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Abstract
The effective exploitation of infeasible solutions plays a crucial role in addressing constrained multiobjective optimiza-
tion problems (CMOPs). However, existing constrained multiobjective optimization evolutionary algorithms (CMOEAs)
encounter challenges in effectively balancing objective optimization and constraint satisfaction, particularly when tackling
problems with complex infeasible regions. Subsequent to the prior exploration, this paper proposes a novel tri-stage with
reward-switching mechanism framework (TSRSM), including the push, pull, and repush stages. Each stage consists of two
coevolutionary populations, namely Pop1 and Pop2. Throughout the three stages, Pop1 is tasked with converging to the con-
strained Pareto front (CPF). However, Pop2 is assigned with distinct tasks: (i) converging to the unconstrained Pareto front
(UPF) in the push stage; (ii) utilizing constraint relaxation technique to discover the CPF in the pull stage; and (iii) revisiting
the search for the UPF through knowledge transfer in the repush stage. Additionally, a novel reward-switching mechanism
(RSM) is employed to transition between different stages, considering the extent of changes in the convergence and diversity
of populations. Finally, the experimental results on three benchmark test sets and 30 real-world CMOPs demonstrate that
TSRSM achieves competitive performance when compared with nine state-of-the-art CMOEAs. The source code is available
at https://github.com/Qu-jq/TSRSM.
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Introduction

Many real-world problems belong to constrainedmultiobjec-
tive optimization problems (CMOPs),which have conflicting
objectives subject to various constraints [1–4]. The general
CMOP can be expressed as follows:

min F(x) = ( f1(x), f2(x), . . . , fM (x)) (1)
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gi (x) ≤ 0, i = 1, . . . , s

hi (x) = 0, i = s + 1, . . . , t

x ∈ �,

(2)

where F(x) is composed of M conflicting objective func-
tions; x = (x1, x2, . . . , xD) is a solution with D dimensions;
� ∈ R

n denotes the decision space; gi (x) and hi (x) indi-
cate s inequality constraints and t − s equality constraints,
respectively; and t is the number of constraints.

To express the degree of the i th constraint violation
(denoted as CVi (x)) of x at the i th constraint, the follow-
ing formulation is used:

CVi (x) =
{

max(0, gi (x)), i = 1, . . . , s

max(0, |hi (x)| − δ), i = s + 1, . . . , t,
(3)

where δ is a very small positive constraint boundary relax-
ation parameter (e.g., 1e–4),which turns hi (x) into inequality
constraints. The overall constraint violation value of x
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(denoted as CV ) is formulated as:

CV (x) =
t∑

i=1

CVi (x), (4)

when CV (x) = 0 means that the decision variable x is a fea-
sible solution. Otherwise, it is an infeasible solution. Given
x1 and x2 are all feasible, if F(x1) is not worse than F(x2)
and it at least has one better objective, x1 is said to domi-
nate x2 (x1 ≺ x2). A solution is deemed Pareto-optimal if no
other feasible solution dominates it. CMOPs aim to find a set
of Pareto-optimal solutions that satisfy various constraints.
In the decision space, the set of all feasible Pareto-optimal
solutions is the Pareto-optimal set (PS). The mapping of the
PS onto the objective space forms the constrained Pareto
front (CPF). Similarly,when addressingunconstrainedmulti-
objective optimization problems (MOPs), the unconstrained
Pareto front (UPF) is ultimately desired [5].

In contrast to unconstrainedMOPs, CMOPs pose a greater
challenge in simultaneously managing conflicting objectives
and constraints [6, 7]. Many constrained multiobjective evo-
lutionary algorithms (CMOEAs) have been developed to
address this issue by employing diverse constraint-handling
techniques (CHTs). The current CHTs can be divided into
five categories: (1) penalty function methods [8, 9]; (2)
separation of constraints and objectives [10, 11]; (3) mul-
tiobjective methods [12, 13]; (4) hybrid methods [14, 15];
and (5) multi-stages and multi-populations (MSMP) [16,
17]. Although those methods employed in the state-of-the-
art CMOEAshave demonstrated high performance on certain
CMOPs, they still have limitations when it comes to solving
problems with complex infeasible regions and small discrete
feasible regions. Unfortunately, many real-world problems
exhibit such characteristics, such as the problem of syn-
chronous optimal pulse-widthmodulation of 3-level inverters
[18], which pose challenges to the existing CMOEAs. More
specifically, the penalty function methods and separation of
constraints and objectives require careful tuning of related
parameters. Designing an additional objective becomes chal-
lenging in multiobjective methods. Hybrid methods demand
differentiability of the problem [19].MSMP-basedCMOEAs
overcome the challenges of directly solvingCMOPsby lever-
aging infeasible solutions to extract valuable information,
which facilitates the collaboration between populations and
stages [20]. However, they encounter difficulties in effec-
tively leveraging infeasible solutions.

Inspired by the success of MSMP, a novel tri-stage with
reward-switching mechanism framework (TSRSM) is pro-
posed for CMOPs. The three stages of TSRSM employ
distinct strategies to leverage infeasible solutions. The novel
features of TSRSM are as follows:

1. The proposed TSRSM framework is comprised of three
stages: the push stage, the pull stage, and the repush stage.
Each stage employs two cooperative populations, namely
Pop1 and Pop2. The role of Pop2 varies across different
stages. In the push stage, Pop2 aims to converge to the
UPF and guide Pop1 to pass through infeasible regions.
Subsequently, Pop2 employs the constraint relaxation
technique to enhance feasibility in the pull stage. Finally,
Pop2 reconvenes with the UPF using knowledge trans-
fer and shares its unique insights to inform and guide
Pop1 in the repush stage. The novel characteristic of this
approach is that the Pop2 alternates between the UPF and
CPF, resulting in greater effectiveness compared to the
single-direction movement of the auxiliary population in
existing CMOEAs (e.g., CCMO), as evidenced by exper-
imental results.

2. A novel reward-switching mechanism (RSM) is devised
to decide when to switch stages by evaluating the con-
vergence and diversity levels exhibited by the population.
One distinct characteristic of this approach is that RSM
takes into account the convergence and diversity of the
population simultaneously, making it a more accurate
method to switch stages compared to other switching
mechanisms.

To demonstrate the performance of TSRSM, 9 state-of-
the-art CMOEAs were selected for comparison on three
benchmark test sets and 30 real-world CMOPs [21]. The
results reveal that the proposed method achieves superior-
ity over other CMOEAs on both benchmark problems and
real-world CMOPs. Additionally, TSRSM obtains the best
performance on 10 real-world problems, including the syn-
chronous optimal pulse-widthmodulation of 3-level inverters
problem, themulti-product batch plant problem [22], the heat
exchanger network design problem [23], and others. This
achievement represents the highest number of best results
compared to other CMOPs.

It should be noted that while many research works are
based on multi-stage approaches [24, 25], they primarily
focus on utilizing different tasks in each stage, rather than
emphasizing the optimization problems themselves. In the
TSRSM, the current stage can continue to evolve based on
its performance in the problem at hand. This means that if
the pull stage performs well in the problem, there may be no
need for a repush stage.

The remainder of this paper is organized as follows. In
“Related works and motivation”, we review the existing
MSMP and explain our motivations. In “Proposed method”,
the proposed TSRSM is introduced. “Experimental results”
shows the experimental setting and results. Finally, “Conclu-
sions and future work” presents the conclusions and future
work.
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Related works andmotivation

This section provides an overview of the existing CMOEAs
that are relevant to the field of MSMP, as this paper specifi-
cally emphasizes the multi-stage framework.

CMOEAs based on two stages and two populations

This part of the method tries to balance objectives and con-
straints by two stages and two populations.

As for two-population algorithms, one representative is
CCMO [26], which is a coevolutionary framework featur-
ing two weak cooperative populations. One population is
exclusively dedicated to solving the original CMOPs with
the specific objective of finding the CPF. In contrast, the
other population focuses its efforts on discovering the UPF.
Another two-population algorithm called cDPEA [27], in
which one population is designed to preserve competi-
tive infeasible solutions, and the other population adopts a
feasibility-oriented approach to handle infeasible solutions.
Furthermore, a novel adaptive fitness function was imple-
mented to regulate the trade-off between convergence and
diversity.

As for two-stage algorithms, one representative is PPS-
MOEA/D [28], which introduced a push–pull searching
strategy. The push stage is mainly focused on directing the
population toward theUPF,while the pull stage is responsible
for attracting the population toward the CPF. The switch-
ing mechanism employs the gradient of the maximum of
the nadir and the minimum of ideal points. DD-CMOEA
[5] employed this switching mechanism in the exploration
and exploitation stage with two populations. The primary
objective of the exploration stage is to search for informa-
tive infeasible solutions. In contrast, the exploitation stage
leverages infeasible solutions to explore nearby feasible
solutions. CMOEA-MS [29] is another two-stage algorithm
that consists of a first stage for identifying feasible regions
and a second stage for spreading along feasible boundaries.
Moreover, CMOEA-MS used fitness evaluation strategies
to adaptively balance objectives and constraints in two
stages. Another strategy was developed by TSTI [30], which
employed different emphases on the three indicators (namely
convergence, diversity, and feasibility) in two stages. The
first stage is to obtain solutions with good distribution and
to prevent the population from falling into local optima. The
second stage is to quickly converge to the CPF. DATEA [31]
usedweak coevolutionof the dual population to consider con-
straints in thefirst stage.Then, a feasibility-oriented approach
is employed to guide a single population in spreading across
the feasible regions discovered in the first stage. URCMO
[32] utilized the knowledge learned from the learning stage
about the relationship between the UPF and the CPF to guide
the evolving strategies in the evolving stage.

Inspired by the success of evolutionary multitask (EMT)
in other fields, such as high-dimensional classification fea-
ture selection problems, some researchers have attempted to
develop EMT to solve CMOPs. Qiao et al. [33] first intro-
duced EMT [34] into CMOEAs (named EMCMO), which
includes two tasks: the first task is designed to solve the
original CMOP, and the other is for the unconstrained MOP.
Furthermore, a transfer strategy was devised to determine
whether to transfer parent or offspring sets into the environ-
mental selection. A novel EMT, named MTCMO [35], was
subsequently developed, which employs a dynamic auxil-
iary task and leverages an improved ε-constraint method to
effectively tackle complex CMOPs. Furthermore, a tri-task
framework known as CMOEMT [36] was introduced. Three
tasks are designed for the original CMOP, the unconstrained
MOP, and the relaxed CMOP, respectively. The evolution-
ary process can be broken down into two distinct stages: the
evolving stage and the transfer stage. During the evolving
stage, three specific tasks evolve independently. Conversely,
the transfer stage effectively transmits relevant information
among the three tasks.

CMOEAs based on three stages and three
populations

This part of the method attempts to balance objectives and
constraints in a more granular way.

TriP [37] is a representative three-population algorithm.
Two populations evolve using a weak coevolutionary frame-
work to handle the original CMOP and the unconstrained
MOP separately, while the third population independently
addresses the relaxed CMOP. Three populations of TriP and
CMOEMThave the samepurpose, but theway they exchange
informationwith each other is different. C3M [24] is one rep-
resentative three-stage algorithm. In the early stage, setting
aside the typical consideration of feasibility to enable a more
thorough exploration of the objective space. At the medium
stage, the algorithm focuses on individual constraints, select-
ing those of the highest priority to explore the objective
space further. In the last stage of the algorithm, feasibility
is fully accounted for to enhance the quality of solutions
achieved in the previous two stages. Another three-stage
algorithm, TSCSO [25], introduced a tri-stage competitive
swarm optimizer. The first stage focuses on achieving global
convergence to theUPF, the second stage aims to enhance the
diversity of the population and exploremore feasible regions,
and the third stage is utilized to search for the feasible regions
omitted in the previous stage.

Motivations

The aforementioned studies share a common objective of
addressingCMOPs by utilizing distinct populations or stages
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to handle the CMOP, unconstrained MOP, and relaxed
CMOP. This is because MSMP-based evolutionary algo-
rithms can circumvent the challenges encountered in directly
solving the original CMOPs by employing a well-designed
staged approach [19]. First, the stage of solving the uncon-
strained MOP helps to find promising solutions by ignoring
constraints. Second, the stage of solving the relaxedCMOP is
beneficial to expanding feasible solutions. Third, the stage of
solving the original CMOP allows the population to converge
further to the CPF. However, the inadequate weight they
possess in the evolutionary process can lead to challenges
in solving specific problems. For example, if the algorithm
neglects the utilization of the relaxed CMOP, it struggles to
solve problems characterized by large infeasible regions and
small discrete feasible regions. Hence, designing an effective
framework and switchingmechanism is crucial for achieving
optimal results.

The existing frameworks still have some weaknesses.
CCMO utilized a coevolutionary framework with two weak
cooperative populations, which search for the CPF and UPF,
respectively. However, searching for the UPF in the later
stages results in significant resource wastage, which means
that it may be ineffective to search for the CPFwhen the UPF
and CPF are located far apart. TriP used the tri-population-
based coevolutionary framework, which solves the CMOP,
the unconstrainedMOP, and the relaxed CMOP, respectively.
The third population uses the ε-constrained technique in
PPS-MOEA/D, easily falling into the local optimum, such
as MW1, MW2, and MW10 [38]. CMOEMT encounters a
similar challenge to Trip as it also utilizes the ε-constrained
technique independently during the initial stage. EMCMO
employed an EMT framework with knowledge transfer,
which has been demonstrated to achieve high performance on
MW[38] problems.MTCMO improved the EMT framework
and knowledge transfer, which also has high performance on
MW.However, both EMCMOandMTCMOhave limitations
in dealing with problems that have large infeasible regions,
such as LIR-CMOP [39], because they primarily prioritize
feasibility.

Switching mechanisms are designed to achieve a balance
among the distinct stages that serve different tasks. However,
the existing switching mechanisms still encounter difficul-
ties due to their inaccurate judgment of CMOPs with diverse
characteristics as illustrated in Table 1. Consequently, the
efficiency and versatility of these existing switching mecha-
nisms remain insufficient.

To solve the aforementioned challenges, we propose a
novel TSRSM framework, which is described in “Proposed
Method”.

Proposedmethod

The procedure of TSRSM

As presented in Fig. 1, the proposed TSRSM is a coopera-
tive coevolutionary framework, including two populations,
namely, Pop1 and Pop2, and three stages, namely the push
stage, the pull stage, and the repush stage. Figure2 illustrates
the distribution of two populations across three stages. The
change in position of Pop2 is the origin of the name given
to the tri-stage. RSM is employed in the stage transition.
The pseudo-code of TSRSM is shown in Algorithm 1. At
the beginning of TSRSM, Pop1 and Pop2 are initialized ran-
domly with size N . Then, α is initialized with 20, which is
described in detail in “Reward-switching mechanism”. RSM
is applied to calculate α and β by Algorithm 2, which deter-
mines the evolutionary stage. In the push stage, Pop1 and
Pop2 are evolved with the weak coevolutionary framework.
Pop2 is designed to deal with the unconstrained MOP and
aims to quickly converge to the UPF. In the pull stage, Pop2
evolves independently using MOEA/D-Epsilon, while Pop1
uses information from Pop2 to evolve. In the repush stage,
Pop1 and Pop2 will utilize knowledge transfer to select a par-
ent set or an offspring set from another population in their
respective environmental selection, which is different in the
push stage.

It should be noted that the CDPmethod and fast nondomi-
nated sortingmethod are utilized for environmental selection
in both populations. Besides, the fitness assign method and
the truncation strategy proposed in SPEA2 [40] are used in
TSRSM. The above methods are used because they have
shown promising performance in CCMO [26], Trip [37],
MTCMO [35], etc. Naturally, Pop2 evolved by MOEA/D-
Epsilon in the pull stage does not employ these methods.

Algorithm 1: Procedure of TSRSM
Input: Population size N , termination condition
Output: Pop1

1 Initialize Pop1 and Pop2 of size N ;
2 k = 0;// k is current generation;
3 α=20;
4 while Termination condition is not satisfied do
5 Calculate α, β using RSM→ Algorithm 2;
6 if k ≤ α then
7 The push stage → Algorithm 3;
8 else if k ≤ β then
9 The pull stage → Algorithm 4;

10 else
11 the repush stage → Algorithm 5;
12 end
13 k = k + 1;
14 end
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Table 1 Switching mechanism of existing algorithm

Algorithm Switching mechanism Shortcoming

PPS-MOEA/D, DD-CMOEA, and TriP The gradient of the maximum of the nadir and
the minimum of the ideal points

Overlooking diversity contributions made by
other solutions

CMOEMT, TSTI, URCMO, and EMCMO The fixed number of evaluations Incapable of making proper adjustments for
complex CMOPs, which demand a greater
number of evaluations to navigate through
infeasible regions

C3M All solutions are nondominant, the magnitude
of change in objective values, and the consid-
ered number of constraints

Assigning a high weight to objectives opti-
mization impedes convergence toward theCPF

CMOEA-MS and DTAEA The ratio of feasible solutions (RFS) Facing challengeswhen dealingwith problems
that have small feasible regions

Fig. 1 The flowchart of TSRSM

Reward-switchingmechanism

As previously discussed, determining the transition between
stages is crucial, as the evolutionary process tends to decel-
erate in later phases, making fixed criteria obsolete. Hence,
RSM dynamically adjusts the number of evolutionary gen-
erations in the first two stages based on the performance of
the respective population.

To assess the performance of the population, RSM uses
two indicators: convergence and diversity. The recommended
approach for dispensing rewards is as follows:

MGk = max(Rck, Rdk) ≥ λ, (5)

where MGk is the maximum rate of change between the con-
vergence and diversity observed in the last gr generations up
to the kth generation, and λ represents the threshold value
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Fig. 2 The distribution of the two populations in three stages

for the rate of change. If MGk ≥ λ, the current stage will
be extended for an additional gr generations to facilitate fur-
ther evolutionary progress. Therefore, MGk also indicates
the performance of the population over the span of gr gener-
ations. The rates of change of the convergence and diversity
are formulated in Eqs. 6 and 7, respectively.

Rck =
∣
∣sck − sck−gr

∣
∣

max(sck−gr , δ)
, (6)

Rdk =
∣
∣sdk − sdk−gr

∣
∣

max(sdk−gr , δ)
, (7)

sck =
N∑

i=1

I cki , (8)

sdk =
N∑

i=1

I dki , (9)

where sck and sdk indicate the sum of I cki and I dki at the
kth generation, respectively, for the corresponding popula-
tion, as indicated in Eqs. 8 and 9; I cki and I dki represent the
convergence and diversity of the i th individual at the kth gen-
eration, respectively; gr is the number of reward generations;
N represents population size; and δ is a small parameter (e.g.,
1e–6). The calculation of I cki and I dki is the same as that of
TSTI [30]. For reasons of space, this paper does not show
here. It should be noted that the calculations of sck and sdk
involve the use of Pop1 in the push stage. The updation of gr
is distinct in different stages as follows.

gri =
{

20, i = 1

200, i = 2,
(10)

where i = 1, 2means in the push stage and pull stage, respec-
tively. Tomake readers more easily understand, gr means the
number of rewarded generations, while the subscript i in the
gr indicates the number of generations rewarded in either
the push or pull stage. When in the push stage, awarded 20

Algorithm 2: Procedure of RSM
Input: Pop1, Pop2, α, β, Current stage
Output: α, β

1 if Current stage = push stage and k = α then
2 Calculate MGα according to Equation 5;
3 if MGα ≥ λ then
4 α = α + gr1;
5 else
6 β= α+gr2;// β is initialized here;
7 end
8 end
9 if Current stage = push stage and k = β then

10 Calculate MGβ according to Equation 5;
11 if MGβ ≥ λ then
12 β = β + gr2;
13 end
14 end

generations at a time. However, when in the pull stage, 200
generations will be available to reward more generations.
This is because, over time, populations face increasing chal-
lenges in exploring superior solutions during the evolution
process, which is discussed in “Experimental results”.

Algorithm 2 gives the procedure of RSM. Firstly, MGk

is calculated by Eq.5. Then, gr is calculated in different
stages. When MGk ≥ λ, α and β are updated accordingly.
In the push stage, when MGk < λ, β is initialized. It should
be noted that MGk only be calculated when k = α or k = β

to reduce computational time.

