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Abstract
In this paper, we present HoloSLAM which is a novel solution to landmark detection issues in the simultaneous localization
and mapping (SLAM) problem in autonomous robot navigation. The approach integrates real and virtual worlds to create
a novel mapping robotic environment employing a mixed-reality technique and a sensor, namely Microsoft HoloLens. The
proposed methodology allows the robot to interact and communicate with its new environment in real-time and overcome
the limitations of conventional landmark-based SLAMs by creating and placing some virtual landmarks in situations where
real landmarks are scarce, non-existent, or hard to be detected. The proposed approach enhances the robot’s perception
and navigation capabilities in various robot environments. The overall process contributes to the robot’s more accurate
understanding of its environment; thus, enabling it to navigate with greater efficiency and effectiveness. In addition, the newly
implemented HoloSLAM offers the option to guide the robot to a specific location eliminating the need for explicit navigation
instructions. The open-source framework proposed in this paper can benefit the robotics community by providing a more
reliable, realistic, and robust mapping solution. The experiments show that the Ellipsoidal-HoloSLAM system is accurate and
effectively overcomes the limitations of conventional Ellipsoidal-SLAMs, providing a more precise and detailed mapping of
the robot’s environment.

Keywords EKF/Ellipsoidal landmark-based SLAM · Robotic mixed reality · Microsoft HoloLens · Unity3D · Virtual
landmarks · HoloSLAM · Nao humanoid robot

Abbreviations

SLAM Simultaneous localization and mapping
EKF Extended Kalman filter
RXR Robotic mixed reality
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IMUs Inertial measurement units
RMS Root mean square
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Introduction

Autonomous navigation is regarded as the key attribute of
autonomous mobile robots, and simultaneous localization
and mapping (SLAM) plays a critical role in its realization.
The fundamental idea of SLAM is to concurrently construct
or update a map of the robot’s environment while estimating
its pose using exteroceptive and proprioceptive sensors [1,
2]. Many successful implementations of SLAM have been
reported in a wide range of environments, including indoor,
outdoor, UAV, underwater, underground, and space [3–5].
Due to the complexity of these various environments, almost
every approach for robotic navigation and SLAM solution
relies, to someextent, on prior knowledgeof the environment.
Within this context, it is important to mention that each envi-
ronment presents its own unique challenges, and there is no
universal solution to SLAM. Consequently, SLAM solutions
must be customized to the specific environment in which the
robot operates to ensure precision and reliability in naviga-
tion [6, 7].
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In landmark-based indoor environments, SLAM con-
structs a map by identifying distinct features within the
environment, which can be either artificial or natural, and are
typically referred to as landmarks [8, 9]. Landmarks in the
context of SLAMcan take the form of geometric features like
lines or points, which are typically extracted from data col-
lected by sensors such as laser range finders, sonar sensors, or
visual featureswhen cameras are used.Both artificial and nat-
ural landmarks share common characteristics; they are easily
recognizable, distinguishable, abundant, and can be readily
distinguished from their background within the environment
[10]. A complete SLAM solution comprises several compo-
nents, including landmark extraction, data association, state
estimation, and state and landmark (map) update [11].

In natural landmark recognition, the landmarks are
selected from unique features that exist naturally in the envi-
ronment [12, 13]. Although the environment need not be
altered for SLAM, having prior knowledge of the surround-
ings is crucial. However, methods relying on such prior
knowledge can be less reliable, as the distinct features they
depend on may change or become less distinguishable over
time. Nonetheless, these methods have the advantage of not
requiring the preparation or installation of additional land-
marks, making them more practical in specific situations.
Indoor settings may have passive natural landmarks such as
doors, windows, and ceiling lights, while outdoor environ-
ments can have landmarks such as roads, trees, and traffic
signs [14, 15]. Information from these landmarks can also
be extracted using machine learning and deep learning tech-
niques [16]. Artificial landmarks are intentionally created,
designed, or modified to be easily recognizable by a robot’s
sensors. These landmarks are added or placed in specific
or random locations in the environment with the specific
purpose of aiding in the robot’s navigation, localization, or
mapping tasks. The robot’s sensors are expected to detect
and recognize these artificial landmarks to improve its under-
standing of its surroundings and to determine its position and
orientation accurately [8, 17]. The robot is specifically pro-
grammedor equipped to detect and interpret these landmarks,
making them an integral part of the robotic system’s sensor
data and mapping processes. Predetermined artificial land-
marks offer benefits in autonomous navigation due to their
high visibility, ease of distinction from other objects, and
the ability to convey additional encoded information to the
robot. This makes them valuable for cost-effective and reli-
able navigation, especially in complex environments where
natural landmarks may be unreliable or scarce.

