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Abstract

Code assistance refers to the utilization of various tools, techniques, and models to help developers in the process of software
development. As coding tasks become increasingly complex, code assistant plays a pivotal role in enhancing developer
productivity, reducing errors, and facilitating a more efficient coding workflow. This assistance can manifest in various forms,
including code autocompletion, error detection and correction, code generation, documentation support, and context-aware
suggestions. Language models have emerged as integral components of code assistance, offering developers the capability to
receive intelligent suggestions, generate code snippets, and enhance overall coding proficiency. In this paper, we propose new
hybrid models for code generation by leveraging pre-trained language models BERT, RoBERTa, ELECTRA, and LUKE with
the Marian Causal Language Model. Selecting these models based on their strong performance in various natural language
processing tasks. We evaluate the performance of these models on two datasets CoNaLa and DJANGO and compare them to
existing state-of-the-art models. We aim to investigate the potential of pre-trained transformer language models to revolutionize
code generation, offering improved precision and efficiency in navigating complex coding scenarios. Additionally, conducting
error analysis and refining the generated code. Our results show that these models, when combined with the Marian Decoder,
significantly improve code generation accuracy and efficiency. Notably, the RoBERTaMarian model achieved a maximum
BLEU score of 35.74 and an exact match accuracy of 13.8% on CoNalLa, while LUKE-Marian attained a BLEU score of
89.34 and an exact match accuracy of 78.50% on DJANGO. Implementation of this work is available at https://github.com/
AhmedSSoliman/Leveraging-Pretrained- Language-Models-for-Code-Generation.
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other hand, there is the notion of fine-tuning the pre-trained
model, which is the training of a previously initialized pre-
trained model using the weights of this pre-trained language
model as the beginning weights during the upcoming training
of other models.

Recurrent neural networks (RNN) were proposed as the
foundation for the first pre-trained language models [2]. Also,
it is proved that pre-training RNN-based model on unlabeled
data and then fine-tuning it on a specific task delivers better
results than training a randomly initialized model on such a
task directly. Two limitations exist with RNN-based sequence
models. First, the processing manner of the tokens is in a
sequential way which must process token after token, so
RNNs don’t remember the non-sequential tokens perfectly.
Second, RNN-based models may fail to capture long-term
relationships between code tokens.

Pre-trained language models are neural networks designed
for various NLP tasks, utilizing a pre-train fine-tuning
approach. They are trained on vast text corpora and then
fine-tuned for specific downstream tasks [3]. These models
have revolutionized NLP by providing accurate and efficient
text representation.

The key advantage of using pre-trained models for code
generation lies in their ability to generalize across various
codebases and programming languages. Instead of starting
from scratch, pre-trained models already possess a substan-
tial knowledge base, enabling them to better comprehend and
generate code in a wide range of programming paradigms.
This generalization is crucial in dealing with multilingual
code generation tasks, as these models can seamlessly switch
between different languages without the need for extensive
language-specific training.

Another significant benefit is the reduction in training time
and resource requirements. Pre-trained models have been
fine-tuned on vast corpora, allowing researchers and devel-
opers to transfer this knowledge to specific code generation
tasks with relatively small amounts of domain-specific data.
Fine-tuning a pre-trained model requires less computational
power and data compared to training from scratch, which
makes it more accessible to the broader community.

Furthermore, pre-trained models proved their capabili-
ties in capturing contextual dependencies and understanding
the surrounding context when generating code. This context
awareness helps in producing more coherent and semanti-
cally meaningful code snippets. Code generation tasks often
involve complex syntactic structures, which pre-trained mod-
els can effectively handle by learning intricate patterns and
dependencies in code expressions.

Transformers [4], a neural network architecture, play a
crucial role in pre-trained language models, allowing them to
process input sequences of any length and handle long-range
dependencies. The self-attention mechanism in transformers
enables the model to weight the significance of differ-
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ent words or phrases, improving performance on various
NLP tasks. Transformers, such as BERT, RoBERTa, and
XLNet, have shown remarkable results in NLP tasks. ELMO
[5] and ULMFit [6] are pre-trained language models that
have demonstrated improvement on several natural language
understanding tasks. Pre-training transformers work in a
self-supervised manner and achieve great success when fine-
tuned on downstream tasks like machine translation, question
answering, and text summarization.

Pre-trained language models, empowered by transform-
ers, have transformed the field of NLP by offering effective
and efficient text representation. Their ability to be fine-tuned
for specific tasks has made them a go-to solution for many
NLP applications.

Several leading companies, including OpenAl, Microsoft,
Google, and HuggingFace, have introduced transformer-
based pre-trained language models featuring different archi-
tectures through the models. Transformer models gener-
ally fall into three categories. The first category com-
prises encoder-only transformers, exemplified by BERT,
RoBERTa, ELECTRA, and Luke. The second type is repre-
sented by decoder-only transformers, such as GPT-2, Llama,
Falcon, and ChatGPT. The third category includes encoder—
decoder transformer models, like MarianMT, TS5, and BART.
In encoder—decoder models, the encoder processes input
sequences, utilizing embedding and attention mechanisms
to construct an intermediate representation. Subsequently,
the decoder utilizes this representation to generate an out-
put sequence. Notably, models like BERT and GPT have
demonstrated exceptional performance with minimal fine-
tuning, achieving state-of-the-art results across numerous
natural language understanding (NLU) tasks.

Transformer-based language models, such as GPT-2,
BERT, RoBERT?a, and others, have surpassed the efficiency
of traditional recurrent neural networks (RNNs). Lever-
aging this efficiency, these models can be pre-trained on
extensive volumes of unlabeled text data. The massive pre-
trained encoder—decoder models have proven to significantly
enhance performance in various sequence-to-sequence appli-
cations. Massive pre-trained encoder—decoder models have
been proven to greatly improve performance on a range of
sequence-to-sequence applications [7, 8]. Rothe et al. [9]
proposed their work to avoid costly pre-training by construct-
ing the encoder—decoder model using pre-trained encoder
and/or decoder-only checkpoints (e.g., BERT, GPT-2). This
is referred to as leveraging pre-trained checkpoints.

The proposed process and pipelines for the Al code assis-
tant system are shown in Fig.1 and involve three distinct
phases and pipelines that form a comprehensive approach
to the code assistant system, encompassing code generation
from natural language input to the corresponding code as out-
put. Then linting and code analysis using Flake8, and finally
the error correction and refining the generated code.



Complex & Intelligent Systems

Natural Language which describes the requirements to be converted into code
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Fig.1 Pipelines for the proposed code assistant system

A significant milestone in this paper is the evolution and
emergence of the transformer language models, which have
demonstrated exceptional capabilities in capturing intricate
language nuances. These models, such as DistilRoBERTa,
DistilBERT, ELECTRA, and LUKE, have found success
in various natural language processing tasks. Harnessing
the power of pre-trained transformer language models in
combination with the Marian Decoder for code generation
represents a novel approach to further enhance precision and
efficiency in navigating intricate coding scenarios. We pro-
posed and implemented new state-of-the-art models in the
code generation problem which employ the idea of lever-
aging pre-trained language models for sequence generation
tasks to get more accurate results. Thanks to transformer
models with multi-functions in the NLP field such as machine
translation, sentiment analysis, classification, and other tasks.
Our implementation depends on the transformer pre-trained
checkpoints for the encoder and Marian Decoder from Mar-
ian Neural Machine Translation model. All proposed models
in our experiments are stack of six layers in the encoder and
stack of six layers in the decode architecture.

Python linter, to analyze the generated code and identify any potential issues.

Fix issues related to indentation, line length, and whitespace, resulting in cleaner and more

Adds trailing commas to Python lists and dictionaries.

