCC/IDVCA is that CNSDE/DVC adopts an
explicit decomposition method to decompose decision vari-
ables, while DCC/IDVCA utilizes an implicit decomposition
approach for the same purpose. CNSDE/DVC adopts an
explicit decomposition method, which requires perturbing
each decision variable dimension-by-dimension and then
evaluating them. This classification process consumes a sig-
nificant amount of computational resources. In strict terms,
the computational resources solely dedicated to variable clas-
sification in DCC/IDVCA are zero. Because DCC/IDVCA
adopts an implicit decomposition method, which estimates
the contribution of each dimensional variable to robustness
by utilizing historical information during the evolution-
ary process, and subsequently classifies the variables. This
implicit decomposition approach can significantly reduce the
consumption of computational resources and enhance the
efficiency of computational resource utilization.

To provide a clearer mathematical explanation of how
DCC/IDVCAsignificantly conserves computational resources
during the variable grouping process, a detailed compu-
tational complexity analysis of both CNSDE/DVC and
DCC/IDVCA is presented below. In DCC/IDVCA and

CNSDE/DVC, the common operations are non-dominated
sorting, crowding-distance assignment, and crowding-degree
comparison. The overall complexity of these three operations
isO(M(N P)2) [18]. Therefore, the computational complex-
ity of DCC/IDVCA isO(M(N P)2 + N P · NM · (1+ H)),
whereM is the number of objectives, N P represents the pop-
ulation size, NM denotes the number of subgroups optimized
based on a cooperative coevolution (CC) framework, and
H represents the number of neighboring solutions sampled
within the δ-neighborhood of each solution. The computa-
tional complexity of CNSDE/DVC is O(M(N P)2 + (T N ·
SN + N P) · D · (1 + H)), where T N represents the total
number of the perturbation operations repeated on selected
individuals, SN represents the number of selected individu-
als for DVC, and D represents the dimension size of decision
variables. In practice, the subgroup size of DCC/IDVCA is
typically set to at least 10 or even larger. Therefore, in the
computational complexity of the two algorithms, D is at least
ten times larger than NM . In conclusion, the computational
complexity of DCC/IDVCA is significantly lower than that
of CNSDE/DVC.

Experiments

Case information

Due to the lack of high-dimensional robust multi-objective
test functions, we conducted a series of experiments using
order scheduling problems in the discrete manufacturing
industry as cases to evaluate the effectiveness of the pro-
posed DCC/IDVCA algorithm. The cases used in this
paper have been previously employed in prior research on
high-dimensional robust multi-objective optimization [8, 9],
representing typical instances of high-dimensional robust
multi-objective optimization problems. The task of order
scheduling is to allocate m orders to n production lines in
an appropriate manner. Each order consists of different types
of products. These products are assigned to multiple produc-
tion lines for manufacturing. Specifically, it should be noted
that the production lines are dedicated to manufacturing spe-
cific products, implying that the production efficiency of a
given line can only reach its highest level for a certain type of
product. During production, orders can be split to facilitate
flexible manufacturing. The problem also takes into account
the learning effect.

An appropriate schedule for the problem implies the
avoidance of encouraging either early or delayed completion
of an order. The reason behind this is that completing an order
before its due date will incur higher earliness penalty costs
in the form of increased storage expenses while finishing an
order after its due date will result in higher tardiness penalty
costs due to reduced customer satisfaction. It is evident that

123



4128 Complex & Intelligent Systems (2024) 10:4119–4139

the two optimization objectives of an order scheduling prob-
lem can be formulated as: (1) minimizing the sum of all
orders’ earliness time; (2) minimizing the sum of all orders’
tardiness time.

Specifically, the first optimization objective can be math-
ematically formulated as follows:

f1 =
n∑

i=1

t1(FDi − DDi ), (6)

where FDi and DDi represent the finishing date and the due
date of order i(1 ≤ i ≤ n) in the schedule, respectively; and
t1(·) is

t1(u) =
{
0, if u ≥ 0,
−u, otherwise.

(7)

The second optimization objective can be mathematically
expressed as follows:

f2 =
n∑

i=1

t2(FDi − DDi ), (8)

where t2(·) is:

t2(u) =
{
0, if u ≥ 0,
u, otherwise.

(9)

From the above formulas, it can be observed that these two
objectives are usually conflicting, which implies that obtain-
ing a smaller f2 (less total tardiness) solution will result in a
larger f1 (more total earliness). In this paper, the uncertainty
of the order scheduling problem stems from the uncertain
daily production quantities, which affects the FDi of each
order. Therefore, we aspire to acquire schedules that demon-
strate robustness in the face of variations in daily production
quantities.