In order for a landmark-based SLAM system to operate
effectively, the landmarks must be both present in the envi-
ronment andwithin the rangeof the robot’s sensors. The robot
requires mobility to observe these landmarks from various
positions and angles [8, 15]. The presence of these land-
marks is not always guaranteed, and their absence poses

a challenge to the system’s ability to accurately estimate
the robot’s position and map the surroundings [18]. The
accuracy of position estimation in landmark-based SLAM
systems is often dependent on the distance and orientation
between the robot and the landmark.When the robot is further
away from the landmark, the features of the landmark may
appear smaller in the sensor data, which can make it harder
to accurately detect and track. Similarly, when the orienta-
tion between the robot and the landmark is not optimal, the
features of the landmark may not be easily distinguishable,
which can also lead to lower accuracy in position estimation.
As the robot approaches a landmark, the characteristic of the
landmark becomes more apparent and easier to identify and
track, resulting in improved accuracy in the robot’s position
estimation [18–20]. Furthermore, the precision of the land-
mark detection system is paramount. If the detection system
is unreliable or the probability of detecting a landmark is less
than one, the SLAM system may generate imperfect land-
marks or fail to identify certain ones. Environmental factors
such as noise, illumination changes, and other factors can
also influence sensor performance, impacting system accu-
racy and reliability. This introduces inaccuracies in mapping
and position estimation, resulting in errors in navigation and
other tasks.

To guarantee the stability and reliability of a landmark-
based SLAM solution, the detection of at least one landmark
in every observation step is indispensable. Developing a
landmark-based SLAM solution that can effectively utilize
multiple types of landmarks poses a considerable challenge
[11, 19]. Many existing solutions addressing this issue often
demand higher computational costs and the incorporation
of additional sensors to achieve optimal performance. It is
important to note that real-timemodifications, such as adding
or removing landmarks, are not feasible in this context.

Landmark-based SLAM solutions that often utilize
extended Kalman filters (EKFs) to estimate the state of the
robot and landmarks employs a single Gaussian to repre-
sent the structure of each state [21–24]. In these approaches,
the environment map is represented by the respective posi-
tions of separate landmarks or distinctive features. Therefore,
the robot is enabled to get absolute pose estimates of the
environment [25, 26]. These landmarks are then frequently
re-observed, their locations are updated until the mapping
process is complete [27].The state vector in these solutions
includes only the landmark position and the robot pose sug-
gesting that SLAM by itself does not provide additional
information about the environment [26]. This implies that
the landmark-based SLAM alone may not provide enough
information to fully understand the environment. A key lim-
itation of EKF-based landmarkmapping is its vulnerability to
false data associations, where measurements are incorrectly
linked to landmarks [25]. This problem is more significant
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when data association methods lack correlation considera-
tion, and it escalates as the number of landmarks increases,
imposing a higher computational burden [26].

To address the Gaussian assumption of EKF, a set-
theoretic approach was introduced in Ref. [28]. It assumes
bounded errors to achieve information fusion through set
intersections. This method imposes strict noise and state esti-
mate bounds. It has been extended to a mixed stochastic/set-
membership framework in Ref. [26], where ellipsoidal
approximations of robot poses are used to describe prob-
abilistic uncertainties. While Ellipsoidal-SLAM provides
more accurate landmark position estimates than EKF, it
still depends on the availability of numerous real, unique,
predefined, and distinctive landmarks during each update.
Complete resolution of data association remains a challenge.
Furthermore, the state does not provide additional informa-
tion about landmark details.

Robotic augmented reality (RAR) [26] is integrated with
EKF/Ellipsoidal-SLAM to enhance performance, reduce
computational load, facilitate landmark identification, and
streamline data association. Augmented reality (AR) [29]
fundamentally blends real-world views with computer-
generated graphics to enhance our perception of the envi-
ronment.

Mixed reality (MR) offers additional benefits to aug-
mented reality by overlaying virtual objects or landmarks
onto the real physical environment [30]. This could be a
robot environment-changing tool for all phases of environ-
ment design, interaction, and communication. Integrating
the Microsoft HoloLens or any other mixed-reality devices
with the robot’s real-world sites will offer new and alterna-
tive possibilities for the robot to communicate and interact
with its environment [31]. The HoloLens is then assumed to
achieve this using a combination of common methods and
techniques to solve the SLAM problem where the construc-
tion and updating of the robot environment is done while
simultaneously keeping track of the robot’s location within
this environment [32]. Mixed reality using HoloLens falls
between AR and VR, where one can experience the virtual
objects merged with the physical objects, not by looking
through the transparent lenses of a HoloLens headset only
but also by interacting with the virtual object using a natural
interface.

The motivation of this study is to address some of the
abovementioned problems related to landmarks in the SLAM
process. We introduce HoloSLAM that essentially lever-
ages mixed reality to provide a set of virtual landmarks
for the robot to be used for navigation. Using robotic
mixed reality (RXR) and HoloSLAM allows the robot to
navigate and map its surroundings using a set of virtual
landmarks and voice commands, without the need for prede-
fined multiple landmark detectors and without any human