Reformats the code to follow the style guide specified in PEP 8, but with a focus on readability

Automatically format code according to various style guides, such as PEP 8 and Google's style

Ruff automatically performs code transformations, such as simplifying complex expressions,
extracting functions, and applying another refactoring to improve the code's structure and clarity.

Sorts and formats imports in Python code.

Generated corresponding code for the input requirements after refining the code.

This paper makes significant contributions to the code gen-
eration problem through the following key findings:

1. Proposing new hybrid models for code generation by
leveraging pre-trained language models such as BERT,
RoBERTa, and Marian. We propose novel hybrid models
with small sizes in the encoder and decoder to address the
code generation problem. The proposed models achieve
high accuracy in the code generation task on the CoNalLa
and DJANGO datasets.

2. Highlighting the importance of pre-trained language mod-
els. Our research emphasizes the necessity of pre-trained
encoders in sequence formation tasks. Furthermore, we
demonstrate that weight sharing between the encoder and
the decoder is often beneficial.

3. Conducting Error Analysis and Refining Generated Code.
We conduct a comprehensive error analysis of the gener-
ated code and refine it to adhere to Python code standards.
This process ensures the produced code meets the require-
ments of quality and consistency.

4. Ensuring code compliance and code refinement with cod-
ing standards and best practices becomes imperative by
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using techniques for error analysis, syntax correction, and
enhancing the reliability and maintainability of the gen-
erated code.

5. Leveraging pre-trained language models such as Dis-
tilRoBERTa with Marian Machine Translation Decoder
yields a BLEU score of 35.74 and a ROUGE score of
44.25 in the code generation task.

6. Exploration of hybrid models, such as seq2seq or encoder—
decoder models, as potential solutions for code assistance.
These models, combining a language model encoder and
decoder, offer insights into enhancing the overall code
generation process.

The rest of the paper is organized as follows: section two
delves into related work, thoroughly examining the litera-
ture on code generation challenges and distinguishing the
proposed approach from existing methods. Section three
presents the proposed hybrid models, detailing their architec-
tures and design principles. Section four demonstrates error
detection and refining the generated code using Flake8 and
Python tools. Section five introduces datasets and the experi-
mental setup, clarifying the selection process and parameters.
Section six showcases comprehensive experimental results,
providing insights into the proposed models’ performance.
Also, this section analyzes the nature and frequency of errors
and warnings in generated code and conducts a thorough
evaluation, comparing the proposed models against state-
of-the-art approaches. Finally, section seven concludes by
summarizing key findings, emphasizing the proposed mod-
els’ impact, and suggesting avenues for future research.

Related work

In recent years, the advent of machine learning-based meth-
ods, particularly neural Seq2Seq models with attention
mechanisms, has shown promising results in generating
code from natural language descriptions and pseudocode
[10, 11]. These approaches have the potential to bridge
the gap between human-readable descriptions and machine-
executable code, although they still face challenges in
handling variable-length code and ensuring syntactic and
semantic correctness [12]. Technology-aided learning has
significant contributions to the understanding of technology-
assisted language learning adaptive systems, offering valu-
able insights for researchers, educators, and policy-makers
in the field [13]. Also, Plug-ins enhance the program, add
assistance to the programmer and add more advancement
and software capabilities to prevent the need of the starting
from the scratch when developing [14].

Furthermore, research has expanded to cater to specific
application domains, such as domain-specific language code
generation, model-driven engineering, code-to-code trans-
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lation, and performance-driven code generation. Each of
these domains comes with its unique set of requirements
and constraints, necessitating tailored solutions [15]. The
growing availability of large-scale code datasets has also
contributed significantly to advancements in code generation.
Researchers have used various datasets, ranging from Python
code repositories to multilingual translation benchmarks,
to train and evaluate their models [16]. Human evaluation
remains a crucial component in assessing the quality and
correctness of generated code, complementing traditional
automated evaluation metrics [17].

Previous studies demonstrate the continuous evolution
and innovation in code generation techniques, driven by
the integration of machine learning, domain-specific knowl-
edge, and large-scale datasets. However, challenges related
to code quality, scalability, and adaptability to multiple lan-
guages and programming paradigms persist. There are some
difficulties in this problem because the output has a well-
defined structure and the domain, structure of the input, and
the output are not similar. There are various techniques used
in code generation, including tree-based and deep learning-
based approaches. Also, semantic parsing-based techniques
were used in this task. Tree-based techniques involve the use
of syntax trees to generate code, while deep learning tech-
niques use neural networks to learn the mapping between
natural language descriptions and source code.

Tree-based techniques

Tree-based techniques in semantic parsing are task-driven
methods that convert natural language input into a formal,
machine-executable representation. These techniques often
represent code as Abstract Syntax Trees (ASTs), serving
as a syntactic tree representation capturing the structure of
expressions and the program’s control components. Demon-
strating effectiveness in code generation for specific domains
over several decades [18], the goal of ASTs is to describe
the semantic structure of sentences in a computer language
as trees. Semantic parsers, categorized into shallow and
deep semantic parsing, map natural language utterances into
semantic representations, such as logical forms or mean-
ing representations [19]. The use of tree-based methods in
semantic parsing offers advantages, including the ability to
address code generation challenges, enhance accuracy, and
handle various data types. However, challenges arise in rep-
resenting code as ASTSs, particularly in managing extensive
node counts and synchronicity issues in the generation pro-
cess [20].

Researchers employ sequence-to-tree models for code
generation, where the tree represents the AST of the tar-
get source code [18, 21-29]. These models aim to improve
the code snippet creation process using ASTs. The use of
tree-based methods presents multiple advantages, addressing
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code generation challenges by converting Natural Language
input into a corresponding AST. Tree-based approaches offer
visual intuitiveness, making complex predictive models more
comprehensible. However, challenges include difficulties in
consistently generating accurate code based on less common
training data and synchronous deviations in output structure
[20, 30].

Yin and Neubig [23] proposed a syntax-driven neural code
generation technique, constructing an abstract syntax tree
through actions from a probabilistic grammar model. Rabi-
novich et al. [24] introduced Abstract Syntax Networks for
code generation and semantic parsing, utilizing datasets like
JOBS, GEO, and ATIS. In 2018, Yin and Neubig presented
TRANX [25], parsing utterances into formal meaning repre-
sentations using a transition system and probabilistic models.
However, TRANX exhibited incoherence issues in genera-
tion, as evidenced by a BLEU score of 24.30 with the CoNaLa
dataset.

Deep learning-based techniques

The generation of source code falls into the categories of
text-to-text or sequence-to-sequence, achievable through the
application of Deep Learning models for both development
and maintenance. The integration of machine intelligence
capable of comprehending and constructing intricate soft-
ware structures holds significant potential within Software
Engineering [31]. Deep learning, a subset of artificial intelli-
gence, offers a promising solution to alleviate the challenges
associated with manual code creation, demonstrating success
in various domains [29, 32, 33].

Transfer Learning has proven effective in fine-tuning
pre-trained models for new tasks. By adapting pre-trained
models to specific jobs, consistent outcomes and findings are
achieved in the seq2seq code generation task [34-37]. Deep
learning techniques exhibit promise in generating code from
natural language descriptions, offering benefits for complex
domains while requiring less manual effort compared to tree-
based techniques [38].

Various researchers have worked on code generation tasks
using datasets such as CoNaLa, DJANGO, ATIS, Code-
SearchNet, and others. Notable models and methods include
Dong and Lapata’s syntax-driven neural code generation
[22], Yin and Neubig’s reranking model [26], Shin et al.’s
PATOIS [27], Sun et al.’s TreeGen [28], and Xu et al.’s deep
learning model with external knowledge incorporation [29].

