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Abstract
An accurate and reliable prediction of future energy patterns is of utmost significance for the smooth operation of several
related activities such as capacity or generation unit planning, transmission network optimization, better resources availability,
and many more.With the availability of historical load datasets through smart grid systems, artificial intelligence and machine
learning-based techniques have been extensively developed for achieving the desired objectives. However, effectively cap-
turing strong randomness and non-linear fluctuations in the load time-series remains a critical issue that demands concrete
solutions. Considering this, the current research proposes a hybrid approach amalgamating data smoothing and decomposition
strategy with deep neural models for improving forecasting results. Moreover, an attention mechanism is integrated to capture
relevant portions of the time series, thus achieving the desired ability to capture long-term dependencies among load demand
observations. This integration enhances the prediction and generalization capabilities of the proposed model. To validate
the performance benefits achieved by the proposed approach, a comparative evaluation is conducted with state-of-the-art
neural-based load series prediction models. The performance assessment is carried out on a novel real-world dataset of five
southern states of India, and the superiority of the proposed in capturing load time-series variations is well observed and
demonstrated in terms of several performance indicators.
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Introduction

The crucial role of large-scale electricity production in
improvising citizens’ lifestyles, economic growth, and sev-
eral aspects of society has been increasingly evident in recent
decades [1]. In today’s era, all development and technologi-
cal progress associated with activities are increasingly linked
to the availability of electricity supply. The extreme depen-
dence of modern society on relation to the supply of electric
energy has already been amply demonstrated during black-
outs [2] or supply crises, as happened in 2012 in India. The
power industry holds a prominent position in the Indian econ-
omy, with India currently ranking third in the world for the
production of electrical energy [3]. It contributes to around
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1.2% GDP of the country [4]. Increasing energy efficiency
is one of the priority policy directions outlined in the energy
strategy of India for a specified period. The "Energy Strategy
India for the period up to 2040" assumes accommodating a
significant restructuring of the energy sector to elevate it to
a newer standard capable of aligning with the nation’s eco-
nomic growth.

Over the globe, the electricity production chain operates
through a system that includes the generation, transmission,
distribution, and commercialization of electricity. This sys-
tem utilized several energy sources to supply electricity to
the end consumers. Unlike a conventional product chain, the
“product” electrical energy cannot yet be stored on a large
scale. Therefore, electricity generation is always done in syn-
chronization with the demand. In this context, the studies on
estimating the demand of the electricity sector are crucial
for several activities such as generation planning, operational
activities, transmission optimization, resources optimization,
and many more [5, 6]. For instance, estimating the demand
for future years will help plan the expansion of electricity
systems and long-term planning of transmission and distri-
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bution networks. Therefore, a comprehensive understanding
of demand is pivotal in ensuring a sustainable and resilient
electricity supply system.

The current study focuses on developing a reliable and
accurate system for estimating the futuristic demand for
electricity. The energy sector faces severe, diverse, and
complex challenges, while estimating the demand due to
the abrupt and non-linear demand patterns inherent in the
dataset. Several statistical and conventional approaches have
been employed in the past to assess trends, classify pat-
terns, and anticipate energy consumption. Typically, the
futuristic load estimation approaches are divided into two cat-
egories: statistical methods and artificial intelligence meth-
ods. The conventional methods [7–9] for predicting energy
usage include stochastic time-series and regression-based
approaches. These strategies have been widely employed in
past research and have the potential to produce improved
outcomes when handling linearity issues. However, tradi-
tional techniques (like the ARIMA or exponential smoothing
models) presume historical trends or patterns will persist.
Consequently, these methods are unsuitable for forecasts
involving significant data fluctuations and fail to capture the
highly fluctuating non-linear relationship between variables
efficiently [10, 11].

Compared to statistical techniques, the artificial
intelligence-based method can successfully deal with non-
linear fluctuations in the load data [12]. These techniques are
generally subdivided into two categories, namely machine
learning methods and deep learning-based load estimation
approaches. Machine learning approaches [13, 14] examine
non-linear relationships between input characteristics and
the output data. These methods overcome the limitations
of existing traditional techniques by representing compli-
cated relationships using functional mapping [15]. However,
thesemethods do not efficiently investigate data correlations.
The strong non-linear properties have been lately handled by
incorporating a higher number of feature extraction (hidden
layers) in the neural network [16, 17]. Effective and reliable
deep learning-based predictive approaches (long short-term
memory networks: LSTMs, gated recurrent units: GRUs and
recurrent neural networks: RNNs) are proposed for load esti-
mation and several different application domains [18–23].
Although recurrent neural networks (RNN) are effective for
reflecting long-term dependency, owing to gradient loss con-
cerns as the sequence length rises (long-term dependence),
RNNs face challenges in reflecting these dependencies accu-
rately [24]. To tackle this challenge, sequential networks
(long short-term memory (LSTM) networks) demonstrating
improvement in the load estimation domain have been pro-
posed [24]. TheLSTMneural networkmodels are commonly
used in time-series forecasts with periodic patterns [25].

Furthermore, several advanced deep learning and hybrid
techniques have been introduced in recent years to estimate
energy demand patterns efficiently [23, 26]. These include
gated recurrent units, convolutional neural networks, inte-
gration of data decomposition techniques with deep learning
models, and many more [27, 28]. From a comprehensive
analysis of research studies, it has identified that hybrid tech-
niques are more effective at describing the variation patterns
of load time-series data [5, 11]. In this direction, the present
research study introduces a hybrid technique combining
Gaussian smoothing, data decomposition, and an attention
mechanism to forecast electricity patterns. The key research
outcomes of the present study are listed below:

• The energy load data are highly complex and carries
non-linear fluctuations due to several factors, such as
measurement errors, unpredictable patterns, anomalies,
etc. These sudden/abrupt variations in the demand data
can pose challenges to developing an inefficient pre-
diction model. To overcome this limitation, the current
approach employs the Gaussian smoothing technique to
improve data quality before feeding it into the learning
model. The Gaussian smoothing aims to remove irregu-
larities and inconsistencies in the data, thus contributing
to the generalization reliability and accuracy of the pre-
diction model.