help or intervention. This enables the robot to indepen-
dently define, select, and position a set of virtual land-
marks within its environment. HoloSLAM also empowers
the robot to experience mixed-reality techniques, like how
humans do, using its voice commands and without rely-
ing on object detectors or predefined models of the real
environment. These capabilities are achieved without any
human assistance or intervention. HoloSLAM effectively
addresses the data association problem through the utilization
ofRXR, akin to a robotic augmented reality (RAR) approach.
Indeed, our implemented HoloSLAM method proficiently
addresses diverse challenges associated with landmarks in
landmark-based SLAM, including scarcity, clarity, presence,
absence, detection issues, and data association problems.
The robot simulates a human-like mixed-reality experi-
ence, placing/removing virtual landmarks, adjusting the map
in real-time via voice commands, and navigating without
explicit instructions. HoloSLAM is designed to function
with minimal sensor requirements and can operate within
landmark-free SLAM constraints. Moreover, HoloSLAM is
compatible with diverse robot platforms. In addition, we
intend to publish an open-source framework, making it
accessible to the wider robotics community, thus fostering
collaboration and facilitating advancements in the field.

We validate our implemented system (HoloSLAM) in
real-time experiments in the AISL lab with Nao humanoid
robot. Therefore, our objective is to develop a SLAM sys-
tem on Nao robot [32] or any other robots and address the
challenges associated with landmark detection in the envi-
ronment. This system aims to enhance the robot’s perception
of both its virtual and real surroundings.

The paper is organized as follows: we present a selected
literature review of the related algorithms in the section
“Related studies”. We then provide an in-depth overview of
the structure of the proposed SLAM. In the section “Exper-
imental results”, we will include experimental studies and
discuss the merits of the proposed architecture. We conclude
the paper with general remarks in the section “Conclusions”.

Related studies

Navigation in unknown or partially known environments
often requires a SLAM solution whereby the autonomous
mobile robot maps its environment while concurrently local-
izing itself [27]. SLAM research and its solutions can be
classified into numerous categories based on various char-
acteristics. Each solution or method is distinguished by the
sort of map they generate, or the sensors robots employ or
by the sort of mathematical algorithm that is utilized to solve
the SLAM problem. The robot platform being used to solve
SLAM problem is another challenge to be considered. In
the context of probabilistic robotics, there have been several
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Fig. 1 SLAM solution and research classifications

landmark-basedSLAMapproaches for various environments
[11, 12, 27, 33]. Figure 1 shows the SLAM solutions and its
research classifications, and this paper primarily focuses on
the highlighted areas.

The structure of the simultaneous location and mapping
problem and the coining of its acronym SLAMwas first pro-
posed in a seminal paper in 1996 [34]. The environment was
modeled by a finite number of distinguished landmarks that
were visible and re-observable by robot sensors in the envi-
ronment. Their general idea was to store robot poses and
landmark locations in a combined, Gaussian distributed vec-
tor and perform EKF to update the estimation at each time
step [35]. The state vector estimated by this SLAM solution
includes only the positions of landmarks and robot poses,
without providing additional information about the specific
details of the landmarks. For the EKF-SLAM, the cost grows
in a quadratic manner with the number of landmarks. The
performance of EKF-SLAM algorithm deteriorates rapidly
when observed features are associated with wrong land-
marks. Even a single incorrect data association may have
severe consequences for the map and hence the localization
of the robot [36, 37].

All probabilistic feature/landmark-based Online/Full
SLAM solutions presented in Refs. [38–41] include Kalman
filter and its variants such as EKF, information filter, particle
filter, and graph optimization solutions use predefined land-
marks to estimate the robot current state (or robot path) and

create a map. These solutions necessitate multiple landmarks
that must be observed from various positions and angles.
These solutions can fail when no landmarks are present or
when the robot cannot detect any using its sensors, leading to
convergence problems. In intricate, large-scale applications,
placing hundreds of markers throughout the environment
poses a significant challenge. Indeed, some of these solu-
tions suffer from the Gaussian distribution assumption of
uncertainties, while this assumption can simplify the math-
ematical formulation and computation, it may not always
hold in real-world scenarios where the uncertainties may be
non-Gaussian, multi-modal, or even nonlinear.

To cope with Gaussian noise premise, a set-membership
approach was introduced in Ref. [42] under the assumption
of bounded errors to obtain information in which a prob-
abilistic uncertainty description is associated to ellipsoidal
approximations of the admissible robot poses.

The concept of robotic augmented reality (RAR) is
introduced and used in Ref. [26] to improve the SLAM
performance. The authors implemented augmented adaptive
Ellipsoidal-SLAM which used RAR technique to provide
more information about the landmarks in the environment.
This successfully solved the data association problem and
reduced the computational cost problem. However, this
solution still requires sufficiently unique, plentiful, predeter-
mined, and distinct real artificial landmarks (NaoMarkers) to
exist in the robot environment in every update step.
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Other SLAM solutions that are not based on the land-
mark’s detection approaches assume a much larger amount
of unidentifiable information, as provided by sensors such
as laser and sonar-based range finders. Although these
approaches consider a much larger dataset, the computation
time of these approaches resembles that of landmark-based
approaches. An example of a non-landmark-based SLAM
approaches is DP-SLAM [43] or the GMapping system [44,
45].