The robust order scheduling problem in this paper is based
on the definition of the second type of multi-objective robust
solutions in [6], which can be transformed into a constrained
bi-objective optimization problem

minimize f1 = ∑m
i=1 t1(FDi − DDi ),

minimize f2 = ∑m
i=1 t2(FDi − DDi ),

s.t.
∥∥ f eff1 − f1

∥∥
1 + ∥∥ f eff2 − f2

∥∥
1 ≤ η,

⎫
⎬

⎭
(10)

where L1 norm is utilized in the constraint and f1 represents
the total earliness of producing m orders, while f2 represents
the total tardiness of producing m orders. Moreover, f eff(x)
denotes themean effective objective that considers the impact
of uncertainty, where the daily production quantities are not
fixed.

The decision variables for the scheduling problem in this
study consist of three components: (1) the assignment of each
order to the production line; (2) the split percentage of each
order; (3) the sequence of the orders on the same production
line. It should be noted that each order can be divided into
at most two sub-orders, and the split percentage is selected
from the range [0.2, 0.4, 0.6, 0.8]. Consequently, the length
of a potential solution is four times the number of orders:
D = 4n. Figure2 presents the composition of decision vari-
ables for the order scheduling problem in this study. When
the number of orders exceeds 25, the problem becomes high-
dimensional based on the encoding scheme employed. The
decision variables from the (2n + 1)th to the 3nth represent
the split percentage of each order. In comparison to other
decision variables, modifying these decision variables will
solely influence the size of sub-orders, without any impact
on the sequence of orders across individual production lines.
Maintaining the unaltered arrangement of orders within a
schedule (despite potential fluctuations in suborder size) indi-
cates that when the evolution operator modifies the decision
variables between the (2n+1)th to the 3nth, the violation of
the constraint remains generally unchanged. Therefore, the
decision variables from the (2n+1)th to the 3nth are weakly
robustness-related, while the remaining variables are highly
robustness-related.

Experimental settings

In this experiment, we consider two real-world cases: one
case involves an order scheduling problem with 40 orders
and 6 production lines, and the other case involves an order
scheduling problem with 60 orders and 6 production lines.
Therefore, the dimensions of the two cases are 160 and 240,
respectively. In the proposed DCC/IDVCA in this paper, the
population size is NP = 100. We adopt a classical differ-
ential evolution algorithm (i.e., DE/rand/1/bin) [19] in the
optimization process. The scaling factor and crossover prob-
ability for the differential evolution algorithm are specified
as F = 0.5 and CR = 0.9, separately. The uncertainty factor
γ of daily production quantities is set at 0.3 in the experi-
ment. For each potential solution, we specify H = 5 as the
number of neighboring points. The expected level of robust-
ness for this problem is defined in advance as η = 5. In
the dynamic grouping stage, the subcomponent size during
odd-numbered cycles (denoted as ON ) is set to 8, while the
subcomponent size during even-numbered cycles (denoted
as EN ) is set to 10. The parameter a, which determines the
strength of the non-linear effect applied to the weighted con-
tribution of variable robustness, is set to 1.2. A sensitivity
analysis of the parameter values for a, ON , and EN will be
conducted in “Parameter sensitivity analysis”.

The experiments in this paper are mainly divided into the
following two parts:
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Fig. 2 An illustration of the
decision variables for the
scheduling problem

(1) Comparison of DCC/IDVCA and CNSDE/DVC:
Given that CNSDE/DVC is currently the state-of-the-art
algorithm for solving high-dimensional robust MOPs, we
systematically compare DCC/IDVCA with CNSDE/DVC
first. The comparisonbetweenDCC/IDVCAandCNSDE/DVC
can be divided into three parts: (1) Comparison of the
median attainment surfaces obtained by DCC/IDVCA and
CNSDE/DVC after 30 runs; (2) Comparisons of the IGD
and HV values of DCC/IDVCA and CNSDE/DVC after
30 runs; (3) Comparison of their grouping accuracy. When
solving the problem with D = 160 using the above algo-
rithms, the FEmax is set to 3 × 105; on the other hand,
when dealing with the problem of D = 240, the FEmax

is set to 7 × 105. Because the classification of variables
for D = 160 and D = 240 using CNSDE/DVC typi-
cally requires approximately 2.6× 105 and 4.6× 105 fitness
evaluations, respectively, to fairly compare the performance
of the two algorithms, FEmax should be set significantly
larger than the computational resources consumed during the
CNSDE/DVC classification process.

(2) Comparisonwith state-of-the-artMOEAs: Since high-
dimensional robust multi-objective optimization problems
have so far received little attention, with no dedicated algo-
rithms have been developed. Therefore, in the comparative
studies, we select four state-of-the-art multi-objective evo-
lutionary algorithms (MOEAs): NSGA-II [18], NSCDE
[20], LMEA [21], and DGEA [22]. Among them, NSGA-
II and NSCDE have been widely applied to solve robust
multi-objective optimization problems in low-to-medium
dimensions, while LMEA and DGEA are two recently pro-
posed large-scale multi-objective evolutionary algorithms.