In 2021, Dahal et al. conducted an analysis of tree-
structured architectures, evaluating text-to-tree, structured

tree-to-tree, and linearized tree-to-tree models on constituency-

based parse trees [18]. Constrained decoding of language
models by Shin et al. [21] demonstrated the paraphrasing of
user utterances into a regulated sublanguage for enhanced
semantic parsing.

Recent contributions by Norouzi et al. [32] showcased
transformer-based seq2seq models competing with or out-
performing models specifically designed for code generation.
Beau and Crabbé [34] proposed an encoder—decoder model
using BERT as an encoder and a grammar-based decoder,
achieving a BLEU score of 34.2 on the CoNaLa dataset.

Semantic parsing based techniques

Semantic parsing, a subset of natural language process-
ing, involves translating natural language utterances into
machine-understandable logical forms. The overarching aim
is to extract precise meaning, enabling machines to com-
prehend and execute these utterances. Its applications span
various domains, including machine translation, question
answering, ontology induction, automated reasoning, and
code generation [39].

The Context and Variable Copying method in neural
semantic parsing for code generation integrates contex-
tual information to enhance disambiguation. Utilizing an
encoder—decoder system, this approach leverages program
context during decoding. A two-step attention mechanism
aligns words in the language with environment identifiers,
and a supervised copy mechanism replicates environment
tokens, even if unseen during training [40]. Iyer et al. [41]
introduced an architecture-enhancing contextually relevant
code generation by incorporating programmatic context. An
encoder—decoder system processes input utterances and envi-
ronment identifiers, employing a two-step attention mecha-
nism for effective word-identifier association.

The decoding process of neural semantic parsing mod-
els is significantly shaped by language structure. Techniques
like sequence-based knowledge base query generation [42]
and enforcing type constraints in query generation [43] high-
light the importance of grammatical constraints. Ling et
al. [44] presented a sequence-to-sequence code generation
approach, incorporating generative and pointer models for
keyword copying from input. Yin and Neubig proposed
leveraging abstract syntax trees (ASTs) for coherence in
general-purpose programming languages [23]. Also, Iyer
et al. [45] introduced idiom-based decoding to streamline
grammar-constrained semantic parsing systems. Shin et al.
[27] mined code idioms to support high-level and low-level
reasoning.

Another way in the semantic parsing techniques can be
Sketching using Pattern Recognition and Symbolic Rea-
soning Sketching in program synthesis involves articulating
high-level descriptions through incomplete programs or
sketches. Nye et al. [46] introduced Sketching systems with
a sketch generator and a program synthesizer. Shin et al. [27]
in the same year incorporated mined code idioms into the
grammar for unified high-level and low-level reasoning.
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Through Conversational Semantic Parsing, Dong et al.
[47] introduced a method to enhance the interpretability
of neural semantic parsers. Their approach focused on a
confidence modeling framework, which systematically char-
acterizes different forms of uncertainty, including model,
data, and input uncertainties. By integrating these confi-
dence metrics as features in a regression model, a confidence
score is generated. This score serves as a valuable tool for
identifying the sources of uncertainty in predictions, thereby
augmenting the model’s overall comprehension. Importantly,
this framework lays the groundwork for conversational pro-
gramming strategies, allowing models to engage users in
clarifying discussions when confronted with uncertain or
missing information.

Another work from researchers [48, 49] delved into the
application of conversational Al within the domain of natural
language semantic parsing. This technique proves partic-
ularly advantageous in rectifying incomplete or inaccurate
user requests during the parsing process. Through establish-
ing an interactive dialog between the program and the user,
conversational Al plays a pivotal role in addressing gaps and
errors in logical forms. The iterative exchanges not only fill
in missing details but also correct inaccuracies. Moreover,
these conversational interactions contribute significantly to
narrowing down the search space, resulting in more precise
and reliable output predictions. Polozov et al. [50] introduced
the FlashMeta framework, a neural network-independent
approach for program synthesis. Parisotto et al. presented
Neuro-symbolic program synthesis in 2016 [51]. DAPIP,
a system for Programming-By-Example, was introduced in
2017 [52]. DeepCoder and RobustFill were proposed in the
same year [53, 54].

Furthermore, programming using Reinforcement Learn-
ing. Xu et al. [55] introduced Auto Assembler, leveraging
reinforcement learning for autonomous generation of assem-
bly instructions. Finally, programming from Description
using Rich Domain-Specific Languages. Semantic parsing
methods like Neural Program Search [56] and Language to
Logical Form with Neural Attention [22] align with pro-
gram synthesis from descriptions, mapping natural language
to predefined program structures [57].

This literature survey highlights the diverse techniques

employed in code generation, ranging from classical approaches

to advanced deep learning models. While classical meth-
ods lay the foundation, modern deep learning approaches
demonstrate adaptability and effectiveness in addressing the
complexities of code generation.

Proposed hybrid models

Leveraging pre-trained models for sequence generation tasks
[9], particularly in the context of code generation, has become
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a transformative approach in recent years. Pre-trained mod-
els are language models that have been extensively trained on
large and diverse datasets to learn contextual representations
of language. These models, such as GPT-3 [58], RoBERTa
[59], and BERT [60], capture intricate patterns and relation-
ships in text data, making them adept at understanding the
nuances of programming languages and code syntax.

Using pre-trained models for code generation does come
with a set of challenges. One significant concern is the safety
and reliability of generated code. Pre-trained models can
sometimes produce incorrect, insecure, or inefficient code,
which poses risks in real-world applications. Careful consid-
eration of validation and verification techniques is essential
to ensure the safety and correctness of generated code.

Another challenge is the potential exposure of sensitive
code or intellectual property. Pre-trained models may inad-
vertently memorize or expose confidential code snippets
present in their training data, which can lead to privacy and
security issues. Researchers and practitioners must employ
robust techniques to prevent such data leakage. So, lever-
aging pre-trained models for code generation tasks offers a
powerful and efficient approach to address the complexities
of the task. Also, these models continue in many applications.

The ability of pre-trained models to generalize across
languages, context awareness, and reduced training require-
ments make them an invaluable resource for accelerating
progress in the field of automated code generation. However,
responsible use, safety considerations, and privacy protec-
tion measures are critical to fully harness the potential of
pre-trained models for code generation and ensure their
successful integration into real-world software development
workflows.

We leveraged pre-trained models to obtain various code
generation models with different pre-trained encoders mod-
els combined and integrated with Marian decoder as shown in
Fig.2. Our proposed models are indicated with their encoders
and decodersin Table 1, and Marian Decoder can be indicated
from MarianCG paper [61].

RoBERTaMarian model

In 2019, RoBERTa model was introduced by Facebook and
it is based on Google BERT pre-trained model that was pro-
posed before it in 2019. It was built on the BERT model
by eliminating the next-sentence pretraining aim and train-
ing with considerably bigger mini-batches and learning rates.
This model is identical to BERT Model, except for a minor
embedding adjustment and a setup for RoOBERTa pre-trained
models.

RoBERTa is built on the same architecture as BERT, but
it uses a byte-level BPE as a tokenizer (as does GPT-2) and a
different pretraining strategy. Token type ids do not exist in
the RoOBERTa model. The architecture of the RoOBERTa-base
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Fig.2 Leveraging pre-trained
language models for building
code generation models
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Table 1 Our proposed code

Model architecture

Encoder model (encoder) Decoder model (decoder)

generation models No. Model
1 RoBERTaMarian
2 BERTMarian
3 ELECTAMarian
4 LUKEMarian

DistilRoBERTa Marian decoder
DistilBERT Marian decoder
ELECTRA Marian decoder
LUKE Marian decoder

model has 12 layers. RoOBERTa is pre-trained with the MLM
task (and without the NSP task).