The push stage

The purpose of the push stage is to quickly converge to UPF.
The procedure of the push stage is presented in Algorithm 3.
Pop1 and Pop2 are evaluated by the fitness assign method.
Pop1 considers both objectives and constraints, while Pop2
only considers objectives. Then, Pop1 and Pop2 select their
mating pool by binary tournament selection. Simulated
binary crossover (SBX) [41] and polynomial mutation (PM)
[42] are employed to generate N/2 offspring for each popu-
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Algorithm 3: Procedure of the push stage
Input: Pop1, Pop2, k
Output: Pop1, Pop2

1 forigin ←Evaluate Pop1 by original CMOP;
2 fhelper ←Evaluate Pop2 by unconstrained MOP;
3 while k ≤ α do
4 Parent1 ← Select N

2 individuals from Pop1 using binary
mating selection based on forigin ;

5 Parent2 ← Select N
2 individuals from Pop2 using binary

mating selection based on fhelper ;
6 Off1 ← Generated by GA operator based on Parent1;
7 Off2 ← Generated by GA operator based on Parent2;
8 CP1 ← Pop1 ∪ O f f1 ∪ O f f2;
9 CP2 ← Pop2 ∪ O f f1 ∪ O f f2;

10 forigin ←Evaluate CP1 by original CMOP;
11 fhelper ←Evaluate CP2 by unconstrained MOP;
12 Pop1 ← Environment selection based on forigin ;
13 Pop2 ← Environment selection based on fhelper ;
14 end

lation. Then, both offspring set is added into Pop1 and Pop2,
respectively, denoted as CP1 and CP2. Next, CP1 and CP2
are evaluated by the original CMOP and the unconstrained
MOP, respectively. Finally, Pop1 and Pop2 are updated based
on environment selection.

The pull stage

The purpose of the pull stage is to explore and expand the
set of feasible solutions to address CMOPs characterized by
complex feasible regions. Algorithm4 outlines the procedure
of the pull stage. Pop1 evolves in a manner similar to its evo-
lution in the push stage, with the difference that CP1 consists
of the population sets Pop1, Pop2, and Off1. The reason why
Off2 is not used inCP1 is discussed in “Experimental results”.
The evolution of Pop2 is accomplished through the utilization
of MOEA/D-Epsilon, following the same approach as the
second stage of PPS-MOEA/D [28]. ε is updated by Eq.11.

ε(v) =
{

(1 − γ )ε(v − 1), if r fv < ϕ

ε(0)(1 − v
Tc

)sp, if r fv ≥ ϕ,
(11)

where v represents the vth generation from the beginning of
the pull stages; r fv is the feasible ratio of Pop2; sp controls
the speed at which the relaxation of constraints is reduced;
γ and ϕ are control parameters; ε(0) is the maximal CV
of Pop2 at the end of push stage; and Tc indicates the total
number of generations except the push stage. The number
of generations in the pull stage is not utilized because it is
indeterminate at the beginning. The influence on evolution is
minimal, as ε are nearly equal in the later phases.

Algorithm 4: Procedure of the pull stage
Input: Pop1, Pop2, k
Output: Pop1, Pop2

1 forigin ←Evaluate Pop1 by original CMOP;
2 while α < k ≤ β do
3 Parent1 ← Select N

2 individuals from Pop1 using binary
mating selection based on forigin ;

4 Off1 ← Generated by GA operator based on Parent1;
5 Pop2 ← Evolve Pop2 by MOEA/D-Epslion considering

constraints;
6 CP1 ← Pop1 ∪ Pop2 ∪ O f f1;
7 forigin ← Evaluate CP1 by original CMOP;
8 Pop1 ← Environment selection based on forigin ;
9 end

The repush stage

Different from the push stage, knowledge transfer [33] is
employed in environment selection. The purpose of knowl-
edge transfer is to select a more effective population to attend
environment selection. As presented in Algorithm 5, Lines
8–13 are the procedure of knowledge transfer. The effective-
ness of the populations relies on the successful transfer rates
of parent sets and offspring sets (Rp and Ro), which are
calculated as Eqs. 12 and 13:

Rp = num_p

N
, (12)

Ro = num_off
N
2

, (13)

where Rp ∈ [0, 1], Ro ∈ [0, 1], num_p and num_off are,
respectively, the number of parent sets and offspring sets
in the N best individuals, which are selected from TCP1
and TCP2 by environment selection. If Rp > Ro, it means
parent sets are more effective in accommodating the final
environment selection. To maintain diversity, N/2 individ-
uals are selected randomly from parent sets for TransP . If
Rp < Ro, the offspring sets are selected for TransP . Finally,
the new populations are obtained by environment selection.

Computational complexity

The proposed TSRSM mainly includes genetic operators,
mating selection, and population updation, except for Pop2
in the pull stage. Since the MOEA/D-Epsilon method uses
PPS-MOEA/D in the pull stage, the complexity is O(M ·N 2).
Moreover, population updation uses SPEA2, so the complex-
ity is O(M · N 3). The complexity of genetic operators and
mating selection are, respectively, O(N · D) and O(N ). In
summary, the worst computational complexity of TSRSM is
O(M · N 3). However, the reward-switching mechanism and
knowledge transfer method would consume some computa-
tional time.
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Algorithm 5: Procedure of the repush stage
Input: Pop1, Pop2, k
Output: Pop1, Pop2

1 forigin ←Evaluate Pop1 by original CMOP;
2 fhelper ←Evaluate Pop2 by unconstrained MOP;
3 while β < k do
4 Parent1 ← Select N

2 individuals from Pop1 using binary
mating selection based on forigin ;

5 Parent2 ← Select N
2 individuals from Pop2 using binary

mating selection based on fhelper ;
6 Off1 ← Generated by GA operator based on Parent1;
7 Off2 ← Generated by GA operator based on Parent2;
8 TCP1 ← Pop1 ∪ O f f1;
9 TCP2 ← Pop2 ∪ O f f2;

10 Evaluate TCP1 on the MOP;
11 Evaluate TCP2 on the CMOP;
12 TransP1 ← According to Equation 12-13;
13 TransP2 ← According to Equation 12-13;
14 CP1 ← Pop1 ∪ O f f1 ∪ TransP2;
15 CP2 ← Pop2 ∪ O f f1 ∪ TransP1;
16 forigin ←Evaluate CP1 by original CMOP;
17 fhelper ←Evaluate CP2 by unconstrained MOP;
18 Pop1 ← Environment selection based on forigin ;
19 Pop2 ← Environment selection based on fhelper ;
20 end

Experimental results

To evaluate the performance of the proposed TSRSM in
solving CMOPs, a series of experiments are conducted on
PlatEMO [43].

Experimental settings

Test functions

To demonstrate the performance of TSRSM, three bench-
mark test suites (MW [38], LIRCMOP [39], and constraint
DTLZ [44, 45]) are adopted. The details of those are in
Table 2.

Compared algorithms

To perform the effectiveness of the proposed TSRSM, the 9
most state-of-the-art algorithms are selected as follows:

1. Two-population based: CCMO [26] and cDPEA [27].
2. Two-stage based: CMOEA-MS [29], DSPCDE [16], and

TSTI [30].
3. EMT-based: MTCMO [35] and CMOEMT [36].
4. Three-population based: TriP [37].
5. Three-stage based: C3M [24].

In algorithms that use GA as an operator, the parameters
of SBX and PM are set as follows:

1. Crossover probability of SBX: 1
2. Mutation probability of PM: 1/D

In algorithms that use DE as an operator, the parameters
CR and F are 1 and 0.5, respectively.

The population size N is set to 91, taking into account the
influence of the weight vector set on the actual population
size in PlatEMO [46]. This consideration serves to render
the experimental results more reliable and consistent [36].
The maximum number of function evaluations Emax is set to
100,000 for all test functions. Moreover, each algorithm runs
independently for 30 times on each test function. The param-
eter settings of all the methods in comparison are the same as
suggested in their original literature. TSRSM uses the same
parameter for constraint relaxation as the PPS-MOEA/D.
Specifically, the parameters λ, gr1, and gr2 in TSRSM are
set to 1e–2, 20, and 200, respectively.

Performance indicators

To measure the performance of each algorithm, inverted
generational distance based on modified distance calcula-
tion (IGD+) [47], hypervolume (HV) [48], and feasible rate
(FR) [49] were adopted as indicators. IGD+ measures the
average distance between the true PF and the nearest indi-
vidual, reflecting the algorithm’s convergence. A smaller
IGD+ value indicates better algorithm performance. HV cal-
culates the volume enclosed by the obtained solutions and
the predefined reference point, serving as an indicator of
both convergence and diversity. A higher HV value corre-
sponds to better algorithm performance. The FR represents
the ratio of runs in which the method successfully discovers
feasible solutions in the final generation. A higher FR value
indicates a stronger ability to find feasible regions.Moreover,
theWilcoxon test at the 0.05 level is performed to estimate the
difference between the two algorithms. "+", "-" and "≈" indi-
cate that the compared algorithm is significantly better than,
significantly worse than, or statistically similar to TSRSM.

Comparison with peer algorithms

In this part, the proposed TSRSM is compared with the 9
most state-of-the-art CMOEAs in three benchmark suits.
The results of IGD+ and HV are reported in Tables 4 and
5, where the Bold block means the best result among the
ten algorithms. To clearly analyze the results, the Wilcoxon
test is conducted and the corresponding results are presented
in tables. The experimental results using the IGD+ met-
ric demonstrate that TSRSM achieves superior performance
compared to CCMO, cDPEA, CMOEA_MS, DSPCMDE,
TSTI, MTCMO, CMOEMT, TriP, and C3M on 21, 22, 31,
36, 30, 26, 24, 24, and 35 test functions, respectively. Simi-
larly, according to the HV metric, TSRSM outperforms the
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Table 2 Description of three benchmark test suites

Test suites Parameter settings Features

MW M = 3, D = 15 is set for MW4, MW8, and
MW14; M = 2, D = 15 is set for other func-
tions.

Nonlinear constraints and diverse geometries
of the CPF

LIRCMOP M = 3, D = 10 is set for LIRCMOP13 and
LIRCMOP14; M = 2, D = 10 is set for other
functions

Small feasible regions

Constraint DTLZ M = 3 is set for all functions; D = 7 is set for
C1-DTLZ1, DC1-DTLZ1,and DC2-DTLZ1;
D = 12 is set for the other functions

Multimodality, irregularity and bias

other 9 compared algorithms on 22, 22, 32, 35, 29, 26, 23, 25,
and 35 test functions, respectively. This confirms the effec-
tiveness of TSRSM.

Among those compared algorithms, CMOEMT has 6 test
functions better thanTSRSMon IGD+.CMOEMTuses three
populations solving for the CMOP, the unconstrained MOP,
and the relaxed CMOP, respectively, which is similar to TriP.
Moreover, CMOEMT and TriP show similar performance on
LIRCMOP5, LIRCMOP6, LIRCMOP10, and LIRCMOP11,
surpassing TSRAM. The same character of those functions
is that interspersed distribution of feasible and infeasible
regions. The consistently searching for the UPF may be
helpful in identifying a wide range of the CPF for this type
of problem. Moreover, in the earlier phases, the three pop-
ulations of the CMOEMT evolve independently, with one
of them utilizing PPS-MOEA/D (ε-constrained technique),
which is effective for the LIRCMOP. The same issue also
arises with TriP, as it independently utilizes PPS-MOEA/D.
However, when it comes to the MW and CDTLZ benchmark
test sets, PPS can easily converge to a local optimum in the
former phases. If PPS-MOEA/D is not effective for the cur-
rent problem, it would result in wasted computational time.
At the pull stage, TSRSM employs PPS-MOEA/D to miti-
gate the risk of local optimum, particularly considering that
Pop2 has already attained the UPF during the push stage.
Furthermore, if the expected performance is unavailable in
the pull phase, RSMwill switch to the next stage. Therefore,
TSRSMperforms significantly better in theMWandCDTLZ
problems, and slightly better in the LIRCMOP problem.

CCMO, cDPEA, and MTCMO all use two cooperative
populations. The distinctive feature of MTCMO is that
it enables knowledge transfer between two populations.
Therefore, MTCMO is more competitive than CCMO and
cDPEA. Furthermore, MTCMO shows better performance
than TSRSM on MW5, MW11, MW12, and DC1_DTLZ3,
which have the same feature: disconnected CPF. This may
be because the knowledge transfer and improved ε-constraint
method help MTCMO find more promising solutions at the
edge of CPF for this type of problem.

DSPCMDE, TSTI, C3M, and CMOEA_MS are all multi-
stage-based methods. However, they only have less than 3
functions better than TSRSM. This demonstrates the superi-
ority of the three-stage framework in TSRSM.

Table 6 displays the FR results, demonstrating that
CCMO, CMOEMT, TriP, and TSRSM achieved 100% feasi-
ble rates across three benchmark test sets. These algorithms
share a common characteristic, which is the utilization of a
weak coevolutionary framework. The weak coevolutionary
framework employs two populations: one for the uncon-
strained MOP and the other for the CMOP, facilitating the
population’s traversal of infeasible regions. CMOEA_MS,
cDPEA, DSPCMDE, TSTI, MTCMO, and C3M exhibited
lower performance than TSRSM on 3, 6, 9, 1, 1, and 7 test
functions, respectively.

For a visual comparison, Fig. 3 shows solutions with the
median IGD+ value among 30 runs obtained by TSRSM
and the compared 9 algorithms on MW10 and C1_DTLZ3.
For MW10 with small and discontinuous feasible regions,
TSRSMoutperforms the other compared algorithms in terms
of both diversity and convergence performance. DSPCMDE
and C3M encounter difficulties in escaping local optimum.
Other algorithms are capable of finding theCPF, but they tend
to exhibit limited diversity on the CPF. TriP achieves similar
convergence levels on the CPF. However, due to TriP inde-
pendently employing the ε-constrained technique, which is
susceptible to getting stuck in the local optimumfor this prob-
lem type, it demonstrates inferior diversitywhen compared to
TSRSM. For C1_DTLZ3 with multimodality, DSPCMDE,
TSTI, MTCMO, and C3M fail to find feasible solutions
with optimal objectives. CCMO, cDPEA, CMOEA_MS,
CMOEMT, and TriP can find feasible solutions. However,
they may also generate solutions that lie significantly out-
side the feasible region. In the case of C1_DTLZ3, the CPF
coincides with the UPF, making it advantageous to search for
the UPF when addressing this particular problem. TSRSM
demonstrates the ability to transition to the repush stage at
an early stage, leveraging knowledge transfer to effectively
drive evolution. Therefore, TSRSMobtains the best diversity
and convergence performance than the other algorithms.
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Fig. 3 Solutions with the median IGD+ value among 30 runs obtained by TSRSM and the compared 9 algorithms on MW10 and C1_DTLZ3. The
red points represent solutions in Pop1. The gray region is the feasible region
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To further illustrate the performance of TSRSM, the aver-
age ranking of TSRSM with 9 state-of-the-art CMOEAs
obtained by applying the Friedman test at the significance
level 0.05, is shown in Fig. 4. The lower the ranking, the bet-
ter the performance. TSRSM obtains the lowest ranking with
2.50 in HV and 2.58 in IGD+. Moreover, the rigorous differ-
ence is testified by applying post hoc statistical procedures
[50]. The adjusted p-values of Friedman test with the Holm
and Hochberg procedure are presented in Table 3. Therefore,
TSRSMstill outperforms other state-of-the-art algorithms by
the Friedman test.

The exceptional performance of TSRSM can be attributed
to the following factors:

1. ForCDTLZandMWwhich have simply feasible regions,
the push and repush stage of TSRSM plays a very impor-
tant role in solving this kind of problem.

2. For LIRCMOP with complex feasible regions and large
infeasible regions, ε-constrained technique has good per-
formance. TriP, CMOEMT, and proposed TSRSMall use
ε-constrained technique. However, TSRSM is still better
than TriP and CMOEMT, due to the cooperation between
the two populations, and RSM will reward more genera-
tions for the pull stage.

3. In summary, TSRSMobtains themost competitive results
in three benchmark setswith complex and uncomplicated
regions. Three stages and two populations in TSRSM
carry out their duties and cooperate with each other.
Moreover, the RSM plays a crucial role in determining
when to switch stages.

Comparison on real-world CMOPs

To provide a more comprehensive evaluation of TSRSM,
real-world CMOPs are used to conduct experiments in this
part. The former 30 instances of RWMOPs[21] are selected.
The results of HV obtained by TSRSM and the other 9 peer
algorithms are listed in Table 7. In the table, NaN indi-
cates that the algorithm failed to find a feasible solution
even after 30 runs. Despite the unique characteristics and
challenges posed by different real-world CMOPs, TSRSM
consistently outperforms CCMO, cDPEA, CMOEA_MS,
DSPCMDE, TSTI, MTCMO, CMOEMT, TriP, and C3M on
12, 13, 19, 20, 14, 11, 15, 17, and 15 real-world CMOPs,
respectively. Although CMOEMT and Trip have 8 and 5
benchmark test functions better than TSRSM on HV, respec-
tively, they only have one or two real-world problems better
than TSRSM. Furthermore, TSRSM achieves the 10 best
results on real-world problems, such as the synchronous opti-
mal pulse-width modulation of 3-level inverters problem, the
multi-product batch plant problem, the heat exchanger net-
work design problem, and others. This is the highest number
of best results among the compared CMOPs. Therefore, the

effectiveness of the proposed TSRSM in solving real-world
problems is demonstrated.

Discussions about TSRSM

Investigation into the search behavior

We investigate the search behavior of TSRSM across dif-
ferent test problems. Two representative test functions,
LIRCMOP1 and MW9, have been selected because they
exhibit distinct sizes of feasible regions and varying degrees
of overlap between the CPF and UPF. The results of IGD+,
HV, RFS, and the distributions of solutions for MW9 and
LIRCMOP1 are presented in Fig. 5, obtained from a single
run of TSRSM. This particular run is chosen out of thirty
runs due to its median IGD+.

1. The effect of using reward-switching mechanism:
Fig. 5a, e depict the results of IGD+ and HV for the number
of function evaluations, along with RFS in Pop1 and Pop2.
The first switching point refers to the transition from the push
stage to the pull stage, while the second switching point cor-
responds to the transition from the pull stage to the repush
stage in Fig. 5a. Figure5e illustrates a single switching point,
specifically representing the transition from the push stage to
the pull stage. From Fig. 5a, e, we can obtain the following
observations:

1. The RSM will transition to the next stage when the pro-
cess of evolution becomes significantly slow or stagnant.

2. If a particular stage consistently performs well on the
problem, there would be no need to switch to another
stage, such as LIRCMOP1 depicted in Fig. 5e.

To further showcase the competitiveness of the RSM,
two additional popular switching mechanisms are employed
in TSRSM. For the number of evaluations method, when
α = 0.2, for most problems, the Pop2 could reach the UPF
[33]. Therefore, to simplify the experiment, α and β are set
to 0.2 and 0.4, respectively, in TSRSM1. Another switching
mechanism used in TSRSM2 is the gradient of the maxi-
mum of the nadir and the minimum of ideal points [5, 28,
37], which is employed to evaluate the performance of the
population. The RFS method is not applicable to TSRSM
since it is specifically designed for dual-stage methods. Fur-
thermore, the switching mechanism utilized in C3M is not
applicable due to its implementation of gradually increasing
constraint numbers during the middle stage. In C3M, when
the constraint numbers meet the threshold, the final stage
is activated. Therefore, only two switching mechanisms are
selected to compare with RSM. However, those two switch-
ing mechanisms are popularly used in many algorithms as
discussed in “Related works and motivation”.
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Fig. 4 Averge ranking of all 10
algorithms on three benchmark
test sets by Friedman test

Table 3 The adjusted p-values
of IGD+ and HV obtained
through Friedman test of
TSRSM and 9 state-of-the-art
algorithms

TSRSM VS IGD+ HV

Holm p Hochberg p Holm p Hochberg p

CCMO 0.019973 0.015319 0.012750 0.008000

cDPEA 0.019973 0.015319 0.012750 0.008000

CMOEA_MS 0.000000 0.000000 0.000000 0.000000

DSPCMDE 0.000000 0.000000 0.000000 0.000000

TSTI 0.000000 0.000000 0.000000 0.000000

MTCMO 0.000650 0.000650 0.000142 0.000142

CMOEMT 0.003424 0.003424 0.003424 0.003424

TriP 0.010593 0.010593 0.008286 0.008000

C3M 0.000000 0.000000 0.000000 0.000000

The detailed IGD+ results and HV results of those three
algorithms are listed in Table 8 and Table 9. Comparison
results demonstrate that TSRSM outperforms TSRSM1 and
TSRSM2 on 11 and 9 test functions, respectively, accord-
ing to IGD+ results. Similarly, TSRSM achieves competitive
better results on HV.

