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Abstract
Group decision-making and consensus modeling have always been important research topics. With the widespread use of the
Internet, group decisions can be made online, in which a large number of decision-makers participate. Most of the existing
studies on large-scale group decision-making consider 20–50 decision-makers. Therefore, there is a need for a framework that
focuses on situations where thousands of decision-makers exist. As dimension reduction is one of the five primary challenges
in large-scale group decision-making, in this study, after reviewing the existing approaches, a new model is presented using a
statistical approach along with complex network analysis techniques. The opinions are generalized first, and then the network
of opinions is built. This newmethod reduces the dimensions of the problem by considering a hierarchy of opinions. Different
scenarios were designed for the evaluation. The results show that the effect of this generalization on dimension reduction
depends on the parameters of the problem. We have shown that in a group decision scenario with 3000 decision-makers and
6 alternatives, 99% of the data was reduced. As dimension reduction is the main focus of the current research, the effect
of consistency on the diversity of opinions has also been investigated, and the results show that opinion consistency affects
opinion generalization, which in turn affects dimension reduction. In addition, in the performed simulations, three types of
functions were used to calculate similarity. The aim was to determine the best similarity function for the decision problems
whose purpose was to rank the available alternatives. The results show that Euclidean similarity is a strict criterion compared
with Cosine similarity.

Keywords Large-scale group decision-making · Consensus · Uncertainty · Multi-layer networks · Dimension reduction

Introduction

Decision-making has always been an important research sub-
ject. Most of the prediction mechanisms [1] and decision
support systems [2] aim to help humans in the decision-
making process. Group decision-making is a step further
where all decision-makers having their own opinion need
to reach a consensus. Therefore, group decision-making
consists of a group of decision-makers expressing their opin-
ions about a set of alternatives to make a decision. After
expressing their initial opinions, decision-makers enter into
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an iterative and dynamic process to increase the agreement
between group members. One of the main challenges in any
group decision-making scenario is to reach a perfect agree-
ment among all decision-makers, which in most cases, is
not possible. There are two types of consensus: (1) hard and
(2) soft. In hard consensus, at the end of the process, the
preferences of all decision-makers converge into one. So,
the hard consensus seems impossible in most situations. In
soft consensus, the agreement between decision-makers is
measured with a fuzzy number, which can be considered an
acceptable level of agreement. The core idea of fuzzy mem-
bership has also been used in many fields such as control
theory [3] and security [4]. Group decision-making has tra-
ditionally been seen as a process in which a small number
of experts interact with each other to make a selection from
available alternatives. The consensus process is defined as
dynamic and repetitive group discussions aimed at bringing
together the opinions of decision-makers [5]. Recently, the
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number of groups participating in the decision-making pro-
cess has increased, ranging from tens to thousand [6]. Due
to technological advancements, there is a strong tendency
among researchers to propose consensus-reaching or opinion
dynamics models that involve a large number of DMs who
are assumed to interact through a social network platform
Therefore, there is a need for a framework that focuses on
situations where thousands of decision-makers are attending.
A classic view of large-scale group decision-making con-
sidered the problem as a decision-making process in which
there are more than 20 decision-makers. Based on this view,
many researchers have presented their method for groups
of approximately 20 decision-makers. Tang et al. criticized
the fact that most of the available studies involve 20–50
decision-makers and emphasized that in large-scale group
decision-making, the performance ofmodels in larger groups
with thousands of decision-makers should be examined [7].
In group decision-making, in which the goal is to increase the
level of agreement, the followingmain processes are needed:

1. Consensus-reaching process (CRP) First, the opinions
of individuals are collected, and the degree of agreement
is calculated. If the degree of agreement is not reached,
this means that some decision-makers have to change
their opinions. One of the termination conditions is that
the level of agreement reaches a predetermined threshold
[8].

2. Selection process When the similarity of decision-
makers’ opinions reaches a predetermined consensus
threshold value, the selection process is applied to obtain
the final ranking of the alternatives [9, 10].

Large-scale group decision-making scenarios are fun-
damentally different from small groups, and specific key
elements appear in large-scale group decision-making mod-
els [6, 11]. In the work of Du et al. [12], clustering, which can
be a solution for reducing the dimension, is also mentioned
as one of the main processes of large-scale decision-making.
As the number of decision-makers increases, the processing
time of clustering increases as well. Therefore, dimension
reduction using a simpler approach can affect the speed
of the consensus process. García-Zamora et al. indicated
that classic consensus-reaching processes are not suitable
for large-scale group decision-making problems [13]. Most
of the existing methods are time-consuming in such sit-
uations, which makes them unsuitable. So, in large-scale
group decision-making, the performance of models in larger
groups with thousands of decision-makers should be exam-
ined. Most of the studies reviewed in [7] take advantage of
clustering for dimension reduction, but selecting the cluster-
ing algorithms and their parameters is also challenging in
group decision-making. So, to provide a specific consensus
process for large-scale group decision-making, a framework

is proposed using opinion transformation and a two-layer net-
work. The main idea is to create a hierarchy of preferences
and reduce the dimension by considering the transformed
form of preferences, which are much smaller than the origi-
nal preferences. Thus, here, the dimensionmeans the number
of preferences, and it can be applied in situations in which
a large number of decision-makers take part. This general-
ization is similar to roll-upping in data mining techniques.
Rolling-up the data is about data summarization and is the
process of aggregating data elements from a lower level data
structure into a higher level one. Therefore, fast and effi-
cient dimension reduction is an advantage of the proposed
generalization. It is fast because it does not have the over-
head of clustering. It is efficient because it summarizes the
data. In the proposed model, consistency and certainty can
affect the size of the opinion data. Therefore, in this study,
the effects of consistency and certainty on opinion size were
investigated for the first time. The results in the evaluation
section show that depending on the number of decision-
makers and alternatives, the opinion data can be reduced by
up to 99%. In the evaluation section, three types of similarity
criteria are used in the consensus process, and it is shown
that Euclidean similarity is a strict criterion for decision
problems whose purpose is to rank the available alternatives.
The rest of the paper is organized as follows. Related work
is reviewed in "Related work". "Background knowledge"
presents the concepts and the main mathematical prereq-
uisites of the domain. The proposed approach is presented
in "Problem statement". In “The proposed approach", the
proposed approach is evaluated using several group decision-
making simulation scenarios. Finally, in “Conclusion", the
paper concludes and some pointers regarding possible future
directions are provided.

Related work

We have divided the processes in various consensus frame-
works into three phases: (1) preprocessing, (2) consensus
process, and (3) selection process. The preprocessing phase
includes all tasks performed before the consensus-reaching
process. By adding this phase to the framework, we can sep-
arate the consensus processes from the preprocessing and
simplify the framework. According to [14], preprocessing
consists of data cleaning, data integration, data reduction, and
data transformation. Some studies focus on approaches tofill-
out incomplete opinions. These techniques can be considered
data-cleaning techniques [15–19]. In some studies, data inte-
gration and data transformation techniques have been used to
provide a framework in which decision-makers can express
their opinions in their desiredway so that all opinions are then
integrated into a single form [9, 20, 21]. Data reduction tech-
niques are widely used in large-scale group decision-making
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frameworks. Some studies, such as [11, 12, 22–27], have
used clustering and grouping of opinions to reduce the num-
ber of decision-makers. Some studies, such as [28–30], have
used network partitioning based on network structures. In
some articles, the goal was not to reduce the dimension. But,
because only some of themore important nodes were consid-
ered, other nodes were excluded from the calculations. The
next phase is the consensus process. In this phase, the consen-
sus level is calculated, and if it is below a certain threshold,
feedback is generated. The feedback mechanism is respon-
sible for generating suggestions for decision-makers, and
if decision-makers accept these suggestions, their opinions
converge. The feedback mechanism consists of two steps.
The first step is selecting the decision-makers for changing
their opinions, and the second step is to generate sugges-
tions for the selected decision-makers and determine opinion
changes. Based on our review, there are four approaches for
decision-maker selection, which are explained below:

1. Selecting all of the decision-makers In this approach, all
opinions must change.

2. Selecting a subgroup of decision-makers In this
approach, decision-makers are divided into several
groups, and at each iteration, the opinion of one or several
groups changes [5, 17, 31].