We used the distilled version of the RoOBERTa-base model
which is called DistilRoBERTa and it has the training pro-
cedure as DistilBERT [62]. The pre-trained DistilRoBERTa
model has 6 layers, 768 dimensions, and 12 heads, with a total
of 82 million parameters (compared to 125 million param-
eters for RoOBERTa-base). DistilRoBERTa is twice as fast
as the Roberta-base model. DistilRoBERTa model distin-
guishes between English and english. It is a case-sensitive
model. We combined DistilRoBERTa as an encoder with
Marian Decoder as shown in Fig. 3.

Figure4 shows the architecture of the RoBERTaMarian
model and the encoder architecture is declared and shown in
Fig.5.

RoBERTa pooler layer

The term “Roberta Pooler” pertains to the specialized layer
within the RoBERTa model known as the pooler layer.
RoBERTa represents a refinement of the BERT (Bidirec-
tional Encoder Representations from Transformers) model,
a widely used framework for tasks involving Transformer-
Based Processing. Within the RoBERTa architecture, the
pooler layer holds the responsibility of condensing the infor-
mation amassed from the encoder layers into a consistent
and predetermined representation. This resultant representa-
tion proves valuable for subsequent tasks like classification
or text generation. This is achieved by processing the hidden

states of the final layer as input and subsequently applying
a pooling operation, often involving mean or max pooling
techniques, to derive a singular vector representation. This
vector is subsequently suitable for utilization within a classi-
fier or decoder layer to facilitate predictions or text creation.

The pooler layer within RoOBERTa constitutes a fully con-
nected layer equipped with learnable weights and biases.
These parameters are optimized during the model’s training
phase to effectively capture the salient details from the input
sequence and generate a purposeful representation aptly serv-
ing the task at hand. Typically, access to the pooler layer is
facilitated through the ‘pooler_output’ attribute embedded
within the RoBERTa model’s output. This attribute holds
the outcome of the pooler layer’s operations, manifesting
as a tensor characterized by dimensions (batch_size, hid-
den_size). In this context, ‘batch_size’ denotes the number
of input sequences within a batch, while ‘hidden_size’ signi-
fies the dimensional extent of both the encoder layers and the
pooler layer. Notably, the incorporation of the pooler layer
within RoBERTa is not obligatory and certain variations or
implementations might choose to omit it. Nevertheless, in the
majority of scenarios, the pooler layer is embraced due to its
practical utility in generating a standardized representation
of the input sequence

BERTMarian model

DistilBERT is a student version BERT as shown in Fig. 6. Itis
smaller and quicker than BERT. The DistilBERT transformer
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Fig.3 RoBERTaMarian code generation model

Word Embeddings

Positional
Embeddings

Natural .
L Preprocessing
anguage Token Type

Embeddings

Embeddings

DistiIRoBERTa
Model

Layer
Normalization

Dropout

{ Code }—’ Preprocessing |—
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model was created using the same basic design as BERT.
The pooler and token-type embeddings are removed, and the
number of layers is reduced by a factor of two, resulting in
a smaller encoder and decoder with six layers. DistilBERT
proved that variations in the tensor’s last dimension (hidden
size dimension) have a smaller impact on computation effi-
ciency (for a fixed parameters budget) than variations in other
factors such as the number of layers.

As a result, DistilBERT is meant to focus on reducing
the number of layers. It is self-supervised pre-trained on the
same corpus as a teacher using the BERT base model. It used
an automatic procedure to produce inputs and labels from
those texts using the BERT base model. DistilBERT has 40%
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fewer parameters than BERT-base-uncased DistilBERT has
40% less parameters than BERT-base-uncased. It runs 60%
faster while maintaining over 95% of BERT’s performance
on the GLUE language comprehension test benchmark.

We built a code generation model as shown in Fig. 7 that
contains DistilBERT as an encoder and Marian Decoder. Fig-
ure 8 shows the architecture of BERTMarian model and the
encoder architecture is declared and shown in Fig.9

ELECTRAMarian model

In 2020, ELECTRA [63] model was introduced by the Stan-
ford University in collaboration with Google, and it is a novel
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approach for learning self-supervised language representa-
tions. Itis used to pre-train transformer networks with a small
amount of computation. ELECTRA models, like GAN dis-
criminators, are trained to identify “real” input tokens from
“false” input tokens created by another neural network as
shown in Fig. 10. ELECTRA provides impressive results at
a modest scale. On the SQuAD 2.0 dataset, ELECTRA pro-
duces cutting-edge outcomes at big scale.

The ELECTRA pre-training approach involves training
two neural networks, a generator G and a discriminator D,
each consisting of an encoder that maps input tokens into con-
textualized vector representations. The generator is trained
to perform masked language modeling (MLM), where it pre-
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dicts the original identities of masked-out tokens, while the
discriminator is trained to distinguish between tokens in the
data and tokens replaced by generator samples. After pre-
training, the generator is discarded, and the discriminator is
fine-tuned on downstream tasks.

This pre-training model is more efficient than Masked
Language Modeling (MLM) because it was defined across
all input tokens rather than just the tiny selection that was
masked away. With the same model size, data, and computa-
tion, the contextual representations acquired by ELECTRA
model outperformed those trained by BERT. The improve-
ments are especially significant for tiny models. We used
google electra-base-discriminator which has 6 hidden layers
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as shown in Fig. 11. This model as an ELECTRA encoder
with Marian Decoder.

Figure 12 shows the architecture of the ELECTRAMarian
model and the encoder architecture is declared and shown in
Fig. 13.

LUKEMarian model

LUKE [64] is a transformer model that was trained using
a vast quantity of entity-annotated data acquired from

Wikipedia. It treats not just words but also entities as separate
tokens and uses the transformer to construct intermediate and
output representations for all tokens. LUKE varies from pre-
viously contextualized word representations (CWRs) and can
directly simulate entity relationships since entities are repre-
sented as tokens as shown in Fig. 14. LUKE is trained with a
novel pretraining task that is a simple extension of BERT’s
masked language model (MLM). The job entails masking
entities at random by substituting them with [MASK] ones
and training the model by predicting the originals of these
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masked entities. ROBERTa was employed as the basic pre-
trained model and pre-train the model by simultaneously
maximizing the MLM objectives.

As shown in Fig. 15 we combined LUKE model with Mar-
ian decoder to construct our final Seq2Seq hybrid model. This
idea has some advantages for representing words by their val-
ues and their entities.

LUKE is a contextualized representation created primarily
for entity-related activities. Using a vast quantity of entity-
annotated corpus acquired from Wikipedia, LUKE is trained
to predict randomly masked words and entities. LUKE rep-
resents the word and its entity. The LUKE base model has 12
hidden layers and the hidden size equals 768. It has 253 M
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total number of parameters. When LUKE is applied to the
downstream tasks, it computes representations of arbitrary
entities in the text by employing [MASK] entities as inputs.
If the task includes entity annotation, the model generates
entity representations based on the rich entity-centric infor-
mation stored in the relevant entity embeddings. We used
the LUKE-base model as an encoder but only 6 layers from
it. Combining this 6-layer LUKE-base model with Marian
Decoder generated the LUKEMarian. Figure 16 shows the
architecture of the LUKEMarian model and the encoder
architecture is declared and shown in Fig. 17.
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LUKE pooler layer

The pooler layer in the LUKE model (LUKE stands for "Lan-
guage Understanding with Knowledge-based Embeddings") °
serves as a summarization layer that takes the contextu-
alized representations of the input tokens and produces a
fixed-length representation, often referred to as a pooled rep-
resentation or a sentence-level representation.