• The existing data decomposition techniques, such as
wavelet, Fourier transform, and mode decomposition
techniques, exhibit several limitations, such as noise sen-
sitivity, dependence on shifting algorithm, and deciding
the optimal number of modes. To address these limita-
tions, the current research integrates CEEMDAN with
neural models to achieve improved results.

• Efficiently capturing historical relationships within the
load time-series observations is crucial for accurate pre-
dictions. In this context, the current research further
integrates an attention mechanism with data decom-
position, smoothing, and neural models to extract the
relevant information while reducing the impact of irrel-
evant noise or errors. The attention mechanism enables
themodel to emphasize on the extracted relevant informa-
tion by givingmoreweightage during themodel-building
phase.

• Lastly, the current research provides a novel dataset
describing the load estimation patterns of the southern
states of the country India. The proposed approach’s per-
formance evaluation is conducted on this novel dataset
using widely adopted evaluation measures. The evalua-
tion results describe the efficacyof the proposed approach
in estimating the patterns in the specific context of the
southern states of India.
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Literature

This section provides a comprehensive description of the
significant research works in the energy demand time-series
forecasting domain. The research studies are categorized into
two kinds discussed below:

Traditional, machine learning, and deep
neural-based forecastingmodels

Several physical, statistical, and data-driven approaches for
estimating the energy demand have been proposed in the
recent past. These methods have considered several factors
such as thermal dynamics, environmental factors, behavioral
information, and financial considerations for building accu-
rate demand prediction models. On the whole, it has been
found that AI has contributed significantly to this domain, as
the traditional physics-driven methods have several short-
comings such as equations driven, less adaptability, less
generalizability, andmanymore. Researchers in the past have
introduced several data-driven models (including machine
learning and deep learning approaches) to surpass the short-
comings of existing models.

Earlier studies in the domain investigated several well-
known and popular regression models, including simple
linear regression, multi-linear regression models, and auto-
regressive models (AR, ARMA, ARIMA, SARIMA, SARI-
MAX) at the target prediction task. The performance benefits
achieved have shown that the auto-regressive models work
wells at understanding the hidden trends and seasonality pat-
terns of the data. Also, some recent enhancements in the
regressive models have shown promising results. In [9], the
authors developed a logistic mixture vector auto-regressive
model for capturing the intra-variations and inter-variations
of the time-series patterns. The model has attained signifi-
cant performance improvement by integrating clustering and
forecasting through a probabilistic approach. Three variants
of several existing methods (auto-regressive, smoothing, and
neural networks) were proposed by Kychkin and Chasparis
[7] in the year 2021. The experimental evaluation stated
that seasonality-based regressive model performs superior to
other models, thus achieving the best performance. Alotaibi
et al. [29] proposed an approach to determine the demand
response sizing of the renewable energy systems for remote
locations. The authors employed meta-heuristic optimiza-
tion strategy for achieving the reliable and accurate results.
Madrid and Antonio [30] proposed a machine learning-
based system to accurately estimate the short-term load. The
authors suggested that the ensemble machines performs bet-
ter at load forecasting than conventional models.

With the advancements in the neural models building
domain (ANN, DNN, RNN, LSTM, and GRU), researchers
worldwide have proved the prediction capabilities of these

models in a variety of application domains [31–33]. Some of
the eminent research studies employing these models in the
load estimation domain are discussed as follows: Bedi and
Toshniwal [1] developed an LSTM model-based approach
to forecast electricity demand. The authors captured sea-
sonality patterns by integrating deep learning models with
clustering analysis. The prediction benefitswerewell demon-
strated on a dataset of UT Chandigarh, India. Mohammad
and Kim [34] implemented neural models (ANN and RNN)
to capture dynamic and uncertain variations of the energy
load data. The authors explored several combinations of
hyper-parameters to develop an optimalmodel for prediction.
Huang et al. [35] introduced a probabilistic convolutional
neural network-basedmethod to estimate futuristic load. The
approach involved implementing load range discretization to
generate training samples (probabilistic). Mohammed et al.
[36] proposed a novel regression-based approach to estimate
electricity load of schools in SaudiArabia. The authors inves-
tigated the effect of eleven external features on the electricity
load using regression model. In this direction, Xu et al. [37]
developed the Bayesian neural networks-based probabilistic
approach to capture epistemic and aleatoric uncertainty of
the electrical load patterns. Moradzadeh et al. [38] imple-
mented a bi-directional LSTM network to capture historical
and futuristic dependencies of the load series patterns. The
developed model estimates demand at a micro-grid level,
considering both residential households and commercial
loads. Most of the research works in energy load forecast-
ing are based on offline learning. In this context, Fekri et al.
[39] introduced online learning-based adaptive approach to
extract drifting patterns from the newly collected data. An
online RNN is proposed to extract and learn new dependen-
cies present in the data. In 2022, Khan et al. [40] combined
echo network and CNN for delineating the renewable energy
generation and consumption patterns. The approach aimed to
establish an effective equilibriumbetween the consumers and
the production units. Yazici et al. [41] worked on demonstrat-
ing the prediction capability of CNN models at short-term
load estimation. A video pixel network based on 1D-CNN
is implemented to estimate the futuristic load. The proposed
network has shown improved ability compared to prediction
performance estimation measures.