3. Selecting a decision-maker Individuals whose opinions
are not similar to others are identified and individual feed-
back is generated [9, 19, 32–34].

4. Adaptive This approach is a combination of the second
and third approaches. In this way, the higher the con-
sensus degree is, the fewer opinions have to change [7,
12].

Three approaches for suggestion generation exist, which
are explained below:

1. According to the collective opinion In these studies, a
change of opinion is performed by considering a collec-
tive opinion [19, 22, 30, 33–35].

2. Using opinion dynamics Opinion dynamics describes the
process of forming opinions among a group of interac-
tive decision-makers [10]. Rules that are used in related
research are divided into two general categories: (1) lin-
ear and (2) nonlinear rules [28, 36, 37].

3. Considering the decision-maker’s network Another way
to change opinions is to use the network of decision-
makers. In some solutions, a network is created based
on input information [5, 32, 36, 38–40]. In other studies,
it was assumed that additional information is available
from another network, such as trust networks or social
networks, which is separate from the consensus problem
space [17, 23, 30, 33, 41–46].

The third phase is the selection process. Since the goal is
to reach a consensus, this stage has not been addressed in
some studies such as [12, 22]. In most studies, opinions are
aggregated to determine the final opinion. Simple weight-
average functions can be used for aggregation [15, 30, 31].

Different types of researchongroupdecision-makinghave
been reviewed to obtain a complete understanding of the
problem. Table 1 shows the details and key characteristics
of the reviewed approaches. In the table, it is specified which
research used a network as its application context or was
only presented for large-scale decision-making groups Here
network means any network such as a social network or
similarity network. Table 2 summarizes the reviewed related
work.

Researches in the field of large-scale decision-making are
more recent. A newdefinition of large-scale decision-making
proposed in [13] uses an m-LSGDM representation format.
So, as mentioned before, and based on the classical view
of large-scale decision-making, the scope of most of the
existing studies is considered to be 20-LSGDM or at most
50-LSGDM. Based on the performed review, we conclude
that the following research challenges should be addressed:

1. Current consensus-reaching models mainly focus on
decision situations in which only 20–50 decision-makers
are involved, and there is a need for a framework that
focuses ongroupdecision-makingwith hundreds or thou-
sands of decision-makers, e.g., 1000-LSGDM

2. The main method for calculating consensus level is opin-
ion similarity. Many researchers have not mentioned the
reasons for using a specific similarity measure. However,
this study searched for the best similarity measure for a
consensus-reaching problem.

By considering previous approaches and their limitations,
a new framework is proposed using opinion transformation
and a two-layer network. The selection approach is subgroup
based and the suggestion approach is network based. As pre-
viously mentioned, the main idea is to create a hierarchy
of preferences and reduce the dimension by considering the
transformed forms of preferences. To the best of our knowl-
edge, this is the first time that opinion generalization is used
to reduce the number of preferences. In this study, we aim to
propose an approach for reaching a consensus in large-scale
group decision-making focusing on dimension reduction.

Background knowledge

In this section, preference relations, consistency, consensus,
and network as the required basic notions for understanding
this paper are defined.
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Table 1 Key characteristics of the reviewed related work in the GDM domain

Article Uses a
network?

LSGDM Description

Urena et al. [5] ✓ A social network is created based on similarity, confidence, and consistency. The
main idea is that some opinions with high similarity, confidence, and
consistency have a greater influence on the opinions of others

Chao et al. [9] ✓ A clustering method is used to detect non-cooperative behavior, and a weighting
process is used to manage this behavior. The number of clusters should be
determined, which is different for different group-decision scenarios

Liao et al. [11] ✓ K -means is used for clustering, which requires the k parameter initialization

Du et al. [12] ✓ Opinion punishment and weight punishment are used to manage non-cooperative
behaviors. The number of clusters should be determined which is different in
various group decision scenarios

Wu et al. [15] ✓ A trust network was used to estimate the unknown preference values and experts’
weight determination

Wu et al. [16] ✓ A trust network was used to estimate the unknown preference values and extract
the reputation between experts as historic actions

Taghavi et al. [17] ✓ A feedback-based influence network was proposed, in which the influence
between agents was calculated by trust, self-confidence, and similarity

Herrera-Viedma et al.
[18]

Using the additive-consistency concept, a procedure is provided to estimate the
missing information in an expert’s incomplete preference

Cheng et al. [19] ✓ A weight allocation method is provided by analyzing the tie strength and
topology structure of social networks

Xu et al. [20] Prospect theory was used to solve the group decision-making problem

Zhang et al. [21] Heterogeneous preference structures were accepted as inputs

Wu et al. [22] ✓ K -means was used for clustering and clusters were allowed to change. To use
K -means, the parameter k should be determined. Changing the clustering
approach has computational overhead in LSGDM

Lu et al. [23] ✓ ✓ K -means is used for clustering. To use K -means, the parameter k should be
determined

Wu et al. [24] ✓ ✓ K -means is used for clustering. To use K -means, the parameter k should be
determined

Trillo et al. [25] ✓ NLP techniques were used to detect the degree of positivity and aggressiveness
of experts. The main idea revolves around sentiment analysis

Zhong et al. [26] ✓ A combination of similarities in the evaluation information is used for clustering.
The K-means algorithm is used for clustering. To use K -means, the parameter
k should be determined

Liu et al. [27] ✓ The probabilistic K-means clustering algorithm is used to improve the selection
of the initial centroids. However, the k parameter should be determined

Dong et al. [28] ✓ Leaders and their followers are detected in the network. Leaders influence the
opinion of their followers

Zhang et al. [29] ✓ A feedback mechanism is provided for each expert by considering the leadership
and bounded confidence levels of experts

Chu et al. [30] ✓ ✓ A two-stage consensus-reaching method is proposed in which cluster preferences
can change

Ding et al. [31] ✓ ✓ A negative conflict relationship is considered between DMs. Feedback is
generated for each DM which may not be suitable in LSGDM

Wu et al. [33] ✓ Trust-based recommendation mechanism is applied

Gavrilets et al. [35] ✓ The dynamics of consensus building in groups is investigated which is composed
of individuals who are heterogeneous in preferences and have different
personality traits (agreeability and persuasiveness) and reputation

Li et al. [36] ✓ Extracts the influence network from expert opinions and social networks
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Table 1 (continued)

Article Uses a
network?

LSGDM Description

Zhang et al. [38] ✓ A signed network is used, in which both positive and negative relations can be
considered

Triantaphyllou et al. [39] ✓ A post-consensus analysis was used in the log file to identify any dynamics that
may exist in the way experts make ranking decisions

He et al. [40] ✓ ✓ The shadowed theory is used for preference presentation and clustering. The

network construction complexity is O(n2) as it requires pairwise analysis

Xiao et al. [42] ✓ Centrality, consistency, and similarity indices were used for weighting experts.