DP-SLAM tackles the data association challenge by stor-
ing multiple intricate maps instead of relying on sparse
landmarks. This approach combines data association with
localization, allowing the authors to assert that DP-SLAM
does not make any assumptions about landmarks. Through
the localization of these multiple detailed maps, DP-SLAM
effectively generates what can be referred to as "invisi-
ble landmarks". Consequently, the DP-SLAM process leans
more toward localization rather than a comprehensive SLAM
solution.

Our approach (HoloSLAM) provides a novel and newway
to define SLAM mapping method using robotic mixed real-
ity (RMR) which gives the robot itself the ability to provide
and place a set of virtual landmarks in its environment and
enables the Nao robot or any other robot to experience the
mixed-reality technique in a similar way to the human using
its voice natural language understand commands and with-
out being equipped with object detectors for multiple novel
objects or a predefined real environment model without any
human help and intervention. The robot will also be able
to interact with these virtual landmarks, modify, delete and
place any of these virtual landmarks using his voice com-
mand. The approach is also optionally able to instruct the
robot to navigate to a specific position by saying “go to the

landmark” rather than giving an explicit navigation instruc-
tion. HoloSLAM can deal with the data association problem
using RMR in a similar way to a RAR. HoloSLAM can also
deal with any landmark SLAM issues including and not lim-
ited to its shortage, clarity, presence, absence, and extraction.
In addition, it can work with limited sensor requirements and
with landmark-free SLAM constraints.

Methodology and implementation

SLAM problem and solutions

SLAM can be viewed as an estimation problem for an uncer-
tain dynamic system by taking into account a description
of the environment based on landmarks and noisy measure-
ments [26]. Let us consider the scenario of an autonomous
robot (Nao in this case) navigating through an unfamiliar
environment and perceiving multiple stationary landmarks
using its built-in sensor (Fig. 2). At time k, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt :
the vector describing the position

and orientation of the robot.

uk :
the vector, applied at time k − 1

to move the vehicle to xk at timek.

mi :
the vector describingthe position

of the i th stationary landmark.

zi k :
the observation, taken from the robot,

of the i th landmark at time k.

The robot requires a control signalut {u1, u2,…, uk} tobe
able to move from position xt−1 to xt using the IMU (Iner-
tial Measurement Unit) which has some uncertainty in its
measurement, and the robot takes some observation zt using
its external sensors, e.g., laser. The robot poses xt and/or the
landmark positions mi are concurrently estimated. The goal
in every iteration is to find the posterior data which refers to
the estimated data of robot position (or the whole trajectory)
and all landmarks’ positions together and reduce the mea-
surement and observation errors. It can be represented in
one vector the environment map containing a list of objects.

In the 2D case, the state st at time t can be represented by
the following column vector:

st �
⎛

⎜
⎝px, t, py, t, pθ, t,

︸ ︷︷ ︸
robot ′spose

mx, 1,my, 1,
︸ ︷︷ ︸
landmark1

, mx, 2,my, 2,
︸ ︷︷ ︸
landmark2

. . . . . . . . .mx,N−1,my,N−1,
︸ ︷︷ ︸

landmarkN−1

mx,N,my,N
︸ ︷︷ ︸
landmarkN

⎞

⎟
⎠

T

(1)

where xt �( px, t , py, t , pθ , t , ) denotes the robot’s coordinate
and mx, i ,my, i , are the coordinates of the mi i � 1, ..., N th
landmark in x–y plane.

The uncertainty in model and measurement systems is
handled by probabilistic techniques, one of the dominant
paradigms for algorithm design in robotics navigation. These
approaches represent uncertainty and ambiguity through
explicit “acquired belief” using probability theory and form
robust control choices relative to the remaining uncertainty in
the model. Standard solutions are provided by the extended
Kalman filter (EKF) or other probabilistic techniques and its
latest solution adaptive augmented Ellipsoidal-SLAM [26,
46].
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Fig. 2 Nao robot with HoloLens
in indoor environment
performing SLAM

SLAM was first solved by EKF-SLAM which is still
regarded as one of themost influential andwidely used imple-
mentations [47]. TheEKF essentially linearizes the nonlinear
functions around the current state which is accomplished by
Taylor expansion technique. After this linearization process,
classical Kalman filter is employed to estimate states.

EKF-SLAMestimates the state froma series of noisymea-
surements (movements and observations), where the noise
distribution is assumed to beGaussian.More details on EKF-
SLAM implementation on Nao robot are available in Refs.
[26, 48].

