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Abstract
Most existing relation extraction methods only determine the relation type after identifying all entities, thus not fully modeling
the interaction between relation-type recognition and entity mention detection. This article introduces a novel paradigm for
relation extraction by treating relevant entities as parameters of relations and harnessing the strong expressive capabilities
and acceleration advantages of quantum computing to address the relation extraction task. In this article, we develop a
quantum hierarchical reinforcement learning approach to enhance the interaction between relation-type recognition and
entity mention detection. The entire relation extraction process is broken down into a hierarchical structure of two layers
of quantum reinforcement learning strategies dedicated to relation detection and entity extraction, demonstrating greater
feasibility and expressiveness, especially when dealing with superimposed relations. Our proposed method outperforms
existing approaches through experimental evaluations on commonly used public datasets, mainly showcasing its significant
advantages in extracting superimposed relationships.

Keywords Relation extraction ·Hierarchical reinforcement learning ·Quantum computing ·Quantum reinforcement learning

Introduction

Extracting entities, relationships, or events from a vast
amount of unstructured text is critically important for build-
ing large-scale, reusable knowledge [1–5]. It can promote
many real-world tasks, including construction of knowledge
base [6–9], automatic question and answering system [10,
11], and biomedical text mining [12–14]. The input con-
sists of unstructured text, while the output comprises triples
containing source entities, target entities, and their corre-
sponding entity relationships.
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Traditional methods for relation extraction, known as
pipelined approaches, treat extraction as two independent
subtasks: first, entity identification, and then, extraction of
the relationships between them [15–17]. This method is
flexible and straightforward, but its phased execution does
not exploit deeper interactions between the subtasks. Con-
sequently, the upstream and downstream subtasks cannot
improve their extraction strategies through interactive exe-
cution. In contrast, joint entity and relationship extraction
frameworks use a single model to extract both entities and
relationships, achieving better performance by leveraging the
relationship between the two subtasks [18, 19, 19, 20, 20–22].
Most notably, Takanobu and colleagues develops a hierarchi-
cal reinforcement learning relationship extraction framework
called HRL-RE. By decomposing the total extraction pro-
cedure into a hierarchical structure with two reinforcement
learning strategies dedicated to relation detection and entity
extraction, this framework enhances the interaction between
entity identification and relation-type extraction. It makes
handling superimposed relationships more feasible and nat-
ural [23]. Nevertheless, this approach has not achieved
satisfying results in figuring out overlapped entities and sen-
tence relations. One of the leading factors is that the learning
procedure is sluggish and has many futile attempts, leading
to low efficiency of strategy learning.
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To address the issues mentioned above, we present a
novel relation extraction approach known as quantum hier-
archical reinforcement learning for relationship extraction
(QHRL-RE), which incorporates the quantum computing
advantages of quantum entanglement and superposition into
a hierarchical reinforcement learning relation extraction
model. Specifically, drawing inspiration from the break-
throughs of quantum reinforcement learning in speech
recognition and control domains [24–27], we employ quan-
tum long short-term memory (QLSTM) network models
[28] for encoding and decoding representations in relation
extraction tasks. These QLSTM models can better capture
long-term dependencies in unstructured text data than tradi-
tional methods. Then, we utilize a hybrid quantum-classical
algorithm, which iteratively optimizes tasks applicable to
relation extraction while harnessing the enhanced expres-
sive power conferred by quantum superposition. As a result,
our presented approach is more efficient in discovering
superimposed entities and relationships from structureless
text than traditional methods. The experiment results on
two classical relationship extraction datasets, NTY10 and
NTY11, demonstrate that our proposed method outperforms
classical relation extraction methods with similar architec-
tures and model parameter counts, showcasing improved
performance.