2. The effect of using two populations: To investigate the
roles of the two populations, the distributions of solutions
are monitored at the switching point and the final evaluation
in Fig. 5b–d and f–h, in addition to the RFS in the different
populations (Fig. 5a, e. From Fig. 5, we have the following
observations:

1. Pop1 mainly serves as storing feasible solutions, while
Pop2 has the ability to preserve both infeasible and feasi-
ble solutions simultaneously. That is, Pop1 aims to search
for the CPF, thus focusing on the feasible regions. Pop2
aims to converge to the UPF on the push stage and the
repush stage, and toward to the CPF on the pull stage.
Furthermore, the RFS in Pop2 varies depending on the
geometry of the feasible and infeasible regions. As is
shown in Fig. 5e, theRFS exhibits significant fluctuations
in the pull stage for LIRCMOP1 due to its small feasible
regions. In contrast, MW9 showcases minimal fluctua-
tions in the pull stage given its larger feasible regions in
Fig. 5a.
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2. In the push stage, Pop2 converges to the UPF, which has
better objective values than Pop1, as presented in Fig. 5b
and Fig. 5f. Therefore, Pop2 can help Pop1 cross infea-
sible regions.

3. In the pull stage, Pop2 utilizes the ε-constraint method
[28], resulting in an initial increase in RFS. Once the
RFS exceeds a threshold value ϕ (e.g., 0.95), the con-
straint is then relaxed, leading to oscillations in the RFS
ofPop2. In otherwords,whenRFSexceedsϕ, theweights
of constraints are decreased to preserve population diver-
sity. Conversely, if the RFS is below the threshold, the
weights of constraints are increased to guide the popula-
tion toward convergence to the CPF.

4) In the repush stage, Pop2 undergoes knowledge transfer
with Pop1, when moving toward the UPF once more,
thereby aiding in the expansion of the unexplored CPF
for Pop1.

3. The effect of using tri-stage: The proposed TSRSM has
three stages: the push stage, the pull stage, and the repush
stage. Therefore, Three variants are designed for the algo-
rithm. First, we discuss the different order between the pull
stage and the repush stage. When the repush stage is before
the pull stage, the algorithm is named TSRSM-PRP. Then,
another two variants of TSRSM are considered: TSRSM-
PR, which excludes the pull stage, and TSRSM-PP, which
excludes the repush stage.

The detailed IGD+ and HV results of those three algo-
rithms are reported in Table 10 and Table 11. TSRSM
outperforms TSRSM-PR, TSRSM-PP, and TSRSM-PRP
in terms of IGD+ and HV results. TSRSM-PRP exhibits
poorer performance compared to TSRSM-PR, TSRSM-PP,
and TSRSM, indicating that the pull stage should precede
the repush stage. TSRSM-PP has better performance on
LIRCMOP than other methods. This implies that the ε-
constrained technique in the pull stage is more effective in
passing through infeasible regions and solving problemswith
small feasible regions. As presented in Fig. 5h, TSRSM-
PR obtains poor diversity on the CPF, while TSRSM-PP
gets a well-distributed set of solutions in Fig. 5g. How-
ever, the ε-constrained technique is susceptible to falling into
local optimum easily. Figure 6 illustrates the performance
of TSRSM-PP and TSRSM on MW13. MW13 exhibits the
characteristics of slender and narrow feasible regions, and is
prone to local optimum. TSRSM-PP displays a less favorable
distribution on the CPFwhen compared to TSRSM. This dis-
crepancy arises from the fact that TSRSM has the capability
to switch to the repush stage, which increases the likelihood
of escaping the local optimum. Therefore, the tri-stage of
TSRSM is the most effective.

Investigation into the main strategies

In this section, four variants are designed to verify the effec-
tiveness of proposed strategies in TSRSM. The first variant
(TSRSM-V1) is to verify the effectiveness of using Pop1 to
calculate sk and sd. Therefore, the first variant employs Pop2
to calculate sck and sdk . The second variant (TSRSM-V2)
employs 20 generations to reward the two preceding stages,
while the third variant (TSRSM-V3) utilizes 200 generations,
thus confirming the effectiveness of varying the number of
rewarded generations in RSM. The fourth variant (TSRSM-
V4) uses offspring Off2 to attend the CP1, not Pop2, which
is used to verify the effectiveness of the cooperation of two
populations on the pull stage.

Table 12 shows the performance of TSRSM and four vari-
ants on LIRCMOP problems. TSRSM is significantly better
than TSRSM-V1, TSRSM-V2, TSRSM-V3, and TSRSM-
V4 on 4, 9, 8, and 11 problems, respectively. Moreover,
TSRSM obtains 7 best average values on LIRCMOP prob-
lems. Hence, the effectiveness of the proposed strategies in
TSRSM can be verified.

Parameter analysis of TSRSM

The proposed TSRSM contains three parameters λ, gr1 and
gr2 to adjust the RSM. The setting of gr1 and gr2 is depen-
dent onλ. In otherwords, the values of gr1 and gr2 varywhen
λ takes different values. Due to space limitations, we only
present the effects of gr1 and gr2 when λ = 1e–2, despite
conducting numerous experiments. Here are the experimen-
tal details.

1. TSRSM3: gr1 = 0 and gr2 = 200.
2. TSRSM4: gr1 = 40 and gr2 = 200.
3. TSRSM5: gr1 = 60 and gr2 = 200.
4. TSRSM6: gr1 = 80 and gr2 = 200.
5. TSRSM7: gr1 = 20 and gr2 = 0.
6. TSRSM8: gr1 = 20 and gr2 = 400.
7. TSRSM9: gr1 = 20 and gr2 = 600.
8. TSRSM10: gr1 = 20 and gr2 = 800.

The comparison results in terms of IGD+ and HV are
presented in Tables 13, 14, 15 and 16. When gr1 = 0
or gr2 = 0, TSRSM obtains very poor results, indicating
that both the push stage and the pull stage are crucial for
TSRSM. TSRSM4 (with gr1 = 40 and gr2 = 200) and
TSRSM5 (with gr1 = 60 and gr2 = 200) exhibit comparable
performance toTSRSM(with gr1 = 20 and gr2 = 200), sug-
gesting that varying gr1 from 20 to 60 has negligible impact
on the performance of TSRSM. As gr1 and gr2 increase,
the number of generations left in TSRSM becomes smaller,
which means that TSRSM has less chance to make adjust-
ments. In other words, the larger gr1 and gr2, the worse
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performance. Moreover, among the 9 variants of TSRSM
with different values for gr1 and gr2, TSRSMwith gr1 = 20
and gr2 = 200 demonstrates superior performance. There-
fore, gr1 = 20 and gr2 = 200 are set in this paper.

Conclusions and future work

This paper proposes a tri-stage with reward-switching mech-
anism framework named TSRSM for CMOPs. The tri-stage
consists of the push, pull, and repush stage. Each stage con-
sists of two coevolutionary populations, namely Pop1 and
Pop2. Among the two populations, Pop1 is dedicated to con-
verging toward the CPF over three stages, whereas Pop2 is
designed to go back and forth between the UPF and CPF.
Moreover, RSM is applied to determine when to switch
stages according to the maximum rate of change between
the convergence and diversity in the population. The experi-
mental results on three benchmark test sets and 30 real-world
CMOPs demonstrate that TSRSM outperforms 9 state-of-
the-art peer CMOEAs. Furthermore, TSRSM demonstrates
competitive performance in addressing problems with com-
plex infeasible regions and small discrete feasible regions,
such as the synchronous optimal pulse-width modulation of
3-level inverters problem.

However, the current TSRSM still has certain limita-
tions, which can be addressed through the following potential
approaches.

1. TSRSM still performs poorly on some test functions such
as LIRCMOP5-6, and LIRCMOP10-11. TSRSM-PP and
TSRSM4 with a large proportion of the pull stage per-
form better in these test functions, which means that it
is necessary to design a better RSM for improving the
accuracy of the switching. The integration of RSM with
machine learning techniques, which can learn the charac-
teristics of various stages and problems, shows potential
in determining optimal switching strategies.

2. TSRSM requires setting three parameters that signifi-
cantly impact the algorithm’s performance. To simplify
the application and enhance efficiency, advanced tech-
niques can be employed to minimize the number of
required parameters. Furthermore, utilizing the concept
of iterative learning control may offer a feasible approach
to dynamically tune the parameters of TSRSM [51, 52].

The following research directions are suggested for future
study.

1. Further research is warranted for fuzzy-based TSRSM to
address the challenges presented by real-world multiob-
jective optimization problems with uncertain parameters
and uncertain semantic representations [53–55].

2. It is worth considering the exploration of adaptive selec-
tion of different evolutionary operators in TSRSM.

Acknowledgements Thisworkwas supported by the Shanghai Science
and Technology Planning Project (20DZ2205900), Shanghai Munici-
pal Commission of Science and Technology Project (19511132101),
ShanghaiMunicipal Science andTechnologyMajorProject (2021SHZD
ZX0100), and the Fundamental Research Funds for the Central Univer-
sities.

Data availability The data that support the findings of this study are
openly available.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A Table

See Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Complex & Intelligent Systems
Ta
bl
e
4