Hybrid techniques for load forecasting

Hybrid techniques include amalgamating two or more statis-
tical, machine learning or deep learning models for attaining
better prediction accuracy. Many research studies have well
investigated the performance benefits of the hybrid tech-
niques. This section performs a deep analysis of dominant
and recently introduced hybrid techniques in the energy load
forecasting domain.
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Mamun et al. [42] performed an in-detailed prediction per-
formance analysis of various hybrid load demand prediction
techniques, including ANN, SVM, genetic algorithms, and
their variants. The authors explained the integrated analysis
of several techniques by detailing the advantages, disadvan-
tages, and difficulties associated with each approach. The
energy consumption in a country may get affected by real-
time pricing patterns. Considering this, a hybrid approach to
forecast electricity demand has been proposed by Dai and
Zhao (2020) [43]. The author combined the support vector
model with feature selection and parameters optimization for
the desired prediction task. Massaoudi et al. [44] proposed
a novel ensemble approach combining boosting machines
with extreme learning and multi-layer perceptron architec-
ture for short-term electricity load forecasting. Five different
parameters optimization strategies were employed to opti-
mize the prediction results. The performance superiority of
the ensemble approach is verified by evaluating prediction
performance on two real-world datasets. Bashir et al. [45]
developed amodel integration prophet with LSTM. The non-
linear residual patterns of the original dataset (predicted by
the prophet model) were estimated by employing the LSTM
model. The assessment results were obtained on an eight-
year quarterly aggregated Elia grid dataset. Alsharekh et al.
[46] provided a deep learning approach integrating convo-
lutional network with sequential model for electricity load
forecasting. The evaluation benefits of the approach are val-
idated on a real-world energy dataset. Recent advancements
in the electricity demand forecasting domain have shown that
the combined benefits of various machine and deep learning
models have helped in achieving better prediction accuracy.
Convolution neural networks have been found very effective
at extracting feature information from the different kinds
of data. Also, the accuracy of sequential models (includ-
ing RNN, LSTM, and GRU) has also been verified at the
future timestamp prediction activities. In this context, Wu et
al. [47] introduced an approach utilizing CNN and LSTM for
short-term load forecasting. The performance evaluation of
the approach demonstrated that it this approach has superior
prediction accuracy than the conventional prediction meth-
ods. Bedi and Toshniwal [5] combined auto-encoder models
with deep neural models for optimizing the prediction accu-
racy of long-term forecasting models.

The amalgamation of decomposition strategies, includ-
ing fast Fourier transform, empirical mode decomposition,
wavelet transform with neural models, has shown great
potential in capturing the seasonal, non-linear and chaotic
patterns of the load demand data. These decomposition
techniques support capturing the data’s inherent complex
time–frequency-based featural aspects. Zhang et al. (2018)
[48] proposed a hybrid approach integrating auto-regressive
models with EMD algorithm and fruit fly optimization. The
authors emphasized the impact of social and natural fac-

tors on energy consumption. The usefulness of the approach
is validated based on the simulation experiments. In year
2022, Huang et al. [49] integrated multivariate EMD algo-
rithm with SVR and PSO technique for the day ahead peak
demand forecasting. The empirical assessment is carried
on a real-time peak power demand data of Victoria and
North–SouthWales, Australia. In a similar context, Bedi and
Toshniwal [11] proposed an approach for load forecasting
by integrating the EMD method with different deep neu-
ral models. The performance results are validated on the
energy consumption dataset of UT Chandigarh, India. Zang
et al. [50] proposed a two-stage preprocessing (including
decomposition and reconstruction mechanism), LSTM and
attention procedure to forecast day-ahead electricity demand
of residential individuals. Lee and Cho [13] performed a
comparative assessment of several machine learning, deep
learning, and hybrid methods at the time-series prediction
task. From the analysis results on Korea’s peal load per-
formance dataset, the authors concluded that the hybrid
models provide significant improvement than the traditional
machine and deep learning models. Sekhar et al. [23] pro-
posed a hybrid approach combining convolutional approach
with Bi-LSTM architecture for short-term load forecasting.
The proposed approach parameters selection is performed
using the gray wolf optimization approach. Ghimire et al.
[51] provided a hybrid approach utilizing LSTM architec-
ture in amalgamation with decomposition technique. In a
similar context, a load forecasting technique based on LSTM
was introduced by Grandon et al. [52]. The evaluation of the
approach was performed on a real-time electricity demand
dataset of Ukraine. These recently introduced approaches
evaluation results’ on the real-time datasets validated that
the hybrid approaches perform much better than the con-
ventional prediction approaches. However, these existing
techniques lack at several crucial aspects such as noise han-
dling, abrupt variations capturing, and complexity. To resolve
these shortcomings, the present work introduces a workflow
implementing data decomposition, attention, and Bi-GRU
architecture for electricity load forecasting.

Workingmethodology description

The proposed approach follows a structured methodology
comprising of several phases, namely data preprocessing,
data smoothing, data decomposition, and model building.
An in-depth description of each phase is given as follows:

Data preprocessing (Step-II)

Time-series data are prone to noise (errors and non-standard
examples), erroneous readings, missing data, inconsisten-
cies, and redundant information that are often distributed
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across multiple heterogeneous sources. These data inconsis-
tencies are the significant factors that reduce the data quality
and consequently affect the quality and reliability of results.
In this context, preprocessing techniques are commonly
employed to enhance data quality and extract meaningful
information that can be more effectively interpreted. The
two major phases involved in the data preprocessing stage
are discussed as follows:

• Data cleaning: This stage aims to rectify inconsisten-
cies in the dataset, like missing records and inconsistent
values. In the past, several data cleaning techniques,
such as imputations by central tendency/regression tech-
niques/clustering, are employed to improve data quality
[53]. However, in the context of the problem under con-
sideration, the missing values imputation approach that
considers the historical dependencies will be suitable.
Therefore, the current research employs a missing value
technique that leverages the past seven years’ load time-
series observations.