In general, theEKF-SLAMis done in two steps: prediction
and correction [35, 49]. In the SLAM problem, during the
prediction step the state at time is updated according to the
motion model:

μt � f
(
ut, μi−1

)
(2)

� t � Ft�t−1FT
t +Qt (3)

whereμi−1 and� t−1 are, respectively, the mean and covari-
ance of the state at time t − 1. Ft is the n × n Jacobian
matrix of the function f (n is the dimension of the state).
The Jacobian usually depends on ut and μt−1:

Ft � ∇st−1 f(ut, st−1)|st−1�μt−1, st�μt

and Qt covariance matrix that models the uncertain in the
state transition as Gaussian noise with zero mean ∼N (0,
Qt ).
During the correction step, for every observation zt asso-

ciated with the landmark mi , it is computed an expected
observation ẑ t � h

(
μt , mi

)
and a corresponding Kalman

gain (5) that specifies the degree towhich the incoming obser-
vation corrects the current state estimation (Eqs. 6 and 7):

St � Ht�
−
t H

T
t + Rt (4)

Kt � �−
t H

T
t S

−1
t (5)

μt � μt +Kt(zt − h(μt, mi)) (6)

�t � (1 − KtHt)�
−
t (7)

where h is a function that maps the current state in an
expected observation ẑ t given the landmarkmi associated to
ẑ t , Rt covariance matrix that models the observation noise
as Gaussian noise with zero mean ∼N(0, Rt ) and where Ht

is the Jacobian of the function h:

Ht � ∇sth(ut, mi)|st−1�μt , mi � mi (8)

The standard formulation of the EKF-SLAM solution is
not robust and is prone to incorrect association of obser-
vations to landmarks: an accurate data association is then
desirable [50]. EKF-SLAM requires analytic models of the
vehicle motion and observations, it makes a few assumptions
which are often violated in practice, and it will fail whenever
data association fails. In addition, measurements for incor-
rectly identified landmarks would still be integrated by the
EKF, producing an incorrect map.

Ellipsoidal set-membership filter method for SLAM
(Ellipsoidal-SLAM). In this approach, the nonlinear dynam-
ics are linearized about the current estimate in amanner that is
like theEKF.The remaining terms are then bounded, and they
are incorporated into the algorithm as additions to the pro-
cess or sensor noise bounds [28]. It is also computationally
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efficient for online recursive implementation. The new algo-
rithm is termed the extended set-membership filter (ESMF)
[42]. Figure 3 shows the modular process of ESMF. Readers
may refer to Ref. [26] for more details on Ellipsoidal-SLAM
and its implantation on Nao robot.

The adaptive ellipsoidal-SLAM algorithm can be summa-
rized as follows [26]:

Start
Initialization -
x̂1,1 = 0 Pk,k=  0
Get Observation – kz = 1

=get_observations, Looking for QRcodes.
while not_stop
Prediction Step – (4) Check for safe distance to move by sonar. Move command.
No safe distance. Turn 180 degree

[x̂K+1, Pk+1,k] = prediction (x̂k/k , Pk,k , uk )

βQk= √Tr(Qk)

√Tr(Q̅k )+√Tr(Qk )

̂ =
̅

1 −
+ , ∈ (0,1)

βQk= √Tr(Q̂k )

√Tr(∅kPk∅k
T)+√Tr(Q̂k )

PK+1,k = ∅k
Pk
1−βk

∅k
T +

Q̂k
βk

, βk∈ (0,1)

∅k = ∂f(xk)
∂xk
⁄ |

xk=x̂k

Get Observation (5)- Looking for QR codes by turning head by 30 degrees.
If   find QR codes to robot frame 

Data Association ( zk ,x̂k/k , Pk+1,k )
Correction _Step - (x̂k/k , Pk+1,k , zk )

wk = Hk+1
Pk+1,k
1−ρk

Hk+1
T +

R̂k+1
ρk

ρk∈ (0,1)

kk+1 =
Pk+1,k
1 − ρk

Hk+1
T wk

−1

x̂k+1 = x̂k+1,k + kk+1[yk+1 − h(x̂k+1)]

P̅ k+1,k =
Pk+1,k
1 − ρk

−
Pk+1,k
1 − ρk

Hk+1
T wk

−1Hk+1
Pk+1,k
1 − ρk

ρk= √Tr(R̂k+1)

√Tr(Hk+1Pk+1Hk+1
T )+√Tr(R̂k+1)

Map_Step- (x̂k+1/k+i, Pk+1,k+1 , zk ) Add new QR code to the map
No QR codes –Turn by 180 degree and go to step(5)

kz = kz + 1
Check if iteration numbers are achieved.
NoGo to step (4)
K=K+1
End

where ρk and βk are filter parameters to be chosen online to
minimize the ellipse.

Typically, during a SLAM update, the goal is to
decrease uncertainty and enhance the overall state esti-
mate, especially when re-observing a landmark. If no
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landmark is detected, the pose estimate’s accuracy dimin-
ishes due to actuator uncertainty, leading to error accu-
mulation reflected in increased values in the covariance
matrix. This trend continues until a new landmark is
detected, resulting in a significant reduction in uncertainties.
The success of any SLAM algorithm relies on detect-
ing landmarks to mitigate IMU errors, and failure occurs
when real landmarks are not found or are inaccurately
detected by the robot sensors. Moreover, the state vector
includes only landmark positions and robot poses, lack-
ing detailed information about the unique properties of
the landmarks. SLAM, on its own, does not offer specific
details about the landmarks, which may result in false pos-
itives during data association. Accurate data association
and landmark identification are crucial to prevent conver-
gence towards an incorrect SLAM solution. Inaccurate data
association increases the computational cost in obtained
EKF/Ellipsoidal-SLAMs.