T
he

m
ea
n
IG

D
+
va
lu
es

of
te
n
al
go
ri
th
m
s
on

th
re
e
se
ts
of

be
nc
hm

ar
k
te
st
fu
nc
tio

ns

Pr
ob
le
m

C
C
M
O

cD
PE

A
C
M
O
E
A
_M

S
D
SP

C
M
D
E

T
ST

I
M
T
C
M
O

C
M
O
E
M
T

T
ri
P

C
3M

T
SR

SM

C
1_
D
T
L
Z
1

1.
48
61
e–
2

−
1.
48
31
e–
2

−
1.
53
03
e–
2

−
2.
25
74
e–
2

−
1.
48
32
e–
2

−
1.
48
33
e–
2

−
1.
66
80
e–
2

−
1.
60
09
e–
2

−
1.
98
81
e–
2

−
1.
47
00
e–
2

C
1_
D
T
L
Z
3

2.
39
30
e–
2

≈
2.
36
68
e–
2

≈
2.
39
60
e–
2

≈
6.
43
15
e–
1

−
4.
29
16
e+

0
−

5.
88
50
e+

0
−

2.
95
94
e–
2

−
2.
65
89
e–
2

−
5.
14
27
e–
1

−
2.
38
35
e–
2

C
2_
D
T
L
Z
2

2.
01
47
e–
2

−
2.
06
37
e–
2

−
1.
92
61
e–
2

≈
3.
02
26
e–
2

−
1.
97
45
e–
2

−
1.
99
38
e–
2

−
2.
14
03
e–
2

−
2.
11
21
e–
2

−
3.
13
82
e–
2

−
1.
92
68
–2

C
3_
D
T
L
Z
4

6.
90
26
e–
2

≈
6.
16
36
e–
2

−
3.
45
24
e–
1

−
9.
24
92
–2

−
5.
88
52
e–
2

≈
5.
87
31
e–
2

≈
6.
71
98
e–
2

−
6.
63
43
–2

−
1.
00
74
e–
1

−
5.
81
94
e–
2

D
C
1_
D
T
L
Z
1

8.
52
98
e–
3

≈
8.
54
09
e–
3

−
1.
16
93
e–
2

−
2.
83
41
e–
1

−
8.
74
62
e–
3

−
8.
57
14
e–
3

−
1.
04
19
e–
2

−
9.
87
58
e–
3

−
2.
84
53
e–
2

−
8.
46
02
e–
3

D
C
1_
D
T
L
Z
3

1.
36
06
e–
2

≈
1.
35
72
e–
2

+
3.
85
54
–2

≈
6.
07
85
e–
1

−
2.
01
50
e–
2

≈
1.
35
22
e–
2

+
1.
45
56
e–
2

≈
1.
84
79
-2

−
6.
91
95
e–
1

−
1.
73
25
e–
2

D
C
2_
D
T
L
Z
1

1.
50
14
e–
2

−
1.
49
95
e–
2

−
1.
54
19
-2

−
2.
59
00
e–
2

−
4.
07
88
e–
2

−
9.
76
83
e–
2

−
1.
60
85
e–
2

−
1.
73
60
e–
2

−
2.
77
77
e–
2

−
1.
49
53
e–
2

D
C
2_
D
T
L
Z
3

2.
36
72
e–
2

≈
1.
49
95
e–
1

−
4.
53
51
e–
1

−
5.
65
84
e–
1

−
5.
61
13
e–
1

≈
5.
62
09
e–
1

−
2.
92
77
e–
2

≈
1.
14
76
e–
1

−
2.
88
00
-1

−
1.
01
98
e–
1

D
C
3_
D
T
L
Z
1

5.
16
12
e–
3

≈
5.
17
96
-3

≈
2.
47
34
-2

−
3.
71
14
e–
1

−
2.
20
38
e–
1

−
9.
28
25
e–
2

−
5.
41
02
-3

≈
6.
06
37
e–
3

+
2.
79
49
e+

0
−

1.
07
92
e–
2

D
C
3_
D
T
L
Z
3

8.
26
50
-3

+
3.
01
17
e–
1

≈
1.
36
29
e–
1

+
6.
33
96
-1

−
1.
85
55
e+

0
−

1.
16
24
e+

0
−

9.
16
76
e–
3

+
2.
59
10
e–
1

−
2.
09
84
e+

0
−

1.
71
86
e–
1

L
IR
C
M
O
P1

1.
77
40
-1

−
9.
52
62
e–
2

−
2.
63
50
-1

−
4.
79
40
e–
2

−
9.
52
53
e–
2

−
1.
44
13
e–
2

≈
1.
35
11
e–
2

≈
1.
44
69
e–
2

≈
8.
51
88
-2

−
1.
49
63
e–
2

L
IR
C
M
O
P2

8.
62
48
e–
2

−
6.
10
34
-2

−
2.
04
19
-1

−
4.
65
75
e–
2

−
7.
46
17
-2

−
1.
53
27
-2

−
8.
77
78
e–
3

≈
9.
71
49
e–
3

−
7.
47
19
-2

−
9.
01
02
e–
3

L
IR
C
M
O
P3

2.
33
67
-1

−
1.
52
0-
1

−
2.
64
65
e–
1

−
9.
35
01
e–
2

−
1.
91
82
-1

−
1.
28
46
-1

−
1.
44
53
e–
2

≈
6.
29
49
e–
2

≈
3.
05
49
e–
1

−
1.
43
17
e–
2

L
IR
C
M
O
P4

1.
37
25
-1

−
6.
84
37
-2

−
2.
11
38
e–
1

−
8.
44
79
-2

−
6.
92
15
-2

−
1.
21
28
e–
2

≈
1.
32
94
-2

≈
9.
74
24
e–
3

≈
1.
15
48
e–
1

−
1.
51
24
-2

L
IR
C
M
O
P5

1.
20
21
e–
2

−
1.
74
66
-2

−
2.
71
21
e–
2

−
6.
01
31
-3

−
1.
07
81
e–
1

−
6.
43
38
-2

−
3.
29
07
e–
3

+
3.
31
02
e–
3

+
4.
93
44
e–
3

+
5.
62
97
-3

L
IR
C
M
O
P6

9.
03
18
e–
3

−
1.
88
87
-2

−
3.
17
02
-2

−
5.
66
32
e–
3

−
1.
48
29
e–
1

−
1.
08
35
e–
1

−
2.
91
13
e–
3

+
2.
96
42
e–
3

+
4.
73
41
e–
3

−
3.
31
55
-3

L
IR
C
M
O
P7

1.
02
76
e–
2

−
8.
97
82
-3

−
1.
37
68
e–
2

−
7.
56
92
e–
3

−
2.
20
35
-2

−
1.
32
34
e–
2

−
7.
14
76
-3

−
6.
91
67
e–
3

−
6.
81
96
-3

−
6.
52
77
e–
3

L
IR
C
M
O
P8

7.
21
06
e–
3

−
7.
20
70
-3

−
1.
39
45
e–
2

≈
7.
52
13
e–
3

−
5.
14
94
-2

−
8.
76
16
e–
3

≈
7.
14
00
-3

−
6.
78
55
e–
3

−
6.
65
20
-3

−
6.
47
08
e–
3

L
IR
C
M
O
P9

1.
64
85
e–
2

≈
1.
62
17
e–
2

≈
2.
83
61
-1

−
3.
58
49
e–
2

−
2.
64
41
-1

−
6.
94
04
e–
2

−
1.
59
85
-2

≈
2.
55
54
-2

≈
2.
58
70
e–
3

+
2.
22
00
-2

L
IR
C
M
O
P1

0
5.
33
06
e–
3

−
9.
26
08
-3

−
5.
47
68
e–
2

−
8.
17
76
-3

−
2.
97
15
e–
1

−
2.
78
14
e–
2

−
3.
37
17
-3

+
3.
44
05
e–
3

+
4.
30
49
e–
3

−
4.
12
56
-3

L
IR
C
M
O
P1

1
6.
55
60
e–
4

≈
6.
27
37
e–
4

≈
6.
58
33
e–
2

−
7.
66
75
e–
4

+
1.
79
59
-1

−
4.
55
33
-3

−
8.
16
43
e–
4

+
8.
69
51
e–
4

+
6.
27
83
-4

≈
2.
31
87
e–
3

L
IR
C
M
O
P1

2
1.
32
57
-3

≈
4.
86
69
e–
4

≈
5.
45
65
-2

−
1.
17
14
e–
3

−
1.
57
93
e–
1

−
1.
55
36
-2

−
1.
64
05
e–
3

−
8.
14
30
e–
4

−
8.
39
30
e–
4

−
7.
90
06
-4

L
IR
C
M
O
P1

3
4.
66
56
e–
2

−
4.
58
92
-2

−
4.
53
13
-2

−
7.
11
11
e–
2

−
4.
63
75
e–
2

−
4.
70
87
-2

−
4.
69
49
e–
2

−
4.
80
52
-2

−
7.
18
73
e–
2

−
4.
21
86
e–
2

L
IR
C
M
O
P1

4
4.
91
94
-2

−
4.
85
40
e–
2

≈
4.
73
48
e–
2

+
6.
16
75
-2

−
4.
79
44
e–
2

≈
4.
83
78
-2

≈
5.
06
13
e–
2

−
5.
02
23
-2

−
6.
24
41
e–
2

−
4.
80
73
e–
2

M
W
1

1.
27
73
-3

−
1.
26
87
e–
3

−
2.
58
75
-3

−
1.
23
27
e–
2

−
1.
96
26
-3

−
1.
61
63
e–
3

−
1.
43
11
-3

−
1.
48
85
e–
3

−
3.
98
28
-2

−
1.
24
87
e–
3

M
W
2

2.
18
42
e–
2

≈
2.
04
90
-2

≈
2.
60
83
e–
2

−
5.
36
95
-2

−
2.
39
58
e–
2

≈
2.
37
71
e–
2

−
2.
70
79
-2

−
1.
86
96
-2

≈
9.
01
66
e–
2

−
1.
76
87
e–
2

M
W
3

3.
16
66
e–
3

−
9.
96
65
-3

−
3.
42
71
e–
3

−
1.
01
12
-2

−
2.
98
21
e–
3

≈
3.
20
40
-3

−
3.
37
82
e–
3

−
3.
37
30
-3

−
4.
26
12
-3

−
2.
90
21
e–
3

M
W
4

3.
06
48
e–
2

−
3.
69
03
e–
2

−
3.
13
24
-2

−
7.
60
36
e–
2

−
3.
04
58
e–
2

−
3.
06
37
-2

−
3.
53
96
e–
2

−
4.
16
98
e–
2

−
4.
80
36
-2

−
2.
97
35
e–
2

M
W
5

1.
08
03
e–
3

≈
1.
48
89
e–
1

−
2.
59
77
-2

−
1.
64
75
e–
1

−
4.
76
60
e–
2

−
5.
53
36
e–
4

+
2.
33
25
-3

+
1.
28
75
e–
1

−
8.
26
82
-2

−
6.
68
09
e–
3

M
W
6

2.
91
23
e–
2

−
3.
26
95
-2

≈
6.
20
33
e–
2

−
2.
68
19
-1

−
6.
32
90
e–
2

−
3.
88
55
-2

≈
7.
15
80
e–
2

−
1.
77
97
-2

≈
4.
00
28
e–
1

−
1.
68
64
e–
2

M
W
7

2.
08
62
-3

≈
2.
17
52
-3

≈
4.
28
75
e–
3

−
2.
12
88
-3

≈
2.
56
65
e–
3

≈
2.
28
68
-3

−
2.
67
83
e–
3

−
2.
57
47
-3

−
2.
80
30
e–
3

−
2.
09
49
-3

M
W
8

2.
89
95
e–
2

≈
2.
72
56
e–
2

≈
3.
61
38
-2

−
8.
98
56
e–
2

−
3.
67
08
-2

−
2.
96
22
e–
2

≈
3.
14
61
-2

−
2.
62
93
e–
2

≈
1.
07
33
-1

−
2.
71
42
e–
2

M
W
9

3.
30
86
-3

≈
3.
29
01
e–
3

≈
1.
05
79
e–
1

−
2.
47
41
e–
1

−
5.
84
28
-2

−
3.
30
49
-3

≈
3.
97
83
e–
3

−
5.
40
70
-3

−
1.
69
82
e–
1

−
3.
37
26
-3

M
W
10

3.
51
81
e–
2

−
1.
78
99
e–
2

≈
5.
62
03
e–
2

−
1.
61
53
-1

−
9.
88
54
e–
2

−
4.
28
14
-2

−
6.
63
98
e–
2

−
1.
84
11
-2

≈
2.
75
49
e–
1

−
2.
21
01
-2

M
W
11

2.
84
99
e–
3

+
3.
08
69
e–
3

−
3.
83
83
e–
2

−
4.
35
63
e–
1

−
2.
87
38
-3

+
2.
77
53
e–
3

+
3.
51
98
e–
3

−
3.
35
47
e–
3

−
4.
13
15
-3

−
2.
98
00
e–
3

M
W
12

3.
34
83
e–
3

≈
3.
43
21
e–
3

≈
3.
24
42
e–
3

+
3.
49
31
-3

−
3.
93
31
e–
3

−
3.
09
49
-3

+
2.
50
78
e–
2

−
4.
59
82
-3

−
2.
66
19
e–
1

−
3.
36
39
-3

M
W
13

4.
93
22
e–
2

−
2.
02
52
-2

≈
7.
02
91
-2

−
1.
28
81
e–
1

−
8.
19
42
e–
2

−
4.
34
16
e–
2

−
6.
61
01
e–
2

−
2.
01
45
e–
2

≈
1.
91
38
e–
1

−
2.
35
01
-2

M
W
14

6.
96
95
e–
2

−
6.
77
16
-2

−
8.
23
97
e–
2

−
8.
79
35
e–
2

−
6.
67
25
e–
2

−
6.
70
91
-2

−
7.
16
84
-2

−
7.
42
56
e–
2

−
8.
71
76
e–
2

−
6.
48
23
-2

+/
−

/
≈

2/
21
/1
5

1/
22
/1
5

3/
31
/4

1/
36
/1

1/
30
/7

4/
26
/8

6/
24
/8

5/
24
/9

2/
35
/1

123



Complex & Intelligent Systems
Ta
bl
e
5

T
he

m
ea
n
H
V
va
lu
es

of
te
n
al
go
ri
th
m
s
on

th
re
e
se
ts
of

be
nc
hm

ar
k
te
st
fu
nc
tio

ns

Pr
ob
le
m

C
C
M
O

cD
PE

A
C
M
O
E
A
_M

S
D
SP

C
M
D
E

T
ST

I
M
T
C
M
O

C
M
O
E
M
T

T
ri
P

C
3M

T
SR

SM

C
1_
D
T
L
Z
1

8.
39
64
e–
1

−
8.
39
61
-1

−
8.
36
46
e–
1

−
8.
09
32
-1

−
8.
40
66
e–
1

−
8.
39
12
-1

−
8.
34
87
-1

−
8.
33
90
e–
1

−
8.
18
51
-1

−
8.
41
44
e–
1

C
1_
D
T
L
Z
3

5.
58
09
-1

−
5.
58
36
e–
1

≈
5.
58
27
e–
1

≈
6.
48
77
-2

−
2.
49
07
-1

−
1.
48
56
e–
1

−
5.
48
29
-1

−
5.
53
31
e–
1

−
3.
42
58
-1

−
5.
58
58
e–
1

C
2_
D
T
L
Z
2

5.
14
26
-1

−
5.
13
60
-1

−
5.
15
33
e–
1

−
4.
80
70
e–
1

−
5.
14
87
-1

−
5.
14
18
e–
1

−
5.
09
71
e–
1

−
5.
13
79
-1

−
4.
89
36
-1

−
5.
17
11
e–
1

C
3_
D
T
L
Z
4

7.
80
02
e–
1

≈
7.
86
01
-1

−
4.
99
96
e–
1

−
7.
63
65
e–
1

−
7.
87
73
-1

≈
7.
87
76
e–
1

≈
7.
82
40
e–
1

−
7.
83
05
e–
1

−
7.
56
75
e–
1

−
7.
88
15
-1

D
C
1_
D
T
L
Z
1

6.
31
97
e–
1

≈
6.
31
78
e–
1

−
6.
12
84
e–
1

−
2.
97
83
-1

−
6.
31
20
e–
1

−
6.
31
51
e–
1

−
6.
25
14
-1

−
6.
28
16
e–
1

−
5.
65
56
e–
1

−
6.
32
24
e–
1

D
C
1_
D
T
L
Z
3

4.
73
09
-1

≈
4.
73
36
e–
1

+
4.
57
18
e–
1

≈
2.
78
16
e–
2

−
4.
68
31
-1

≈
4.
73
11
e–
1

≈
4.
70
37
e–
1

+
4.
63
52
e–
1

−
1.
63
42
e–
1

−
4.
66
30
-1

D
C
2_
D
T
L
Z
1

8.
40
45
e–
1

−
8.
40
41
e–
1

−
8.
37
97
-1

−
8.
11
30
e–
1

−
7.
77
47
-1

−
6.
38
65
e–
1

−
8.
37
82
e–
1

−
8.
35
01
e–
1

−
8.
10
62
e–
1

−
8.
40
93
e–
1

D
C
2_
D
T
L
Z
3

5.
58
47
e–
1

≈
4.
30
45
e–
1

−
1.
22
38
e–
1

−
2.
67
51
-2

−
1.
29
40
-2

≈
1.
33
96
e–
2

−
5.
47
32
-1

+
4.
28
62
-1

−
2.
79
90
e–
1

−
4.
80
35
-1

D
C
3_
D
T
L
Z
1

5.
35
68
e–
1

≈
5.
35
40
e–
1

≈
4.
09
99
-1

−
1.
94
32
e–
1

−
1.
26
55
e–
1

−
3.
03
43
-1

−
5.
34
84
e–
1

≈
5.
32
08
-1

+
9.
74
25
e–
2

−
5.
20
57
e–
1

D
C
3_
D
T
L
Z
3

3.
67
75
e–
1

+
1.
71
49
e–
1

≈
2.
81
80
-1

+
1.
83
16
e–
2

−
0.
00
00
e+

0
−

0.
00
00
e+

0
−

3.
65
27
-1

+
1.
76
33
e–
1

−
4.
10
74
-2

−
2.
53
23
e–
1

L
IR
C
M
O
P1

1.
47
96
e–
1

−
1.
83
80
-1

−
1.
17
07
e–
1

−
2.
12
68
-1

−
1.
77
79
e–
1

−
2.
29
83
e–
1

≈
2.
31
58
e–
1

≈
2.
30
92
e–
1

≈
1.
86
26
-1

−
2.
30
71
e–
1

L
IR
C
M
O
P2

2.
86
95
-1

−
3.
16
88
e–
1

−
2.
13
56
-1

−
3.
28
38
e–
1

−
3.
00
83
e–
1

−
3.
51
70
-1

−
3.
57
51
e–
1

≈
3.
56
83
-1

−
2.
99
80
e–
1

−
3.
57
40
-1

L
IR
C
M
O
P3

1.
10
83
e–
1

−
1.
38
06
-1

−
9.
66
11
-2

−
1.
66
46
e–
1

−
1.
23
23
-1

−
1.
49
81
e–
1

−
1.
92
95
e–
1

≈
1.
76
49
-1

≈
8.
20
40
-2

−
1.
99
29
e–
1

L
IR
C
M
O
P4

2.
23
02
-1

−
2.
69
46
e–
1

−
1.
84
65
-1

−
2.
62
32
e–
1

−
2.
67
73
e–
1

−
3.
09
78
-1

≈
3.
07
91
e–
1

≈
3.
10
74
-1

≈
2.
39
48
e–
1

−
3.
06
88
-1

L
IR
C
M
O
P5

2.
85
38
e–
1

−
2.
77
93
-1

−
2.
69
39
e–
1

−
2.
91
39
-1

+
2.
26
68
-1

−
2.
69
12
e–
1

−
2.
92
76
-1

+
2.
92
66
e–
1

+
2.
91
94
-1

+
2.
90
68
e–
1

L
IR
C
M
O
P6

1.
94
87
e–
1

−
1.
90
92
e–
1

−
1.
85
75
-1

−
1.
96
61
e–
1

−
1.
36
15
e–
1

−
1.
72
46
-1

−
1.
98
10
-1

+
1.
98
07
e–
1

+
1.
97
12
e–
1

−
1.
97
90
-1

L
IR
C
M
O
P7

2.
91
01
e–
1

−
2.
91
34
e–
1

−
2.
89
26
e–
1

−
2.
93
62
e–
1

−
2.
85
97
-1

−
2.
89
10
e–
1

−
2.
93
88
e–
1

−
2.
93
90
e–
1

−
2.
93
99
-1

−
2.
94
15
e–
1

L
IR
C
M
O
P8

2.
93
17
e–
1

−
2.
93
11
e–
1

−
2.
89
85
-1

≈
2.
93
65
-1

−
2.
80
46
e–
1

−
2.
91
87
e–
1

≈
2.
93
90
-1

−
2.
94
01
e–
1

−
2.
94
05
e–
1

−
2.
94
18
e–
1

L
IR
C
M
O
P9

5.
58
71
e–
1

≈
5.
42
80
-1

−
4.
21
12
e–
1

−
5.
29
58
e–
1

−
3.
78
56
-1

−
5.
31
45
-1

−
5.
59
30
e–
1

≈
5.
55
28
-1

−
5.
66
75
e–
1

+
5.
56
90
e–
1

L
IR
C
M
O
P1

0
7.
06
65
-1

−
6.
95
45
-1

−
6.
77
74
e–
1

−
6.
95
89
e–
1

−
5.
02
44
-1

−
6.
90
50
-1

−
7.
08
01
e–
1

+
7.
07
89
-1

+
7.
07
28
e–
1

−
7.
07
76
-1

L
IR
C
M
O
P1

1
6.
93
93
e–
1

≈
6.
93
97
e–
1

+
6.
50
61
e–
1

−
6.
93
83
-1

+
5.
49
28
e–
1

−
6.
90
89
-1

−
6.
93
85
-1

+
6.
93
81
e–
1

+
6.
93
97
-1

+
6.
92
82
e–
1

L
IR
C
M
O
P1

2
6.
19
86
-1

≈
6.
20
27
e–
1

+
5.
92
23
-1

−
6.
19
64
e–
1

−
5.
22
67
e–
1

−
6.
12
34
-1

−
6.
19
64
-1

−
6.
20
09
e–
1

−
6.
20
01
-1

−
6.
20
12
e–
1

L
IR
C
M
O
P1

3
5.
52
16
e–
1

−
5.
52
85
-1

−
5.
53
24
e–
1

−
5.
18
04
-1

−
5.
52
57
e–
1

−
5.
51
39
-1

−
5.
51
49
e–
1

−
5.
50
26
e–
1

−
5.
26
35
e–
1

−
5.
57
15
-1

L
IR
C
M
O
P1

4
5.
50
92
e–
1

−
5.
51
53
e–
1

≈
5.
52
50
e–
1

≈
5.
30
14
e–
1

−
5.
52
15
e–
1

≈
5.
51
62
e–
1

≈
5.
48
97
e–
1

−
5.
49
58
e–
1

−
5.
38
87
e–
1

−
5.
52
01
e–
1

M
W
1

4.
89
98
e–
1

≈
4.
90
02
e–
1

+
4.
87
37
-1

−
4.
76
43
e–
1

−
4.
87
82
e–
1

≈
4.
88
89
e–
1

≈
4.
89
61
e–
1

−
4.
89
49
e–
1

−
4.
41
06
e–
1

−
4.
90
00
e–
1

M
W
2

5.
50
59
e–
1

≈
5.
53
22
e–
1

≈
5.
44
27
e–
1

−
5.
05
73
e–
1

−
5.
47
60
e–
1

≈
5.
47
58
e–
1

−
5.
43
21
e–
1

−
5.
55
72
e–
1

≈
4.
58
08
-1

−
5.
57
04
e–
1

M
W
3

5.
44
00
e–
1

−
5.
31
91
e–
1

−
5.
43
61
-1

−
5.
31
73
e–
1

−
5.
44
34
e–
1

≈
5.
43
93
e–
1

−
5.
43
53
e–
1

−
5.
43
55
e–
1

−
5.
42
14
e–
1

−
5.
44
42
e–
1

M
W
4

8.
39
89
e–
1

−
8.
31
87
e–
1

−
8.
37
56
-1

−
7.
80
36
e–
1

−
8.
39
98
e–
1

−
8.
39
96
e–
1

−
8.
34
31
e–
1

−
8.
26
69
e–
1

−
8.
19
87
e–
1

−
8.
41
10
-1

M
W
5

3.
24
12
-1

≈
1.
89
29
e–
1

−
3.
00
98
e–
1

−
1.
73
59
e–
1

−
2.
87
85
-1

−
3.
24
30
e–
1

+
3.
23
39
-1

+
2.
09
81
e–
1

−
2.
48
19
-1

−
3.
19
47
e–
1

M
W
6

2.
91
42
-1

−
2.
96
30
e–
1

≈
2.
76
73
e–
1

−
1.
79
97
-1

−
2.
84
05
e–
1

−
2.
92
98
-1

≈
2.
75
64
e–
1

−
3.
01
43
-1

≈
1.
33
97
e–
1

−
3.
06
90
e–
1

M
W
7

4.
12
25
e–
1

≈
4.
12
21
e–
1

≈
4.
08
90
e–
1

−
4.
12
47
e–
1

+
4.
11
54
-1

≈
4.
11
72
e–
1

−
4.
11
42
e–
1

−
4.
11
69
e–
1

−
4.
10
97
-1

−
4.
12
24
e–
1

M
W
8

5.
34
31
e–
1

≈
5.
37
29
-1

≈
5.
21
19
e–
1

−
4.
15
10
e–
1

−
5.
20
19
e–
1

−
5.
33
20
e–
1

−
5.
29
96
e–
1

−
5.
39
58
-1

≈
3.
96
09
e–
1

−
5.
38
30
e–
1

M
W
9

3.
97
91
e–
1

≈
3.
98
95
e–
1

+
3.
01
51
e–
1

−
1.
60
06
e–
1

−
3.
59
99
e–
1

−
3.
96
80
e–
1

≈
3.
96
65
e–
1

≈
3.
94
78
e–
1

−
2.
84
07
e–
1

−
3.
97
40
e–
1

M
W
10

4.
18
73
e–
1

−
4.
34
18
e–
1

≈
4.
04
23
e–
1

−
3.
32
14
e–
1

−
3.
75
19
e–
1

−
4.
13
07
e–
1

−
3.
97
60
e–
1

−
4.
34
50
e–
1

≈
2.
65
53
e–
1

−
4.
30
43
e–
1

M
W
11

4.
47
15
e–
1

−
4.
47
42
-1

−
4.
35
47
e–
1

≈
3.
10
24
e–
1

−
4.
47
50
e–
1

≈
4.
47
75
e–
1

+
4.
47
27
-1

−
4.
47
19
e–
1

−
4.
46
64
e–
1

−
4.
47
58
e–
1

M
W
12

6.
04
32
e–
1

≈
6.
04
25
e–
1

≈
6.
03
72
e–
1

−
6.
03
61
e–
1

−
6.
03
29
e–
1

−
6.
04
72
-1

+
5.
84
10
e–
1

−
6.
02
49
e–
1

−
3.
72
79
-1

−
6.
04
19
-1

M
W
13

4.
39
60
e–
1

−
4.
61
68
-1

≈
4.
26
52
e–
1

−
3.
87
92
-1

−
4.
21
24
e–
1

−
4.
44
20
e–
1

−
4.
31
17
e–
1

−
4.
61
87
e–
1

≈
3.
57
57
-1

−
4.
58
73
e–
1

M
W
14

4.
70
41
e–
1

−
4.
71
13
e–
1

−
4.
65
70
e–
1

−
4.
48
31
e–
1

−
4.
71
91
-1

−
4.
72
06
e–
1

−
4.
67
95
e–
1

−
4.
67
83
e–
1

−
4.
53
25
e–
1

−
4.
74
07
e–
1

+/
−

/
≈

1/
22
/1
5

5/
22
/1
1

1/
32
/5

3/
35
/0

0/
29
/9

3/
26
/9

8/
23
/7

5/
25
/8

3/
35
/0

123



Complex & Intelligent Systems

Ta
bl
e
6

T
he

FR
va
lu
es

of
te
n
al
go
ri
th
m
s
on

th
re
e
se
ts
of

be
nc
hm

ar
k
te
st
fu
nc
tio

ns

Pr
ob
le
m

C
C
M
O

cD
PE

A
C
M
O
E
A
_M

S
D
SP

C
M
D
E

T
ST

I
M
T
C
M
O

C
M
O
E
M
T

T
ri
P

C
3M

T
SR

SM

C
1_
D
T
L
Z
1

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

2.
66
67
e–
1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

C
1_
D
T
L
Z
3

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

C
2_
D
T
L
Z
2

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

C
3_
D
T
L
Z
4

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
85
71
e–
1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
71
43
e–
1