Using similarity makes the complexity O(n2) as it requires pairwise analysis

Zhang et al. [43] ✓ ✓ Leadership and non-cooperative behaviors were detected in the trust network. A
social network is needed for the input

Li et al. [44] ✓ A fast unfolding algorithm was used to reduce the dimension of the large-scale
DMs and the experts’ weights were obtained by social network analysis
techniques. This approach needs a social network as input

Liao et al. [46] ✓ ✓ Two different roles are considered

Chao et al. [47] ✓ A two-layer network was used with an inner layer consisting of participants
whose preference similarities and trust relations were known. The outside layer
includes participants whose trust relations cannot be determined. The

complexity of the proposed method is approximately O(n3)

Li et al. [48] ✓ An interaction network is used to detect and manage manipulative behaviors

Xiong et al. [49] ✓ ✓ A clustering method with historical data to support large-scale
consensus-reaching process

Preference relations

The pairwise comparison has been introduced as preference
relations and it is widely used in this area. Preference relation
P on a set X is a binary relationμP : X×X → D,where D is
the domain of representation of preference degrees provided
by the decision-maker. Therefore, a preference relation P
constitutes a matrix P � (pi j ) of dimension #X (number
of items in the set X set), in which pi j � μP (xi , x j ) is the
degree or intensity of preference for alternative xi over x j .
The elements of P could be numeric or linguistic depending
on the type of decision-making process that is being carried
out [5].

Single-valued neutrosophic preference relations

A single-valued neutrosophic preference relation on X is
expressed by a matrix P � (pi j )n×n such that pi j � 〈t(xi ,
x j ), i(xi , x j ), f (xi , x j )〉 is a single-valued neutrosophic
preference relation with the following conditions [5]:

t
(
xi , x j

) → [0, 1], i
(
xi , x j

) → [0, 1], f
(
xi , x j

) → [0, 1]
(1)

0 ≤ t
(
xi , x j

)
+ i

(
xi , x j

)
+ f

(
xi , x j

) ≤ 3 (2)

The parameter ti j indicates the truth membership that xi

is preferred to x j . The parameter fi j is interpreted as falsity
membership that xi is preferred to x j . Finally, ii j indicates
indeterminacy of decision-making about xi and x j .

Consistency of decision-maker’s preference

Preference consistency means rationality of preferences. In
preference relations, there are three levels of relation ratio-
nality: (1) the first level: requires indifference between any
alternative xi and itself, (2) the second level: tequires that if an
expert prefers xi to x j , that expert should not simultaneously
prefer x j to xi , (3) third level: associated with the transitivity
in the pairwise comparison among any three alternatives. If
an expert prefers xi to x j and x j to xk , then alternative xi

should be preferred to xk . A preference relation that verifies
the third level of rationality is referred to as a consistent pref-
erence relation. Various formalisms have been developed to
examine the transitivity of a preference relation [50, 51].

Consensus level

Different methods are used to measure the degree of consen-
sus among decision-makers. In [22], preference similarity
was used to calculate the consensus level. In [31], the dis-
similarity of preferences was considered as a criterion for
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Fig. 1 Example of a multiplex network [56]

calculating the consensus level. In [52] a statistical criterion
based on Shannon’s entropy and a probability distribution
was presented. The distance functions commonly used in
modeling the consensus process are Manhattan, Euclidean,
Cosine, Dice, and Jacquard [53]. Studies have shown that the
speed of the consensus process is significantly influenced by
the different aggregation operators and the distance functions
[54, 55].

Graphs and networks

A graph is a structure consisting of a set of nodes and edges.
There are different types of graphs. For example, a directional
graph is a graph in which a direction is assigned to each edge,
or in a weighted graph, a number is assigned to each edge.
Multiplex networks are a kind of network that is used to
represent a network system in which there are different types
of interactions between components. In this type of network,
the nodes in each layer are the same, and only the concepts of
connections created between the nodes are different in each
layer. Figure 1 shows a sample multiplex network.

Problem statement

In this study, we aim to propose an approach for reaching
a consensus in large-scale group decision-making. Group
decision-making is a situation when decision-makers collec-
tively choose from a set of existing alternatives. Large-scale
group decision-making refers to situations where a large
number of decision-makers participate. Decision-makers
provide their opinions by preferences. A group decision-
making framework is proposed for reaching a consensus in
such situations. As dimension reduction is one of the primary
challenges in large-scale group decision-making, the focus
of this study is on dimension reduction. Dimension reduction
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means reducing the number of input data. Questions that this
research aims to answer are:

1. How can the dimension reduction be performed without
clustering?

2. How can opinions be generalized?
3. What affects opinion generalization?
4. How can generalized data be changed to achieve a con-

sensus?
5. What are the best similarity measures in the context of

group decision-making?

We will tackle the above questions by meeting the follow-
ing objectives:

1. Reducing the data dimension using opinion generaliza-
tion.

2. Investigating the effect of opinion generalization on data
reduction.

3. Investigating the effect of consistency and certainty on
opinion generalization.

4. Introducing a new algorithm for the consensus process
that works with generalized opinions.

5. Comparing the results of different similarity measures to
select the most effective one.

The proposed approach

The main idea of the proposed approach is data general-
ization. Suppose there are four alternatives. Then there are
4!� 24 choices for sorted alternatives (e.g., one choice is
x1 > x2 > x3 > x4). It means that the final decision is one of
these 24 choices. As sorted alternatives can be represented by
a certain consistent crisp preference, the proposed approach
maps the decision-maker’s preferences to crisp preferences
and then changes the preferences to reach a consensus. An
example of such mapping is illustrated in Fig. 2. As shown
in the figure, the decision-maker compares only one alterna-
tive with the others and gives preferences in the form of an
incomplete single-valued neutrosophic preference. Then the
uncertainty matrix and the complete fuzzy preferences are
extracted from the original preferences. The fuzzy prefer-
ences are illustrated in Fig. 2. Mapping the decision-maker’s
preferences to crisp preferences is the next step.Using single-
valued neutrosophic preferences allows decision-makers to
express their preferences without limitation. For example,
when we ask an expert’s opinion, he or she may say that the
possibility that the statement is true is 0.5, the possibility that
the statement is false is 0.6, and the degree that he or she is
not sure is 0.2 [57]. Receiving incomplete preferences from
decision-makers is proposed for inconsistency prevention.

Fig. 2 Example of preference mapping

Fig. 3 Symbolic representation of preference mapping

Consistent complete preferences are extracted in the prefer-
ences process component. Then a two-layer network of crisp
and fuzzy preferences is created in the network component.

A symbolic representation is illustrated in Fig. 3. Red
nodes represent crisp preferences and blue nodes represent
fuzzy preferences. In large-scale group decision-making, the
number of blue nodes is large. There is no connection in the
blue layer to eliminate the similarity calculation overhead.
García-Zamora et al. indicated that the classic idea of the
consensus model as an iterative discussion process should be
replaced by an automatic algorithm in LSGDM [13]. So, the
proposed consensus process is automatic. The selection pro-
cess is only added for evaluation purposes and is an optional
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Fig. 4 The overall architecture of the proposed approach

process. So, in the proposed approach, we have three com-
ponents: (1) the preprocessing, (2) the consensus process,
and (3) the selection process. The preprocessing component
has two subcomponents: (1) opinion processing and (2) net-
work. Figure 4 shows the overall architecture of the proposed
approach. This approachwill be discussed in detail in the rest
of this section.