The robotic augmented reality (RAR) technique, as
applied in Ref. [26] enhances map representation by incor-
porating additional information about landmarks, address-
ing landmark identification and recognition, and simpli-
fying the data association issue. The adaptive augmented
Ellipsoidal-SLAM implementation fails when no land-
marks (NaoMarkers) are detected during the measurement
stage.

Robotic mixed reality (RXR) provides extra advantages
over augmented reality by superimposing virtual landmarks
(holograms) onto the actual physical environment. More-
over, these virtual landmarks can be strategically positioned
to remain visible to the robot’s sensors, even in challeng-
ing settings with limited visibility or intricate structures.
This makes RXR a compelling solution for addressing the
SLAM problem in diverse applications and environments,
particularly when real landmarks are absent or difficult to
detect in the robot’s surroundings. The project employs
robotic mixed reality (RXR) to create real-time virtual land-
marks that enhance EKF/Ellipsoidal-SLAM performance
and address SLAM landmark-related issues. Mixed reality,
a recent technology integrating virtual computer-generated
data (includes 2D/3D objects, voices, texts, images, or
any graphic content, often referred to as holograms) into
the real-time environment, is utilized to add virtual land-
marks and augment the robot’s environmental percep-
tion.

In the following section, we briefly introduce mixed
reality, including augmented reality, virtual reality, and the
concept of robotic mixed reality, emphasizing its advantages
for autonomous robot navigation. This study has explored
Microsoft’s HoloLens functionality, and developed a cus-
tomized hologram for display on HoloLens, to be mounted
into Nao’s head.

Fig. 3 Simplified graphical representation of the EKF and the nonlinear
set-membership filter

Robotic mixed reality (RXR)

Augmented, virtual and mixed realities are emerging areas
and are expected to have major impact in many areas includ-
ing robotics [51, 52]. Integrating mixed reality with robotics
holds promise for creating innovative applications, although
current research mainly focuses on human–robot interac-
tion (HRI) rather than autonomous navigation. This study
pioneers the integration of robotic mixed-reality technology
with EKF/Ellipsoidal-SLAMs algorithms, offering a real-
time solution to SLAM landmark-related challenges.

The word mixed reality comes from the research paper
by Paul Milgram and Fumio Kishino entitled, Taxonomy of
Mixed-Reality Visual Displays published in 1994 [53]. In
this publication, the term was introduced in the context of a
segment of the virtuality continuum, later referred to as the
reality–virtuality (RV) continuum. Figure 4 shows the defi-
nition of mixed reality within the context of the real–virtual
continuum.

This spectrum spans environments from the entirely real
world to fully virtual spaces. Mixed reality is the integration
or interaction between these two realms. A straightfor-
ward interpretation of mixed reality is the presentation
of real-world and virtual objects together in a single dis-
play, covering the range between the virtuality continuum’s
extremes [54]. Since its publication, the use of mixed real-
ity has expanded beyond displays to include environmental
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Fig. 4 Definition of mixed reality within the context of the real–virtual continuum

input, spatial sound, and location. The convergence of com-
puter processing, human/robot input, and environmental
input opens up the potential to create authentic mixed-reality
experiences, enablingmovement in the physical world to cor-
respond with movement in the digital realm.

Mixed reality involves integrating virtual, computer-
generated data into a real-time environment [55]. Typically,
this added data includes images or sound, but it can extend to
other forms such as video or tactile information. Serving as a
combination of augmented reality and virtual reality, mixed
reality merges digital data with the real world, allowing for
interaction between the two [56]. Its distinctive trait lies in the
capability to make digital data interact with the real world.

Robotic mixed reality (RXR) and its applications intro-
duce novel ways to perceive and navigate the robot’s sur-
roundings using holograms and virtual data like images and
sound. To process both digital data and real-world infor-
mation, devices necessitate powerful CPUs and graphical
processors (GPUs) for digital rendering and data generation.
Various display devices, whether lenses or physical screens,
are essential to showcase the generated digital information.
Various devices facilitate the creation of immersive envi-
ronments. Regarding augmented reality (AR), commonly
utilized devices include Microsoft HoloLens, Magic Leap
One, Epson Moverio, and Google Glass. In the realm of
virtual reality (VR), popular choices include HTC Vive,
Oculus Quest, Valve Index, and Sony PlayStation VR. In
2016, Microsoft released HoloLens, a head-mounted dis-
play (HMD) for mixed-reality production [31]. In addition
to Microsoft, other companies have developed HMD display
devices for augmented and mixed reality and experience, as
well as various smart glasses [57].

Robotic mixed reality (RXR) can be defined as a com-
bination of computer processing, robot input, and robot
environmental input as illustrated in Fig. 5. Robot input can
occur through original means that could include gestures,
touch, and voice.