The organization of this article is as follows: in the second
section, a brief overview of previous relationship extraction
methods is provided, along with introductions to hierarchi-
cal reinforcement learning, quantum reinforcement learning,
and a brief overview of the HRL-RE approach. The third
section introduces the technique, quantum hierarchical rein-
forcement learning for relationship extraction (QHRL-RE)
presented in this paper. This section explains how thismethod
addresses the challenges of entity and relationship extrac-
tion in cases of overlap, employing quantum hierarchical
reinforcement learning techniques. Subsequently, the fourth
section presents experimental results, including experiments
conducted on two publicly accessible New York Times cor-
pora to show the superiority of the proposed algorithm in
relationship extraction tasks, particularly in the context of
superimposed entity relationships. Finally, the fifth section
summarizes the main findings and contributions of the entire
paper.

Related work

This section presents a concise review of relation extraction
methods, a brief review of quantum reinforcement learn-
ing methods and hierarchical reinforcement learning, and an
introduction to hierarchical reinforcement learning for rela-
tion extraction.

Relations extraction

Relationship extraction plays a powerful role in informa-
tion extraction applications [1, 29–33]. Javeed proposes a
distant supervised relation extraction model based on the
attention mechanism of a new relation representation [34].
Various joint extractionmethods have been proposed [18–20,
35]. For example, Zheng et al. treat entity and relationship
extraction as sequence tagging tasks. They use bidirectional
LSTM and unidirectional LSTM for encoding and decod-
ing, with the output layer simultaneously labeling entities
and relationships, achieving entity relationship joint extrac-
tion [20]. Bjorne et al. introduces the concept of relation
identifiers, explicitly representing phrases that indicate the
presence of relationships in the sentences and then selecting
their parameters to reduce the intrinsic complexity of tasks
[36]. More recently, reinforcement learning has been effec-
tive in relationship extraction tasks [37–40]. Feng et al. uses
reinforcement learning to discover entities and relationship
types jointly [41]. Qin et al. proposes a deep reinforcement
learning method for relationship extraction [40]. Feng et
al. also suggests a relationship extraction method compris-
ing an RL entity trigger and a CNN relationship identifier
[42]. These approaches aim to improve the accuracy and
robustness of relationship extraction by considering entity
recognition and relationship identification as interconnected
tasks, in contrast to the traditional pipeline methods.

Quantum reinforcement learning

Quantum reinforcement learning (QRL) can be dated to ref-
erence [43]. Nevertheless, this method requires quantifying
the environment, which may not be feasible in most real
environment scenarios. This paper focuses on the latest devel-
opments of variational quantum circuit (VQC)-based QRL
for traditional domains. The first VQC-based QRL [44] is a
quantum version of deep Q-learning (DQN) and adopts dis-
crete state spaces and action spaces in experimental domains
such as Frozen Lake. Subsequent advanced work in quantum
deep Q-learning has been deemed continuous observation
spaces, for example, in the Cart-Pole problem [45–49]. The
work in [50] extends the VQC framework further to improve
DQN into double-deep Q-learning (DDQN) and adopts QRL
to address robot operation tasks. In addition to learning
Q functions as value functions, recent developments have
introducedQRLmethods to learn policy functions. For exam-
ple, [51] describes quantum policy gradient reinforcement
learning using the REINFORCE algorithm. Subsequently,
work [52] considers an enhanced policy gradient algorithm
known as proximal policy optimization (PPO)with VQC and
demonstrates that quantum models with few parameters can
outperform classical models.
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Hierarchical reinforcement learning

Hierarchical reinforcement learning (HRL) is a significant
branch of reinforcement learning (RL) that distinguishes
itself from classical RL methods [53–55]. HRL leverages
hierarchical abstraction techniques to improve RL struc-
turally, focusing on addressing challenges RL struggles with,
such as sparse rewards, sequential decision-making, and
weak transferability. This approach enhances exploration
and transfer capabilities. Most representatively, the options
framework may be the most common formalism that allows
agents to reason regarding extended actions [56–60]. This
framework models courses of action as options, which can
accelerate learning in different ways, allowing, for example,
faster credit assignment, planning, transfer learning, and bet-
ter exploration.