The specific functionality of the pooler layer in LUKE
includes the following: °

e Aggregating token representations: The pooler layer
takes the contextualized representations of the input
tokens, typically obtained from the transformer encoder
layers, and aggregates them into a single representation.
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This aggregation process summarizes the information
from the individual tokens and captures the overall mean-
ing of the input sequence.

Sentence-level encoding: The pooled representation pro-
duced by the pooler layer encapsulates the contextual
information from the entire input sequence. This repre-
sentation is often used as a sentence-level encoding that
can be fed into downstream tasks, such as entity recog-
nition or relation extraction.

Semantic extraction: The pooler layer helps extract high-
level semantic information from the input tokens. By
summarizing the token representations, it focuses on cap-
turing the most salient features of the input sequence and
discards less relevant or noisy information.
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Overall, the pooler layer in LUKE plays a crucial role
in producing a fixed-length representation that captures the
contextual information and semantic meaning of the input
sequence. This pooled representation can then be used for
various downstream tasks that require sentence-level under-
standing or knowledge extraction.

The proposed models share a foundational connection in
their reliance on pre-trained language models for sequence
generation tasks. DistilBERT, a streamlined version of BERT,
serves as a rapid and efficient encoder—decoder model. The
reduction in layers and removal of certain components make
it computationally efficient while maintaining performance.
Its self-supervised pre-training utilizes the BERT base model,
emphasizing efficiency gains without sacrificing effective-
ness.

RoBERTa, an evolution from BERT by Facebook, demon-
strates a further enhancement in training methodology.
Eliminating next-sentence pretraining, utilizing larger mini-
batches and learning rates, and training on longer sequences
contribute to improved performance. DistilIRoBERTa, a dis-
tilled version, maintains efficiency with six layers, 768
dimensions, and a case-sensitive approach, using a smaller
dataset than its teacher model.

ELECTRA, an innovative model from Stanford and
Google, introduces a novel approach to self-supervised learn-
ing. Its efficiency surpasses Masked Language Modeling
(MLM), as it identifies "real" input tokens from "false" ones
created by another neural network. Its pre-training involves a
discriminator distinguishing between genuine and generated
tokens, showcasing effectiveness on large-scale datasets like
SQuAD 2.0.

LUKE, based on the RoOBERTa model, takes a unique
approach by treating entities as separate tokens. Its pre-
training involves masking entities and predicting originals,
providing contextualized representations for both words and
entities. LUKE’s 12 hidden layers and 768 hidden size con-
tribute to a comprehensive model for entity-related tasks.

These models share the use of pre-trained language
models, each introducing specific optimizations and train-
ing strategies. While DistilBERT emphasizes efficiency,
RoBERTa focuses on enhanced training, ELECTRA intro-
duces a discriminator approach, and LUKE extends BERT’s
masked language model to entities. Together, they repre-
sent a spectrum of approaches, offering a versatile toolkit
for sequence generation tasks.
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Error analysis and correction

Code assistance is a rapidly advancing field that combines
the power of artificial intelligence (AI) and machine learn-
ing with the expertise of human programmers to enhance
and streamline the process of software development. This
technology leverages intelligent algorithms and data-driven
models to assist developers in writing code, improving code
quality, and increasing overall productivity. Traditional soft-
ware development requires significant manual effort to write
and debug code, often resulting in time-consuming and error-
prone processes.

Code assistance aims to alleviate these challenges by
providing automated tools that analyze existing codebases,
understand programming patterns, and generate sugges-
tions or complete sections of code. The underlying concept
behind Al-assisted coding involves training machine learn-
ing models on large amounts of code repositories to learn
patterns, syntax, and best practices. These models can then
assist developers by providing code completion suggestions,
identifying potential bugs or vulnerabilities, and offering
optimizations based on established coding standards.

One of the key advantages of code assistance is its ability
to enhance developer productivity. By automating repetitive
tasks and providing intelligent suggestions, developers can
focus on higher-level design decisions and problem-solving,
accelerating the overall development process. Furthermore,
Al-assisted coding can significantly improve code quality. By
analyzing vast amounts of code, Al algorithms can identify
common coding mistakes, detect potential bugs, and sug-
gest code refactoring or optimizations. This helps in reducing
errors and enhancing the reliability, maintainability, and per-
formance of software applications.

Another benefit of code assistance is its potential to facili-
tate knowledge transfer and skill-sharing within development
teams. By capturing and analyzing coding patterns, best prac-
tices, and successful code implementations, code assistance
tools can assist less experienced developers in learning from
the collective expertise of their peers, ultimately elevating
the skill level of the entire team. However, it is important to
note that Al-assisted coding is not meant to replace human
programmers. Rather, it serves as a powerful tool to aug-
ment their capabilities, improve efficiency, and enable them
to tackle complex coding tasks more effectively.

Error analysis in the generated code

Code Generation is an exciting area of research and develop-
ment that aims to bridge the gap between human language and
programming languages. In this task, the input is the human
description and specifications, and the output is Python code.
To accomplish this, we implemented the MarianCG model
specifically designed for the code generation task. However,
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generating code automatically can sometimes lead to linting
issues and errors in the generated code. To address this, we
employed various tools and techniques to ensure the gener-
ated code meets the required standards.

Firstly, we used Flake8,! a popular Python linter, to ana-
lyze the generated code and identify any potential issues.
Flake8 examines the code for violations of style guidelines
and common errors, providing feedback on areas that need
improvement. Additionally, we performed syntax analysis
on the generated code to verify its correctness as Python
code. This analysis involved checking for proper indentation,
correct syntax usage, and overall adherence to the Python
language rules. Any modifications required to make the code
suitable as valid Python code was implemented.

Code refining and correction

We employed several error correction tools and libraries to
further enhance the quality and readability of the generated
code. One such tool is Autopep8,> which automatically for-
mats Python code according to defined style guidelines. It can
fix issues related to indentation, line length, and whitespace,
resulting in cleaner and more consistent code.

We also utilized the Add-trailing-comma? library, which
adds trailing commas to Python lists and dictionaries. Trail-
ing commas can improve code readability and help prevent
errors, especially when modifying or extending these data
structures. For consistent code formatting, we employed
Yapf* and Black,? both popular Python code formatters.
These tools automatically format code according to various
style guides, such as PEP 8 and Google’s style guide. By
applying these formatters, the generated code becomes eas-
ier to read and maintain. YAPF is a formatter for Python files
developed by Google. It is designed to be highly configurable
and have a low impact on the code being formatted. YAPF
reformats the code to follow the style guide specified in PEP
8, but with a focus on readability and consistent formatting.

YAPF is available for installation through pip and can
be used as a Python module or as a command-line inter-
face. It provides options for specifying the maximum line
length, variable naming style, indentation, and more. YAPF
can be used along with other Python code analysis tools
like Flake8 and PyLint to ensure consistent code quality. To
ensure proper import organization, we used Isort, a Python
library that sorts and formats imports in Python code. Isort
helps maintain a consistent and logical order for imports,
improving code organization and readability.

! https://flake8.pycqa.org/en/latest/.

2 https://github.com/hhatto/autopep8.

3 https://github.com/asottile/add-trailing-comma.
4 https://github.com/google/yapf.

3 https://github.com/psf/black.
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Lastly, we incorporated Ruff, a Python library for code
refactoring, to enhance the readability and maintainability
of the generated code. Ruff automatically performs code
transformations, such as simplifying complex expressions,
extracting functions, and applying another refactoring to
improve the code’s structure and clarity.

By combining these error correction and code enhance-
ment techniques, the generated code from the human descrip-
tion can be refined, ensuring it meets the required Python cod-
ing standards and best practices. This approach contributes
to the overall reliability, maintainability, and readability of
the codebase, facilitating efficient software development. All
the complete process for the code generation, lining, analysis,
and correction is shown in Fig. 18.