≈
1.
00
00
e+

0

D
C
1_
D
T
L
Z
1

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

D
C
1_
D
T
L
Z
3

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

D
C
2_
D
T
L
Z
1

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

2.
33
33
e–
1

−
9.
66
67
e–
1

≈
9.
66
67
e–
1

≈
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
66
67
e–
1

≈
1.
00
00
e+

0

D
C
2_
D
T
L
Z
3

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

6.
33
33
-1

≈
3.
33
33
e–
2

−
2.
00
00
e–
1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
33
33
e–
1

≈
9.
33
33
e–
1

D
C
3_
D
T
L
Z
1

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

3.
44
69
-1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

6.
05
86
e–
1

−
1.
00
00
e+

0

D
C
3_
D
T
L
Z
3

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
33
33
e–
1

≈
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

8.
29
67
e–
1

−
1.
00
00
e+

0

L
IR
C
M
O
P1

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

L
IR
C
M
O
P2

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
34
80
e–
1

≈
1.
00
00
e+

0

L
IR
C
M
O
P3

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
64
84
e–
1

≈
1.
00
00
e+

0

L
IR
C
M
O
P4

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

8.
34
07
e–
1

−
1.
00
00
e+

0

L
IR
C
M
O
P5

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

L
IR
C
M
O
P6

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

L
IR
C
M
O
P7

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

L
IR
C
M
O
P8

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

L
IR
C
M
O
P9

1.
00
00
e+

0
≈

2.
79
12
e–
1

−
1.
00
00
e+

0
≈

2.
63
37
e–
1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

L
IR
C
M
O
P1

0
1.
00
00
e+

0
≈

5.
16
12
e–
1

−
1.
00
00
e+

0
≈

5.
03
66
e–
1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

L
IR
C
M
O
P1

1
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

L
IR
C
M
O
P1

2
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

L
IR
C
M
O
P1

3
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
93
77
e–
1

≈
1.
00
00
e+

0

L
IR
C
M
O
P1

4
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
62
27
e–
1

≈
1.
00
00
e+

0

123



Complex & Intelligent Systems

Ta
bl
e
6

co
nt
in
ue
d

Pr
ob
le
m

C
C
M
O

cD
PE

A
C
M
O
E
A
_M

S
D
SP

C
M
D
E

T
ST

I
M
T
C
M
O

C
M
O
E
M
T

T
ri
P

C
3M

T
SR

SM

M
W
1

1.
00
00
e+

0
≈

9.
66
67
e–
1

≈
9.
33
33
e–
1

≈
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
66
67
e–
1

≈
1.
00
00
e+

0
≈

5.
66
67
-1

−
1.
00
00
e+

0

M
W
2

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

M
W
3

1.
00
00
e+

0
≈

5.
46
52
e–
1

−
1.
00
00
e+

0
≈

5.
43
22
-1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

M
W
4

1.
00
00
e+

0
≈

7.
67
77
e–
1

−
1.
00
00
e+

0
≈

4.
49
45
e–
1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

M
W
5

1.
00
00
e+

0
≈

2.
41
76
e–
2

−
9.
66
67
e–
1

≈
3.
73
63
e–
2

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

2.
98
53
e–
1

−
1.
00
00
e+

0

M
W
6

1.
00
00
e+

0
≈

5.
04
76
e–
1

−
1.
00
00
e+

0
≈

2.
56
04
e–
1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

M
W
7

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

M
W
8

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
33
33
e–
1

≈
1.
00
00
e+

0

M
W
9

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

8.
24
18
e–
1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

M
W
10

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
76
56
e–
1

≈
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

9.
66
67
e–
1

≈
1.
00
00
e+

0
≈

5.
00
00
e–
1

−
1.
00
00
e+

0

M
W
11

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

7.
13
92
e–
1

−
1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

M
W
12

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

8.
61
90
e–
1

−
1.
00
00
e+

0

M
W
13

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

M
W
14

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0
≈

1.
00
00
e+

0

+/
−

/
≈

0/
0/
38

0/
6/
32

0/
3/
35

0/
9/
29

0/
1/
37

0/
1/
37

0/
0/
38

0/
0/
38

0/
7/
31

123



Complex & Intelligent Systems

Ta
bl
e
7

T
he

H
V
va
lu
es

of
te
n
al
go
ri
th
m
s
on

30
re
al
-w

or
ld

C
M
O
Ps

Pr
ob
le
m

C
C
M
O

cD
PE

A
C
M
O
E
A
_M

S
D
SP

C
M
D
E

T
ST

I
M
T
C
M
O

C
M
O
E
M
T

T
ri
P

C
3M

T
SR

SM

R
W
M
O
P1

6.
06
67
e–
1

≈
6.
06
62
e–
1

≈
7.
61
10
e–
1

+
9.
34
27
e–
2

−
6.
06
32
e–
1

≈
6.
06
45
e–
1

≈
6.
06
14
e–
1

−
6.
05
16
e–
1

−
6.
07
61
e–
1

+
6.
06
50
e–
1

R
W
M
O
P2

3.
34
47
e–
1

−
3.
10
90
e–
1

≈
2.
99
07
e–
1

−
3.
99
94
e–
1

+
2.
31
79
e–
1

−
3.
92
79
-1

≈
3.
92
88
e–
1

≈
3.
92
68
e–
1

−
3.
92
85
e–
1

−
3.
92
88
e–
1

R
W
M
O
P3

8.
99
84
e–
1

+
8.
98
91
e–
1

≈
8.
62
87
e–
1

−
8.
94
94
e–
2

−
8.
98
63
e–
1

≈
8.
98
91
e–
1

≈
8.
97
84
-1

−
8.
98
50
e–
1

≈
8.
99
12
e–
1

≈
8.
98
74
e–
1

R
W
M
O
P4

8.
58
12
e–
1

−
8.
58
39
e–
1

−
7.
98
22
e–
1

−
1.
25
82
e–
1

−
8.
57
67
e–
1

−
8.
58
65
e–
1

−
8.
55
51
e–
1

−
8.
59
86
e–
1

≈
8.
46
75
e–
1

−
8.
60
01
e–
1

R
W
M
O
P5

4.
34
79
e–
1

+
4.
34
52
e–
1

≈
4.
19
73
e–
1

−
4.
32
75
e–
1

−
4.
34
41
e–
1

−
4.
34
69
-1

+
4.
34
14
e–
1

−
4.
34
43
e–
1

−
4.
13
30
e–
1

−
4.
34
58
e–
1

R
W
M
O
P6

2.
76
99
e–
1

+
2.
76
87
e–
1

−
2.
77
29
e–
1

+
2.
76
40
e–
1

−
2.
76
91
e–
1

≈
2.
76
94
e–
1

≈
2.
76
29
e–
1

−
2.
76
83
e–
1

−
2.
76
06
e–
1

−
2.
76
92
e–
1

R
W
M
O
P7

4.
84
43
e–
1

−
4.
84
43
e–
1

−
4.
84
01
e–
1

−
4.
78
19
e–
1

−
4.
84
43
e–
1

−
4.
84
42
e–
1

−
4.
84
50
-1

≈
4.
84
32
e–
1

−
4.
84
61
e–
1

+
4.
84
49
e–
1

R
W
M
O
P8

2.
60
30
e–
2

≈
2.
59
35
e–
2

−
2.
61
64
e–
2

+
1.
02
33
e–
2

−
2.
54
15
e–
2

−
2.
59
61
e–
2

−
2.
58
93
e–
2

−
2.
60
06
e–
2

≈
2.
35
48
e–
2

−
2.
60
04
e–
2

R
W
M
O
P9

4.
09
29
e–
1

−
4.
09
10
e–
1

−
4.
08
13
e–
1

−
5.
29
56
e–
2

−
4.
09
15
e–
1

−
4.
09
07
e–
1

−
4.
09
22
e–
1

−
4.
09
10
e–
1

−
4.
09
26
e–
1

−
4.
09
48
e–
1

R
W
M
O
P1

0
8.
41
25
e–
1

≈
8.
40
36
e–
1

≈
8.
38
56
e–
1

−
7.
83
43
e–
2

−
8.
41
27
e–
1

≈
8.
40
34
-1

≈
8.
41
09
e–
1

≈
8.
41
90
e–
1

+
8.
41
26
e–
1

≈
8.
41
08
e–
1

R
W
M
O
P1

1
9.
05
77
e–
2

−
9.
44
14
e–
2

≈
8.
80
03
e–
2

−
7.
21
39
e–
2

−
9.
44
79
e–
2

+
9.
40
74
e–
2

≈
9.
03
45
-2

−
9.
35
52
e–
2

≈
7.
92
36
e–
2

−
9.
39
07
e–
2

R
W
M
O
P1

2
5.
53
79
-1

≈
5.
54
29
-1

≈
4.
67
05
e–
1

−
6.
68
66
-2

−
5.
53
32
e–
1

≈
5.
54
53
e–
1

≈
5.
54
50
e–
1

≈
5.
55
23
e–
1

≈
5.
55
33
e–
1

+
5.
54
39
e–
1

R
W
M
O
P1

3
8.
74
49
e–
2

−
8.
75
40
e–
2

−
8.
19
47
e–
2

−
8.
76
08
e–
2

≈
8.
75
37
e–
2

−
8.
75
30
e–
2

≈
8.
69
49
e–
2

−
8.
74
27
e–
2

−
7.
66
56
e–
2

−
8.
76
20
-2

R
W
M
O
P1

4
6.
17
21
-1

+
6.
17
17
e–
1

+
3.
73
56
e–
1

−
4.
40
54
e–
1

−
6.
16
67
e–
1

≈
6.
16
58
e–
1

≈
6.
16
22
e–
1

−
6.
16
81
e–
1

≈
5.
79
79
e–
1

−
6.
16
89
e–
1

R
W
M
O
P1

5
5.
43
36
e–
1

−
5.
42
53
e–
1

−
5.
43
30
e–
1

−
2.
75
86
e–
1

−
5.
43
20
e–
1

−
5.
43
54
-1

+
5.
43
33
e–
1

−
5.
42
66
e–
1

−
5.
43
61
-1

+
5.
43
44
e–
1

R
W
M
O
P1

6
7.
62
19
e–
1

≈
7.
62
13
e–
1

−
7.
54
03
e–
1

−
7.
96
30
e–
2

−
7.
62
21
e–
1

≈
7.
62
29
-1

≈
7.
62
01
e–
1

−
7.
61
91
e–
1

−
7.
61
96
e–
1

−
7.
62
31
e–
1

R
W
M
O
P1

7
2.
82
80
e–
1

+
2.
31
12
e–
1

≈
2.
30
18
e–
1

≈
4.
09
01
e–
1

+
3.
48
20
e–
1

+
4.
05
09
-1

+
2.
34
21
e–
1

≈
2.
02
61
e–
1

≈
3.
25
75
e–
1

+
2.
21
09
e–
1

R
W
M
O
P1

8
4.
05
09
-2

−
4.
05
09
e–
2

−
4.
05
12
e–
2

−
4.
03
43
e–
2

−
4.
05
09
-2

−
4.
05
08
e–
2

−
4.
05
15
-2

≈
4.
05
12
-2

−
4.
05
04
e–
2

−
4.
05
14
e–
2

R
W
M
O
P1

9
3.
42
28
e–
1

−
2.
98
51
e–
1

−
3.
36
86
e–
1

−
2.
63
40
-1

−
3.
55
03
e–
1

−
3.
57
79
-1

−
3.
67
21
e–
1

−
3.
40
87
e–
1

−
N
aN

3.
70
89
e–
1

R
W
M
O
P2

0
0.
00
00
e+

0
≈

0.
00
00
e+

0
≈

0.
00
00
e+

0
≈

0.
00
00
e+

0
≈

0.
00
00
e+

0
≈

0.
00
00
e+

0
≈

0.
00
00
e+

0
≈

0.
00
00
e+

0
≈

0.
00
00
e+

0
≈

0.
00
00
e+

0

R
W
M
O
P2

1
3.
17
56
-2

−
3.
17
54
e–
2

−
3.
17
55
e–
2

−
2.
92
73
e–
2

−
3.
17
54
e–
2

−
3.
17
55
e–
2

−
3.
17
56
-2

−
3.
17
55
e–
2

−
3.
17
59
e–
2

+
3.
17
58
-2

R
W
M
O
P2

2
5.
46
84
e–
1

≈
5.
64
86
-1

≈
N
aN

7.
68
18
e–
1

+
1.
40
94
e+

0
≈

5.
45
45
e–
1

≈
7.
31
99
e–
1

≈
6.
63
13
e–
1

≈
7.
72
28
e–
1

≈
6.
67
21
e–
1

R
W
M
O
P2

3
3.
80
43
e–
1

≈
7.
12
60
e–
1

+
3.
10
04
e–
1

≈
9.
62
12
e–
1

+
4.
58
63
e–
1

≈
3.
00
20
e–
1

−
8.
66
61
e–
1

+
8.
25
95
e–
1

+
9.
97
97
e–
1

+
4.
40
01
e–
1

R
W
M
O
P2

4
N
aN

N
aN

1.
00
00
e+

0
≈

N
aN

N
aN

N
aN

1.
00
00
e+

0
≈

8.
68
13
e–
1

−
1.
00
00
e+

0≈
1.
00
00
e+

0

R
W
M
O
P2

5
2.
41
38
e–
1

−
2.
41
39
e–
1

≈
2.
31
47
e–
1

−
2.
39
21
e–
1

−
2.
31
49
e–
1

−
2.
41
39
e–
1

−
2.
41
37
e–
1

−
2.
41
38
-1

−
2.
41
38
e–
1

−
2.
41
40
-1

R
W
M
O
P2

6
1.
47
98
e–
1

≈
1.
35
33
e–
1

−
1.
33
07
e–
1

−
1.
45
25
e–
1

−
1.
29
47
e–
1

−
1.
45
82
e–
1

−
1.
46
24
e–
1

≈
1.
45
92
e–
1

−
1.
46
39
e–
1

≈
1.
46
30
e–
1

R
W
M
O
P2

7
5.
12
56
e+

10
≈

3.
78
24
e+

11
−

2.
89
01
e+

11
≈

2.
32
66
e+

3
−

1.
61
98
e+

11
≈

3.
30
86
e+

11
≈

1.
16
99
e+

12
≈

1.
96
74
e+

10
−

9.
56
42
e+

10
−

1.
81
86
e+

12

R
W
M
O
P2

8
5.
22
77
e–
3

≈
1.
08
45
e–
2

≈
1.
95
15
e–
2

≈
2.
14
25
e–
2

≈
2.
42
79
e–
2

+
3.
76
08
e–
2

+
1.
66
53
e–
2

≈
1.
79
12
e–
2

≈
2.
54
48
e–
2

+
1.
38
17
e–
2

R
W
M
O
P2

9
7.
71
08
e–
1

−
N
aN

7.
82
72
e–
1

−
N
aN

7.
83
83
e–
1

−
7.
85
74
-1

−
7.
86
73
e–
1

≈
7.
84
27
e–
1

−
4.
12
64
-1

−
7.
86
94
e–
1

R
W
M
O
P3

0
5.
44
44
-1

≈
N
aN

N
aN

N
aN

5.
88
62
-1

≈
5.
64
46
-1

≈
5.
54
14
-1

≈
5.
83
74
e–
1

≈
N
aN

6.
10
67
-1

+/
−

/
≈

5/
12
/1
2

2/
13
/1
2

3/
19
/6

4/
20
/3

3/
14
/1
2

4/
11
/1
4

1/
15
/1
4

2/
17
/1
1

8/
15
/5

123



Complex & Intelligent Systems

Table 8 The IGD+ values of
three algorithms with different
switching mechanisms on three
sets of benchmark test functions

Problem TSRSM1 TSRSM2 TSRSM

C1_DTLZ1 1.4705e–2 (9.28-5) ≈ 1.5291e–2 (3.75e–4) − 1.4700e–2 (6.54-5)

C1_DTLZ3 2.3970e–2 (1.01e–3) ≈ 2.9286e–2 (1.63e–2) − 2.3835e–2 (1.28-3)

C2_DTLZ2 1.9233e–2 (5.47e–4) ≈ 1.9254e–2 (6.32e–4) ≈ 1.9268e–2 (6.03e–4)

C3_DTLZ4 5.862-2 (1.77e–3) ≈ 5.9072e–2 (1.84e–3) ≈ 5.8194-2 (2.25e–3)

DC1_DTLZ1 8.4431-3 (5.72e–5) ≈ 8.4410e–3 (6.96e–5) ≈ 8.4602e–3 (9.26-5)

DC1_DTLZ3 1.3466e–2 (5.29e–4) + 1.4133-2 (1.21e–3) ≈ 1.7325e–2 (1.70e–2)

DC2_DTLZ1 1.4701-2 (7.14e–5) ≈ 1.4820e–2 (4.72e–4) ≈ 1.4953-2 (7.14e–4)

DC2_DTLZ3 2.3539e–2 (8.00e–4) ≈ 1.3580e–1 (2.24e–1) ≈ 1.0198-1 (1.95e–1)

DC3_DTLZ1 5.1006e–3 (7.69-5) ≈ 2.2697e–2 (7.14e–2) ≈ 1.0792-2 (3.00e–2)

DC3_DTLZ3 4.4970e–2 (1.19e–1) ≈ 1.1806-1 (2.66-1) ≈ 1.7186e–1 (2.60e–1)

LIRCMOP1 2.5627e–2 (9.78e–3) − 2.1819e–2 (8.49-3) − 1.4963e–2 (8.07e–3)

LIRCMOP2 2.0655-2 (8.35e–3) − 1.5877e–2 (5.62e–3) − 9.0102e–3 (4.33e–3)

LIRCMOP3 3.1131e–2 (1.79-2) − 2.2069e–2 (8.92e–3) − 1.4317e–2 (8.99-3)

LIRCMOP4 3.5835e–2 (2.77e–2) − 2.2270e–2 (1.34e–2) − 1.5124-2 (1.12e–2)

LIRCMOP5 4.8785e–3 (3.70e–4) + 5.0851e–3 (6.20e–3) ≈ 5.6297-3 (1.02e–2)

LIRCMOP6 3.9614e–3 (1.88e–4) − 3.4128e–3 (3.5-4) ≈ 3.3155e–3 (3.19e–4)

LIRCMOP7 6.6129e–3 (3.23e–4) ≈ 6.5523-3 (3.53e–4) ≈ 6.5277e–3 (3.74e–4)

LIRCMOP8 6.9915e–3 (3.41e–4) − 6.3636-3 (3.73e–4) ≈ 6.4708e–3 (2.5-4)

LIRCMOP9 4.6677e–2 (2.53e–2) − 3.8850e–2 (2.51e–2) − 2.2200e–2 (2.23-2)

LIRCMOP10 4.5775e–3 (2.66e–4) − 4.5141e–3 (3.23-4) − 4.1256e–3 (2.73e–4)

LIRCMOP11 7.1581-4 (3.11e–4) ≈ 8.9128e–4 (6.63e–4) ≈ 2.3187-3 (9.08e–3)

LIRCMOP12 5.2297e–4 (3.09e–4) ≈ 1.5648e–3 (4.27-3) ≈ 7.9006e–4 (1.33e–3)

LIRCMOP13 4.2160e–2 (1.30e–3) ≈ 4.1835-2 (1.24e–3) ≈ 4.2186e–2 (1.16-3)

LIRCMOP14 4.9269e–2 (1.62e–3) − 4.8209e–2 (1.20e–3) ≈ 4.8073-2 (1.23e–3)

MW1 1.2486e–3 (1.13e–5) ≈ 1.2584-3 (4.42e–5) ≈ 1.2487e–3 (1.08e–5)

MW2 1.4773e–2 (7.95e–3) ≈ 1.6257e–2 (1.00-2) ≈ 1.7687e–2 (7.60e–3)

MW3 2.8256e–3 (1.88-4) ≈ 2.9552e–3 (2.26e–4) ≈ 2.9021e–3 (2.79-4)

MW4 2.9880e–2 (2.67e–4) − 2.9780e–2 (1.96e–4) ≈ 2.9735e–2 (2.24e–4)

MW5 1.2946e–3 (1.75e–3) ≈ 1.8333e–3 (1.33e–3) + 6.6809e–3 (3.13e–2)

MW6 1.6796e–2 (1.20-2) ≈ 1.6420e–2 (9.89e–3) ≈ 1.6864e–2 (1.11e–2)

MW7 2.0757-3 (1.23e–4) ≈ 2.1299e–3 (2.16e–4) ≈ 2.0949e–3 (1.60-4)

MW8 2.9931e–2 (6.97e–3) ≈ 2.7604-2 (5.46e–3) ≈ 2.7142e–2 (7.45e–3)

MW9 2.4188e–2 (1.14-1) ≈ 3.3943e–3 (2.74-4) ≈ 3.3726e–3 (2.62e–4)

MW10 2.9364e–2 (3.15-2) ≈ 2.7341e–2 (2.07e–2) ≈ 2.2101e–2 (1.71e–2)

MW11 2.9415-3 (1.18e–4) ≈ 2.9241-3 (9.90e–5) ≈ 2.9800e–3 (1.60e–4)

MW12 3.3533-3 (1.54e–4) ≈ 2.4905e–2 (1.18e–1) ≈ 3.3639e–3 (1.75-4)

MW13 2.3036e–2 (1.89e–2) ≈ 2.9542e–2 (1.70e–2) ≈ 2.3501e–2 (1.21-2)

MW14 6.4272e–2 (2.13e–3) ≈ 6.6568e–2 (3.40-3) − 6.4823-2 (2.19e–3)

+/ − / ≈ 2/11/25 1/9/28
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Table 9 The HV values of three
algorithms with different
switching mechanisms on three
sets of benchmark test functions

Problem TSRSM1 TSRSM2 TSRSM

C1_DTLZ1 8.4137e–1 (1.93e–4) ≈ 8.3889e–1 (1.50-3) − 8.4144e–1 (1.37e–4)

C1_DTLZ3 5.5756e–1 (1.09e–3) ≈ 5.4917e–1 (2.67e–2) − 5.5858-1 (2.12e–3)