Hierarchical reinforcement learning for relationship
extraction

The HRL-RE approach breaks down the total entity and rela-
tionship extraction mission into two component tasks [23]. It
first identifies sentence relationships and then discovers a pair
of entities corresponding to that relation type. HRL-RE cal-
culates a policy based on the states processed by a Bi-LSTM
andobtains the relationship type in the high-level relationship
detection subtask. Once the relationship type is received, this
high-level strategy delegates the low-level component task
of entity extraction. HRL-RE computes a strategy using the
Monte Carlo (MC) gradient estimation approach to get the
entity pair associated with that relationship in the low-level
subtask. After the present low-level component task is com-
pleted, the high-level reinforcement learning component task
searches for the subsequent relationship in the sentence. This
hierarchical method aims to ameliorate the effectiveness of
relationship extraction by breaking down the task into more
manageable subtasks, with each level focusing on a specific
aspect of the extraction process [23].

The HRL-RE method enhances the accuracy of entity
and relationship extraction and, to some extent, addresses
the issue of superimposed entities and relationships. How-
ever, this approach only achieves satisfactory results when
handling superimposed entities and sentence relationships.
The main reason behind this is that the learning process
is cumbersome, with many ineffective attempts leading to
inefficient policy learning. In cases involving superimposed
entities and complex sentence structures, the learning pro-
cess may need help to navigate the search space effectively.
This inefficiency can hinder the method’s ability to accu-
rately extract relationships and entities from such sentences.
Improving the efficiency of the strategy learning process by
optimizing the reinforcement learning algorithm or explor-

ing alternative approaches could be a potential avenue for
addressing this limitation.

Quantum hierarchical reinforcement
learning for relationship extraction

This section introduces a novel approach to jointly extract
superimposed entities and relationships, called quantumhier-
archical reinforcement learning for relationship extraction
(QHRL-RE, as shown in Figure 3). This method leverages
the advantages of quantum computing, specifically quan-
tum entanglement, and superposition, in combination with
hierarchical reinforcement learning to address the problems
outlined in “Hierarchical reinforcement learning for rela-
tionship extraction”. Specifically, drawing inspiration from
the breakthroughs of quantum reinforcement learning in the
speech recognition domain, we employ quantum long short-
term memory (QLSTM) network models [28] for encoding
and decoding representations in relation extraction tasks.
These QLSTM models can better capture long-term depen-
dencies in unstructured text data. In our proposed method,
we utilize a hybrid quantum-classical method, which itera-
tively optimizes tasks applicable to relation extraction while
harnessing the enhanced expressive power conferred by
quantum superposition (as shown in Algorithm 1).

High-level QRLmodel for relationship detection

We employ the perspective of the HRL-RE approach to
accomplish the high-level relation recognition mission [23].
In the high-level relations recognition component task, the
sentence is scanned progressively, and the current high-level
strategy O (O ∈ N R ∪ R) for the current time step is
computed based on the state. Here,R represents all the rela-
tionship types in the current dataset, and N R stands for "no
relationship."

State: sht ∈ S of the high-level task at current step t is
calculated as Eq. 1. It is calculated from the present hidden
state ht of the current time step t , the relationship type vector
vrt of the latest non− N R high-level strategy o′ and the state
st−1 of the previous time step t − 1.

sht = f h
(
Wh

s

[
qht ; vrt ; st−1

])
, (1)

where f h(·) denotes a non-linear transfer function, and Wh
s

denotes a weighting matrix. To get the hidden layer state ht ,
we adopt a quantum Bi-LSTM over the present input word
vectoring wt :

−→
qht = −−−−−→

QLST M(
−−−→
qht−1,wt)

←−
qht = ←−−−−−

QLST M(
←−−−
qht+1,wt)
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qht = [−→qht ,←−
qht ]. (2)

The mathematical expression of QLSTM is as follows:

gt = σ(V QC1(wt))

τt = σ(V QC2(wt))

L̃ t = tanh(V QC3(wt))

vt = gt ∗ vt−1 + τt ∗ L̃ t

kt = σ(V QC4(st ))

zt = V QC5(kt ∗ tanh(vt ))

yt = V QC6(kt ∗ tanh(vt )), (3)

where wt represents the input at time t , zt represents the
hidden layer state, vt represents the cell state, and yt rep-
resents the output, ∗ represents element-wise multiplication
(as shown in Fig. 1).