In the proposed framework, decision-makers present their
opinions in the form of a single-valued neutrosophic pref-
erence and in a way that they only compare one alternative
with all of the other alternatives. The reason for using single-
valued neutrosophic preferences is to obtain certainty from
them.Decision-makers can express their preferences as fuzzy
preferences, but they should provide the certainty matrix.
The reason for receiving an incomplete preference is that
the decision-maker’s preference is automatically completed
by mathematical modeling equations. The reason for insist-
ing on consistency is explained in detail in the evaluation
section. After processing the opinions, a two-layer network
of preference and preference classes is formed. Preference
classes are crisp, consistent, and certain. After the formation

of the network, if decision-makers have not reached a con-
sensus feedback is generated. The preferences of people in
less important classes change as a group. This change is per-
formed such that preferences are transferred to a new class.
This change in classes is performed repeatedly to reach a
consensus in one class.

Preprocessing

The first phase of the approach is preprocessing. Suppose that
the decision-maker compares all alternatives with the alter-
native x . Then six steps should be taken which are explained
in the subsequent sub-sections. The decision-makers can give
their preferences using fuzzy preference matrices. But, the
decision-maker has to provide the certainty matrix too. In
this case, the first three preprocessing steps are ignored. We
suppose the decision-makers provide single-value neutro-
sophic preferences because it is easier for them to express
their preferences without limitation. In addition, if there are
m alternatives, using this approach, m comparisons will be
required instead of m2 − m. The decision-makers can also
express their certainty with indeterminacy numbers as well.
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So, if we suppose that the preferences will be expressed in
a matrix form, the matrix can be defined as below and every
entry is a single-value neutrosophic number:
Dmatri x

�

1
. . .

x
. . .

m

⎡

⎢⎢
⎢⎢
⎢
⎣

− − − −
. . . . . . . . . . . .

< tx1, fx1, ix1 > < tx1, fx1, ix1 > . . . < txm , fxm , ixm >

. . . . . . . . . . . .

− − − −

⎤

⎥⎥
⎥⎥
⎥
⎦

So, it can be considered as a vector:
Dvector

�
[
< tx1, fx1, ix1 > < tx1, fx1, ix1 > . . . < txm , fxm , ixm >

]

Opinion transformation

As mentioned before, the values of ti x � t(xi , xx ), fi x �
f (xi , xx ) and ii x � i(xi , xx ) are in the range between zero
and one independently. But, it is rational that there should
be a limit ti x + fi x � 1 in a preference relation. To make
this limitation, we use min–max normalization. Formula (3)
shows the transformation rules.

ti x
′ � ti x

ti x + fi x
, fi x

′ � fi x

ti x + fi x
(3)

Figure 5 shows the transformation process. It provides all
opinion vectors and performs a transformation on them. In
this figure, the t and f parameters of each cell in the last
vector are transformed into new numbers.

The complement process

The proposed solution in [18] has been used to create a con-
sistent preferences matrix. At this step, the decision maker’s
fuzzy preference matrix (ri jn

) and determinacy matrix (di jn
)

are extracted from opinion vectors. This is calculated using
the following equations:
ri jn

�

⎧
⎪⎨

⎪⎩

ti x if j � x
tx j � f j x if i � x
max

{
0, min

{
ti x − t j x + 0.5, 1

}}
else

for i , j ∈ {1, m}

(4)

ii jn
�

⎧
⎪⎨

⎪⎩

ii x if j � x
ix j � i j x if i � x
min

{
ii x , i j x

}
else

for i , j ∈ {1, m} (5)

di jn
� 1 − ii jn

for i , j ∈ {1, m} (6)

Figures 6 and 7 show an example of the complement pro-
cess. In this step, each vector is converted into a complete
matrix, and the determinacy matrix is calculated.

Calculating the decision-maker’s certainty

In this section, the certainty matrix is calculated based on
the determinacy matrix obtained in the previous step. Uncer-
tainty is defined by Eq. (7) where dc

i j represents the di j

complement and is defined by Eq. (8). Finally, decision-
maker uncertainty is calculated using Eq. (9):

Certaintyi j �
∣∣∣di j − dc

i j

∣∣∣ (7)

dc
i j � ∣∣1 − di j

∣∣ (8)

Certaintyn �
∑

i∈I , j∈J Certaintyi j

n2 − n
(9)

Figure 8 shows an example of the certainty calculation
process. In this step, the certainty matrix is calculated from
the determinacy matrix.

The preference pre-possessing algorithm is shown as
Algorithm 1. If the number of decision-makers is n, then the
preferences process algorithm’s complexity order is O(3n).
In this algorithm, for the complement process, the number 0.5
is considered as not preferring one alternative over another,
1 is the maximum which means an alternative is completely
preferred over another, and 0 is the minimum which means
an alternative is completely not preferred over another in
Eq. (4).

Determining the preference’s class

The proposed network is a two-layer network. In the first
layer, there are nodes related to the preference classes. In
the second layer, the preference nodes exist. To create a two-
layer network, the first layer nodes (i.e., the class nodes)must
first be defined. Equation (10) is used to calculate the class
of each preference. Equation (11) defines certain classes (we
have assumed the value of 0.5 for the diameter).

Ci jn
�

⎧
⎪⎨

⎪⎩

1 if ri jn
> 0.5

0 if ri jn
< 0.5

0.5 else

(10)

UCl � {
Cn|Ci jn

	� 0.5, i , j ∈ {1, n}} (11)

Figure 9 shows an example of the class determination pro-
cess. In this step, the class of each preference is determined.
The class of a preference is shown in the figure. The similar-
ity between classes is defined by Eq. (12). It is inspired by
the equation for calculating similarity in [5].

Here, #I i j is the number of the common entry of the two
matrices defined by Eq. (13), and m is the number of all
entries. The similarity between all classes is calculated and
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Fig. 5 An example of the transformation process

Fig. 6 An example of fuzzy
preferences complementing
process

Fig. 7 An example of determinacy calculation

Fig. 8 An example of the
certainty calculation process
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Fig. 9 An example of class determination

is represented as a matrix called similarity matrix defined by
Eq. (14).

Similari t y(UCi , UC j ) � #I i j

m
(12)

Algorithm 1: Preferences process

(13)

I i j � {
k|(UCi (k) � UC j (k) � 1) ∨ (UCi (k)

� UC j (k) � 0), k ∈ {1, n}}

Similari t yMatri x

�

⎡

⎢
⎢
⎣

Similari t y(UC1, UC1) · · · Similari t y(UC1, UCm )
...

. . .
...

Similari t y(UCm , UC1) · · · Similari t y(UCm , UCm )

⎤

⎥
⎥
⎦

(14)

If some of the preferences of an uncertain decision-maker
were unknown, 0.5 is inserted in the corresponding entry in
their class’s preference matrix. It needs to be converted into
0 or 1 because the classes are crisp. Converting the uncertain
classes (Cu) into certain classes (UCk) will be performed
using Eq. (15). It is based on the maximum similarity with
other classes.
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Fig. 10 An example of a class network construction process

(15)

Cu � {UCk |Similari t y (Cu , Ck)

� max(Similari t y (Cu , UCk) , k ∈ {1, 2, . . . , l}}

Creating the class graph/network

Each node in the class network represents a class and each
edge represents the similarity of classes. The adjacency
matrix is obtained after computing the similaritymatrix using
Eq. (16). So, a connecting component will exist where the
edge between nodes indicates the highest similarity that a
node has.

Ai j � max j∈J
(
si j

)
, i ∈ {1, 2, . . . , n} (16)

A standard graph is often described by G � 〈V , E〉where
V is defined as the set of vertices and E as the set of links.
Therefore, the class’s graph is defined by Eq. (17).