• Data reduction and transformation [53]: These tech-
niques (such as data discretization, dimensionality reduc-
tion, integration, and standardization) aim to
prepare/convert the data into a format that is conducive
for building learning models. The current approach
employs the min–max normalization technique to trans-
form data to a common range. The mathematical rep-
resentation of the min–max normalization is given as
follows [53]:

Nts = Ots − min(Ots)

max(Ots) − min(Ots
. (1)

Here, Ots and Nts represent the old time series and the
new scaled time series, respectively. The maximum and
minimum values corresponding to the old time series are
represented by max(Ots) and min(Ots).

Gaussian smoothing (Step-III)

Time-series data collected by means of sensors and devices
are highly vulnerable to noise, outliers, or abnormal varia-
tions. The existence of such disruption or inconsistencies in
the data may impact the overall analysis and prediction pro-
cess. There are several means to mitigate the effect of noise
in the data, i.e., by collecting larger sample space, series
smoothing, sensors, or apparatus improvement or many
more. In the current research, we have adopted smoothing
to reduce the impact of noise on load time-series variations
patterns. There exist several smoothing strategies that can
be employed to improve the data, namely simple or running
average smoothing, weighted average smoothing, Gaussian
smoothing, and exponential smoothing [54]. The average

smoothing methods consider each timestamp observation
as a weighted sum of previous observations estimated by
a user-defined window. These average smoothing methods
have several shortcomings such as finite width window, han-
dling outside range values, etc. Hence, we have implemented
Gaussian smoothing for removing noise present in the load
series dataset by convolving each input time series with a
Gaussian function at timestamp ti is defined as (with width
b representing the smoothing parameter) [23, 55]

gaussian_k(ti ) = exp

(
− (t∗ − ti )2

2b2

)
. (2)

The convolution function involves utilizing the Gaussian
kernel function/curve to weigh the load timestamp obser-
vations present in the input dataset. Then, we proceed by
calculating the new observation using the weighted average
of k data points returned by kernel function. Mathematically,
it can be presented as

X ′
t =

∑
Xti .gaussian_k(ti ), (3)

where Xt(i) denotes the input series, Y ′
t represents the

smoothed value. For an example, the input time series and
the corresponding smoothened time series are demonstrated
in Fig. 2. From the figure, it can be observed that the new
smoothened load time series has less noise. The Gaussian
smoothing filter has attuned the large dips and spikes very
effectively. An important hyper-parameter while applying
smoothing is to choose the value of alpha/b. Large value may
lead to data loss by losing important spikes and dips of the
non-linear time-series dataset. The value of this parameter
has been estimated by random research technique.

Data decomposition (Step-IV)

In signal processing, decomposing a signal into multiple
components is a potential technique, effectively utilized
across several application domains. The specific application
domains include utilizingdecomposition strategies for reduc-
ing the amount of data to be transferred or stored (compres-
sion), eliminating unpredictable components, namely noise
and outliers and extracting relevant information through fil-
tering and retrieval. Several data decomposition techniques
have been proposed in the past for both discrete and contin-
uous time domains. Examples include the sine and cosine
transforms, Fourier transform, wavelet decomposition, and
mode decomposition (EMD) [56, 57]. From the exhaustive
literature analysis, it has been identified that EMD provides
more accurate results than other decomposition techniques
[58], such as Fourier, wavelet decomposition, and many
more.
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Empirical mode decomposition (EMD) is a method of
decomposing time–frequency series, whose initial proposal
is to deal with signals governed by non-linear and non-
stationary processes. The method was developed and intro-
duced by Huang et al. [59] and it works by decomposing
the input series into several orthogonally based functions
called intrinsic mode functions (IMF). Each IMF obtained
by decomposition highlights the local characteristics of the
data. The lowest-frequency IMF component is the residual
term, which represents the original signal’s general trend or
mean value. The sum of all the IMFswith the residual recom-
pose the original series, according to the following equation:

I (ts) = c1(ts) +
M∑
i=1

ci (ts) + r(ts). (4)

Although the EMD technique has been widely employed,
the EMD lacks sufficient theoretical basis, and its sus-
ceptibility to modal aliasing causes many uncertainties in
the decomposition results. Despite these limitations, the
EMD technique showcases versatility in decomposing a time
domain signal into a set of nearly and complete orthogo-
nal basis functions (i.e., the IMFs), each having the same
length of the original signal, but exhibiting varying fre-
quencies. Hence, enhanced versions of EMD have been
developed to address the existing shortcomings. One such
method is EEMD (ensemble empirical mode decomposi-
tion) introduced by Wu et al. [60]. The core idea behind this
noise-assisted data analysis approach is to fuse the actual
time-series information with noise so that even if different
sources collect the same process data that has different char-
acteristics, its overall mean should be close to the real-time
series. To extract the real signal from the data, amethod incor-
porating multiple sets of white noise sequences with limited
amplitude to the original sequences is introduced. Subse-
quently, each signal is then decomposed separately, and the
mean value of the corresponding components is considered
as the real component. Additionally, the introduction of noise
into the signal selected for decomposition has been proposed
as a strategy to themitigate the problemofmodemixing. This
solution has led to the development of new variants of the
EMD, such as the ensemble empirical mode decomposition
(EEMD) [60], and the complete EEMD with adaptive noise
known as complementary ensemble empirical mode decom-
position with assisted noise (CEEMDAN) [61]. The current
study adopts CEEMDAN data decomposition technique to
overcome the shortcomings of existing data decomposition
techniques. The CEEMDAN method is employed due to its
capability to rectify the modes mixing problem. Moreover,
the method also effectively suppresses the residual noise in
the IMFs, thus leading to a superior signal decomposition
and reconstruction (with minimal reconstruction error). The

following steps briefly summarize the procedure of decom-
position by complementary ensemble empirical mode with
assisted noise:

1. Add a series of white noise (adapted) in the original
sequence x(t). It is given as:

I i (ts) = x(ts) + ω0ε
i (ts) i ∈ {1, ... F}. (5)

Here, I i (ts) is the i-th time series with white noise added;
ω0 is noise figure; εi (ts) is the i-th added noise; F is
integrated frequency.