C2_DTLZ2 5.1736e–1 (1.79e–3) ≈ 5.1752-1 (9.91e–4) ≈ 5.1711e–1 (1.09-3)

C3_DTLZ4 7.8790e–1 (1.14e–3) ≈ 7.8770e–1 (1.14-3) ≈ 7.8815-1 (1.49e–3)

DC1_DTLZ1 6.3240-1 (3.91e–4) ≈ 6.3226e–1 (6.14e–4) ≈ 6.3224e–1 (6.44e–4)

DC1_DTLZ3 4.7365e–1 (9.23e–4) + 4.7178e–1 (2.51e–3) ≈ 4.6630e–1 (3.04e–2)

DC2_DTLZ1 8.4147e–1 (1.27e–4) ≈ 8.4121e–1 (1.11e–3) ≈ 8.4093e–1 (1.58e–3)

DC2_DTLZ3 5.5919e–1 (1.14e–3) ≈ 4.4601e–1 (2.25e–1) ≈ 4.8035e–1 (1.96e–1)

DC3_DTLZ1 5.3609e–1 (6.25e–4) ≈ 5.0409e–1 (1.16e–1) ≈ 5.2057e–1 (7.96e–2)

DC3_DTLZ3 3.3243e–1 (8.84e–2) ≈ 2.9338e–1 (1.28e–1) ≈ 2.5323e–1 (1.59e–1)

LIRCMOP1 2.2147e–1 (8.05e–3) − 2.2544e–1 (6.29-3) − 2.3071e–1 (5.53e–3)

LIRCMOP2 3.4831e–1 (6.40e–3) − 3.5255e–1 (3.92-3) − 3.5740e–1 (2.67e–3)

LIRCMOP3 1.8971e–1 (8.02e–3) − 1.9486e–1 (6.63e–3) − 1.9929e–1 (5.84e–3)

LIRCMOP4 2.9309e–1 (1.65e–2) − 3.0151e–1 (9.88e–3) − 3.0688-1 (8.24e–3)

LIRCMOP5 2.9197e–1 (1.66e–4) + 2.9189e–1 (2.77e–3) ≈ 2.9068e–1 (9.84e–3)

LIRCMOP6 1.9756e–1 (9.81e–5) − 1.9785e–1 (1.88e–4) ≈ 1.9790e–1 (1.68-4)

LIRCMOP7 2.8418e–1 (1.36e–4) ≈ 2.9414e–1 (1.43-4) ≈ 2.9415e–1 (1.63e–4)

LIRCMOP8 2.8422e–1 (1.52e–4) − 2.9423e–1 (1.51e–4) ≈ 2.9418e–1 (1.10e–4)

LIRCMOP9 5.4510e–1 (1.28e–2) − 5.4862e–1 (1.19e–2) − 5.5690e–1 (9.27e–3)

LIRCMOP10 7.0742e–1 (2.05e–4) − 7.0748e–1 (2.64e–4) − 7.0776e–1 (1.73e–4)

LIRCMOP11 6.9388e–1 (2.59e–4) ≈ 6.9379e–1 (4.95e–4) ≈ 6.9282e–1 (6.16-3)

LIRCMOP12 6.2025e–1 (1.55-4) ≈ 6.1981e–1 (1.79e–3) ≈ 6.2012-1 (6.82e–4)

LIRCMOP13 5.5622-1 (1.27-3) − 5.5742e–1 (1.25-3) ≈ 5.5715e–1 (1.02e–3)

LIRCMOP14 5.5101-1 (1.49e–3) − 5.5169-1 (1.49e–3) ≈ 5.520-1 (1.24e–3)

MW1 4.9001-1 (2.09e–5) ≈ 4.8999-1 (7.25-5) ≈ 4.9000e–1 (2.25-5)

MW2 5.6185e–1 (1.31e–2) ≈ 5.5954e–1 (1.58e–2) ≈ 5.5704-1 (1.21e–2)

MW3 5.4457e–1 (3.24e–4) ≈ 5.4429-1 (3.87e–4) ≈ 5.4442e–1 (4.68-4)

MW4 8.4097e–1 (2.85e–4) − 8.4103-1 (2.72e–4) ≈ 8.4110e–1 (3.16e–4)

MW5 3.2398e–1 (1.02e–3) ≈ 3.2378-1 (6.63e–4) + 3.1947e–1 (2.57e–2)

MW6 3.0695-1 (1.64e–2) ≈ 3.0747e–1 (1.34e–2) ≈ 3.0690-1 (1.51e–2)

MW7 4.1231e–1 (2.84e–4) ≈ 4.1214e–1 (4.71-4) ≈ 4.1224e–1 (3.42e–4)

MW8 5.3331-1 (1.26e–2) ≈ 5.3735e–1 (1.01e–2) ≈ 5.3830-1 (1.35e–2)

MW9 3.8450e–1 (7.26-2) ≈ 3.9771e–1 (2.14e–3) ≈ 3.9740e–1 (2.10-3)

MW10 4.2512e–1 (2.55e–2) ≈ 4.2583-1 (1.86e–2) ≈ 4.3043e–1 (1.60e–2)

MW11 4.4750-1 (2.01e–4) ≈ 4.4754-1 (1.63e–4) ≈ 4.4758e–1 (1.59-4)

MW12 6.0411e–1 (2.23e–4) ≈ 5.8471e–1 (1.07-1) ≈ 6.0419e–1 (3.37e–4)

MW13 4.5937-1 (1.41e–2) ≈ 4.5407e–1 (1.32-2) ≈ 4.5873e–1 (1.05e–2)

MW14 4.7432-1 (1.14e–3) ≈ 4.730-1 (2.38-3) ≈ 4.7407e–1 (1.45e–3)

+/ − / ≈ 2/11/25 1/8/29
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Table 10 The IGD+ values of four algorithms with different stage order on three sets of benchmark test functions

Problem TSRSM-PRP TSRSM-PP TSRSM-PR TSRSM

C1_DTLZ1 1.5342e–2 (1.93-4) − 1.5644e–2 (3.52e–4) − 1.4714-2 (9.89e–5) ≈ 1.4700e–2 (6.54-5)

C1_DTLZ3 2.4094e–2 (1.21e–3) ≈ 2.6805e–2 (1.90-3) − 2.3296e–2 (8.78e–4) + 2.3835-2 (1.28e–3)

C2_DTLZ2 2.0242e–2 (5.32e–4) − 1.9575-2 (5.51e–4) ≈ 1.8989e–2 (3.67-4) + 1.9268e–2 (6.03e–4)

C3_DTLZ4 6.4276e–2 (2.63e–3) − 6.1454-2 (2.52e–3) − 5.8947e–2 (1.95e–3) ≈ 5.8194e–2 (2.25e–3)

DC1_DTLZ1 9.9045e–3 (3.66e–4) − 8.9130e–3 (1.51e–4) − 8.5267e–3 (9.29e–5) − 8.4602e–3 (9.26e–5)

DC1_DTLZ3 1.5569e–2 (9.87e–4) + 1.5768e–2 (1.35e–3) + 1.3430e–2 (4.02e–4) + 1.7325e–2 (1.70e–2)

DC2_DTLZ1 1.5374e–2 (1.96e–4) − 2.5945e–2 (3.86e–2) − 1.4740e–2 (1.24e–4) ≈ 1.4953e–2 (7.14e–4)

DC2_DTLZ3 7.9450e–2 (1.66e–1) + 3.8650e–1 (2.62e–1) − 2.3337e–2 (9.59e–4) ≈ 1.0198e–1 (1.95e–1)

DC3_DTLZ1 5.7257e–3 (3.52e–4) + 3.4267e–2 (6.55e–2) − 5.1266e–3 (1.24e–4) ≈ 1.0792e–2 (3.00e–2)

DC3_DTLZ3 4.5723e–2 (1.39e–1) + 8.4798e–1 (4.16e–1) − 8.2606e–3 (4.65e–4) + 1.7186e–1 (2.60e–1)

LIRCMOP1 7.3836e–2 (5.15e–2) − 1.1898e–2 (4.45e–3) ≈ 1.3985e–1 (5.27e–2) − 1.4963e–2 (8.07e–3)

LIRCMOP2 4.6837e–2 (2.00e–2) − 8.0214e–3 (3.77e–3) ≈ 6.2454e–2 (2.86e–2) − 9.0102e–3 (4.33e–3)

LIRCMOP3 1.5829e–1 (4.22e–2) − 1.4884e–2 (8.09e–3) ≈ 1.4886e–1 (4.31e–2) − 1.4317e–2 (8.99e–3)

LIRCMOP4 1.2542e–1 (4.46e–2) − 1.0854e–2 (7.41e–3) ≈ 1.1530e–1 (3.91e–2) − 1.5124e–2 (1.12e–2)

LIRCMOP5 1.0046e–2 (7.55e–3) − 3.2027e–3 (8.08e–5) + 1.2374e–2 (4.91e–3) − 5.6297e–3 (1.02e–2)

LIRCMOP6 5.9529e–3 (2.97e–3) − 2.7760e–3 (4.88e–5) + 1.2702e–2 (7.30e–3) − 3.3155e–3 (3.19e–4)

LIRCMOP7 7.2516e–3 (9.79e–4) − 6.2496e–3 (3.25e–4) + 8.5088e–3 (2.87e–3) − 6.5277e–3 (3.74e–4)

LIRCMOP8 6.5356e–3 (1.41e–3) − 5.5745e–3 (1.85e–4) + 6.7493e–3 (1.68e–3) − 6.4708e–3 (2.57e–4)

LIRCMOP9 3.4279e–2 (2.80e–2) − 2.4655e–2 (3.05e–2) ≈ 2.1353e–2 (1.95e–2) ≈ 2.2200e–2 (2.23e–2)

LIRCMOP10 3.4298e–3 (3.93e–4) + 3.1127e–3 (1.50e–4) + 5.1280e–3 (3.94e–4) − 4.1256e–3 (2.73e–4)

LIRCMOP11 7.6258e–4 (1.32e–4) + 4.3620e–3 (1.26e–2) ≈ 6.7081e–4 (1.03e–4) ≈ 2.3187e–3 (9.08e–3)

LIRCMOP12 7.9841e–4 (9.59e–4) − 4.4733e–4 (6.81e–5) ≈ 1.4517e–3 (1.98e–3) − 7.9006e–4 (1.33e–3)

LIRCMOP13 4.4937e–2 (1.49e–3) − 4.4847e–2 (1.06e–3) − 4.2212e–2 (1.23e–3) ≈ 4.2186e–2 (1.16e–3)

LIRCMOP14 5.0733e–2 (1.29e–3) − 4.7243e–2 (1.36e–3) + 4.7933e–2 (1.69e–3) ≈ 4.8073e–2 (1.23e–3)

MW1 1.4868e–3 (5.82e–5) − 1.3728e–3 (4.14e–5) − 1.2588e–3 (2.84e–5) ≈ 1.2487e–3 (1.08e–5)

MW2 1.5326e–2 (6.84e–3) ≈ 1.4827e–2 (9.38e–3) ≈ 1.5316e–2 (7.02e–3) ≈ 1.7687e–2 (7.60e–3)

MW3 2.7785e–3 (2.92e–4) + 2.7994e–3 (2.85e–4) ≈ 2.9155e–3 (3.04e–4) ≈ 2.9021e–3 (2.79e–4)

MW4 3.3068e–2 (1.03e–3) − 3.2757e–2 (8.58e–4) − 2.9766e–2 (2.88e–4) ≈ 2.9735e–2 (2.24e–4)

MW5 2.0588e–3 (2.00e–3) + 1.1336e–3 (8.35e–4) ≈ 1.7987e–3 (2.64e–3) ≈ 6.6809e–3 (3.13e–2)

MW6 1.5487e–2 (1.11e–2) ≈ 1.4776e–2 (8.48e–3) ≈ 1.3517e–2 (8.69e–3) ≈ 1.6864e–2 (1.11e–2)

MW7 2.3707e–3 (3.45e–4) − 2.3914e–3 (2.36e–4) − 2.0653e–3 (1.62e–4) ≈ 2.0949e–3 (1.60e–4)

MW8 3.0494e–2 (7.98e–3) − 2.8186e–2 (6.18e–3) ≈ 2.9529e–2 (9.23e–3) ≈ 2.7142e–2 (7.45e–3)

MW9 3.7062e–3 (4.30e–4) − 5.5843e–3 (1.79e–3) − 3.2019e–3 (1.33e–4) + 3.3726e–3 (2.62e–4)

MW10 2.5388e–2 (2.17e–2) ≈ 2.1123e–2 (1.51e–2) ≈ 2.1243e–2 (1.58e–2) ≈ 2.2101e–2 (1.71e–2)

MW11 3.3886e–3 (2.12e–4) − 3.3978e–3 (1.74e–4) − 2.8968e–3 (1.77e–4) ≈ 2.9800e–3 (1.60e–4)

MW12 3.8221e–3 (1.63e–4) − 3.6857e–3 (1.44e–4) − 2.7719e–2 (1.34e–1) − 3.3639e–3 (1.75e–4)

MW13 3.3163e–2 (1.65e–2) − 3.2624e–2 (2.28e–2) ≈ 3.1377e–2 (1.57e–2) ≈ 2.3501e–2 (1.21e–2)

MW14 7.1087e–2 (2.64e–3) − 7.2179e–2 (2.64e–3) − 6.3440e–2 (1.72e–3) + 6.4823e–2 (2.19e–3)

+/ − / ≈ 8/26/4 7/16/15 6/12/20
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Table 11 The HV values of four algorithms with different stage order on three sets of benchmark test functions

Problem TSRSM-PRP TSRSM-PP TSRSM-PR TSRSM

C1_DTLZ1 8.3722e–1 (1.85e–3) − 8.3778e–1 (9.80e–4) − 8.3987e–1 (2.42e–3) − 8.4144e–1 (1.37e–4)

C1_DTLZ3 5.5781e–1 (2.15e–3) ≈ 5.5313e–1 (2.98e–3) − 5.5949e–1 (1.37e–3) + 5.5858e–1 (2.12e–3)

C2_DTLZ2 5.1299e–1 (1.63e–3) − 5.1522e–1 (1.47e–3) − 5.1739e–1 (1.07e–3) ≈ 5.1711e–1 (1.09e–3)

C3_DTLZ4 7.8429e–1 (1.66e–3) − 7.8599e–1 (1.58e–3) − 7.8779e–1 (1.22e–3) ≈ 7.8815e–1 (1.49e–3)

DC1_DTLZ1 6.2692e–1 (1.51e–3) − 6.2955e–1 (8.17e–4) − 6.3202e–1 (6.00e–4) − 6.3224e–1 (6.44e–4)

DC1_DTLZ3 4.6945e–1 (1.63e–3) + 4.6826e–1 (2.50e–3) + 4.7366e–1 (9.87e–4) + 4.6630e–1 (3.04e–2)

DC2_DTLZ1 8.3979e–1 (4.00e–4) − 8.1381e–1 (9.57e–2) − 8.4135e–1 (2.37e–4) ≈ 8.4093e–1 (1.58e–3)

DC2_DTLZ3 5.0165e–1 (1.66e–1) + 1.9350e–1 (2.62e–1) − 5.5968e–1 (1.48e–3) ≈ 4.8035e–1 (1.96e–1)

DC3_DTLZ1 5.3273e–1 (1.54e–3) + 4.5770e–1 (1.73e–1) − 5.3555e–1 (1.30e–3) ≈ 5.2057e–1 (7.96e–2)

DC3_DTLZ3 3.4111e–1 (9.27e–2) + 0.0000e+0 (0.00e+0) − 3.6780e–1 (8.96e–4) + 2.5323e–1 (1.59e–1)

LIRCMOP1 1.9268e–1 (2.55e–2) − 2.3285e–1 (2.79e–3) ≈ 1.5983e–1 (1.85e–2) − 2.3071e–1 (5.53e–3)

LIRCMOP2 3.2020e–1 (1.93e–2) − 3.5801e–1 (2.22e–3) ≈ 3.0588e–1 (2.53e–2) − 3.5740e–1 (2.67e–3)

LIRCMOP3 1.3547e–1 (1.66e–2) − 1.9986e–1 (4.85e–3) ≈ 1.3902e–1 (1.53e–2) − 1.9929e–1 (5.84e–3)

LIRCMOP4 2.2917e–1 (2.75e–2) − 3.0992e–1 (5.34e–3) ≈ 2.3508e–1 (2.60e–2) − 3.0688e–1 (8.24e–3)

LIRCMOP5 2.8549e–1 (9.77e–3) − 2.9277e–1 (4.93e–5) + 2.8539e–1 (6.34e–3) − 2.9068e–1 (9.84e–3)

LIRCMOP6 1.9630e–1 (1.88e–3) − 1.9818e–1 (3.17e–5) + 1.9242e–1 (3.47e–3) − 1.9790e–1 (1.68e–4)

LIRCMOP7 2.9349e–1 (1.18e–3) − 2.9428e–1 (1.36e–4) + 2.9223e–1 (2.32e–3) − 2.9415e–1 (1.63e–4)

LIRCMOP8 2.9401e–1 (1.44e–3) − 2.9460e–1 (7.93e–5) + 2.9351e–1 (1.94e–3) − 2.9418e–1 (1.10e–4)

LIRCMOP9 5.5107e–1 (1.32e–2) − 5.5550e–1 (1.52e–2) ≈ 5.5640e–1 (8.50e–3) ≈ 5.5690e–1 (9.27e–3)

LIRCMOP10 7.0777e–1 (3.07e–4) ≈ 7.0826e–1 (1.06e–4) + 7.0660e–1 (3.86e–4) − 7.0776e–1 (1.73e–4)

LIRCMOP11 6.9387e–1 (1.01e–4) + 6.9144e–1 (8.57e–3) ≈ 6.9390e–1 (1.51e–4) ≈ 6.9282e–1 (6.16e–3)

LIRCMOP12 6.2011e–1 (5.00e–4) − 6.2030e–1 (2.26e–5) + 6.1977e–1 (9.61e–4) − 6.2012e–1 (6.82e–4)

LIRCMOP13 5.5365e–1 (1.61e–3) − 5.5368e–1 (1.26e–3) − 5.5697e–1 (1.01e–3) ≈ 5.5715e–1 (1.02e–3)

LIRCMOP14 5.4916e–1 (1.39e–3) − 5.5261e–1 (1.17e–3) ≈ 5.5211e–1 (1.57e–3) ≈ 5.5201e–1 (1.24e–3)

MW1 4.8977e–1 (7.16e–5) − 4.8979e–1 (6.32e–5) − 4.8998e–1 (6.60e–5) ≈ 4.9000e–1 (2.25e–5)

MW2 5.6062e–1 (1.13e–2) ≈ 5.6199e–1 (1.53e–2) ≈ 5.6059e–1 (1.16e–2) ≈ 5.5704e–1 (1.21e–2)

MW3 5.4456e–1 (5.03e–4) ≈ 5.4451e–1 (5.20e–4) ≈ 5.4437e–1 (4.95e–4) ≈ 5.4442e–1 (4.68e–4)

MW4 8.3694e–1 (1.19e–3) − 8.3731e–1 (8.77e–4) − 8.4110e–1 (2.74e–4) ≈ 8.4110e–1 (3.16e–4)

MW5 3.2361e–1 (1.04e–3) + 3.2404e–1 (4.19e–4) ≈ 3.2367e–1 (1.98e–3) ≈ 3.1947e–1 (2.57e–2)

MW6 3.0877e–1 (1.51e–2) ≈ 3.0964e–1 (1.15e–2) ≈ 3.1140e–1 (1.18e–2) ≈ 3.0690e–1 (1.51e–2)

MW7 4.1188e–1 (5.92e–4) − 4.1199e–1 (4.47e–4) ≈ 4.1232e–1 (3.00e–4) ≈ 4.1224e–1 (3.42e–4)

MW8 5.3061e–1 (1.45e–2) − 5.3504e–1 (1.10e–2) − 5.3388e–1 (1.63e–2) ≈ 5.3830e–1 (1.35e–2)

MW9 3.9582e–1 (2.66e–3) − 3.9113e–1 (4.05e–3) − 3.9857e–1 (1.40e–3) + 3.9740e–1 (2.10e–3)

MW10 4.2809e–1 (1.99e–2) ≈ 4.3123e–1 (1.47e–2) ≈ 4.3151e–1 (1.61e–2) ≈ 4.3043e–1 (1.60e–2)