Fig. 5 Robotic mixed-reality (RXR) diagram

The aim of the robotic mixed-reality technology in this
project is to create virtual landmarks (holograms) in real-time
to address SLAM landmark-related issues. This technology
enables the robot to interactwith these landmarks, experience
mixed reality like humans, enhance robotic mapping, and
improve overall SLAM performance for autonomous navi-
gation. A virtual landmark denotes a digital or virtual entity
functioning as a distinct and recognizable point or feature
in an augmented or mixed-reality setting. This encompasses
various items, such as a 3D model, holographic represen-
tation, or interactive element strategically positioned in the
physical space of the robot. These digital artifacts enhance the
robot’s environment by seamlessly coexisting with the real
world. Figure 6 shows the new robot environment including
some new virtual landmarks.

The new state vector of our SLAM can be represented by
the following:

st �
⎛

⎜
⎝px, t, py, t, pθ, t,

︸ ︷︷ ︸
robot ′spose

mx, 1,my, 1,
︸ ︷︷ ︸
landmark1

, mx, 2,my, 2,
︸ ︷︷ ︸
landmark2

. . . ,
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Fig. 6 Mixed-reality robot
environment includes some
virtual landmarks

. . . mvx, 1,mvy, 1,
︸ ︷︷ ︸
vi r tual landmark

mx,N,my,N
︸ ︷︷ ︸
landmarkN

⎞

⎟
⎠

T

. (9)

This new state vector contains new virtual landmark IDs
(mv y, I , . . .mvx, I , ) which can solve any landmark issues
in the robot environment. This enhancement facilitates the
robot’s path navigation and enables seamless continuation of
SLAM operations.

In this work, we have combined robotic mixed reality via
Microsoft HoloLens with Ellipsoidal-SLAM algorithms to
enhance SLAM performance and resolve landmark issues.
HoloLens employs various methods typical for SLAM
problem-solving, involving the construction and updating of
the environment while tracking the robot’s location within it.
Next section gives more details about Microsoft HoloLens.

Microsoft HoloLens

In 2016, Microsoft launched HoloLens as the first personal
device to use and experience the mixed-reality digital envi-
ronment. HoloLens is on the market as a developer, whose
usage and hardware performance are expected to increase
in future. The following section gives a more detailed
description about HoloLens’ structure, techniques, future
capabilities, and ways to display and create holograms for
HoloLens use.

HoloLens technology and components Microsoft
HoloLens operates on a customized version of Win-
dows 10. This integration enables HoloLens to support
Cortana, Microsoft’s artificial intelligence, functioning as a
voice recognition and task assistant. The device comprises
a transparent visor housing main cameras and sensors for
real-world virtualization. The transparent visor and screens
allow mixed-reality data to be seamlessly displayed in the

user’s physical environment, a few meters away [58]. The
hologram display relies on light refraction as the HoloLens
camera transmits light to the lenses. The light then bends
through the lenses into the eyes, creating holograms. Figure 7
depicts the overall structure of HoloLens, highlighting the
positions of the visor and displays on the left. In addition,
it illustrates the mounting of HoloLens on the wheeled
robot. HoloLens cameras serve functions like brightness
control, video recording, and spatial mapping. The device
features a depth camera to read space depth elements,
ensuring hologram projection distances align with human
eye appropriateness [58]. HoloLens utilizes an illumination
sensor to adapt display brightness for ambient lighting, opti-
mizing battery life. The camcorder captures the HoloLens
environment and holograms in video format. For spatial
mapping, HoloLens features its camera, creating a virtual
3D model of the user’s surroundings [58, 59]. The HoloLens
visor and screens restrict the viewing angle from 120° to
120° [58]. The 120° to 120° viewing angle not only dictates
the hologram’s position on HoloLens but also influences
the recognition of hand movements for device control.
This range encompasses the entire area where HoloLens
holograms and functions are observable. HoloLens has
built-in speakers just above the ears, facilitating the use of
spatial sound [60]. Spatial sound enhances immersion by
delivering varied sound distances and locations to the user. It
serves as a tool to heighten the mixed-reality experience and
provides distinctive opportunities for HoloLens use [58].

HoloLens incorporates a CPU, GPU, and sensors in an
Inertial Measurement Unit (IMU) to gauge the environ-
ment and user movements. The IMU, using a gyroscope and
accelerometers, tracks theHoloLens user’s position and loca-
tion [58, 61, 62].

HoloLens employs the Intel Atom × 5-Z8100 processor,
featuring 14 nm technology and 4 logical cores. The graphics
are handled by theHoloLensGraphics card. The device offers
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Fig. 7 Overview of Microsoft’s
HoloLens

64 GB of storage, with approximately 54.09 GB available for
applications, videos, and other data [60].

HoloLens is used with voice commands or with pre-
taught commandsmade by hand and head. TheHead Position
(Gaze) acts as a cursor or pointer to the Windows 10 operat-
ing system that is visible on HoloLens. At the same time, the
Gaze function works for HoloLens as an identifier of what
the user is currently experiencing through the displays [58].
Opening or selecting applications by combining the Gaze
function, as well as a voice command or a business command
(Gesture). When using a voice command, the microphone
built into HoloLens recognizes the word “Select” as the dial
tone.When using a business command, the right- or left-hand
finger is lifted straight with the other fingers in the fist. To
open an application or select, move the forefinger in a down-
ward motion (Air tap). Combining Gaze and Gesture’s Air
Tap command creates the cursor movement and selection
of the object. However, when using the Gesture function,
you must remember the HoloLens restricted area 120° times
120°, which is why the function should be performed in the
reserved area. HoloLens’ pre-educated Gesture functions are
also available in theBloomandTap andHold commands. The
purpose of the Bloom command is to open the "Star Menu"
in the HoloLensMicrosoft 10 operating system. The purpose
of the Tap and Hold command is to navigate through pages
and files for moving and zooming [58].