2. Decompose I i (ts) using empirical mode decomposition
(EMD) and compute the mean of the first IMF component
ci1(t):

c1(ts) = 1

F

F∑
i=1

ci1. (6)

Remove c1(t) from the original sequence I (td) to get the
1st residue:

r1(ts) = I (ts) − c1(ts). (7)

3. Continue EMD decomposition for r1(ts)+w1E1[εi (ts)]
to get the second IMF component

c2(ts) = 1

F

F∑
i=1

E1{r1(ts) + w1E1[εi (ts)]}. (8)

Here, the j-th IMF component generated by decomposi-
tion procedure is given by E j (.)

4. Iterate the subsequent procedure to compute the remain-
ing IMF components:

rk(ts) = rk−1(ts) − ck(ts), k = 2, 3, ..., K , (9)

ck+1(ts) = 1

F

F∑
i=1

E1{rk(ts) + wk Ek[εi (ts)]}. (10)

Here, the total number of modes is denoted by K .
The overall procedure concludes when the residue
sequence cannot be decomposed further. The final resid-
ual component is represented as:

R(ts) = I (ts) −
K∑

k=1

ck(ts). (11)

Model building (Step-V and Step-VI)

This section describes the architectural explanation of the
proposed load demand forecasting strategy. The overall sec-
tion comprises two sub-phases. The first phase provides a
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comprehensive description, working, and suitability of the
proposed attention-based bi-directional gated sequential neu-
ral model to the problem under study. In the second phase,
the working of the proposed prediction model amalgamat-
ing the data decomposition, attention mechanism, and deep
neural network models is summarized.

Attention-based bi-directional GRU network model

Artificial neural network (ANNs) [53] models have been
widely adopted and found successful in prediction scenar-
ios pertaining to different application domains. However, in
practice, these learningmodels are unable to learn dependen-
cies from the distant past. Since, in the time-series dataset, the
observations of the current sequencemight dependon the link
between far-away sequences. Hence, capturing such remote
impacts are critical for executing reliable modeling. To cover
this aspect, the LSTMnetworks [24] have been introduced by
Hochreiter Schmidhuber. These network models are capable
of handling long-term contextual or historical dependencies
present in the data. In the current study, the bi-directional
GRU, an improved model of the LSTM, is employed to fore-
cast the load time-series patterns. The GRU networks have
proven to be efficient in identifying and representing sud-
den variations in the contextual data (NLP domain). Hence,
the network is suitable for the current task with highly non-
linear, complex and abrupt time-series variations. Basically,
as a sequential structured, GRU networks [62] efficiently
forwards information across multiple time-steps, prevent-
ing the gradual loss of essential information. However, the
conventional GRU network can capture dependencies in one
direction (historical) only.Hence, theBi-GRU-type networks
consisting of two GRU networks in parallel is employed in
the current approach: the first network processes the input
sequence from right to left, while the second network pro-
cesses it in reverse direction. This dual approach enhances
the network’s ability to capture complex temporal patterns
effectively.

The GRU network operates through two gate functions
[62], specifically known as the reset gate and the update
gate. These gates play a crucial role in capturing both short-
term and long-term dependencies within a sequence of data.
Essentially, the GRU gates determine which information
should be passed forward to produce an accurate output.
Their significance lies in their ability to learn how to retain
information from past events over extended periods (thus,
addressing the vanishing gradient problem) or to discard
irrelevant information, which enhances data prediction.

Furthermore, the GRU maintains a memory of features
that contributes to generating the current state, subsequently
serving as the memory for the next state in chronological
order. This strengthens the correlation within the data series,
leading to improved results from the extracted features. Fig-

ure 1 illustrates the schematic of the GRU network, which,
unlike LSTM, does not have separatememory cells but rather
utilizes connection units capable of modulating information.
Each unit is equipped with an update gate (Zt ) and a reset
gate (Rt ), which determine the exposure of their memory
content, while balancing current and past information. The
update gate regulates the adaptation time. Additionally, in
addition to the update and reset gates, the structure includes
the candidate state (H̃t ) and the output block (Ht ) for the
time period denoted as t . The GRU network is defined by the
following equation [62].

Zt = σ(XtWxz + Ht−1Whz + bz), (12)

Rt = σ(XtWxr + Ht−1Whr + br ), (13)

H̃t = tanh(XtWxh + (Rt � Ht−1)Whh + bh),

(14)

Ht = (1 − Zt ) � Ht−1 + Zt � H̃t ;
Here σ(x) = 1

1 + e−x
and tanh(x) = 1 − 2

1 + e−2x ,

(15)
−→
Ht = GRU (Xt ,

−→
H t−1), (16)

←−
Ht = GRU (Xt ,

←−
H t−1), (17)

Ht = wt
−→
Ht + vt

←−
Ht + bt . (18)

Within this framework, Xt represents instances, which is
a set containing the training sequence. The weights Wxz ,
Whz , Wxr , Whr , Wxh , Whh are indicative of the connections
between Xt and Xt−1, while bz , br , and bh signify the biases.
Notably, element-wise multiplications are computed using
the Hadamard product �, and the activation functions for
both gates are characterized by logistic sigmoids σ(�), con-
straining Rt and Zt to values within the range of 0 to 1.