Vc � {UC1, UC2, . . . , UCl},
Ec � {

(UCi , UC j )|ai j � 1∀ai j ∈ Ai j
}

(17)

Figure 10 shows an example of two classes and their sim-
ilarity. In this step, each class presents a node in the network,
and the edges are constructed.

Creating the two-layer network

A multiplex network is represented by the quadruple in
Eq. (18). The parameter V represents the network nodes, P
is defined as a pair that represents the nodes in each layer, M
is also the set of links in each network, and L is the network
layer.

G � 〈P , M , V , L〉, P ⊆ V × L , M ⊆ P × P (18)

The proposed two-layer network is defined by the
below equations. The network has two layers and they are
defined using Eq. (19). The network nodes are defined
by Eq. (20). NodeMaping is a set that contains the
(preference number, preference’s class number) tuple. The
second layer nodes are defined by Eq. (22) and the first-
layer nodes are defined by Eq. (23). It should be noted that
Pre f erenceNode is a multi-set.

L � {class, pre f erence} (19)

V � {1, 2, . . . l}, l � |UC | (20)

NodeMaping � {(n, l)|Cn ∈ UCl} (21)

Pre f erenceNode � {(n, pre f erence)|n
∈ NodeMaping},
Pre f erenceNode ∈ P (22)

(23)

Class Node � {(l, class)|l
∈ NodeMaping} , Class Node ∈ P

Each preference node has a weight denoted by WDM ,
which is the importance of preference in decision-making.
In the proposed framework, the importance is only related to
the certainty of a preference. Equation (24) shows how it is
calculated.

WDM � Certaintydm (24)

Each class node has a weight defined by Wc notation,
which is the importance of the class in decision-making.
Equation (25) shows how it is calculated. In the proposed
framework, the importance of a class is related to its certainty,
population, and eigenvector which are defined by Eqs. (26),
(27), and (28), respectively. The eigenvector represents the
importance of a node in the network.

(25)

Wc � ClassCertainty[c] + Population[c]

+ Eigenvector [c], wc ∈ [0, 3]∀c

ClassCertainty[c] �
∑

dmεC Certainty(dm)
∑

dmεDM Certainty(dm)
(26)

Population[c] � |Class Members|
|Pre f erenceNode| ,

Class Members � {(c, pre f erence)|c ∈ UCl }
(27)
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Fig. 11 An example of a
two-layer network construction
process

(28)

Eigenvector [c](t + 1) �
n∑

j�1

Ai j × Eigenvector [ j](t)

Figure 11 shows an example of a two-layer network con-
struction process. In this step, the edges between preferences
and classes are built and the weights of the class nodes are
calculated.

The two-layer network is constructed as the class network
in its first layer and the preferences nodes in the second layer.
Each preferences node connects its class with an interlayer
edge. The two-layer network creation algorithm is as follows.
The following steps are needed to construct the proposed two-
layer network. If the number of decision-makers is denoted
by n and the number of classes is represented by m, then
the two-layer network creation algorithm’s complexity order
is O(n + m2). For determining the preference’s class, the
number 0.5 is considered as not preferring one alternative
over another in Eq. (11).

Step 1: Determine the class of each preference.
Step 2: Create the network of classes.
Step 3: Create a two-layer network of classes and prefer-

ences.

Consensus process

The consensus level is measured by calculating the similar-
ity of class nodes. If preference nodes in the second layer are
connected to more than one class, it means that the similarity
of preference is not enough. In other words, the consensus
level does not meet the threshold, and the feedback is gener-
ated for preferences. In the feedback step, we have identified

two categories of nodes we call susceptible and target nodes.
It then describes how the opinion should change.

Feedback

The susceptible nodes are the nodes that belong to a specific
class and this class has the minimum weight. So, this class
is selected for change and merge. Susceptible classes are
defined mathematically by Eq. (29).

(29)

Susceptible � {
Cs |weight (c) � min

(
weightc

)
,

c ∈ {1, 2, . . . , l}}

Target nodes are the nodes that are selected to be merged
with susceptible nodes. Target nodes are the neighbors of the
susceptible node such that they have the highest similarity.
The reason for selecting the target node according to similar-
ity is to change the susceptible class with minimum changes.
The target class is defined mathematically by Eq. (30).

target � {
Ct |weight(c) � max

(
weightc

) ∧ Ast � 1
}

(30)

To change the class, if the preference belongs to Ci and
C j is selected for transfer, the change equation will be in the
form of Eqs. (31) to (33). The aim is to change the class of a
group of preferences. The reason for considering the numbers
0.51 and 0.49 is to change the preference as little as possible.
As the preferences change, it is rational that the degree of
determinacy of the preference is reduced. In Eq. (32), the
diameter of the network is used.
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Algorithm 2: Two-layer network creation

The reason for using the diameter is that if the node tra-
verses the entire graph, it will not be considered.

ri jk

�
{

lower bound � 0.49 i f
(
CSusceptible 	� Ctarget � 0

)
, ∀k ∈ DM

upper bound � 0.51 i f
(
CSusceptible 	� Ctarget � 1

)
, ∀k ∈ DM

(31)

di jk
� min

{
0, di jk

−
(

1

Diameter

)}
(32)

wc � Classcertainty[t] + Population[t] + wc (33)

Figure 12 shows an example feedback process. In this
example, class 1 is susceptible and class 2 is the target.

The consensus process algorithm is shown asAlgorithm3.
If the number of classes is denoted by m, then the consensus
process algorithm’s complexity order is O(m).

Selection process

If the goal is to calculate the final preference (an aggregation
of all preferences), the selection process is performed. But, if
the goal is to just rank the alternatives, there is no need to do
this step. As the classes are consistent and certain, the final
class is consistent and certain as well. So, we can rank the
alternative without doing the selection process. If the final
preference is not needed, there is no need for this step, and
there is no need to create the preference nodes in the second
layer in the network construction step. Because we only need
them in the selection process. We have added this step just
for the sake of the framework’s completion. So, if the final
preference (r ′i j ) is needed, it is calculated using Eq. (34).

The selection algorithm is given as Algorithm 4. If the
number of decision-makers is denoted by m, then the con-
sensus process algorithm’s complexity order is O(n). In the
consensus algorithm, the numbers 0.51 and 0.49 are consid-
ered as the lower bound and upper bound in Eq. (31). The
upper bound can be any number between 0.5 and 1, and the
lower bound can be any number between 0 and 0.5. There-
fore, the lower and upper bounds could change, and the effect
of this change would be on the final preference. As men-
tioned, if the goal is to rank the alternatives, there is no need
to calculate the final preference. So, changing both bounds
will not affect the outcome in this case.

r ′
i j �

∑
dm∈DM di jdm

× ri j∑
dm∈DM di jdm

(34)
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Fig. 12 An example of the
feedback process

Algorithm 3: The consensus process

Evaluations

The proposed framework was evaluated using various simu-
lation scenarios. The performance of the framework is also
evaluated in the simulation section. There are three sim-
ulation scenarios in the first section. The first simulation
investigates the effects of preference consistency and cer-
tainty on dimension reduction. The second one simulates a
group decision-making scenario to demonstrate how the pro-
posed algorithm works.