A random policy μ : S → O is employed, computed
based on the current time step state sht through a softmax
layer. The output of the softmax layer is stochastically sam-
pled to get the ot behavior of the present time step:

ot ∼ μ(ot |sht ) = so f tmax(Wμsht ), (4)

where Wμ denotes a weighting matrix.
Reward: The experiment domain provides a return signal

rht to estimate the reward for performing policy ot :

rht =

⎧⎪⎨
⎪⎩

−1, i f ot not in S

0, i f ot = N R

1, i f ot in S.

(5)

Finally, the ultimate reward rhf in is gained to evaluate the
sentence-level extraction manifestation that μ discovers:

rhf in = Fβ(R) = (1 + β2)Prec · Rec
β2Prec · Rec , (6)

where Fβ denotes the weighted harmonic mean (WHM) of
accuracy and recall rate in terms of the relationships in R.

Low-level QRLmodel for entity extraction

We employ the perspective of the HRL-RE algorithm to con-
struct the low-level entity identification mission [23]. In the
low-level mission, the sentence is scanned line by line, and
the action of the current time step is computed based on the
state slt and strategy π . If the high-level RL policy forecasts
the NR (non − N R) relationship type, the low-level RL will
extract entity information within the relationship. The high-
level strategy ot from high-level RL is an additional input
parameter to the low-level RL mission.

Fig. 1 The framework of quantum long short-term memory (QLSTM)

Action: this action assigns an entity tag to each word at
every time step. The entity tags are represented as A =
({S, T ,O} × {B, I} ∪ {U}), where S indicates the original
entity, T is the subjective entity, O indicates the unre-
lated entity, N denotes non-entity words, B denotes the
beginning of an entity and I indicates internal parts of an
entity.

State: the normative expression of the state slt for the low-
level task is as follows:

ct = g
(
Wl

hs
h
t′
)

,

slt = f l
(
Wl

s

[
qht ; vet ; st−1; ct ′

])
, (7)

where qht is the hidden state obtained from the Quantum
Bi-LSTM module in Eq. (2), and g(·), f l(·) are non-linear
functions implemented by MLP. Low-level strategy uses a
randomized strategy π : S → A to stochastically sample
the probabilities output from the softmax layer to obtain the
action at of the current time step t .

at ∼ π
(
at |slt;ot ′

)
= so f tmax

(
Wπ [ot ′ ]slt

)
, (8)

where Wπ denotes an array of relation matrices R.
Reward: the reward rlt received by the present time step t

is shown in Eq (8):

rlt = λ(yt ) · sgn(at = yt (ot ′)), (9)

where the immediate reward rlt is provided when the action
at is sampled by simply the prediction error gold-standard
annotation. The function yt (ot ′) is the gold-standard entity
tag conditioned on the predicted relationship type ot ′ , λ(y) is
a weighting function for low-weight non-entity tag, denoted
asfollows:
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λ(y) =
{
1, i f y 	= N

α, i f y = N .
(10)

The small α results to less reward on words that are not
entities.

Quantum hierarchical strategy learningmodels

Similar to HRL-RE, QHRL-RE optimizes the strategy by
maximizing the expected decay cumulative return:

J (θμ,t ) = Esh,o,rh∼μ(o|sh)

[
T∑
k=t

γ k−t r hk

]
, (11)

where high-level strategyμ is parameterizedby θμ,γ denotes
the decay factor in RL.