• Update gate [62]: The primary role of the update gate is
to determine which past information should be retained
and passed on to the future state.

• Reset gate [62]: The reset gate, on the other hand,
decides the extent to which past information should be
discarded.

The update gate is mathematically represented in eq. (11),
where the input xt and the previous state information ht−1

are combinedwith their respective weights to form themodel
parameters. The sigmoid activation function yields Zt . Sim-
ilarly, in the reset gate, eq. (12) demonstrates that the input
xt and previous state information ht − 1 are multiplied by
specific weights, and the sigmoid function produces Rt. For
time step t, the candidate hidden state H cap is calculated as
per eq. (13). The first term in eq. (13) accounts for the contri-
bution from input xt and the corresponding weight, while the
second term computes the product of a weight and the result

123



Complex & Intelligent Systems

Fig. 1 Methodology of proposed approach

of the Hadamard product between Rt and Ht−1. Finally, the
network calculates the Ht vector, which holds information
about the current unit and forwards it throughout the net-
work. The update gate plays a crucial role in implementing
this process. Subsequently, each sample’s vector is computed
by aggregating its hidden output Ht from both directions, as
described in eqs. 15, 16. This bi-directional information is
incorporated into Ht , as shown in eq (17).

Sequentialmodels for capturing long-termdata dependen-
cies are effective but computationally expensive. In recent

years, attention networks have been introduced to identify
the relevant context from text data to estimate future events.
Attention mechanism (AM) [63] is a cognitive psychology
model that simulates human brain attention. In concept, it
is highly similar to the human visual attention system. It is
an effective strategy for swiftly locating relevant information
from vast amounts of data, eliminating unnecessary informa-
tion, and completing tasks more effectively. These methods
have achieved significant accuracy in the NLP domain. In
the current work, we integrate the attention mechanism with
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the neural model (Bi-GRU) to extract relevant information
from available long-term historical data. The aim is to iden-
tify the significant variations and fluctuations in the given
load time-series data to determine future patterns efficiently.
Furthermore, the inclusion of an attention mechanism to the
proposed approach enables the model to capture dependen-
cies at a deeper level compared to conventional neuralmodels
(like LSTM and Bi-GRU). As illustrated in Fig. 1, the atten-
tion mechanism computes a similarity measure between its
input and the target state. A simple neural network is utilized
to determine the weight of the timestamp in the suggested
improvement framework. During normalization, the softmax
activation function is used to make the output weights equal
to one.

Proposed data decomposition-based prediction strategy

In this section, a detailed explanation on the working of
the proposed data decomposition integrated deep-learning
model building strategy for improved forecasting efficacy
is provided. The proposed strategy is fundamentally rooted
in the “divide and conquer” principle, which requires the
dataset to bedecomposed into several different intrinsicmode
components using the CEEMDAN decomposition strategy.
Subsequently, each decomposed component is then used as
input to an attention-based Bi-GRU model to undergo the
prediction task. For better understanding and reproducibil-
ity, a comprehensive, step-by-step working of the proposed
strategy is given as follows:

• Sub-step1:Datadecomposition—TheCEEMDANtech-
nique is implemented to decompose the load time-series
dataset corresponding to each state into corresponding
IMFs and residual components.

• Sub-step 2: The GRU model needs input data struc-
tured in the three dimensions (S, W, and F). Here, S
represents the number of input timestamps, Wmeans the
sequences length, and F represents the features within
each sequence. The lag parameter is applied to generate
a feature input matrix for input to the bi-directional GRU
models. The attention network models is designed and
included to capture the dependencies within each identi-
fied mode component.

• Sub-step 3: Performance validation is critical for defin-
ing the reliability of the prediction models. As a result,
the feature matrix obtained from sub-step 2 is divided
into training, validation, and testing datasets. The train-
ing and validation sets are utilized to develop amodel and
obtain an unbiased estimate of its prediction accuracy.

• Sub-step 4: The attention-based bi-directional network
models are trained and developed for each IMF and
residual component (shown in Fig. 1). As desired, the
relevant temporal intrinsic dependencies identified by the

attention mechanism are effectively captured by the bi-
directional GRU model during this stage.

• Sub-stepAfter successful training, the developed sequen-
tial models are employed to generate a forecast for the
testing dataset. The target prediction outcomes are deter-
mined by aggregating the forecasting results of all IMFs
(corresponding to the respective state).

Hyper-parameters tuning is crucial for building any
machine or deep learning-based prediction model. The
present research work employs the widely adopted grid
search strategy [64] determine the optimal value of sev-
eral hyper-parameters related to the proposed model, namely
input window size (size of the input), out size (predic-
tion horizon), number of dense layers, optimizer, activation
function, and many more. Different permutations of hyper-
parameter values initially defines the search space in the grid
search strategy. The defined search space is then explored
for the best set of parameters with minimal prediction errors.
Finally, the predictionmodel with the least errors is deployed
for estimating the futuristic patterns.

Experimental results and discussion

The section entails describing the experimental evaluation
performance of the proposed load estimation approach. The
evaluation is conducted on a novel real-world electricity
demand dataset of the southern states of India. The objective
here is to validate the applicability, reliability, and accu-
rateness of the proposed approach. The overall process of
comparing the proposed approach with state-of-the-art load
estimation approaches is explained below:

Dataset description

The current study collects and analyzes the real-time elec-
tricity consumption dataset of five southern states: Andhra
Pradesh, Karnataka, Kerala, Tamil Nadu, and Puducherry.
The southern states are known to be the key energy con-
sumers, so targeting these states will help in finding/defining
better energy management strategies for the country India.
For an in-depth analysis of energy usage trends and patterns,
the dataset for these states is collected over a period of seven
years, starting from January 2014. The timestamp observa-
tions have been recorded on a per-day basis. Moreover, the
geographical details of the five states, along with the statis-
tical description of energy consumption usage patterns, are
provided in Table 1.
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Table 1 Statistical and
geographical description of the
southern states dataset

State Latitude Longitude Min Max Mean Std.