Algorithm 4: The selection process

The third one simulates a set of group decision-making
scenarioswith different numbers of decision-makers, alterna-
tives, and similarity measures to investigate the performance
of algorithms in different scenarios.Comparison is not a com-
mon evaluation approach in the field. Previous studies have
demonstrated the steps of their algorithm through simulations
or examples. However, as synthetic data are used for simu-
lation, a comparison section is added to apply the proposed

123



4238 Complex & Intelligent Systems (2024) 10:4223–4251

Fig. 13 The effect of consistent preferences in dimension reduction when the number of alternatives is 2

Fig. 14 The effect of consistent preferences in dimension reduction when the number of alternatives is 3

Fig. 15 The effect of consistent preferences in dimension reduction when the number of alternatives is 4

algorithm to the data used by other studies to compare the
results. The candidate studies for comparison are selected
from related works where the authors claim that in their
research, large-scale group decision-making is addressed and

their data are publicly accessible. It is expected that, after
running the algorithm on the data of the selected studies,
similar results compared to the simulation outcomes will be
obtained.
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Fig. 16 The effect of consistent preferences in dimension reduction when the number of alternatives is 5

Fig. 17 The effect of consistent preferences in dimension reduction when the number of alternatives is 6

Fig. 18 The effect of inconsistent preferences in dimension reduction when the number of alternatives is 2
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Fig. 19 The effect of inconsistent preferences in dimension reduction when the number of alternatives is 3

Fig. 20 The effect of inconsistent preferences in dimension reduction when the number of alternatives is 4

Fig. 21 The effect of inconsistent preferences in dimension reduction when the number of alternatives is 5

Simulation scenarios

In this section, wewill examine the consistency and certainty
of preferences and their effect on dimension reduction. Here,

the effect of considering consistent preferences and their
mapping to certain preferences in reducing the dimensions
of the problem is examined. As it was mentioned before, if
the goal of the group decision process is alternative ranking,
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Fig. 22 The effect of inconsistent preferences in dimension reduction when the number of alternatives is 6

there is no need to create the preference nodes in the second
layer. So, only the class nodes in the first layer are considered.
Since they are fewer than the preference nodes, the dimen-
sion of the problem is reduced. An example of an alternative
ranking is to choose a person for a job from several candi-
dates. In this section, we investigate the differences between
the number of classes and preference nodes and show that
if the preferences are consistent and certain, the dimension
reduction by opinion generalization can be applied effec-
tively. For this purpose, decision-making data are generated
with several different alternatives and decision-makers. In
the simulation scenarios with different alternatives, two sce-
narios were defined in which in one scenario only consistent
preferences exist, and in another scenario, inconsistent and
consistent preferences are present. The result of the dimen-
sion reduction for different parameters is shown in Figs. 13,
14, 15, 16 and 17 and Figs. 18, 19, 20 and 21. In these fig-
ures, the blue line shows the number of different classes in
each scenario and the red line shows the rate of reduction
in each scenario. As the diagrams show, by increasing the
alternatives in the scenario where there are also inconsis-
tent preferences, the reduction of dimensions is reduced. It
should be noted that for the production of simulation data, the
worst-case scenario is considered in which the preferences
are generated from any possible class. In real-world deci-
sions, these classes do not need to be as much heterogeneous
as possible.

If the decision-making is performed to reach a consensus
on the ranking of alternatives, the second layer, in which the
preference nodes are located, can be removed. Thus, the con-
sensus is reachedonlywith the changesmade in thefirst layer.
This implies that the selection process can be ignored. But, in
the evaluation, we did not remove the second layer nodes and
the selection process. The aim was to track changes in pref-
erences and to report preference changes. The advantage of
using the proposed approach under this condition is that the

Table 3 The specifications of the generated data

Number of
decision-makers

Number of
alternatives

Possibility of
a fully
consistent
preference

Possibility of a
certain
preference

1000 4 1 0.1

dimensions of the problem can be significantly reduced. As
shown in the simulations, depending on the problem param-
eters, the number of decision-makers can be reduced by up
to 99% by considering the number of classes. This reveals
that if the consensus process runs on consistent and certain
preferences, the consensus-reaching processwill be faster. To
evaluate the performance of the proposed consensus model,
in the next section, a simulation is described in detail and
other simulation scenarios are briefly reviewed (Fig. 22).

Simulating a group decision-making scenario

To investigate the steps of the algorithms in the proposed
model, the steps of the proposed algorithms were executed
using simulated data. First, preference data were simulated.
This data was generated using the specifications given in
Tables 3 and 4.

It is worth mentioning that all the generated simulation
data for the evaluated scenarios are publicly available on
GitHub.1 Figure 23a shows the histogram related to the
Euclidean similarity distribution of preferences and shows
that in the generated data, the Euclidean similarity distri-
bution of preferences follows a normal distribution. The
network was created after preprocessing the preference data.
There are 24 different class preferences. Therefore, there are

1 https://github.com/FtmhBkhsh/DataOfPreferences.
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Table 4 Changes in the consensus level during the feedback process in simulation scenarios with different parameters

Number of

alternatives 10 50 100

500 1000 30002

10 50 100

500 1000 3000

3

4

10 50 100
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Table 4 (continued)

500 1000 3000

10 50 100

500 1000 3000

5

10 50 100

6 500 1000 3000
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Fig. 23 Euclidean similarity distribution and the distribution of the number of members in each class

24 nodes in the first layer of the network. Figure 23b shows
a histogram related to the class size distribution.

Figure 24a shows the class network. The network in
the first layer is a connected component. Blue nodes in
Fig. 24b represent preferences. There is no edge in the sec-
ond layer between blue nodes as no edges were created in
this layer. Because the number of decision-makers is large,
calculating the similarity of preference pairs causes a compu-
tational overhead. Figure 24c shows the two-layer network.
An interlayer edge indicates that a preference belongs to a
particular class. All nodes in the second layer are connected
to first-layer nodes. This representation is a new model of
visual preference representation in group decision-making.
Figure 25 shows how the network changes its status after each
feedback step. In each feedback step, only the links between
the two layers are changed. In the performed simulation,
decision-makers reach a consensus after receiving four feed-
backs. During this phase, some second-layer nodes change
their interlayer connections. Changing links means that the
class associated with them has the least importance. During
the feedback process, the amount of uncertainty will change,
and the indeterminacy degree of the preferences decreases.
Changes in the degree of determinacy of the preferences are
shown in the diagram in Fig. 26a. In addition, during the feed-
back process, the degree of similarity between preferences
and classes changes. The similarity changes based on the
proposed similarity measure (i.e., red line) and Euclidean
similarity of the preferences (i.e., blue line) are shown in
Fig. 26b. As the diagram shows, the Jacquard similarity is
maximized, and consensus is reached whereas the Euclidean
distance has a lower value.

Simulation with different numbers of decision-makers,
alternatives, and similarity measures

Tang et al. emphasize that in large-scale group decision-
making, the performance of models in larger groups with

thousands of decision-makers should be examined [7].
According to the aforementioned critique, in the previous
simulation, there were 1000 preferences. However, to exam-
ine the performance of the proposed approach with different
parameters, simulations with a different number of decision-
makers and different alternatives have been performed, and
the consensus level at each stage of the feedback is given in
Table 5. In addition, three similaritymeasureswere examined
during the consensus process. Preference data are available
at [58].

The results obtained from examining the diagrams in
Table 5 can be analyzed as discussed below:

– It can be concluded that if the number of decision-makers
is larger than (m)! the number of decision-makers does
not have a significant effect on the number of iterations of
the algorithm. In that case, the structural features of the
class’s network and the number of preferences belonging
to a class determine the number of iterations. The proof of
this is shown in Appendix A.