So, there are three phases to the code generation and Al-
assistant code as follows:

1. Code generation from natural language

2. Linting and Error Analysis using Flake8

3. Refining the generated code and error correction using the
rest of the tools.

Implementation and experimental setup
Datasets

By fine-tuning the MarianMT transformer model on the
CoNaLa and DJANGO datasets, we got MarianCG which
is a new transformer model that was built on the pre-trained
transformer. We followed [29, 33, 61] in the CoNaLa dataset
and selected the top mined samples depending on the prob-
ability that the NL-Code pair is correct.

Training the models can be done by using the CoNaLa-
train and/or CoNalLa-mined datasets, then take the rewritten
intent field from the CoNaLa-test dataset as input and gen-
erating output from it. The CoNaLa-Large dataset contains
about 26K different NL-Code. This dataset contains the
CoNaLa-train and examples from CoNalLa-mined and the
500 examples in CoNaLa-test to compare by the same bench-
marks as other state-of-the-art contributors. Also, we used
DJANGO which contains 19K examples, and got the results.

Table 2 displays the datasets employed in each experiment,
as well as the dataset size and number of records in the train,
validation, and test sets of data.

Experimental setup

In our experiments, we employed DJANGO and the CoNaLa
dataset of 26K NL-Code pairings from CoNaLa-train and
CoNaLa-mined. The testing data set contains 500 samples
from CoNaL a-test that were compared using the same bench-
marks as other state-of-the-art contributors.

Table 2 Datasets in each experiment and distribution of the data

Dataset Dataset size Dataset split

Train Validation Test
DJANGO 19K 16,000 1000 1805
CoNalLa Large 26K 24,687 1237 500

The implementation of our generated models was done
with the CoNaLa dataset using Google’s Colab Pro. Our
development was on Python and PyTorch, and thanks to
pre-trained transformer models where we used various pre-
trained language models from their model hub. For training,
we relied on HuggingFace’s trainer and the implementation
of the learning rate scheduler with batch size equals 2. For
the implementation, we applied these parameters: Adam opti-
mizer, Weight decay = 0.01, Learning rate = le~5, Number
of hidden layers for the encoder = 6, Number of hidden lay-
ers for the decoder = 6, a linear learning rate scheduler,
warmup ratio of 0.05 seed = 1995 early stopping, a length
penalty of 0.9, and we used beam search with four beams for
generation.

Experimental results

We present the results of our proposed hybrid model which
evaluated on the CoNaLa and DJANGO datasets. For the
MarianCG experiments, we measured the model’s code gen-
eration performance by calculating metrics such as code
accuracy and code similarity scores. The results showed that
MarianCG achieved competitive code generation accuracy
on both datasets, demonstrating its effectiveness in generat-
ing syntactically correct code snippets.

We introduced our novel hybrid model, which leverages
the strengths of MarianCG while incorporating additional
contextual information from BERT embeddings and vari-
ous encoder-only models. The hybrid model significantly
improved the quality of generated code, achieving higher
code accuracy and semantic relevance compared to Mari-
anCG on both datasets. These findings demonstrate the
efficacy of our proposed hybrid approach for enhancing code
generation performance, making it a promising solution for
code-related Transformer-Based Processing tasks.

Results of the proposed models

we present four novel transformer-based architectures designed
to excel in code generation tasks, specifically targeting
the Python programming language. Our proposed models
combine the strengths of popular pre-trained models like
DistilBERT, Electra, and Luke, with the versatile Marian
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Fig. 18 Code assistant process

Code Generation from

Natural Language

decoder. We evaluate our models on two widely used datasets,
CoNaLa and DJANGO, to demonstrate their performance
and capabilities.

Our first model, RoBERTaMarian, integrates the Distil-
ROBERTa pre-trained model as the encoder and the Marian
decoder. It achieves impressive performance on both datasets,
particularly on DJANGO, where it attains a superior BLEU
score of 88.91, an exact match accuracy of 77.95%, Sacre-
BLEU of 74.08, and a ROUGE score of 92.76. These
results demonstrate the model’s proficiency in generating
high-quality code solutions that accurately match human-
generated references.

The second model, BERTMarian, utilizes the DistilBERT
encoder and Marian decoder. On the CoNala dataset, it
achieves a BLEU score of 32.46, an exact match accuracy of
12.4%, SacreBLEU of 29.48, and a ROUGE score of 43.95.
Similarly, on the DJANGO dataset, it attains a BLEU score
of 56.55, an exact match accuracy of 76.78%, SacreBLEU of
29.48, and a ROUGE score of 43.95. These results indicate
the model’s ability to generate code solutions that closely
align with human-written code while maintaining linguistic
fluency and capturing critical code semantics.

The third model, ELECTRAMarian, combines the pow-
erful ELECTRA encoder with the Marian decoder. On the
CoNala dataset, it achieves a BLEU score of 30.18, an
exact match accuracy of 10.0%, SacreBLEU of 27.15, and
a ROUGE score of 42.42. Meanwhile, on the DJANGO
dataset, it attains a BLEU score of 53.02, an exact match
accuracy of 65.32%, SacreBLEU of 58.16, and a ROUGE
score of 83.91. These results showcase the model’s versatil-
ity and high performance in generating code solutions that
accurately match human-authored references while demon-
strating linguistic fluency and capturing important code
semantics.

Lastly, the LUKEMarian model, which employs the
LUKE encoder and Marian decoder, shows promising results
on both datasets. On the CoNaL a dataset, it achieves a BLEU
score of 29.83, an exact match accuracy of 7.6%, SacreBLEU
of 25.32, and a ROUGE score of 39.84. On the DJANGO
dataset, it attains a BLEU score of 89.34, an exact match accu-
racy of 78.50%, SacreBLEU of 74.66, and a ROUGE score
of 93.11. These results confirm the model’s efficiency in gen-
erating code solutions that closely align with human-written
code while maintaining linguistic fluency and capturing crit-
ical code semantics.
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These results pave the way for further advancements
in code generation technology and its potential integration
into real-world programming and automation applications.
Table 3 shows the results and the performance metrics of our
proposed models on the CoNaLa dataset. Also, Table 4 shows
the results of those proposed models on the DJANGO dataset.

Figures 19 and 20 show these results for the proposed code
generation models on the CoNaLa and DJANGO datasets
respectively. The findings show that RoBERTaMarian model
produced the highest BLEU score of 35.74.

Our proposed transformer-based models, RoOBERTaMar-
ian, BERTMarian, ELECTRAMarian, and LUKEMarian,
demonstrate exceptional performance in code generation
tasks, particularly on the Python programming language.
Their ability to generate accurate, relevant, and contextually
appropriate code outputs solidifies their standing as cutting-
edge solutions in the programming and Transformer-Based
Processing domain.

Results evaluation

This paper unveiled a range of powerful encoder—decoder
models for code generation, each demonstrating unique
strengths. RoOBERTaMarian and BERTMarian stood out with
their competitive performance on the CoNaLa dataset, while
ELECTRAMarian and LUKEMarian showcased impres-
sive proficiency on the DJANGO dataset. Additionally,
MarianCG served as a strong baseline, delivering promis-
ing results on both datasets. Understanding the trade-offs
between these models allows us to tailor their application
to various code generation scenarios, catering to the spe-
cific requirements of each task. When compared to other
researchers who worked on the code generation problem on
CoNalLa, this result has the highest BLEU score. The second
item to mention is the highest ROUGE score or ROUGE-L
result, which indicates the LCS-based statistics. The longest
common subsequence problem takes sentence-level struc-
tural similarities into account and automatically selects the
longest co-occurring in sequence n-grams. The MarianCG
model has the highest ROUGE score of 49.63. The results of
the state-of-the-art code generation models on the CoNaLa
dataset are shown in the Table 5 and indicated in Fig.21 for
the CoNaLa models.