Andhra Pradesh 15.9129◦ N 79.7400◦ E 93.50 284.8 162.23 32.33

Karnataka 15.3173◦ N 75.7139◦ E 112.20 273.3 184.45 27.46

Kerala 10.1632◦ N 76.6413◦ E 38.90 89.4 65.66 6.97

Tamil Nadu 11.1271◦ N 78.6569◦ E 144.0 365.4 284.52 32.07

Puducherry 11.9416◦ N 79.8083◦ E 2.40 9.70 6.847 0.91

Fig. 2 Results of Gaussian smoothing

Data preprocessing and smoothing

This step entails applying the preprocessing “Data Pre-
processing (Step-II)” and smoothing methods “Gaussian
Smoothing (Step-III)” on the dataset collected for the five
southern Indian states. There were very few missing val-
ues present in the dataset for each state. To address this,
the mean values considering the next five days, correspond-
ing to the same period of all seven years, are utilized to fill
in these missing values. Since the present study considers
only the historical load observations for estimating the future
load, there is no need for the applicability of data reduction
techniques. However, in context of data transformation, the
normalization technique defined in eq. 1 is applied on the
historical observations.

After data preprocessing, the time series representing each
state energy usage pattern is fed to the smoothing module.
The aim here is to remove the existence of any noisy and
abnormal variations present in the usage profiles. The cur-

rent study applied a Gaussian kernel to perform weighted
smoothing on the data. For better understanding, an example
figure demonstrating the application of Gaussian smooth-
ing on time-series data of the ‘Puducherry’ state is shown
in Fig. 2 From the figure, it is identified that the Gaussian
smoothing aims to minimize the impact of any irrelevant
or sudden observation patterns that may be present in the
input energy consumption patterns data. This, in turn, helps
to smoothen/amplify the critical variations patternswhich the
learning models can easily capture.

Time-series decomposition

The next step after applying the smoothing technique is
to decompose the time series corresponding to each state
into several IMF components. For this, the CEEMDAN
techniques discussed in “Data decomposition (Step-IV)” is
employed. An example demonstration of the decomposition
results achieved using CEEMDAN on the ‘Andhra Pradesh’
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Fig. 3 An example
demonstration of CEEMDAN
method on ’Andhra Pradesh’
load time series
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Table 2 Optimal value of hyper-parameters

Hyper-parameter name Optimal range (for all States)

Input size 24

Prediction horizon 1

Number of Bi-LSTM layers 4 – 6

Number of neurons per layer 32 – 256

Learning rate 0.001 – 0.0001

Activation function ‘ReLU’

Optimizer ‘ADAM’

time series is provided in Fig. 3. The figure shows several
IMFs components obtained for the input time series. Fur-
thermore, from the figure, it is evident that the decomposition
method efficiently segregates the time series into components
with varying magnitude and inter IMF non-linear patterns,
thus reducing the non-linearity and abrupt variations profiles
in the raw input data.

Comparative evaluation of the proposed approach
(Step-VII)

The IMF components resulting from the above steps are fed
as an input to the attention based bi-directional gated neural
models. As discussed in the subsection, this step includes
building a separate model for each IMF component gener-
ated for a southern state. The process is repeated for all the
states present in the input dataset. Furthermore, to validate the
effectiveness and reliability of our proposed work, advanced
deep neural models (LSTM, GRU, and Bi-GRU) are also
developed for state-level load estimation. The comparative
evaluation outcomes of these models are listed in the Tables
3, 4, and 5. The tables represent the comparative results of the

Table 5 Comparative results of the proposed approachwith benchmark
techniques (Part-III)

Pondy

Model/Measure RMSE MAPE MAE

LSTM 0.453 0.0486 0.347

GRU 0.450 0.0474 0.332

Bi-GRU 0.427 0.0472 0.331

Proposed Approach 0.247 0.0255 0.182

proposed approach against the benchmark approaches on the
dataset of the southern states, namely Andhra Pradesh, Kar-
nataka, Kerala, Tamil Nadu, and Puducherry, respectively.
The comparative evaluation uses three widely known perfor-
mance parameters: root mean squared error (RMSE), mean
absolute percentage error (MAPE), and mean absolute error
(MAE). A detailed description of these parameters is given
as follows:

• RMSE: is a statistical measure to quantify the extent of
errors between the model-predicted values from a model
and the actual observations.

• MAPE: is a metric to quantify the error as a percent-
age deviation of model-predicted observations from the
actual values.

• MAE: is a measure to signify the absolute difference
between the observed and the model-predicted values.