LMEA is a classic large-scale multi-objective optimiza-
tion algorithm based on variable property-based classifi-
cation. DGEA is a recently proposed large-scale multi-
objective optimization algorithm based on adaptive offspring
generation strategy. As LMEA and DGEA are not originally
designed for solving high-dimensional robust optimization
problems, to ensure a fair comparison, we introduce the
following modifications to LMEA and DGEA specifically
targeting robust optimization: (1) Replacing the tree-based
non-dominated sorting method (T-ENS) with a conventional
constrained non-dominated sorting method in LMEA. This
modificationhelpsLMEAto satisfy robust constraints in both
diversity optimization and convergence optimization. (2) A
constrained non-dominated sorting method is also applied in
DGEA to rank individuals in the population. This modifica-
tion helps DGEA to generate offsprings that satisfy robust

constraints while maintaining better diversity and conver-
gence through a novel reproduction operator.

This part will include the following sets of experiments:
(1) When solving the problem with D = 160, the five
algorithms run independently 30 times with FEmax set to
1.5×105, 2×105, 2.5×105, 3×105, 3.5×105, and 4×105,
respectively; (2) When solving the problem with D = 240,
the five algorithms run independently 30 times with FEmax

set to 2 × 105, 2.5 × 105, 3 × 105, 3.5 × 105, 4 × 105,
and 4.5×105, respectively. Finally, the performance of each
algorithm is compared. To ensure sufficient computational
resources are allocated to each algorithm during the experi-
ments, FEmax is typically set to be approximately 1000 times
greater than the total dimensionality D. In the experiments of
this paper, the parameter settings for CNSDE/DVC, NSGA-
II, NSCDE, LMEA, and DGEA are adopted as described in
their respective original papers [18, 20–22].

In the performance comparison of different algorithms,
two performance metrics, namely inverted generational dis-
tance (IGD) and hypervolume (HV), are utilized to quantify
all experimental outcomes. To calculate IGD, a set of ref-
erence points need to be given beforehand. In this paper,
considering the requirements of the practical problem, it is
assumed that the ideal total earliness and tardiness for each
order should not exceed 5 days. Therefore, in the case of
40 orders, the ideal total earliness and tardiness should not
exceed 200 days, while in the case of 60 orders, the ideal
total earliness and tardiness should not exceed 300 days.
Hence, this paper first obtains the non-dominated solutions
from the combined solutions of the compared algorithms and
sets the non-dominated solutions with total earliness and tar-
diness not exceeding 200 or 300 days as reference points.
To calculate the Hypervolume (HV), taking into account the
requirements of the practical problem in our experiments, we
consider it is unacceptable for the total earliness or tardiness
of each order to exceed 15 days. Therefore, when evaluating
the HV for 40 orders, we set the reference point for each
objective function as 600; when evaluating the HV for 60
orders, we set the reference point for each objective func-
tion as 900. We calculate the values of IGD and HV using
PlatEMO, which is a recently designed evolutionary multi-
objective optimization platform [23].

All algorithms are executed on a PC equippedwith an Intel
Core i7-12700 2.1-GHz processor and 16 GB RAM. When
setting FEmax to D · 2000, the running time of DCC/IDVCA
for robust order scheduling problems with 60 orders was
approximately 40s. It isworthmentioning that order schedul-
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Table 1 Performance
comparison of DCC/IDVCA
and CNSDE/DVC in solving
scheduling problems with 40
orders. The constant η, which
controls the level of robustness,
is set to 5

FEmax Indices CNSDE/DVC DCC/IDVCA

3 × 105 IGD 161.27±46.51 46.74± 21.84

HV 7.46E+04± 2.75E+04 1.36E+05± 1.51E+04

The highlighted entries demonstrate significant superiority. A Wilcoxon rank-sum test is conducted at a
significance level of α = 0.05

Table 2 Performance
comparison of DCC/IDVCA
and CNSDE/DVC in solving
scheduling problems with 60
orders. The constant η, which
controls the level of robustness,
is set to 5

FEmax Indices CNSDE/DVC DCC/IDVCA

7 × 105 IGD 276.28± 68.96 115.52± 69.04

HV 7.40 E+04± 4.71E+04 1.99 E+05± 5.34E+04

The highlighted entries demonstrate significant superiority. A Wilcoxon rank-sum test is conducted at a
significance level of α = 0.05

ing is performed prior to production and can be considered as
an offline scheduling. Therefore, the running time can meet
the actual demands of the enterprise. Furthermore, to draw
statistically valid conclusions, we conducted a Wilcoxon
rank-sum test at a significance level of 0.05 to assess the
significance of the differences between the results obtained
by the two competing algorithms. The highlighted entries
demonstrate significant superiority.