– In some diagrams (e.g., simulation number 32), a decrease
in the proposed similarity occurred in the consensus pro-
cess. This decrease occurs because the selected nodes for
integration at this stage have a lower eigenvector. In other
words, the population or certainty of some classes was
high enough to overcome the eigenvector criterion, and
the preferences shifted to classes with more population or
more certainty, rather thanmoving to more similar classes.

– In most diagrams, the degree of similarity in the final stage
changes sharply. This is because in the early stages, nodes
that have a smaller population are integrated and their
changes do not cause a significant change in the similarity.
On the other hand, with the migration of nodes in each
stage, the population of nodes in the final stages increases,
and consequently, the number of links that change in fur-
ther stages increases. Another reason is the dissimilarity
in preference data. Data generation is performed in such a
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Fig. 24 The two-layer network

Fig. 25 The network changes

Fig. 26 Determinacy of preferences and similarity of preference changes

Table 5 The characteristics of the examined approaches

Approach Dimension
reduction

Has large-scale
decision-making in the title

Considering
uncertainty

Considering
consistency

Diversity of
decision-makers

[22] ✓ ✓ ✓ – –

[5] – ✓ ✓ ✓ ✓

[48] – ✓ – – –

[11] ✓ ✓ – – –

[49] ✓ ✓ – – –

The proposed
approach

✓ ✓ ✓ ✓ –
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way that it is produced from any kind of consistent and cer-
tain class, which means that there are nodes in the network
that have no similarities, and the preferencesmay converge
to two opposite preferences. Therefore, the latest change
is for the migration of the last two opposite classes which
sharply increases the similarity.

– As it turns out, at the end of the process, when the
class of preferences is the same, the Euclidean similar-
ity is still low. Therefore, it can be concluded that the
use of Euclidean similarity is not a suitable measure for
the problems with the goal of ranking the alternatives
where there is no need for Euclidean similarities to be
high. In other words, the low Euclidean similarity between
preferences does not mean that decision-makers have not
reached a consensus on the ranking of available alterna-
tives. Although Cosine distance has been used in fewer
studies, it provides better results than Euclidean distance.

Comparisons

In this section, the proposed approach is compared to other
approaches. Because the proposed approach focuses on
large-scale decision-making groups, it would be better to
compare it with methods in which thousands of decision-
makers’ preference data exist. However, to the best of our
knowledge, no published large-scale dataset of preferences
can be used for comparison.Most of the proposedmodels use
toy examples and there is no information about the perfor-
mance of these models in the presence of a large decision
group [13]. These examples are datasets that researchers
manually created for model testing. To test the proposed
model using data from existing works, we have selected the
studies where the evaluation data were publicly available.
Chao et al. are among the few researchers who consider a
large number of decision-makers (i.e., 1861) in their case
study [47]. Unfortunately, their input data are heterogeneous
and cannot be used directly in the proposed model. The
characteristics of the selected approaches are summarized in
Table 6. The reason for choosing these works is that the solu-
tions proposed in these approaches are different from each
other. By comparison,we confirm that the proposed approach
works well with other examples in this context and investi-
gates different similarity measures. In addition, they did not
consider uncertainty, and the uncertainty of all opinions was
assumed to be the same in the simulation. It should be noted
that from the results, it is not possible to determine which
approach is better or more suited for all application contexts
because the objectives of these methods are different. The
proposed consensus algorithm is applied to the preference
data used in each of the selected works, and the results are
presented in Table 6. These candidate studies for comparison
are selected from related works in which the authors claim

that in their research, large-scale group decision-making is
addressed.

In [22], clustering was used for dimension reduction. In
their approach, the k-means clustering method was used.
The authors considered the value of k to be 3, thus reduc-
ing the number of decision-maker entities from 20 to 3 by
creating three clusters. However, manually determining the
parameter k is a disadvantage of this method. The authors
conducted experiments to determine the k parameter that
may create a computational overhead in a large-scale group
decision scenario. The clusters can change during each itera-
tion. Hence, clustering is performed in each iteration, which
may cause a computational overhead. In this work, there is
no discussion about the consistency of the preferences, but
in their example, all preferences are consistent. By applying
the proposed approach to the preferences in their illustrative
example section, the number of different classes was 12, and
the similarity changes in each iteration are reported in the first
row of Table 6. In the evaluation section, we showed that for
deciding on four alternatives, if the preferences are consis-
tent, the maximum number of classes is 24. In this example,
the opinions were consistent, and there were four alterna-
tives. However, the number of different classes was 12. This
indicates that, in decision-making problems, the diversity of
different classes is not maximized, and the reduction may be
greater than what is estimated in this study.

In [5], the focus is on creating a social network. The
main idea is that an opinion can affect and be influenced
by the opinions of others. In this research, preferences’ con-
sistencies are considered, and it is shown that if inconsistent
preferences are received, their consistency increases during
the consensus process. In their work, several thresholds were
used, and each may be different for each decision problem.
The value of each threshold may have changed the results.
In each iteration of the algorithm, the preferences of a large
number of decision-makers (i.e., all that have medium and
low knowledge degrees) change. In this study, simulated data
were used for the evaluation. The proposed approach was
applied to the data. As there are inconsistent preferences in
the data, the number of different classes was 20, and the sim-
ilarity changes in each iteration are reported in the second
row of Table 6.

In [48], the authors focused on detecting and dealing with
manipulative and non-cooperative behaviors in the social
network context. They used opinion evolution equations. In
this work, there is no discussion about the consistency of
preferences. However, in their example, there exist incon-
sistent preferences. As there were inconsistent preferences
in the data, by applying the proposed approach to the prefer-
ences stated in their appendix section, the number of different
classes was 35. The similarity changes in each iteration are
presented in the third row of Table 6.
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Table 6 The comparison results
Preferences data Similarity changes in each iteration Parameters

[22] Number of
decision-makers

20

Number of
alternatives

4

[5] Number of
decision-makers

25

Number of
alternatives

3

[48] Number of
decision-makers

50

Number of
alternatives

4

[11] Number of
decision-makers

20

Number of
alternatives

4

[49] Number of
decision-makers

20

Number of
alternatives

5

123



4248 Complex & Intelligent Systems (2024) 10:4223–4251

In [11], a minimum cost consensus model was introduced,
in which excessive modifications of the original preferences
were avoided. In this study, there was no discussion about the
consistency of preferences. However, in their example, all the
preferences are consistent. They used k-means for clustering,
and the value of k was considered to be 5 in their illustrative
example. Thus, they reduced the number of decision-maker
entities from 20 to 5 by creating 5 clusters. However, by
applying the proposed approach to these preferences, there
were four different classes. This comparison demonstrates
the effectiveness of the proposed opinion generalization in
the case of consistent preferences. The similarity changes in
each iteration are presented in the fourth row of Table 6.

In [49] an extended k-means method based on histor-
ical preference data was introduced. Similar to the first
selected approach, preferences are modified in each itera-
tion, and clustering is performed in each iteration, whichmay
cause computational overhead in large-scale group decision-
making. The authors did not mention consistency, and the
preferences in their example did not seem to have a third
level of consistency. They considered the value of k to be 3
in their illustrative example. Thus, they reduced the number
of decision-maker entities from 20 to 3 by creating 3 clus-
ters. However, when applying the proposed approach to these
preferences, the number of different classes was 17. The sim-
ilarity changes in each iteration are presented in the fifth row
of Table 6.

As mentioned in the simulation section, the main advan-
tage of the proposed approach is that a larger number
of decision-makers participate in the decision-making. As
explained in the simulation section, by applying the pro-
posed approach to these data, the similarity criterion related
to classes reached its maximum,while no significant changes
occurred in the Euclidean similarity criterion.