MW11 4.4736e–1 (2.13e–4) − 4.4756e–1 (1.23e–4) ≈ 4.4731e–1 (2.99e–4) − 4.4758e–1 (1.59e–4)

MW12 6.0354e–1 (2.86e–4) − 6.0366e–1 (2.76e–4) − 5.8425e–1 (1.10e–1) − 6.0419e–1 (3.37e–4)

MW13 4.5100e–1 (1.20e–2) − 4.5194e–1 (1.63e–2) ≈ 4.5242e–1 (1.20e–2) ≈ 4.5873e–1 (1.05e–2)

MW14 4.6910e–1 (1.88e–3) − 4.6889e–1 (2.41e–3) − 4.7478e–1 (1.12e–3) + 4.7407e–1 (1.45e–3)

+/ − / ≈ 6/26/6 7/16/15 5/14/19
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Table 13 The IGD+ values of five algorithms with different gr1 on three sets of benchmark test functions

Problem TSRSM3 TSRSM4 TSRSM5 TSRSM6 TSRSM

C1_DTLZ1 1.4686e–2 (9.20e–5) ≈ 1.4681e–2 (1.06e–4) ≈ 1.4682e–2 (6.88e–5) ≈ 1.4690e–2 (9.21e–5) ≈ 1.4700e–2 (6.54e–5)

C1_DTLZ3 3.0529e–2 (2.16e–2) − 2.4356e–2 (1.10e–3) − 2.4897e–2 (4.05e–3) ≈ 2.4137e–2 (1.34e–3) ≈ 2.3835e–2 (1.28e–3)

C2_DTLZ2 1.9166e–2 (5.51e–4) ≈ 1.9325e–2 (7.87e–4) ≈ 1.9077e–2 (6.49e–4) ≈ 1.9206e–2 (5.54e–4) ≈ 1.9268e–2 (6.03e–4)

C3_DTLZ4 5.9083e–2 (1.87e–3) ≈ 5.8656e–2 (2.21e–3) ≈ 5.8571e–2 (1.99e–3) ≈ 5.8770e–2 (2.32e–3) ≈ 5.8194e–2 (2.25e–3)

DC1_DTLZ1 8.4975e–3 (2.12e–4) ≈ 8.4511e–3 (6.14e–5) ≈ 8.4537e–3 (6.21e–5) ≈ 8.4543e–3 (5.19e–5) ≈ 8.4602e–3 (9.26e–5)

DC1_DTLZ3 2.4165e+0 (2.33e+0) − 1.1855e+0 (5.04e–1) − 1.0670e+0 (3.80e–1) − 1.3295e+0 (4.65e–1) − 1.7325e–2 (1.70e–2)

DC2_DTLZ1 2.1128e–2 (2.82e–2) − 1.4710e–2 (7.99e–5) ≈ 1.4687e–2 (7.34e–5) + 1.4684e–2 (6.46e–5) + 1.4953e–2 (7.14e–4)

DC2_DTLZ3 1.2173e–1 (2.03e–1) ≈ 7.9025e–2 (1.68e–1) ≈ 2.4005e–2 (1.23e–3) ≈ 4.1984e–2 (9.94e–2) ≈ 1.0198e–1 ()

DC3_DTLZ1 7.9788e–2 (1.99e–1) − 5.2936e–3 (5.22e–4) ≈ 5.1951e–3 (7.22e–4) + 5.0788e–3 (6.07e–5) ≈ 1.0792e–2 (3.00e–2)

DC3_DTLZ3 1.0915e+0 (1.25e+0) − 1.5575e–1 (2.94e–1) ≈ 1.5138e–2 (2.01e–2) + 6.4118e–2 (1.67e–1) + 1.7186e–1 (2.60e–1)

LIRCMOP1 1.6711e–2 (8.38e–3) ≈ 1.6237e–2 (8.40e–3) ≈ 1.4190e–2 (5.16e–3) ≈ 1.5249e–2 (5.47e–3) ≈ 1.4963e–2 (8.07e–3)

LIRCMOP2 1.3406e–2 (9.16e–3) − 8.9265e–3 (3.11e–3) ≈ 9.1490e–3 (3.30e–3) ≈ 1.0316e–2 (3.84e–3) − 9.0102e–3 (4.33e–3)

LIRCMOP3 1.8970e–2 (1.27e–2) ≈ 1.6788e–2 (9.47e–3) ≈ 1.9905e–2 (1.13e–2) ≈ 2.0691e–2 (1.27e–2) − 1.4317e–2 (8.99e–3)

LIRCMOP4 1.5705e–2 (1.25e–2) ≈ 1.5813e–2 (9.96e–3) ≈ 1.7045e–2 (1.19e–2) ≈ 2.2481e–2 (2.54e–2) ≈ 1.5124e–2 (1.12e–2)

LIRCMOP5 1.9102e–2 (6.92e–2) − 3.8316e–3 (5.08e–4) ≈ 4.8536e–3 (4.09e–3) ≈ 5.1596e–3 (7.76e–3) ≈ 5.6297e–3 (1.02e–2)

LIRCMOP6 3.5135e–2 (6.33e–2) − 3.1293e–3 (2.73e–4) + 3.1901e–3 (3.39e–4) ≈ 3.9350e–3 (2.13e–3) ≈ 3.3155e–3 (3.19e–4)

LIRCMOP7 8.5948e–3 (1.17e–2) ≈ 6.6754e–3 (3.41e–4) ≈ 6.5972e–3 (4.92e–4) ≈ 6.7716e–3 (9.06e–4) ≈ 6.5277e–3 (3.74e–4)

LIRCMOP8 6.5176e–3 (9.83e–4) ≈ 6.4742e–3 (5.56e–4) ≈ 6.3780e–3 (3.22e–4) ≈ 6.6853e–3 (5.91e–4) ≈ 6.4708e–3 (2.57e–4)

LIRCMOP9 7.1623e–2 (1.76e–2) − 3.3845e–2 (2.33e–2) ≈ 3.8794e–2 (2.42e–2) − 4.2616e–2 (2.82e–2) − 2.2200e–2 (2.23e–2)

LIRCMOP10 4.9867e–3 (1.62e–3) − 4.2410e–3 (2.72e–4) ≈ 4.2533e–3 (3.43e–4) ≈ 4.2752e–3 (2.67e–4) − 4.1256e–3 (2.73e–4)

LIRCMOP11 1.5893e–2 (2.53e–2) − 6.7752e–4 (1.16e–4) ≈ 1.5102e–3 (4.18e–3) ≈ 1.4569e–3 (4.24e–3) ≈ 2.3187e–3 (9.08e–3)

LIRCMOP12 2.4283e–2 (2.16e–2) − 8.4884e–4 (1.54e–3) ≈ 4.6502e–4 (1.47e–4) ≈ 1.2251e–3 (2.99e–3) ≈ 7.9006e–4 (1.33e–3)

LIRCMOP13 4.2385e–2 (1.27e–3) ≈ 4.2360e–2 (1.22e–3) ≈ 4.2480e–2 (9.37e–4) ≈ 4.2191e–2 (8.78e–4) ≈ 4.2186e–2 (1.16e–3)

LIRCMOP14 4.8049e–2 (1.23e–3) ≈ 4.8336e–2 (1.41e–3) ≈ 4.8315e–2 (1.33e–3) ≈ 4.8205e–2 (1.71e–3) ≈ 4.8073e–2 (1.23e–3)

MW1 3.2268e–2 (1.38e–1) − 1.3766e–3 (6.56e–4) ≈ 1.2491e–3 (1.06e–5) ≈ 1.2496e–3 (1.37e–5) ≈ 1.2487e–3 (1.08e–5)

MW2 7.7915e–2 (7.55e–2) − 1.5155e–2 (7.27e–3) ≈ 1.4459e–2 (7.40e–3) ≈ 1.5457e–2 (8.36e–3) ≈ 1.7687e–2 (7.60e–3)

MW3 2.9942e–3 (2.54e–4) ≈ 2.8788e–3 (2.66e–4) ≈ 2.8187e–3 (2.22e–4) ≈ 2.7991e–3 (1.84e–4) ≈ 2.9021e–3 (2.79e–4)

MW4 3.1517e–2 (3.08e–3) − 3.0199e–2 (2.20e–3) ≈ 2.9832e–2 (2.67e–4) ≈ 2.9787e–2 (2.43e–4) ≈ 2.9735e–2 (2.24e–4)

MW5 1.1996e–1 (1.50e–1) − 9.4369e–4 (7.03e–4) ≈ 1.0398e–3 (1.34e–3) ≈ 4.9559e–3 (1.80e–2) ≈ 6.6809e–3 (3.13e–2)

MW6 2.1318e–1 (2.77e–1) − 1.6208e–2 (1.37e–2) ≈ 1.6125e–2 (9.00e–3) ≈ 1.2218e–2 (7.46e–3) ≈ 1.6864e–2 (1.11e–2)

MW7 2.2564e–3 (2.57e–4) − 2.0741e–3 (1.77e–4) ≈ 2.0787e–3 (2.26e–4) ≈ 2.0766e–3 (1.57e–4) ≈ 2.0949e–3 (1.60e–4)

MW8 7.0143e–2 (5.32e–2) − 2.5153e–2 (4.90e–3) ≈ 2.6015e–2 (5.15e–3) ≈ 2.7834e–2 (1.06e–2) ≈ 2.7142e–2 (7.45e–3)

MW9 6.8779e–2 (1.92e–1) − 3.2336e–3 (1.35e–4) + 3.3258e–3 (2.29e–4) ≈ 3.2627e–3 (1.60e–4) ≈ 3.3726e–3 (2.62e–4)

MW10 2.6980e–1 (1.84e–1) − 2.3299e–2 (1.61e–2) ≈ 3.9404e–2 (9.49e–2) ≈ 2.4515e–2 (1.75e–2) ≈ 2.2101e–2 (1.71e–2)

MW11 1.3764e–1 (2.30e–1) − 2.3369e–2 (6.96e–2) − 2.5797e–2 (6.87e–2) − 2.4338e–2 (4.74e–2) − 2.9800e–3 (1.60e–4)

MW12 6.2306e–2 (1.80e–1) − 3.3310e–3 (1.92e–4) ≈ 3.3405e–3 (1.89e–4) ≈ 3.3230e–3 (1.44e–4) ≈ 3.3639e–3 (1.75e–4)

MW13 2.3545e–1 (1.99e–1) − 3.0468e–2 (2.12e–2) ≈ 2.9195e–2 (2.65e–2) ≈ 2.6802e–2 (1.61e–2) ≈ 2.3501e–2 (1.21e–2)

MW14 6.7370e–2 (2.87e–3) − 6.4459e–2 (2.27e–3) ≈ 6.4604e–2 (2.91e–3) ≈ 6.5080e–2 (2.90e–3) ≈ 6.4823e–2 (2.19e–3)

+/ − / ≈ 0/25/13 2/3/33 3/3/32 2/6/30
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Table 14 The HV values of five algorithms with different gr1 on three sets of benchmark test functions

Problem TSRSM3 TSRSM4 TSRSM5 TSRSM6 TSRSM

C1_DTLZ1 8.4142e–1 (1.43e–4) ≈ 8.4140e–1 (3.10e–4) ≈ 8.4142e–1 (2.19e–4) ≈ 8.4136e–1 (2.05e–4) ≈ 8.4144e–1 (1.37e–4)

C1_DTLZ3 5.4704e–1 (3.59e–2) − 5.5746e–1 (2.23e–3) − 5.5630e–1 (7.88e–3) ≈ 5.5792e–1 (2.39e–3) ≈ 5.5858e–1 (2.12e–3)

C2_DTLZ2 5.1727e–1 (1.09e–3) ≈ 5.1743e–1 (1.06e–3) ≈ 5.1706e–1 (1.14e–3) ≈ 5.1765e–1 (1.09e–3) ≈ 5.1711e–1 (1.09e–3)

C3_DTLZ4 7.8771e–1 (1.16e–3) ≈ 7.8794e–1 (1.39e–3) ≈ 7.8802e–1 (1.16e–3) ≈ 7.8789e–1 (1.47e–3) ≈ 7.8815e–1 (1.49e–3)

DC1_DTLZ1 6.3181e–1 (9.30e–4) − 6.3232e–1 (5.88e–4) ≈ 6.3221e–1 (5.64e–4) ≈ 6.3233e–1 (5.78e–4) ≈ 6.3224e–1 (6.44e–4)

DC1_DTLZ3 4.8495e–2 (1.25e–1) − 5.2901e–4 (2.90e–3) − 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) − 4.6630e–1 (3.04e–2)

DC2_DTLZ1 8.2604e–1 (6.86e–2) − 8.4144e–1 (1.83e–4) ≈ 8.4147e–1 (1.32e–4) ≈ 8.4153e–1 (1.03e–4) + 8.4093e–1 (1.58e–3)

DC2_DTLZ3 4.5543e–1 (2.09e–1) ≈ 5.0334e–1 (1.67e–1) ≈ 5.5845e–1 (1.90e–3) ≈ 5.4025e–1 (9.96e–2) ≈ 4.8035e–1 (1.96e–1)

DC3_DTLZ1 4.4703e–1 (1.86e–1) − 5.3500e–1 (2.11e–3) ≈ 5.3521e–1 (3.15e–3) ≈ 5.3583e–1 (9.05e–4) ≈ 5.2057e–1 (7.96e–2)

DC3_DTLZ3 1.2699e–1 (1.72e–1) − 2.7726e–1 (1.56e–1) ≈ 3.5485e–1 (3.47e–2) + 3.2815e–1 (1.12e–1) + 2.5323e–1 (1.59e–1)

LIRCMOP1 2.2887e–1 (6.41e–3) ≈ 2.2926e–1 (6.25e–3) ≈ 2.3099e–1 (3.77e–3) ≈ 2.3059e–1 (3.54e–3) ≈ 2.3071e–1 (5.53e–3)

LIRCMOP2 3.5432e–1 (5.87e–3) − 3.5721e–1 (2.38e–3) ≈ 3.5715e–1 (2.33e–3) ≈ 3.5651e–1 (2.72e–3) − 3.5740e–1 (2.67e–3)

LIRCMOP3 1.9660e–1 (7.91e–3) ≈ 1.9802e–1 (5.32e–3) ≈ 1.9667e–1 (7.32e–3) ≈ 1.9649e–1 (6.54e–3) − 1.9929e–1 (5.84e–3)

LIRCMOP4 3.0651e–1 (9.38e–3) ≈ 3.0639e–1 (7.17e–3) ≈ 3.0555e–1 (9.16e–3) ≈ 3.0152e–1 (1.81e–2) ≈ 3.0688e–1 (8.24e–3)

LIRCMOP5 2.8471e–1 (3.57e–2) − 2.9245e–1 (2.50e–4) ≈ 2.9100e–1 (5.64e–3) ≈ 2.9102e–1 (8.00e–3) ≈ 2.9068e–1 (9.84e–3)

LIRCMOP6 1.8142e–1 (2.83e–2) − 1.9799e–1 (1.48e–4) ≈ 1.9796e–1 (1.83e–4) ≈ 1.9749e–1 (1.39e–3) ≈ 1.9790e–1 (1.68e–4)

LIRCMOP7 2.9356e–1 (3.49e–3) ≈ 2.9409e–1 (1.41e–4) ≈ 2.9412e–1 (2.04e–4) ≈ 2.9380e–1 (1.24e–3) ≈ 2.9415e–1 (1.63e–4)

LIRCMOP8 2.9412e–1 (5.90e–4) ≈ 2.9410e–1 (7.01e–4) ≈ 2.9422e–1 (1.34e–4) ≈ 2.9402e–1 (7.15e–4) ≈ 2.9418e–1 (1.10e–4)

LIRCMOP9 5.3023e–1 (1.22e–2) − 5.5230e–1 (9.62e–3) − 5.5004e–1 (1.10e–2) − 5.4761e–1 (1.41e–2) − 5.5690e–1 (9.27e–3)

LIRCMOP10 7.0724e–1 (1.67e–3) − 7.0768e–1 (1.41e–4) − 7.0764e–1 (2.35e–4) − 7.0766e–1 (2.33e–4) ≈ 7.0776e–1 (1.73e–4)

LIRCMOP11 6.8370e–1 (1.66e–2) − 6.9394e–1 (5.23e–5) ≈ 6.9333e–1 (3.07e–3) + 6.9340e–1 (2.99e–3) ≈ 6.9282e–1 (6.16e–3)

LIRCMOP12 6.0884e–1 (1.08e–2) − 6.2009e–1 (8.01e–4) ≈ 6.2028e–1 (7.35e–5) ≈ 6.1990e–1 (1.48e–3) ≈ 6.2012e–1 (6.82e–4)

LIRCMOP13 5.5710e–1 (1.14e–3) ≈ 5.5700e–1 (1.16e–3) ≈ 5.5682e–1 (8.78e–4) ≈ 5.5708e–1 (8.12e–4) ≈ 5.5715e–1 (1.02e–3)

LIRCMOP14 5.5219e–1 (9.99e–4) ≈ 5.5187e–1 (1.42e–3) ≈ 5.5201e–1 (1.20e–3) ≈ 5.5204e–1 (1.44e–3) ≈ 5.5201e–1 (1.24e–3)

MW1 4.6533e–1 (9.66e–2) − 4.8960e–1 (2.07e–3) ≈ 4.9001e–1 (2.68e–5) ≈ 4.9000e–1 (2.63e–5) ≈ 4.9000e–1 (2.25e–5)

MW2 4.7869e–1 (8.85e–2) − 5.6098e–1 (1.18e–2) ≈ 5.6193e–1 (1.23e–2) ≈ 5.6050e–1 (1.36e–2) ≈ 5.5704e–1 (1.21e–2)

MW3 5.4427e–1 (4.26e–4) ≈ 5.4448e–1 (4.26e–4) ≈ 5.4458e–1 (3.59e–4) ≈ 5.4459e–1 (3.13e–4) ≈ 5.4442e–1 (4.68e–4)

MW4 8.3892e–1 (3.72e–3) − 8.4058e–1 (2.40e–3) ≈ 8.4102e–1 (3.12e–4) ≈ 8.4103e–1 (2.84e–4) ≈ 8.4110e–1 (3.16e–4)

MW5 2.3911e–1 (1.06e–1) − 3.2422e–1 (3.19e–4) ≈ 3.2409e–1 (8.50e–4) ≈ 3.2073e–1 (1.60e–2) ≈ 3.1947e–1 (2.57e–2)

MW6 2.1783e–1 (9.54e–2) − 3.0787e–1 (1.83e–2) ≈ 3.0786e–1 (1.22e–2) ≈ 3.1314e–1 (1.01e–2) ≈ 3.0690e–1 (1.51e–2)

MW7 4.1187e–1 (5.43e–4) − 4.1233e–1 (3.68e–4) ≈ 4.1227e–1 (5.04e–4) ≈ 4.1231e–1 (3.18e–4) ≈ 4.1224e–1 (3.42e–4)

MW8 4.6342e–1 (8.97e–2) − 5.4212e–1 (8.88e–3) ≈ 5.4034e–1 (9.31e–3) ≈ 5.3672e–1 (1.87e–2) ≈ 5.3830e–1 (1.35e–2)

MW9 3.5343e–1 (1.20e–1) − 3.9871e–1 (1.32e–3) + 3.9767e–1 (1.91e–3) ≈ 3.9821e–1 (1.73e–3) ≈ 3.9740e–1 (2.10e–3)

MW10 2.7025e–1 (1.08e–1) − 4.2898e–1 (1.50e–2) ≈ 4.1967e–1 (5.91e–2) ≈ 4.2808e–1 (1.63e–2) ≈ 4.3043e–1 (1.60e–2)

MW11 3.9938e–1 (7.42e–2) − 4.3029e–1 (2.95e–2) − 4.2721e–1 (2.87e–2) − 4.2900e–1 (2.22e–2) − 4.4758e–1 (1.59e–4)

MW12 5.4922e–1 (1.66e–1) − 6.0421e–1 (3.55e–4) ≈ 6.0420e–1 (3.02e–4) ≈ 6.0435e–1 (2.58e–4) ≈ 6.0419e–1 (3.37e–4)