Comparison of DCC/IDVCA and CNSDE/DVC

Performance comparison in solving scheduling problems
with 40 orders

To demonstrate that DCC/IDVCA can effectively address
high-dimensional robust MOPs with significant compu-
tational resource savings, we compare the performance
of DCC/IDVCA and CNSDE/DVC under the given con-
straint of FEmax . We first compare the performance of
DCC/IDVCA and CNSDE/DVC in solving a scheduling

Fig. 3 Comparison of the
median attainment surfaces
obtained from 30 runs of
DCC/IDVCA and CNSDE/DVC
for solving scheduling problems
with 40 orders under the
condition of FEmax = 3 × 105.
The constant η, which controls
the level of robustness, is set to 5

Fig. 4 Comparison of the
median attainment surfaces
obtained from 30 runs of
DCC/IDVCA and CNSDE/DVC
for solving scheduling problems
with 60 orders under the
condition of FEmax = 7 × 105.
The constant η, which controls
the level of robustness, is set to 5

123



Complex & Intelligent Systems (2024) 10:4119–4139 4131

problem with 40 orders under the condition of FEmax =
3 × 105.

Table 1 presents the IGD and HV values obtained by
DCC/IDVCA and CNSDE/DVC after 30 runs when solving
the scheduling problem with 40 orders under the condition
of FEmax = 3× 105. It can be observed that, under the con-
straint of FEmax , DCC/IDVCA performs significantly better
than CNSDE/DVC when dealing with high-dimensional
robust scheduling problems.

Moreover, the median attainment surfaces obtained from
DCC/IDVCA and CNSDE/DVC for a scheduling problem
of 40 orders after 30 runs, under the condition of FEmax =
3 × 105, are provided in Fig. 3. It can be clearly observed
that under the condition of FEmax = 3× 105, DCC/IDVCA
significantly improves the performance of CNSDE/DVC in
handling high-dimensional robust order scheduling prob-
lems. The reasons behind the experimental result can be
briefly explained as follows: CNSDE/DVC evaluates the
contribution of each decision variable to robustness by per-
turbation, and this process incurs an extremely expensive
computational cost. For example, classifying the 160 deci-
sion variables in the problem considered in this paper by
CNSDE/DVCrequires approximately 2.69×105 FEs. In con-
trast, DCC/IDVCA classifies decision variables implicitly,
which saves a significant amount of computational resources
that can be used to search for robust solutions. Therefore,
under the condition of a given specific amount of com-
putational resources, the performance of DCC/IDVCA is
significantly better than that of CNSDE/DVC.

Performance comparison in solving scheduling problems
with 60 orders

In this section, we compare the performance of DCC/IDVCA
and DCC/IDVCA in solving the scheduling problem with
60 orders. The IGD and HV values of DCC/IDVCA and
CNSDE/DVC are calculated and given in Table 2. Moreover,
the median attainment surfaces obtained from DCC/IDVCA
and CNSDE/DVC for a scheduling problem of 60 orders
after 30 runs, under the condition of FEmax = 7 × 105, are
provided in Fig. 4.

It canbeobserved that as the dimension size of the problem
increases, DCC/IDVCA continues to exhibit superior effi-
ciency compared to CNSDE/DVC. Despite the general trend
of implicit decomposition methods exhibiting lower stabil-
ity, we have observed that the standard deviation of IGD and
HV values obtained by DCC/IDVCA is only slightly larger
than that of CNSDE/DVC. Therefore, it can be concluded
that DCC/IDVCA demonstrates relatively desirable stability
while significantly saving computational resources.

Comparison of grouping accuracy

In this part, we compare DCC/IDVCAwith CNSDE/DVC in
terms of the accuracy of high-dimensional variable decom-
position based on robustness. We conduct systematic exper-
iments on order scheduling problems with 40 and 60 orders,
respectively. In the classification process of CNSDE/DVC,
each decision variable needs to be perturbed dimension-
by-dimension and evaluated. The classification process for
the variables in the order scheduling problems with 40
and 60 orders requires approximately FEs = 2.69 × 105

and FEs = 5.47 × 105 fitness evaluations, respectively.
Therefore, when setting the same number of fitness eval-
uations (FEs = 2.69 × 105, FEs = 5.47 × 105), we
conduct independent runs of both algorithms 15 times. Sub-
sequently, the average grouping accuracy of CNSDE/DVC
and DCC/IDVCA in the two optimization stages was calcu-
lated. The experimental results are presented in Table 3.

In Table 3, the term “HR variables” refers to highly
robustness-related variables, and the term “WR variables”
stands forweakly robustness-related variables. DCC/IDVCA
(RG) andDCC/IDVCA (DG), respectively, represent the ran-
domgrouping anddynamic grouping stages ofDCC/IDVCA.
The grouping accuracy of DCC/IDVCA (RG) refers to the
classification accuracy achieved after a specified number of
iterations of optimizing through randomgrouping. It involves
categorizing variables based on their average contributions to
robustness during these periods and subsequently calculating
the accuracy of the resulting classification.