Unlike HRL-RE, QHRL-RE calculates the expected dis-
counted cumulative return for the low-level model using the
following formula:

J (θπ,t ; o′
t ) = Esl,a,rl∼π(a|sl;o′

t)(
rlk +

(
(1 − ε)J (θμ,t ) − ε max

μ∈O
J (θμ,t )

))
, (12)

where low-level strategy π is parameterized by θπ , ε rep-
resents a hyperparameter, and A(θπ,t ; ot ′) represents the
advantage function.

We decompose the expected decay cumulative rewards
into a Bellman equation:

Rμ
(
sht , ot

)
=E

⎡
⎣

N−1∑
j=0

rht+ jγ
N Rμ

(
sHt+N, ot+N

)
|sht , ot

⎤
⎦ ,

(13)

Rπ
(
slt, at ; ot

)
=E

[
rlt + γ Rπ

(
slt+1, at ; ot

)
|slt, ot

]
,

(14)

where N denotes the time steps of the entity identification
component task started under the current high-level strategy
ot .

The gradient for the high-level policy is defined as follows:

∇θμ J (θμ,t ) = Esh,o,rh∼μ(o|sh)
[
Rμ

(
sht , ot

)
∇θμμ

(
o|sht

)]
.

(15)

Unlike HRL-RE, QHRL-RE adopts the following Equa-
tion to update the gradient for the low-level policy:

∇θπ J (θπ,t;o′
t
) = Esla,rl∼π(a|slo′

t )

[
Rπ

(
slt, at ; ot

)

∇θπ π
(
a|slt; ot

)
A(θπ,t ; ot ′)

]
. (16)

Algorithm1QuantumHierarchicalReinforcementLearning
for Relation Extraction (QHRL-RE)
1: Compute ht for each entity in the sentence by Quantum Bi-LSTM;
2: Initialize state sh0 ← 0 and time step t ← 0;
3: for i ← 1 to T ext Length do
4: t ← t + 1;
5: Compute sht through Equation (1);
6: Sample ot from sht by Equation (4);
7: Acquire reward rht by Equation (5);
8: if ot 	= N R then
9: for j ← 1 to T ext Length do
10: t ← t + 1;
11: Compute slt through Equation (6);
12: Sample alt from slt by Equation (7);
13: Get reward rlt by Equation (8);
14: end for
15: Get low-level ultimate reward rlf in ;
16: end if
17: end for
18: Get high-level reward rhf in by Equation (5);
19: Optimize the model through Equation (14) and Equation (15);

Experiments

Experimental setup

The dataset used in this article is the NewYork Times (NYT)
corpus, sourced fromdistant supervision research, and it con-
tains noisy relationship data [61, 62]. The corpus has two
versions: (1) the traditional version generated by aligning
the original data with Freebase relationships [61]. (2) A thin
version of which the test set was manually annotated. We
call the traditional version the NYT10 and the thin version
the NTY11 [62].

Evaluation criterion: We evaluate the performance of
this method using precision, recall, and micro F1 scores.

Baselines: We choose the following several entity extrac-
tion methods as the baselines.

FCM ([29]): A pipeline method that combines manually
crafted lexicalized language context with word embeddings
for entity and relationship extraction.

MultiR ([62]): A distant supervision approach that uses
multiple weighted instances to handle noisy labels in training
data.

CoType ([63]): A single approach that embeds entities,
relationships, text features, and type labels into represen-
tations, treating the extraction task as a global embedding
problem.

SPTree ([19]): A joint extraction approach that employs
bidirectional sequential and bidirectional tree-structured
LSTM-RNN in a single model to discover entities and rela-
tionships.

Tagging: A joint extraction approach that discovers enti-
ties and relationships using new labeling patterns.
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CopyR ([64]): A Seq2Seq learning approach that utilizes
multiple decoders to generate triplets for collectively extract-
ing entities and relationships.