A critical factor to consider while developing any neural-
based solution to a problem is to define the most-suitable
value of model hyper-parameters. In the current study con-
text, the identified optimal values corresponding to the
proposed model hyper-parameters are outlined in Table 2.
The results observed for the best combination of hyper-

Table 3 Comparative results of
the proposed approach with
benchmark techniques (Part -I)

Andhra Pradesh Karnataka

Model/Measure RMSE MAPE MAE Model/Measure RMSE MAPE MAE

LSTM 6.320 0.0285 4.988 LSTM 9.236 0.0385 7.392

GRU 5.694 0.0245 4.250 GRU 9.119 0.0363 7.257

Bi-GRU 5.787 0.0250 4.369 Bi-GRU 9.047 0.0340 7.194

Proposed 2.854 0.0103 2.210 Proposed 4.230 0.0200 3.018

Table 4 Comparative results of
the proposed approach with
benchmark techniques (Part-II)

Kerala Tamil Nadu

Model/Measure RMSE MAPE MAE Model/Measure RMSE MAPE MAE

LSTM 2.843 0.0307 2.107 LSTM 12.575 0.0310 8.821

GRU 2.763 0.0293 1.996 GRU 12.151 0.0306 8.767

Bi-GRU 2.707 0.0288 1.832 Bi-GRU 12.063 0.0303 8.293

Proposed 2.486 0.0257 1.760 Proposed 6.875 0.0182 5.251
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parameters are presented in Tables 3, 4, and 5. From
analyzing the evaluation results, several critical observations
are deduced:

• Comparative evaluation results of existing benchmark
techniques (LSTM, GRU, and Bi-GRU) show that bi-
directional gated recurrent units model performs better
by capturing the dual directional load dependencies pat-
terns present in the data.

• The overall performance comparison results shown in
the Tables 3, 4, and 5 clearly indicate that the proposed
approach performs accurate prediction by returning the
least mean absolute prediction error compared to other
existing deep learning-based solutions.

• The average prediction benefits achieved by the proposed
approach are observed to be 50%. It clearly validates that
the proposed approach accurately identifies and estimates
the non-linear patterns present in the energy consumption
dataset of all southern states.Hence, integratingGaussian
smoothing and CEEMDAN into deep neural models can
be considered a viable and accurate solution to improve
the prediction results of models developed for different
application domains.

Visualization of prediction results

This section includes depicting the predicting outcomes of
the proposed approach on the input load demand dataset
belonging to different states. The aim here is to assess and
demonstrate the reliability and prediction capability of the
proposed approach at capturing the non-linear and chaotic
variations of the energy consumption dataset. To achieve this,
the predicted timestamp values for different states generated
by the proposed approach are plotted against their respec-
tive actual observation values in Fig. 4. In Fig. 4, the x-axis
represents the samples and the y-axis denotes the energy
consumption value. The actual observations are represented
using the black color, while the predicted values on the train-
ing and testing dataset are colored in ‘blue’ and ‘purple’
color, respectively. From the Fig. 4, it is observed that the
proposed approach accurately quantifies/captures the energy
demand variations present in the dataset of different southern
states. Moreover, the approach work very well at estimat-
ing the peak and abrupt energy demand requirement. Hence,
from the comprehensive analysis, it can be stated that the
approach can be reliably employed to accurately forecast
energy demand in the real-world scenarios.

Discussion

From the experimental evaluation of the proposed approach
on five datasets corresponding to different southern states
of India, it has been well validated that the proposed

approach outperforms existing state-of-the-art approaches.
These results are verified based on several different evalu-
ation measures. A few critical observations are drawn from
the experimental evaluation of the proposed approach. First,
from the experimental evaluation, it has been observed that
the models trained through the proposed approach attained
saturation earlier than the conventional deep learning-based
model-building strategy. The reason behind this is the inclu-
sion of attention and smoothing mechanisms, which helped
the proposed approach better learn from the critical weighted
data dependencies identified through the attention module.
The energy demand time-series data are highly complex,
non-linear, and carries intrinsic data dependencies. In this
direction, the decomposition procedure divides the complex
non-linear energy demand patterns into several distinct, less-
complex patterns, which has helped the proposed module
easily capture the non-linear chaotic variations present in
the data. This has resulted in improved accuracy of the pro-
posed approach. Lastly, the prediction model’s performance
is highly impacted by noise and unknown factors introduced
by human errors or malfunctioning. In this context, intro-
ducing Gaussian smoothing to the proposed approach has
reduced the impact of noise present in the collected dataset.

Conclusion

In the current study, a novel hybrid approach combining sev-
eral crucial components is proposed to resolve the shortcom-
ings of the existing load time-series prediction approaches.
Initially, the proposed approach comprises implementing
data smoothing to reduce the impact of sudden and ran-
dom fluctuations of the input dataset. Subsequently, a data
decomposition strategy resolving the shortcomings of the
existing decomposition techniques is employed to extract
mode components from the smoothen dataset. Finally, an
attention mechanism in integration with deep Bi-GRU net-
work models is deployed to extract, learn, and estimate the
dependencies patterns from the decomposed components.
The attention mechanism is introduced to concentrate on the
crucial information by assigning varying weights to the hid-
den states of the deep learning models, thus reducing loss
of relevant information. To validate the accuracy of the pro-
posed approach, the dataset corresponding to five southern
states of country India is utilized. Based on the comparative
evaluation, following major conclusions are drawn from the
proposed work:

• From the prediction plots shown in Fig. 4, it is evident
that the inclusion of data smoothing and decomposition
strategy to the proposed approach enables effective and
accurate capturing of randomness and variations in the
load time-series data. This resolves a significant draw-
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Fig. 4 Visualization of prediction results

back of the existing research studies in the targeted
domain.

• The comparative evaluation with state-of-the-art load-
series prediction methods clearly demonstrates the pre-

diction accuracy, reliability and robustness of the pro-
posed approach. From the prediction results, it is evident
that the proposed approach outperforms traditional deep
learning-based prediction models by providing reduction
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in the prediction error. These performance benefits are
achieved by the combined benefits of data decomposi-
tion and bi-direction attention mechanism employed in
the proposed approach.
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20. Wieczorek M, Siłka J, Woźniak M (2020) Neural network pow-
ered covid-19 spread forecastingmodel. Chaos, Solitons&Fractals
140:110203
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