From Table 3, it is evident that the grouping accuracy of
CNSDE/DVC is slightly better than the grouping accuracy of
DCC/IDVCA for both highly and weakly robustness-related
variables in the two grouping optimization steps. However,
CNSDE/DVC achieves a slight advantage by perturbing each
decision variable dimension-by-dimension and evaluating it,
under the premise of consuming extremely expensive com-
putational costs. Therefore, it is difficult to consider this as an
efficient method for solving high-dimensional robust MOPs,
especially for higher dimensional problems. The computa-
tional cost associated with classifying decision variables is
unacceptable. Meanwhile, the computational resources allo-
cated to DCC/IDVCA are solely dedicated to the optimiza-
tion process, as DCC/IDVCA does not require any additional
computational resources for the variables classification pro-
cess. Furthermore, from Table 3, it can be observed that
both random grouping optimization and dynamic grouping
optimization based on the CC framework yield a relatively
high grouping accuracy for highly robustness-related vari-
ables. This implies that the optimization based on the CC
framework is highly effective in estimating the robustness
contribution of highly robustness-related variables to robust-
ness. However, the random grouping optimization step of
DCC/IDVCA exhibits poor performance in estimating the
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Table 3 The comparison of
grouping accuracy between
CNSDE/DVC and DCC/IDVCA
(the average accuracy of the final
grouping results after 15 runs)

Algorithms Grouping correctness rate Grouping error rate
HR variables WR variables HR variables WR variables

CNSDE/DVC (40 orders) 91.60% 75.30% 8.40% 24.70%

DCC/IDVCA(RG) (40 orders) 81.40% 30.00% 18.60% 70.00%

DCC/IDVCA(DG) (40 orders) 83.30% 51.10% 16.70% 48.90%

CNSDE/DVC (60 orders) 90.20% 84.80% 9.80% 15.20%

DCC/IDVCA(RG) (60 orders) 77.70% 27.10% 22.30% 72.90%

DCC/IDVCA(DG) (60 orders) 78.90% 59.80% 21.10% 40.20%

contribution ofweakly robustness-related variables to robust-
ness. The average accuracy in correctly classifying weakly
robustness-related variables across 15 runs is only 30% and
27.1% for scheduling problems involving 40 and 60 orders,
respectively. However, in the dynamic grouping optimization
stage of DCC/IDVCA, there is a significant improvement
in estimating the contribution of weakly robustness-related
variables to robustness. The average accuracy in correctly
classifying weakly robustness-related variables significantly
increases to 51.1% and 59.8% across 15 runs, respec-
tively. Additionally, the average error rate in misclassifying
weakly robustness-related variables also shows a significant
reduction. These experimental results further validate the
effectiveness of the proposed IDVCA and ECR strategies
in this paper.

There are two key reasons for the significant improve-
ment in correctly classifying weakly robustness-related vari-
ables during the dynamic grouping optimization step of
DCC/IDVCA: (1) During the optimization step based on
the DCC framework, the size of subgroups varies across
different optimization cycles. This strategy helps prevent
weakly robustness-related variables, which were grouped
with highly robustness-related variables during the ran-
dom grouping optimization step, from being consistently
assigned to the same subgroup in subsequent optimization
cycles. If a highly robustness-related variable and a weakly
robustness-related variable are consistently assigned to the
same subgroup throughout all optimization cycles, it hinders
the correct classification of these variables; (2) when esti-
mating the weighted contribution of variables to robustness
using the ECR strategy, the influence of being classified as a
highly robustness-related variable in previous cycles is taken
into account. Specifically, when categorizing variables with
highly and weakly robustness-related, if a variable has been
classified as a highly robustness-related variable more fre-
quently in previous optimization cycles, the ECR strategy
assigns a higher weighted contribution to that variable in
terms of robustness. However, during the random grouping
step, because the archive used to record the classification
of being a highly robustness-related variable in previous
cycles is initialized to 1, the weighted contributions of both

highly and weakly robustness-related variables within the
same subgroup are considered equal, significantly affecting
the accuracy of variable grouping.

Comparison of computational resource consumption for
grouping

More precisely, we present the total computational resources
consumed by DCC/IDVCA during the optimization pro-
cess, as well as the additional computational resources
consumed by CNSDE/DVC during the variable grouping
process through perturbation, which are presented in Table 4.
Because DCC/IDVCA utilizes historical information during
the evolution process to perform variable grouping, and does
not consume additional computational resources for variable
grouping. As DCC/IDVCA dynamically groups variables
during the optimizationprocess rather thanusingfixedgroup-
ing, the computational resources consumed by DCC/IDVCA
are represented using a formula rather than a specific value.