HRL-RE ([23]): A method based on HRL that breaks
down the entire extraction task into high-level relations detec-
tion subtasks and low-level entity extraction subtasks.

Entities and relationships extraction

Table 1 presents the experimental results for relationship
extraction. Since all methods were trained on noisy data,
it is worth noting that there is a prominent difference in
performance between the noisy dataset (NYT10) and the
clean dataset (NYT11). It can be found that our algorithm
QHRL-RE outperforms other entity relationship extraction
approaches on both datasets. Crucially, the scores on the
NYT10 dataset are much higher than those on the NYT11
dataset, indicating that the presented approach is more robust
to noisy data.

Superimposed entities and relations extraction

We showcase the effectiveness of our method in discover-
ing superimposed entities and relationships on two test sets:
NYT11-plus and NYT10-sub. Here, we categorize superim-
posed entities and relationships into two types.

• Type 1: One entity participates in multiple relationships
in the same sentence.

• Type 2: The identical entity pair in a sentence is associ-
ated with disparate relations.

Table 2 displays the manifestation of different entity and
relationship extraction methods in extracting superimposed
entities and relationships. The results of the experiment on
the NYT10-sub dataset indicate that our method outper-
forms the HRL-RE approach. Furthermore, compared to our

Table 1 The experimental results for entity and relationship extraction

Model NTY10 NTY11

Prec Rec F1 Prec Rec F1

FCM – – – 0.431 0.292 0.348

MultiR – – – 0.325 0.302 0.314

Cotype – – – 0.483 0.382 0.427

SPTree 0.488 0.554 0.518 0.517 0.543 0.533

Tagging 0.588 0.376 0.459 0.471 0.483 0.472

CopyR 0.562 0.451 0.514 0.348 0.531 0.432

HRL-RE 0.716 0.581 0.641 0.528 0.536 0.525

QHRL-RE 0.736 0.624 0.673 0.586 0.579 0.602

Bold values highlight the maximum value under the same evaluation
criteria

Table 2 Manifestation comparison for discovering superimposed enti-
ties and relationships

Model NTY10-sub NTY11-plus

Prec Rec F1 Prec Rec F1

FCM – – – 0.233 0.198 0.221

MultiR – – – 0.238 0.212 0.224

Cotype – – – 0.288 0.251 0.269

SPTree 0.271 0.313 0.291 0.463 0.227 0.305

Tagging 0.253 0.234 0.242 0.291 0.217 0.244

CopyR 0.393 0.265 0.312 0.3297 0.225 0.263

HRL-RE 0.812 0.473 0.622 0.436 0.332 0.367

QHRL-RE 0.835 0.496 0.647 0.487 0.374 0.406

Bold values highlight the maximum value under the same evaluation
criteria

QHRL-RE and HRL-RE methods, other relationship extrac-
tion methods could improve when dealing with noisy data in
handling the 2nd class of superimposed entities and relation-
ships. This suggests that traditional joint extraction methods
could be more effective in solving the problem of superim-
posed entity relationships. Therefore, our method is better
suited to address the 2nd class of superimposed entity rela-
tionship problems in noisy data. Additionally, experimental
results on the NYT11-plus dataset show that our method out-
performs other entity relationship extraction algorithms in
extracting Type 1 superimposed entities and relationships in
clean data. In a word, our algorithm can extract both super-
imposed entities and relations more effectively.

To verify the result of our method, a sample, "Arthur
Lee, the leader of Love, was born in Memphis and lived
there until 1952." stochastically chosen from the dataset is
exhibited in Table 3. There are three categories of relation-
ships in this example, and the corresponding triplets are <

Arthur Lee, /person/location/place_bir th, Memphis
>, < Arthur Lee, /person/location/place_lived,

Memphis > and < Arthur Lee, /person/ leader_of /
organization, Love >. Our method detects three relations
triumphantly, and the results are exhibited in Table 3. Take
the first of these relations as an example. When the high-
level relation detection subtask scans the sentence to "born
in," it detects the word as a relationship indicator and identi-
fies the relationship as "/person/location/place_bir th."
Then, the low-level subtask starts to scan the sentence.When
it scans the word "Arthur Lee," it identifies this word as the
source entity, andwhen it scans the word "Memphis," it iden-
tifies this word as the target entity.