MW13 3.4152e–1 (8.22e–2) − 4.5361e–1 (1.61e–2) ≈ 4.5514e–1 (1.96e–2) ≈ 4.5621e–1 (1.26e–2) ≈ 4.5873e–1 (1.05e–2)

MW14 4.7261e–1 (2.19e–3) − 4.7430e–1 (1.65e–3) ≈ 4.7397e–1 (2.17e–3) ≈ 4.7389e–1 (1.80e–3) ≈ 4.7407e–1 (1.45e–3)

+/ − / ≈ 0/26/12 1/5/32 2/4/32 2/5/31
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Table 15 The IGD+ values of five algorithms with different gr2 on three sets of benchmark test functions

Problem TSRSM7 TSRSM8 TSRSM9 TSRSM10 TSRSM

C1_DTLZ1 1.4685e–2 (7.46e–5) ≈ 1.4716e–2 (8.02e–5) ≈ 1.4831e–2 (3.18e–4) − 1.5479e–2 (3.50e–4) − 1.4700e–2 (6.54e–5)

C1_DTLZ3 2.3405e–2 (7.45e–4) ≈ 2.7265e–2 (7.34e–3) − 2.9210e–1 (1.46e+0) − 2.7007e–2 (1.35e–3) − 2.3835e–2 (1.28e–3)

C2_DTLZ2 1.9151e–2 (5.85e–4) ≈ 1.9239e–2 (8.21e–4) ≈ 1.9125e–2 (5.49e–4) ≈ 1.9262e–2 (6.23e–4) ≈ 1.9268e–2 (6.03e–4)

C3_DTLZ4 7.0114e–2 (5.95e–2) − 5.8776e–2 (2.54e–3) ≈ 5.9820e–2 (2.24e–3) − 6.1780e–2 (2.65e–3) − 5.8194e–2 (2.25e–3)

DC1_DTLZ1 8.5642e–3 (2.04e–4) − 8.4562e–3 (6.52e–5) ≈ 8.5644e–3 (2.19e–4) − 8.8264e–3 (2.03e–4) − 8.4602e–3 (9.26e–5)

DC1_DTLZ3 1.3425e–2 (3.69e–4) + 1.4163e–2 (9.84e–4) ≈ 1.7965e–2 (1.70e–2) ≈ 1.8355e–2 (1.77e–2) − 1.7325e–2 (1.70e–2)

DC2_DTLZ1 1.4809e–2 (1.39e–4) ≈ 1.5376e–2 (3.33e–3) ≈ 2.5271e–2 (3.86e–2) − 2.5627e–2 (3.85e–2) − 1.4953e–2 (7.14e–4)

DC2_DTLZ3 2.3353e–2 (6.87e–4) ≈ 2.4100e–1 (2.63e–1) − 3.9028e–1 (2.55e–1) − 4.3229e–1 (2.39e–1) − 1.0198e–1 (1.95e–1)

DC3_DTLZ1 5.1971e–3 (1.36e–4) ≈ 6.3015e–3 (3.11e–3) ≈ 5.5413e–2 (1.20e–1) − 6.9308e–2 (1.20e–1) − 1.0792e–2 (3.00e–2)

DC3_DTLZ3 8.3950e–3 (4.73e–4) + 6.7723e–1 (5.40e–1) − 8.5488e–1 (4.11e–1) − 8.9926e–1 (5.61e–1) − 1.7186e–1 (2.60e–1)

LIRCMOP1 1.5398e–1 (6.10e–2) − 1.1288e–2 (4.23e–3) ≈ 1.3108e–2 (7.00e–3) ≈ 1.0205e–2 (3.44e–3) + 1.4963e–2 (8.07e–3)

LIRCMOP2 7.5101e–2 (3.39e–2) − 8.4470e–3 (3.11e–3) ≈ 8.0202e–3 (3.92e–3) ≈ 7.5491e–3 (1.84e–3) ≈ 9.0102e–3 (4.33e–3)

LIRCMOP3 1.5870e–1 (6.05e–2) − 1.3110e–2 (8.21e–3) ≈ 1.4286e–2 (1.72e–2) ≈ 1.3535e–2 (9.60e–3) ≈ 1.4317e–2 (8.99e–3)

LIRCMOP4 1.1236e–1 (4.34e–2) − 1.0961e–2 (8.47e–3) ≈ 1.0557e–2 (8.22e–3) ≈ 8.4999e–3 (6.52e–3) + 1.5124e–2 (1.12e–2)

LIRCMOP5 1.1167e–2 (3.36e–3) − 3.3766e–3 (2.74e–4) + 3.2720e–3 (1.12e–4) + 3.2667e–3 (1.01e–4) + 5.6297e–3 (1.02e–2)

LIRCMOP6 1.1114e–2 (5.24e–3) − 2.8137e–3 (8.17e–5) + 2.7687e–3 (3.81e–5) + 2.7816e–3 (5.20e–5) + 3.3155e–3 (3.19e–4)

LIRCMOP7 8.9531e–3 (4.03e–3) − 6.3551e–3 (4.06e–4) ≈ 6.3488e–3 (3.70e–4) ≈ 6.2294e–3 (2.40e–4) + 6.5277e–3 (3.74e–4)

LIRCMOP8 7.3868e–3 (2.92e–3) − 5.7139e–3 (3.10e–4) + 5.6742e–3 (2.55e–4) + 5.6095e–3 (2.68e–4) + 6.4708e–3 (2.57e–4)

LIRCMOP9 2.2328e–2 (1.90e–2) ≈ 2.5454e–2 (2.51e–2) ≈ 2.1247e–2 (2.90e–2) ≈ 1.4189e–2 (2.29e–2) + 2.2200e–2 (2.23e–2)

LIRCMOP10 5.4982e–3 (5.26e–4) − 3.2317e–e–3 (1.75e–4) + 3.0789e–3 (1.29e–4) + 3.1104e–3 (1.24e–4) + 4.1256e–3 (2.73e–4)

LIRCMOP11 7.1358e–4 (1.43e–4) ≈ 2.6725e–3 (9.20e–3) − 7.1073e–4 (7.68e–5) + 1.3888e–3 (2.48e–3) ≈ 2.3187e–3 (9.08e–3)

LIRCMOP12 1.0801e–3 (1.50e–3) − 8.4276e–4 (2.07e–3) ≈ 6.4297e–4 (1.12e–3) ≈ 4.3186e–4 (4.92e–5) ≈ 7.9006e–4 (1.33e–3)

LIRCMOP13 4.2497e–2 (1.39e–3) ≈ 4.2342e–2 (1.10e–3) ≈ 4.2460e–2 (1.50e–3) ≈ 4.2386e–2 (1.38e–3) ≈ 4.2186e–2 (1.16e–3)

LIRCMOP14 4.8549e–2 (1.75e–3) ≈ 4.7869e–2 (1.23e–3) ≈ 4.7878e–2 (1.39e–3) ≈ 4.7898e–2 (1.19e–3) ≈ 4.8073e–2 (1.23e–3)

MW1 1.2524e–3 (1.32e–5) ≈ 1.2857e–3 (3.92e–5) − 1.3421e–3 (3.72e–5) − 1.3595e–3 (4.04e–5) − 1.2487e–3 (1.08e–5)

MW2 1.4509e–2 (5.87e–3) ≈ 1.5210e–2 (7.16e–3) ≈ 1.6176e–2 (6.54e–3) ≈ 1.7052e–2 (9.15e–3) ≈ 1.7687e–2 (7.60e–3)

MW3 2.8687e–3 (2.65e–4) ≈ 2.9681e–3 (2.67e–4) ≈ 2.9282e–3 (1.64e–4) ≈ 2.9944e–3 (2.99e–4) ≈ 2.9021e–3 (2.79e–4)

MW4 2.9703e–2 (2.29e–4) ≈ 2.9778e–2 (2.97e–4) ≈ 3.0696e–2 (1.50e–3) − 3.1057e–2 (9.15e–4) − 2.9735e–2 (2.24e–4)

MW5 1.5673e–3 (1.56e–3) ≈ 1.8527e–3 (4.18e–3) ≈ 1.4331e–3 (1.27e–3) ≈ 1.1408e–3 (8.61e–4) ≈ 6.6809e–3 (3.13e–2)

MW6 1.5434e–2 (1.08e–2) ≈ 1.8230e–2 (9.11e–3) ≈ 1.3843e–2 (1.42e–2) ≈ 1.4774e–2 (1.07e–2) ≈ 1.6864e–2 (1.11e–2)

MW7 2.0251e–3 (1.53e–4) ≈ 2.2694e–3 (2.75e–4) − 2.2617e–3 (2.03e–4) − 2.3227e–3 (2.10e–4) − 2.0949e–3 (1.60e–4)

MW8 2.9867e–2 (8.73e–3) ≈ 2.8229e–2 (6.86e–3) ≈ 2.7559e–2 (5.73e–3) ≈ 2.8265e–2 (5.31e–3) ≈ 2.7142e–2 (7.45e–3)

MW9 3.2370e–3 (1.99e–4) + 3.5324e–3 (4.19e–4) ≈ 4.7667e–3 (2.41e–3) − 4.2447e–3 (9.35e–4) − 3.3726e–3 (2.62e–4)

MW10 2.4790e–2 (1.89e–2) ≈ 2.6094e–2 (2.06e–2) ≈ 1.6866e–2 (1.07e–2) ≈ 2.7775e–2 (2.30e–2) ≈ 2.2101e–2 (1.71e–2)

MW11 2.8528e–3 (1.90e–4) + 3.2457e–3 (2.13e–4) − 3.4033e–3 (2.03e–4) − 3.3986e–3 (1.62e–4) − 2.9800e–3 (1.60e–4)

MW12 3.4493e–3 (7.09e–4) ≈ 2.4508e–2 (1.16e–1) ≈ 2.7882e–2 (1.34e–1) ≈ 3.6102e–3 (1.79e–4) − 3.3639e–3 (1.75e–4)

MW13 2.2437e–2 (1.29e–2) ≈ 2.6561e–2 (1.55e–2) ≈ 2.5641e–2 (1.08e–2) ≈ 3.1819e–2 (2.14e–2) ≈ 2.3501e–2 (1.21e–2)

MW14 6.4001e–2 (2.65e–3) ≈ 6.9022e–2 (4.64e–3) − 7.0561e–2 (3.54e–3) − 7.1480e–2 (2.85e–3) − 6.4823e–2 (2.19e–3)

+/ − / ≈ 4/12/22 4/8/26 5/14/19 8/16/14
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Table 16 The HV values of five algorithms with different gr2 on three sets of benchmark test functions

Problem TSRSM7 TSRSM8 TSRSM9 TSRSM10 TSRSM

C1_DTLZ1 8.4073e–1 (7.45e–4) − 8.4134e–1 (2.11e–4) ≈ 8.4088e–1 (1.10e–3) − 8.3799e–1 (1.21e–3) − 8.4144e–1 (1.37e–4)

C1_DTLZ3 5.5914e–1 (1.08e–3) ≈ 5.5247e–1 (1.32e–2) − 5.3629e–1 (1.01e–1) − 5.5284e–1 (2.02e–3) − 5.5858e–1 (2.12e–3)

C2_DTLZ2 5.1712e–1 (1.27e–3) ≈ 5.1710e–1 (1.48e–3) ≈ 5.1756e–1 (1.26e–3) ≈ 5.1662e–1 (1.64e–3) ≈ 5.1711e–1 (1.09e–3)

C3_DTLZ4 7.7926e–1 (4.56e–2) ≈ 7.8785e–1 (1.53e–3) ≈ 7.8712e–1 (1.45e–3) − 7.8589e–1 (1.66e–3) − 7.8815e–1 (1.49e–3)

DC1_DTLZ1 6.3174e–1 (6.81e–4) − 6.3200e–1 (5.62e–4) − 6.3177e–1 (1.16e–3) ≈ 6.3054e–1 (8.99e–4) − 6.3224e–1 (6.44e–4)

DC1_DTLZ3 4.7360e–1 (7.85e–4) + 4.7135e–1 (2.58e–3) ≈ 4.6442e–1 (3.02e–2) − 4.6315e–1 (3.18e–2) − 4.6630e–1 (3.04e–2)

DC2_DTLZ1 8.4124e–1 (2.52e–4) + 8.3998e–1 (7.37e–3) ≈ 8.1567e–1 (9.42e–2) − 8.1471e–1 (9.48e–2) − 8.4093e–1 (1.58e–3)

DC2_DTLZ3 5.5965e–1 (9.86e–4) ≈ 3.3270e–1 (2.61e–1) − 1.8603e–1 (2.52e–1) − 1.4735e–1 (2.38e–1) − 4.8035e–1 (1.96e–1)

DC3_DTLZ1 5.3549e–1 (1.06e–3) ≈ 5.3031e–1 (1.49e–2) ≈ 4.4287e–1 (1.90e–1) − 4.0966e–1 (2.13e–1) − 5.2057e–1 (7.96e–2)

DC3_DTLZ3 3.6761e–1 (1.02e–3) + 6.9662e–2 (1.43e–1) − 1.2242e–2 (6.71e–2) − 2.3800e–2 (9.06e–2) − 2.5323e–1 (1.59e–1)

LIRCMOP1 1.5254e–1 (2.30e–2) − 2.3305e–1 (2.81e–3) ≈ 2.3209e–1 (4.40e–3) ≈ 2.3386e–1 (2.10e–3) + 2.3071e–1 (5.53e–3)

LIRCMOP2 2.9180e–1 (2.93e–2) − 3.5779e–1 (1.85e–3) ≈ 3.5803e–1 (2.43e–3) ≈ 3.5829e–1 (1.22e–3) ≈ 3.5740e–1 (2.67e–3)

LIRCMOP3 1.3465e–1 (2.30e–2) − 2.0030e–1 (5.34e–3) ≈ 1.9985e–1 (9.57e–3) ≈ 2.0025e–1 (6.79e–3) ≈ 1.9929e–1 (5.84e–3)

LIRCMOP4 2.3608e–1 (2.74e–2) − 3.0986e–1 (5.79e–3) ≈ 3.1001e–1 (6.96e–3) ≈ 3.1172e–1 (4.44e–3) + 3.0688e–1 (8.24e–3)

LIRCMOP5 2.8653e–1 (3.40e–3) − 2.9268e–1 (1.46e–4) + 2.9274e–1 (6.10e–5) + 2.9274e–1 (5.46e–5) + 2.9068e–1 (9.84e–3)

LIRCMOP6 1.9331e–1 (2.82e–3) − 1.9817e–1 (4.48e–5) + 1.9819e–1 (2.66e–5) + 1.9818e–1 (3.23e–5) + 1.9790e–1 (1.68e–4)

LIRCMOP7 2.9202e–1 (3.24e–3) − 2.9424e–1 (1.78e–4) ≈ 2.9424e–1 (1.35e–4) + 2.9429e–1 (9.11e–5) + 2.9415e–1 (1.63e–4)

LIRCMOP8 2.9336e–1 (2.37e–3) − 2.9453e–1 (1.25e–4) + 2.9456e–1 (1.22e–4) + 2.9458e–1 (1.21e–4) + 2.9418e–1 (1.10e–4)

LIRCMOP9 5.5681e–1 (7.63e–3) ≈ 5.5599e–1 (1.13e–2) ≈ 5.5688e–1 (1.46e–2) ≈ 5.6055e–1 (1.11e–2) + 5.5690e–1 (9.27e–3)

LIRCMOP10 7.0631e–1 (4.80e–4) − 7.0821e–1 (1.33e–4) + 7.0828e–1 (8.21e–5) + 7.0825e–1 (1.12e–4) + 7.0776e–1 (1.73e–4)

LIRCMOP11 6.9389e–1 (1.07e–4) + 6.9256e–1 (6.27e–3) ≈ 6.9395e–1 (4.25e–5) ≈ 6.9347e–1 (1.66e–3) ≈ 6.9282e–1 (6.16e–3)

LIRCMOP12 6.2002e–1 (6.17e–4) − 6.2011e–1 (1.04e–3) − 6.2019e–1 (5.81e–4) + 6.2029e–1 (3.04e–5) ≈ 6.2012e–1 (6.82e–4)

LIRCMOP13 5.5690e–1 (1.40e–3) ≈ 5.5711e–1 (9.00e–4) ≈ 5.5682e–1 (1.60e–3) ≈ 5.5698e–1 (1.15e–3) ≈ 5.5715e–1 (1.02e–3)

LIRCMOP14 5.5156e–1 (1.49e–3) ≈ 5.5225e–1 (1.13e–3) ≈ 5.5238e–1 (1.25e–3) ≈ 5.5240e–1 (1.13e–3) ≈ 5.5201e–1 (1.24e–3)

MW1 4.9001e–1 (2.59e–5) ≈ 4.8990e–1 (5.88e–5) − 4.8985e–1 (6.13e–5) − 4.8980e–1 (7.40e–5) − 4.9000e–1 (2.25e–5)

MW2 5.6174e–1 (1.01e–2) ≈ 5.6084e–1 (1.18e–2) ≈ 5.5903e–1 (1.05e–2) ≈ 5.5802e–1 (1.44e–2) ≈ 5.5704e–1 (1.21e–2)

MW3 5.4441e–1 (5.02e–4) ≈ 5.4434e–1 (4.54e–4) ≈ 5.4441e–1 (2.74e–4) ≈ 5.4426e–1 (4.98e–4) ≈ 5.4442e–1 (4.68e–4)

MW4 8.4112e–1 (2.18e–4) ≈ 8.4102e–1 (3.78e–4) ≈ 8.3981e–1 (1.91e–3) − 8.3949e–1 (1.02e–3) − 8.4110e–1 (3.16e–4)

MW5 3.2388e–1 (8.69e–4) ≈ 3.2342e–1 (3.38e–3) ≈ 3.2387e–1 (7.45e–4) ≈ 3.2406e–1 (3.94e–4) ≈ 3.1947e–1 (2.57e–2)

MW6 3.0884e–1 (1.44e–2) ≈ 3.0500e–1 (1.24e–2) ≈ 3.1155e–1 (1.64e–2) ≈ 3.0972e–1 (1.46e–2) ≈ 3.0690e–1 (1.51e–2)

MW7 4.1236e–1 (3.22e–4) ≈ 4.1214e–1 (5.26e–4) ≈ 4.1216e–1 (3.41e–4) ≈ 4.1212e–1 (4.10e–4) ≈ 4.1224e–1 (3.42e–4)

MW8 5.3356e–1 (1.58e–2) ≈ 5.3634e–1 (1.22e–2) ≈ 5.3766e–1 (1.03e–2) ≈ 5.3594e–1 (9.53e–3) ≈ 5.3830e–1 (1.35e–2)

MW9 3.9863e–1 (1.87e–3) + 3.9714e–1 (2.50e–3) ≈ 3.9362e–1 (5.28e–3) − 3.9420e–1 (3.10e–3) − 3.9740e–1 (2.10e–3)

MW10 4.2781e–1 (1.70e–2) ≈ 4.2697e–1 (1.85e–2) ≈ 4.3523e–1 (1.17e–2) ≈ 4.2558e–1 (1.98e–2) ≈ 4.3043e–1 (1.60e–2)

MW11 4.4671e–1 (1.91e–3) − 4.4750e–1 (1.84e–4) ≈ 4.4755e–1 (1.54e–4) ≈ 4.4753e–1 (1.39e–4) ≈ 4.4758e–1 (1.59e–4)

MW12 6.0412e–1 (1.01e–3) ≈ 5.8484e–1 (1.05e–1) − 5.8389e–1 (1.10e–1) − 6.0381e–1 (2.77e–4) − 6.0419e–1 (3.37e–4)

MW13 4.5962e–1 (1.09e–2) ≈ 4.5637e–1 (1.23e–2) ≈ 4.5665e–1 (8.80e–3) ≈ 4.5253e–1 (1.59e–2) ≈ 4.5873e–1 (1.05e–2)

MW14 4.7446e–1 (1.54e–3) ≈ 4.7151e–1 (3.15e–3) − 4.7011e–1 (2.64e–3) − 4.6941e–1 (1.92e–3) − 4.7407e–1 (1.45e–3)

+/ − / ≈ 5/13/20 4/8/26 6/13/19 8/14/16

Appendix B

See Fig. 6.
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a b

MSRSTPP-MSRST

Fig. 6 The distribution of populations on MW13. a TSRSM-PP. b TSRSM
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