From Table 4, we can observe that CNSDE/DVC con-
sumes 2.69 × 105 FES and 5.47 × 105 FES, respectively,
in the process of variable grouping using perturbationmethod
when dealing with 40 and 60 orders in the order scheduling
problem. Moreover, DCC/IDVCA consumes (4.8 × 104 +
600 ∗ S ∗ gen) FES and (7.2 × 104 + 600 ∗ S ∗ gen)

FES in total during the grouping and optimization processes
when dealing with these two order scheduling problems.
In this context, S represents the number of subgroups in
DCC/IDVCA during the optimization process, which is
much smaller than the number of decision variables, and
gen represents the generations for dynamic grouping opti-
mization in DCC/IDVCA. There are two optimization stages
in DCC/IDVCA, one for random grouping and the other for
dynamic grouping optimization. In the experiments of this
paper, the size of each subgroup in the random grouping
stage of DCC/IDVCA was set to 10, and random grouping
optimizationwas performed for 5 generations. Therefore, the
computational resources consumed by the random grouping
optimization stage in DCC/IDVCA when solving the prob-
lemswith 40 and 60 orderswere 4.8×104 FES and 7.2×104

FES, respectively. It is evident from Table 4 that the com-
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Table 4 Comparison of
computational resource
consumption for grouping in
solving two order scheduling
problems

CNSDE/DVC DCC/IDVCA

40 order FES = 2.69 × 105 FES = 4.8 × 104 + 600 ∗ S ∗ gen

60 orders FES = 5.47 × 105 FES = 7.2 × 104 + 600 ∗ S ∗ gen

putational resources solely dedicated to variable grouping
by CNSDE/DVC are significantly greater than the compu-
tational resources consumed by DCC/IDVCA during the
optimization stage. As the number of orders, i.e., decision
variables, increases, the advantage of DCC/IDVCA in saving
computational resources during the grouping stage becomes
more pronounced.

In conclusion, relative to the additional resources con-
sumed by variable grouping in CNSDE/DVC, DCC/IDVCA
does save a significant amount of computational resources
during the variable grouping optimization process.

Comparison with state-of-the-art MOEAs

Performance comparison in solving scheduling problems
with 40 orders

We respectively adopt the algorithms DCC/IDVCA, NSGA-
II, NSCDE, LMEA, and DGEA under different conditions
of FEmax to handle an order scheduling problem with 40
orders, and then compare the performance of these five algo-
rithms. The IGD and HV values of DCC/IDVCA, NSGA-II,
NSCDE, LMEA, and DGEA under six different FEmax con-
ditions have been calculated and are presented in Fig. 5.
The median attainment surfaces obtained from 30 runs of
DCC/IDVCA, NSGA-II, NSCDE, LMEA, and DGEA under
six different FEmax conditions, are provided in Fig. 6. Since
DCC/IDVCA is a dynamic grouping optimization algorithm,
we compared its performance with four other algorithms
under six different conditions of FEmax to evaluate its per-
formance at different optimization stages.

From Figs. 5 and 6, we can conclude that the perfor-
mance of DCC/IDVCA under six different conditions of
FEmax (i.e., at different optimization stages) is significantly
better than that of the other five algorithms. Although the
search engine ofDCC/IDVCA ismerely a simple originalDE
when comparedwith the other four algorithms,DCC/IDVCA
performs the best among the four MOEAs. This further
demonstrates the effectiveness of the proposed method.

We also find that two recently proposed large-scale multi-
objective evolutionary algorithms, LMEA and DGEA, do
not performwell in solving the robust order scheduling prob-
lem.SinceLMEArequires perturbation to determinewhether
each variable is diversity-related or convergence-related, fol-
lowed by interaction analysis of the convergence-related
variables, and the interaction relationships among decision

variables in practical order scheduling problems are com-
plex, the entire process described above incurs significant
computational costs. The key aspect in addressing robust
order scheduling problems is that the classification based
on variable contributions to robustness outperforms the clas-
sification based on convergence and diversity. The DGEA
based on adaptive offspring generation strategymay generate
a large number of mutually non-dominated individuals dur-
ingoptimizationwhendealingwith complex real-world order
scheduling problems (taking into account robustness con-
straints). Therefore, the optimization process focuses more
on enhancing algorithm diversity, ultimately leading to inad-
equate convergence performance of the algorithm.

Performance comparison in solving scheduling problems
with 60 orders

In this subsection, we aim to assess the performance of
DCC/IDVCA in handling higher dimensional problems by
considering additional orders. Hence, we, respectively, adopt
the algorithms DCC/IDVCA, NSGA-II, NSCDE, LMEA,
and DGEA under different conditions of FEmax to handle
an order scheduling problem with 60 orders, and then com-
pare the performance of these five algorithms. The IGD and
HV values of DCC/IDVCA, NSGA-II, NSCDE, LMEA, and
DGEA under six different FEmax conditions have been cal-
culated and are presented in Fig. 7. The median attainment
surfaces obtained from 30 runs of DCC/IDVCA, NSGA-II,
NSCDE, LMEA, and DGEA under six different FEmax con-
ditions are provided in Fig. 8.

From Figs. 7 and 8, we can conclude that the performance
of DCC/IDVCA under six different conditions of FEmax

(i.e., at different optimization stages) remains significantly
superior to the other five algorithms, as the dimension size
of the order scheduling problem increases.