Interaction between the two levels of component
tasks

The results of the experiments in Table 4 demonstrate
that our approach outperforms other relationship extrac-
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Table 3 Example of relation detection

Relations type Results of detection

/person/location /place_bir th [Arthur Lee]source enti t y , the leader of Love, was [born in]relation indicator
[Memphis]target enti t y and lived there until 1952

/person/location /place_lived [Arthur Lee]source enti t y , the leader of Love, was born in [Memphis]target enti t y and
[lived there]relation indicator until 1952

/person/leader of /organization [Arthur Lee]source enti t y , the [leader of ]relation indicator [Love]target enti t y , was born
in Memphis and lived there until 1952

Table 4 Comparison of experiment results for relationship prediction

Model NTY11 NTY11-plus

Prec Rec F1 Prec Rec F1

FCM 0.501 0.475 0.487 0.441 0.326 0.376

MultiR 0.463 0.436 0.446 0.421 0.337 0.369

Cotype 0.556 0.554 0.553 0.485 0.412 0.446

SPTree 0.648 0.612 0.627 0.697 0.341 0.458

CopyR 0.476 0.712 0.573 0.625 0.423 0.503

HRL-RE-Env 0.673 0.673 0.673 0.574 0.322 0.411

HRL-RE 0.652 0.652 0.652 0.624 0.453 0.519

QHRL-RE-Env 0.687 0.636 0.691 0.576 0.312 0.408

QHRL-RE 0.655 0.647 0.661 0.632 0.472 0.553

Bold values highlight the maximum value under the same evaluation
criteria

tion approaches in the relationship detection task on both
datasets. Particularly, the improvement in the NYT11-plus
dataset is more pronounced, indicating that our approach
is better suited for discovering multiple relationships from
sentences. Thus, embedding entities as relationship parame-
ters in relationship detection can better leverage relationship
information in the text.

The performance on the NYT11 dataset exhibits slight
variations when the low-level policy is omitted separately
from models HRL-RE-Ent and QHRL-RE-Ent. This is
because nearly every sentence in this test set contains almost
only one relationship. In such cases, the interaction between
high-level and low-level component task policies has min-
imal impact on relationship detection results. In contrast,
there is a significant difference in the NYT11-plus dataset,
indicating that QHRL-RE and the hierarchical reinforce-
ment learning-based QHRL-RE can capture dependencies
between multiple extraction tasks. Furthermore, this interac-
tion can increase the rewards for high-level component task
policies. Thus, the entity and relationship extractionmethods
based on HRL intensify the interaction between relationship
detection and entity identification.

Conclusion

This paper presents a new relations extraction method,
quantum hierarchical reinforcement learning for relation
extraction (QHRL-RE), which incorporates the quantum
computing advantages of quantum entanglement and super-
position into a hierarchical reinforcement learning relation
extraction model. Specifically, drawing inspiration from the
breakthroughs of quantum reinforcement learning in speech
recognition and control domains, we employ quantum long
short-term memory (QLSTM) network models for encod-
ing and decoding representations in relation extraction tasks.
These QLSTM models can better capture long-term depen-
dencies in unstructured text data. Our proposed method
utilizes a hybrid quantum-classical approach, which itera-
tively optimizes tasks applicable to relation extraction while
harnessing the enhanced expressive power conferred by
quantum superposition. In this way, our QHRL-RE approach
is more effective for discovering superimposed entities and
relations from unstructured text. Experiments on the com-
monly used datasets show that our method performs better
than the selected baselines. As future work, our QHRL-
RE method can be generalized to many other pairwise or
triple-wise extraction tasks, such as aspect-opinion mining
or ontology induction.
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