RoBERTaMarian is considered the first among the models
that get accurate results of the generated code. This model
records a BLEU score of 35.74 with the advantage of being
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Table 3 Performance metrics of all models on the CoNaLa dataset

No. Model Evaluation metrics
Bleu score Exact match accuracy (%) Sacrebleu Rouge score
1 MarianCG 34.4291 10.2 30.6776 49.6272
2 RoBERTaMarian model 35.7365 13.8 31.3025 44.2547
3 BERTMarian 32.4618 12.4 29.479 43.9467
4 ELECTRAMarian 30.1819 10.0 27.1495 42.4232
5 LUKEMarian 29.8281 7.6 25.3187 39.8431
Table 4 Performance metrics of . B
all models on the DJANGO No. Model Evaluation metrics
dataset Bleu score Exact match accuracy (%) Sacrebleu Rouge score
1 MarianCG 90.41 81.83 75.906 94.647
2 RoBERTaMarian 88.9123 77.95 74.083 92.7351
3 BERTMarian 56.55 76.676 64.884 88.692
4 ELECTRAMarian 53.02 65.319 58.155 83.905
5 LUKEMarian 89.3424 78.504 74.6583 93.1133
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Table 5 State of the art code

generation models on CoNaLa Rank Model Evaluation metrics Year
BLEU score Exact match accuracy (%)
1 RoBERTaMarian (ours) 35.7365 13.8 2023
2 MarianCG (ours) [61] 34.4291 10.2 2022
3 TranX + BERT w/mined [34] 34.2 5.8 2022
4 BERT + TAE [32] 33.41 - 2021
5 BERTMarian (ours) 32.4618 12.4 2023
6 External knowledge with API 32.26 - 2020
+ Reranking [29]
7 External knowledge with API [29] 30.69 - 2020
8 BART W/mined [33] 30.55 - 2021
ELECTRAMarian (ours) 30.1819 10.0 2023
10 Reranker [26] 30.11 - 2019
11 LUKEMarian (ours) 29.8281 7.6 2023
12 BART base [33] 26.24 - 2021
13 TranX [25] 24.3 - 2018

fast, small and containing multi-head attention. Besides that,
MarianCG is considered the second model to have a BLEU
score of 34.43. These are our models which record the first
and second in the code generation models results. Besides
that, our generated models have the number of BLEU score
which are in the top-ranking code generation models.

Also, Table 6 shows the results of all state-of-the-art mod-
els on DJANGO, and the performance metrics are indicated in
Fig.22. Comparing all models that worked on the DJANGO
dataset proved that our models got high values of BLEU
score such as MarianCG, LUKEMarian model, and RoBER-
TaMarian model. These models got BLEU scores of 90.41,
89.34, and 88.91 respectively.

RoBERTaMarian model is the first among the models that
get accurate results of the generated code on the CoNaLa
dataset. Also, the MarianCG model is ranked in the top mod-
els for its accurate predictions in terms of BLEU score and
exact match accuracy. This model has a smaller size archi-
tecture. It has six layers in the encoder and six layers in the
decoder, whereas other models have larger model sizes.

The contrast analysis presented in this paper demonstrates
the validity of the proposed models by comparing their
performance with other state-of-the-art models on multiple
datasets and highlighting their strengths in terms of code
quality, semantic similarity, and computational efficiency.

The proposed models (RoBERTaMarian, BERTMarian,
ELECTRAMarian, LUKEMarian, and MarianCG) are com-
pared with other models that have been proposed in the liter-
ature for code generation tasks, specifically on the CoNalLa
and DJANGO datasets. The results show that the proposed
models achieve competitive performance on both datasets,
with RoBERTaMarian and BERTMarian performing well on
CoNaLa, and ELECTRAMarian and LUKEMarian perform-

@ Springer

ing well on DJANGO. This suggests that the proposed models
are capable of generating high-quality code across different
domains and tasks.

On the CoNaL a dataset, RoOBERTaMarian has the highest
BLEU score among all models, and MarianCG has the high-
est ROUGE score, indicating its ability to generate code with
high semantic similarity to the input. This suggests that the
proposed models are able to generate code that is not only
syntactically correct but also semantically meaningful.

On the DJANGO dataset, the proposed models achieve
high BLEU scores, with MarianCG, LUKEMarian, and
RoBERTaMarian ranking in the top positions. This suggests
that the proposed models are effective in generating code for
a variety of programming tasks and languages.

Additionally, the proposed models have advantages in
terms of computational efficiency, with MarianCG having
a smaller model size than other models while still achieving
high performance. This suggests that the proposed models
are not only effective in generating high-quality code but also
efficient in terms of the computational resources required.

Overall, the contrast analysis presented in this paper
demonstrates the validity of the proposed models by com-
paring their performance with other state-of-the-art models
on multiple datasets and highlighting their strengths in terms
of code quality, semantic similarity, and computational effi-
ciency.

Error/warning analysis and refining

Code assistant represents a powerful symbiosis between
human programmers and Al technology, providing intel-
ligent tools that assist in code writing, error detection,
and optimization [65, 66]. By leveraging Al algorithms
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Table 6 State-of-the-art code

Rank Model Evaluati i Y
generation models on DJANGO an ode valuation metrics ear
BLEU score Exact match accuracy (%)
1 MarianCG (ours) [61] 90.41 81.83 2022
2 LUKEMarian (ours) 89.3424 78.504 2023
3 RoBERTaMarian (ours) 88.9123 77.95 2023
4 TranX + BERT w/mined [34] 79.86 81.03 2022
5 BERT + TAE [32] - 81.77 2021
6 BERTMarian (ours) 56.55 76.68 2023
7 ELECTRAMarian (ours) 53.02 65.32 2022
8 Reranker [26] - 80.2 2019
9 TranX [25] - 73.7 2018
40
35.7365
35 34.4291 : 349 33541
— 32.4618 3296
“ Tl 30.69 3055 301819 301 29,8081
26.24
25 243
g 20
w
@
é 15
10
5
0
RoBERTaMarian MarianCG TranX + BERTw/  BERT + TAE BERTMarian External External BART W/ Mined ELECTRAMarian Reranker LUKEMarian BART Base TranX
mined Knowledge With Knowledge With
APl + Reranking API
Models
Fig.21 All results of the state of the art models in the code generation problem with CoNaLa
100
90
81.83 81.77
80 — 8103 £0:2 78.51 77.95 76.68
73.7
&
g 70 65.32
3
}:’ 60
-
%
5 50
=
T 40
2
L
30
20
10
(0]
MarianCG BERT + TAE  TranX + BERT w/ Reranker LUKEMarian RoBERTaMarian BERTMarian TranX ELECTRAMarian
mined
Models

Fig.22 All results of the state-of-the-art models in the code generation on DJANGO with respect to accuracy

and machine learning, developers can enhance productiv-
ity, improve code quality, and facilitate knowledge sharing
within development teams. As the capabilities of code assis-

tant tools advance, they hold the potential to transform the
software development landscape, making the process more
efficient, reliable, and collaborative. We conducted a compre-