Comparison of DCC/IDVCAwith random grouping
and linear grouping

To investigate the effectiveness of simple grouping tech-
niques, such as random grouping and linear grouping, in
classifying decision variables based on robustness, we con-
ducted comparative experiments between DCC/IDVCA and
random grouping as well as linear grouping [24]. Linear
grouping divides variables into groups based on their posi-
tion in the variable space [24]. For instance, assuming that
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Fig. 5 The convergence profiles
with error bars of variance are
presented for HV and IGD
values obtained by utilizing
DCC/IDVCA, NSGA-II,
NSCDE, LMEA, and DGEA to
solve a scheduling problem with
40 orders. The constant η, which
controls the level of robustness,
is set to 5

we have 100 variables (x0, ..., x99), we assign the decision
variables to ten groups using linear grouping in order: g0 =
{x0, ..., x9},..., g10 = {x90, ..., x99}. However, it is evident
that in practical high-dimensional robust order scheduling
problems, the highly andweakly robustness-related variables
are unlikely to be arranged in any specific order.

Therefore, when the variables are not constructed in a
certain order, linear groupingbecomes ineffective.As for ran-
dom grouping, it is evident from its name that the grouping is
done randomly. In practical high-dimensional robust multi-
objective optimization problems, there is no guarantee of the
grouping accuracy for highly and weakly robustness-related
variables. Furthermore, the experiments in this section uti-
lized the CC framework with random grouping and linear
grouping techniques to solve two order scheduling problems
presented in this paper. To ensure sufficient computational
resources are allocated to each algorithm during the exper-

iments, it is typically considered reasonable to set FEmax

to be at least 1000 times greater than the total dimension-
ality D. In this experiment, FEmax is set to 2.5 × 105 for
solving the order scheduling problem with 40 orders for all
comparative algorithms, and it is set to 3.5× 105 for solving
the order scheduling problem with 60 orders for all com-
parative algorithms. The experimental results are shown in
Table 5. From the experimental results, it can be observed
that DCC/IDVCA achieves the best values for IGD and HV.

Parameter sensitivity analysis

In this section, we will investigate the impact of different
values for the parameters a, ON , and EN . The parameter a
determines the impact of the archive on the weighted contri-
bution of variables to robustness. If the parameter a is set too
large, it can lead to an exaggerated influence of the archive
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Fig. 6 Comparison of the median attainment surfaces obtained fromDCC/IDVCA, NSGA-II, NSCDE, LMEA, and DGEA for solving a scheduling
problem with 40 orders after 30 runs under different FEmax conditions. The constant η, which controls the level of robustness, is set to 5

on the weighted contribution, thereby amplifying the impact
of misclassifications from previous cycles. Specifically, if a
weakly robustness-related variable was mistakenly catego-
rized as a highly robustness-related variable in the previous
cycle, a large value of parameter awould greatly increase the
likelihood of this variable being persistently misclassified as
a highly robustness-related variable in subsequent cycles. On
the contrary, a small value of a will result in a diminished
impact of the archive on the weighted contribution. Conse-
quently, the weighted contributions of strongly and weakly
robustness-related variables within the same subgroup will
be approximately equal. This has a significant impact on the
precision of grouping. Typically, the parameter a is set within
the range of 1–2. Hence, this paper examines the scenarios

where a takes the values of 1.2, 1.6, and 2, respectively (with
three values selected at intervals of 0.4 within the range of
1–2).

The parameters ON and EN represent the sizes of
each subgroup during the odd-numbered cycles and even-
numbered cycles, respectively, in the dynamic grouping
optimization phase of DCC/IDVCA. If the parameters ON
and EN are set too large, the number distribution of highly
andweakly robustness-related variableswithin each dynamic
subgroupwill becomemore complex. Consequently, thiswill
ultimately impact the grouping accuracy of the algorithm.
On the contrary, if the parameters ON and EN are set too
small, the algorithm is prone to get trapped in local optima,
thus affecting the overall optimization performance of the
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Fig. 7 The convergence profiles
with error bars of variance are
presented for HV and IGD
values obtained by utilizing
DCC/IDVCA, NSGA-II,
NSCDE, LMEA, and DGEA to
solve a scheduling problem with
60 orders. The constant η, which
controls the level of robustness,
is set to 5

algorithm. The setting of dynamic subgroup sizes must meet
the following two requirements: (1) The dynamic subgroup
size is typically set to be 2% to 8% of the total dimensional-
ity, the disadvantages of setting the dynamic subgroup size
to be either too large or too small have been discussed above;
(2) The dynamic subgroup size must be divided evenly by
the total dimensionality, meaning that the dynamic subgroup
size must be an integer. It is explained that there is an empiri-
cal practice in setting the size of dynamic subgroups. Setting
a relatively smaller subgroup size is beneficial for improving
grouping accuracy. Typically, the subgroup size ON during
the first optimization (odd-numbered cycles) is set smaller
than the subgroup size EN during subsequent optimizations
(even-numbered cycles). This is because higher grouping
accuracy in the initial optimization cycle is advantageous
for the subsequent optimization process. Based on the com-
prehensive discussions mentioned above, there are various

combinations for setting the dynamic subgroup size of the
160-dimensional order scheduling problem in this paper, as
illustrated in Table 6.