Conclusion

In this study, a new approach is proposed for large-scale
group decision-making. The goal of this study is to provide
a new approach for reducing the dimensions in decision-
making environments with hundreds and thousands of
decision-makers. This approach takes advantage of opinion
generalization.

The proposed approach is an attempt to investigate the
effectiveness of data reduction by generalization to use sum-
marized data instead of the initial data. The results show that,
if the number of alternatives is small, using the opinion gener-
alization, increasing the number of decision-makers does not
affect the number of generalized opinions. The results also
show that for problems where the goal is to rank the alter-
natives, only generalized opinions, which are fewer than the
actual opinions, can be used. Simulation results show that

the proposed generalization method effectively reduces data
dimensions in the case of consistent and certain preferences.
For example, in one case with 3000 decision-makers, the
preferences were reduced to 120. If the number of decision-
makers is 30,000 or 300,000, again the maximum number of
certain and consistent preferences is reduced to 120. It means
that opinion generalization is a possible solution for handling
large-scale group decision-making and making the decision-
making process faster. Finally, the outcome of similarity
changes evaluations demonstrates that Euclideandistance is a
strict criterion for calculating the consensus level of decision-
makers. If the goal is to reach a consensus about ranking the
available alternatives, there is no need for Euclidean similari-
ties to be high among decision-makers’ preferences. Previous
studies have examined large-scale group decision-making,
but have not focused on group decision-making with more
than a thousand decision-makers. In addition, there should
be a logical reason to select a similarity measure. A summary
of the innovations of this research is as follows:

1. Opinion generalization was used for the first time for
dimension reduction in group decision-making. Simula-
tion results show that it has a considerable effect on data
reduction.

2. As opinion generalization is a recently introduced idea
in the field, a new approach for consensus reaching in
large-scale group decision-making for generalized opin-
ion is presented. A two-layer network is used in the group
decision-making process and for visualizing the prefer-
ences of decision-makers. As opinion generalization is a
new idea in the field, a new approach for consensus reach-
ing in large-scale group decision-making for generalized
opinions is presented. A two-layer network is used in the
group decision-making process and for visualizing the
preferences of decision-makers.

3. The effects of consistency and certainty on opinion gen-
eralization were investigated. The results show that if
preferences are consistent and certain, generalization
effectively reduces the data dimension.

4. Three types of similarity measures were examined dur-
ing the consensus process. Simulation results show that
at the end of the process when the Cosine similarity is
maximum, the Euclidean similarity is still low. So, it can
be concluded that the use of Cosine similarity is a more
suitable measure for the problems in which ranking the
alternatives is important.

Group decision-making has been widely studied, and dif-
ferent researches have considered different goals. As the
proposed model is the first in which opinion generalization is
used, the focus is mainly on dimension reduction. Of course,
the proposed approach has its limitationswhich are explained
below:
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1. The proposed approach may not be practical for non-
rank-based group decision-making applications. How-
ever, some of the concepts introduced in this research,
such as opinion generalization or the effect of consis-
tency, can be used in future research to design new
approaches based on opinion generalization. Also, based
on the results of this research, a more accurate similarity
criterion could be found for the decision-making process.

2. Unfortunately, in this context, there are no global metrics
that allow researchers to do a fair balancing by showing
both the positive and negative aspects of the model [9].
As this research is the first attempt at m-large-scale group
decision-making models, it is not comparable to previ-
ous research. As almost all the existing studies do not
use any form of comparison for evaluation, this cannot
be considered a major limitation. However, as a compar-
ison explains how studies relate, this could be insightful.
The performed evaluations in this research are publicly
available on GitHub for further studies.

Furthermore, the future work of this research intends to
expand the proposed approach in the following ways:

1. The proposed approach, which works well for dimen-
sion reduction, is not effective in group decision-making
problems with many alternatives. Assume that there are
m alternatives, and the maximum number of classes is
m!. The proposed approach is designed for situations in
which the number of preferences is much larger than
the number of classes (e.g., 4 alternatives and 40,000
decision-makers). So, providing a solution to reduce the
number of alternatives can be performed as a continua-
tion of this research.

2. The authors of [13] indicated that the term “expert”
should be replaced by “decision maker” in the context
of LSGDM. This is because it does not seem reasonable
to consider a large number of decision-makers as experts.
However, weighting can be applied in this situation.
Some decision-makers are experts in a specific domain.
As the main focus of this research is data reduction,
the diversity of decision-makers is not considered for
simplicity. The identification of experts and the weight-
ing process will be addressed in the future. By creating
concepts such as expertise, decision-makers can be clas-
sified, and a more complex framework can be proposed.

3. The proposed approach is automatic. This means that the
preferences of the decision-makers are received once,
and the necessary changes are applied automatically. In
interactivemodels, changes that cause the convergence of
preferences are presented to decision-makers, who later
decide whether to accept the change or reject it. Creating
convincing advice for decision-makers in LSGDMis also
a challenge and can be viewed as an interesting topic for

future research. In interactivemodels, as decision-makers
can reject the advice, their non-cooperative behaviors
should be examined, and a solution should be provided
to deal with this issue.

4. The proposed approach only receives the preferences of
decision-makers and alternatives as inputs. The proposed
framework could be extended by collecting additional
data. For example, the social network of decision-makers
can be another significant input.
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Appendix A: Investigating the effect
of consistency and certainty
of decision-makers’ preferences
on the diversity of preferences

In this section, we prove that the consistency of preferences
limits the number of possible classes. The number of possi-
ble classes depends only on the number of alternatives and
is independent of the number of decision-makers. The max-
imum number of classes (i.e., first-layer nodes) is studied in
two scenarios. In the first scenario, all the preferences are
consistent. In the second scenario, there are consistent and
inconsistent preferences, and it is proved that if the pref-
erences are only consistent, the number of possible classes
would be the least. The maximum number of nodes in the
first layer in these two scenarios is defined by Eq. (35). In
Eqs. (36) and (37), the growth of these two functions is com-
pared. If an individual’s preference is consistent and certain,
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the preference elements of the individual are not defined inde-
pendently of each other, and there is a relationship between
them. This represents the number of possible ways to arrange
m alternatives into m locations. This is a permutation that
does not involve repetition. Therefore, the maximum number
of preferences is (m)!. If an individual’s preference is incon-
sistent, this means that the individual’s preference elements
are defined independently of each other. Therefore, except
for the diameter elements, in the decision-maker’s prefer-
ence matrix, the other elements can be 0 or 1, independent
of each other. Because the number of non-diameter entries is
(m)(m − 1), the maximum number of different preferences
will be 2(m)(m−1).

Maximum number of nodes in the f irst layer

�
{

f � (m) ! i f opinions are consistent
g � 2(m)(m−1) i f opinions are are not consistent

(35)

f (x) ∈ �(g(x)) (36)

(37)

lim
n →∞

(
f (x)

g (x)

)
�

(
log2 f (x)

log2g (x)

)
�

(
log2 (#X ) !

log2
(
2(#X )(#X−1)

)

)

�
(

(#X ) log2 (#X )

((#X )(#X − 1)) log2 (2)

)

�
(
(#X ) log2 (#X )

((#X )(#X − 1))

)
�

(
log2 (#X )

(#X − 1)

)
� 0

Therefore, as the number of alternatives increases, the
growth of the f is less than g. Although the growth of the
f (x) function is froma factorial degree, its advantage is that it
is independent of the number of decision-makers, and inmost
decision-making scenarios in reviewed studies, the number
of alternatives is assumed to be 3, 4, and 5.
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