@ Springer
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hensive error and warning analysis using FlakeS§, a powerful
tool for code linting and static analysis. Flake8 helped iden-
tify potential issues in the generated Python code, such as
syntax errors, undefined variables, and code style violations.
To address these concerns and improve code quality, we
employed automatic code formatting tools such as Autopep8,
which automatically corrected issues related to indentation,
line length, and whitespace. This resulted in cleaner and more
consistent code, aligning with established style guidelines. In
addition to Autopep8, we utilized the Add-trailing-comma
library to enhance code readability and reduce errors asso-
ciated with Python lists and dictionaries. By adding trailing
commas to these data structures, we ensured a consistent
format, especially when modifying or extending them dur-
ing the code generation process. To maintain uniform code
formatting across the generated solutions, we integrated two
popular Python code formatters, Yapf and Black. Both tools
automatically formatted the code according to various style
guides, such as PEP 8 and Google’s style guide. By employ-
ing these formatters, the readability and maintainability of
the generated code significantly improved, making it easier
for developers to comprehend and work with the code.
Yapf,® developed by Google, demonstrated high con-
figurability and minimized its impact on the code being
formatted. It strictly adhered to the PEP 8 style guide while
emphasizing readability and consistent formatting. The tool
provided flexible options for setting maximum line length,
variable naming style, and indentation, among others. Yapf
seamlessly integrated with other Python code analysis tools,
such as Flake8 and PyLint, to ensure comprehensive and
consistent code quality. To organize imports effectively, we
implemented Isort, a Python library that efficiently sorts and
formats import statements in Python code. By utilizing Isort,
we maintained a logical and consistent order for imports,
thereby enhancing code organization and readability. Lastly,
we incorporated Ruff, a powerful Python library for code
refactoring, to further enhance the readability and maintain-
ability of the generated code. Ruff automatically performed
code transformations, such as simplifying complex expres-
sions, extracting functions, and applying various refactoring
techniques, resulting in improved code structure and clarity.
The error analysis and distributions of the code generated
from MarianCG and RoBERTaMarian models are shown in
Table 7. Also, Figs.23 and 24 show the distribution for these
errors and warnings in the generated code and after refining.
After using these tools, the error and warning analysis
on the MarianCG and RoBERTa models became less than
before. By leveraging these tools and libraries in our code
generation process, we achieved code solutions that not only
met high-quality standards but were also consistently format-
ted and easy to maintain. The combination of static analysis,

© https://github.com/google/yapf.
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linting, formatting, and refactoring tools contributed signif-
icantly to the overall success of our code generation models
and reinforced the importance of code quality in modern soft-
ware development.

Conclusion

This paper has demonstrated the promising application of
pre-trained transformer language models in code genera-
tion, specifically through the combination of DistilRoBERTa,
ELECTRA, and LUKE with the Marian Decoder. Our
experimental results show that these models can generate
high-quality code, as measured by static error detection
and refactoring. The RoBERTaMarian model achieved a
peak BLEU score of 35.74 and an exact match accuracy
of 13.8% on the CoNalLa dataset, while the LUKEMarian
model attained a BLEU score of 89.34 and an exact match
accuracy of 78.50% on the DJANGO dataset. These results
indicate that pre-trained language models have the potential
to revolutionize code generation, offering a viable solution
for converting human descriptions into executable code.

However, several study limitations should be acknowl-
edged. Firstly, the dataset sizes used in our experimentation
were relatively small compared to other code generation
datasets, which may limit the generalizability of our find-
ings to larger, more diverse datasets. Also, it is one line
code generation and it is the start to be completed in the
near future to work with functions, classes and see the con-
nected speech in the natural language to have integrated and
complete program. Secondly, we explored four pre-trained
language models and one decoder, leaving room for inves-
tigation of other models and combinations that may yield
superior performance or different trade-offs between accu-
racy and efficiency.

Despite these limitations, our work opens up exciting
avenues for future research. One emerging topic is mul-
timodal code generation, which involves generating code
based on visual, audio, or video inputs. Integrating pre-
trained language models with computer vision or multimedia
processing techniques could unlock new possibilities in this
area. Another important direction is explainable Al and
interpretability, which is becoming increasingly relevant as
Al systems become more pervasive. Incorporating attention
mechanisms, saliency maps, or other interpretability tech-
niques into pre-trained language models for code generation
would allow developers to understand how the models arrive
at their output.

Moreover, as Al models become increasingly relied upon
in software development, understanding their robustness
against adversarial attacks becomes crucial. Investigating
attack strategies and developing corresponding defense
mechanisms will ensure the security and trustworthiness of
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Table 7 Error and warning analysis on MarianCG and RoBERTaMarian models

Error/warning message MarianCG RoBERTaMarian
Using Flake8 After correction Using Flake8 After correction
“undefined name” 593 450 295 295
“no newline at end of file” 438 0 230 0
“ format(...) has unused arguments” 0 0 1 1
“SyntaxError: invalid character” 62 62 270 64
“ambiguous variable name ‘1" 3 3 2 2
“missing whitespace around operator” 4 0 0 0
“‘return’ outside function” 4 3 0 0
“missing whitespace after *,”’ 3 0 5 0
“test for membership should be ‘not in’”’ 1 1 0 0
“whitespace after ‘(" 0 0 1 0
Fig.23 Error analysis in the
code generated from MarianCG “whitespace after (" [?
“missing whitespace after’, or *” l05
$
o
g "ambiguous variable name ‘I H%
Y
£
(o))
£ -
g “SyntaxError: invalid character’ S4 270
2
ik
5
§ " format(...) has unused arguments” H
I
(]

“no newline at end of file”

“undefined name”

295
295

(0] 100 200 300
Count

m Count after corrction M Count using Flake 8

these models in practice. Additionally, human-AlI collabo-
ration, where Al models assist humans in generating code,
could lead to novel approaches in software development,
blending the strengths of both humans and machines. Finally,
it is essential to acknowledge the ethical implications of Al
models automating parts of software development. Questions
regarding ownership, accountability, and potential biases in
the generated code necessitate open discussions, guidelines,
and regulatory frameworks that promote responsible Al prac-
tices in software engineering.

The complexity of the input text is a critical factor in
determining the complexity of the code generation task. As
the input text becomes longer, more structured, and contains
more domain-specific vocabulary, the task becomes increas-
ingly challenging. This is because the model needs to capture
longer-range dependencies, handle ambiguity, and generate

coherent and accurate code that meets the requirements of
the given task.

To quantify the complexity of the future work in the input
text, we can consider several factors such as:

e Sentence length: Longer sentences with multiple clauses
and phrases require more sophisticated encoding and
decoding mechanisms to capture the relationships between
tokens, entities, and actions.

e Domain-specific vocabulary: Specialized domains such
as programming languages, legal documents, or medical
reports often contain technical jargon and terminology
that demand a deeper understanding of the subject matter.

e Ambiguity and uncertainty: Natural language is inher-
ently ambiguous, with words and phrases having multiple
meanings and contexts. The model must be able to resolve
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“test for membership should be ‘not in” ’ :

missing whitespace after , |3
return’ outside function i
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Error and warning messages

“SyntaxError: invalid character”
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Fig.24 Error analysis in the generated code from RoBERTaMarian model

these ambiguities and generate appropriate code that sat-
isfies the constraints of the task.

e Structural complexity: Code generation tasks may involve
generating code that includes nested structures, loops,
conditionals, and functions, which requires a deep under-
standing of programming concepts and syntax.

e The complexity of the input text directly impacts the
complexity of the resulting code. For instance, a sim-
ple command-line interface (CLI) script may require
less complex code than a web application with multi-
ple routes, user authentication, and database interactions.
Similarly, a code snippet that performs basic arithmetic
operations may be simpler than one that implements
machine learning algorithms or performance computa-
tions.

In conclusion, this paper demonstrates the potential of
pre-trained transformer language models in code generation
and highlights opportunities for future research in emerging
topics such as multimodal code generation, explainable Al,
adversarial attacks, and human-AlI collaboration. Addressing
the study limitations and ethical implications will help ensure
the responsible adoption of these models in software devel-
opment, ultimately enhancing the productivity and efficacy
of software engineers.
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