Based on the experimental results, it can be observed that
the combination of dynamic subgroup size with ON=8 and
EN=10 achieves the optimal IGDvalueswhen the parameter
a is set to 1.2 and 1.6,while the IGDvalue is suboptimalwhen
the parameter a is set to 2. Furthermore, when the parameter
a is set to 2, the algorithm yields the poorest IGD values
among the five combinations of dynamic subgroup sizes.
However, when the parameter a is set to 1.2, the algorithm
demonstrates the optimal IGD values among three combi-
nations of dynamic subgroup sizes and the suboptimal IGD
values among two combinations of dynamic subgroup sizes.
Based on the comprehensive discussions presented above, it
is appropriate to set a to 1.2, ON to 8, and EN to 10.
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Fig. 8 Comparison of the median attainment surfaces obtained from DCC/IDVCA, NSGA-II, and NSCDE for solving a scheduling problem with
60 orders after 30 runs under different FEmax conditions. The constant η, which controls the level of robustness, is set to 5

Table 5 Comparison of
DCC/IDVCA with random
grouping and linear grouping in
solving scheduling problems
with 40 and 60 orders. The
constant η, which controls the
level of robustness, is set to 5

Algorithms IGD (mean± std) HV (mean± std)

FEmax = 2.5 × 105 Random grouping 76.92± 38.57 1.24E+05± 2.14E+04

(40 orders) Linear grouping 63.38± 32.23 1.31E+05± 1.90E+04

DCC/IDVCA 40.74± 28.16 1.36E+05± 1.92E+04

FEmax = 3.5 × 105 Random grouping 361.24± 269.42 9.08E+04± 8.80E+04

(60 orders) Linear grouping 289.49± 165.17 1.01E+05± 7.20E+04

DCC/IDVCA 147.39,± 74.04 1.51E+05± 4.55E+04

The highlighted entries demonstrate significant superiority. A Wilcoxon rank-sum test is conducted at a
significance level of α = 0.05
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Table 6 Parameter sensitivity analysis

ON = 4 ON = 4 ON = 4 ON = 5 ON = 5 ON = 8
EN = 5 EN = 8 EN = 10 EN = 8 EN = 10 EN = 10

a = 1.2 80.35± 28.31 75.66± 26.62 75.94± 32.48 63.53± 28.67 67.71± 30.13 54.69± 24.43

a = 1.6 75.33± 24.17 71.13± 27.97 78.32± 37.17 79.09± 36.36 70.94± 29.03 63.60± 28.64

a = 2 88.14± 36.43 77.05± 34.31 76.30± 30.99 71.65± 32.89 58.80± 32.02 67.65± 30.20

Conclusion

In this paper, a novelMOEAcalledDCC/IDVCA is proposed
to efficiently address high-dimensional robust order schedul-
ing problems. First, the historical information, including the
variation of the overall mean effective fitness and the fre-
quency of variables being classified into highly robustness-
related subcomponents in previous cycles, is utilized to
evaluate the weighted contribution of variables to robust-
ness using ECR method. ECR is the first attempt to evaluate
the contribution of each variable to robustness without per-
turbation. Based on the weighted robustness contributions
of candidate solutions, the high-dimensional decision vari-
ables are classified into highly andweakly robustness-related
variables using IDVCA method. Due to the utilization of
historical information in the evolutionary process, IDVCA
significantly conserves computational resources through the
implicit decomposition of the original variables. Then,
these two types of variables are decomposed into highly
robustness-related subgroups and weakly robustness-related
subgroups within DCC, and the sizes of these subgroups
dynamically change in DCC. Finally, different types of sub-
groups are optimized using different strategies in DCC. In
the experimental study, the proposed algorithm is applied
to address two order scheduling problems in the discrete
manufacturing industry. A series of comprehensive exper-
imental results demonstrate that the introduced algorithm
DCC/IDVCA significantly enhances the performance in
solving high-dimensional robust order scheduling problems.

It is noteworthy that robust order scheduling is evidently
more practical and meaningful. For example, robust order
scheduling can provide more warehouse space for early
orders in advance, while also arranging for additional over-
time work for more operators to handle late orders. In the
future, we intend to further enhance the stability of the
implicit decomposition approach. Furthermore, we intend
to develop a dedicated suite of test functions specifically
designed for high-dimensional robust multi-objective opti-
mization, addressing the absence of such specialized bench-
marks. Subsequently, the performance of DCC/IDVCA will
be further evaluated on these test functions as well as other
real-world high-dimensional robust optimization problems.
In addition, wewill explore the possibility of further classify-
ing decision variables beyond highly or weakly robustness-

related variables, as well as conduct a systematic theoretical
analysis in this regard.
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