Note that obtaining raw IMU sensor data on HoloLens
is not possible and will not be utilized in this project. In
addition, in 2018, Microsoft introduced HoloLens Research
Mode, offering application access to imaging sensor data on
the device, including tracking cameras, depth camera data,
and the IR-reflectivity stream [63].

Virtual landmark hologram app In this work, the virtual
landmark hologram was produced for display on HoloLens
for first and then real-time robot application using Unity3D

[62], a cross-platform game engine with capabilities to
create and edit 2/3D virtual models for HoloLens. The holo-
gram made with Unity2/3D is then transferred wirelessly
to HoloLens using Remote Control via a WiFi connection
[64]. The use of this program is based on the simplicity of
moving these holograms and moving even more complex
hologramsnaturally.WithRemoteControl forHoloLens, one
can transfer holograms directly from the Unity3/2D engine
to HoloLens without additional build-in solutions through
Visual Studio.

Figure 8 shows a standard Unity3D engine window of
HoloSLAM virtual landmark hologram app. For HoloLens,
the Unity3D gaming engine player and quality settings must
be changed to HoloLens and other Microsoft products. The
most important thing is to change the distance at which the
hologram appears in the lenses. Changing the distance takes
place by changing the Near Clip Plane distance from the
Main Camera object settings of the Unity3D game engine
under Hierarchy and Inspector. The recommended distance
for HoloLens is 0.85 m. HoloLens is, therefore, recom-
mended that the holograms are located at 1.25 m from the
user [58]. Other considerations are in camera settings. From
the Main Camera settings, the Clear Flags component must
be changed from SkyBox to Solid Color. HoloLens makes
the black background completely transparent, so the Solid
Color RGBA values are changed to zero.

The quality of the Unity3D gaming engine is changed
from Edit, Project setting and Quality, and then the menu
opens. From the menu, select the item with the Windows
operating system logo. For HoloLens, the quality settings are
changed to the lowest level, so that the menu is set to Very
Low for the best performance of HoloLens, and no delay
occurs when looking at the hologram. The final step in the
work is creating the hologram itself. This project chose three
distinct virtual 3D landmarks, comprising a cube, diamond,
and sphere, for the holographic representation. To create a
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Fig. 8 Unity3D Window of HoloSLAM virtual landmark hologram app engine

cube for example, select Create from the Hierarchy panel.
From the Create menu, a second menu opens, from which
3D object and Cube is selected. The cube will then appear in
theUnity3Dgame engine previewwindow. The cube settings
are further selected from Inspector, Transform, and then from
Position to cube x, y and z coordinates of 0, 0, 1.25, so that
the cube is about 1.25 m from the coordinate of the viewer.
In the same menu you can find the Rotation whose values
can be adjusted as desired, as well as the Scale, whose x, y
and z values have been changed at work 0.25. Scaling has
been reduced to make the cube created in HoloLens look
appropriate. It is not possible to use theHoloLens emulator or
the simulation of the correct HoloLens unless the Windows
version of the computer you are using is compatible with
Hyper Virtualization [65]. This feature is supported only by
Windows Pro or Enterprise versions.

HoloLens seamlessly integrates virtual objects into the
real world through spatial mapping and tracking technol-
ogy. Utilizing HoloLens advanced sensors, cameras, and
algorithms, it ensures that virtual objects maintain their posi-
tion and perspective relative to the environment, adapting
to changes in the user’s viewpoint or position. The device
employs sensors like depth cameras and inertial measure-
ment units (IMUs) to create a detailed 3D spatial map of
the environment, continuously updating it to accommodate
changes [66]. This spatial mapping capability distinguishes
HoloLens as a mixed-reality (MR) device, differentiating it
from augmented reality (AR) devices.

Spatial mapping involves generating a 3D model of phys-
ical space using sensors, providing insights into the spatial
layout and positioning of objects. Scene understanding inter-
prets elements within the environment, recognizing object
attributes. In Unity, 2D/3D spatial mapping utilizes depth
data to create a 3D mesh, updating in real-time.

The triangular mesh in the spatial map links to a world-
locked spatial coordinate system, ensuring consistency in
virtual object placement. However, there is a trade-off
between mesh density and processing power, requiring bal-
ance for a smooth MR experience. The mesh is continuously
refreshed based on user and environmental movements.

Virtual objects are placed using spatial anchors, fixed
points in physical space. HoloLens adjusts objects in real-
time based on the user’s movements, applying perspective
corrections for a consistent appearance.

As of now, Microsoft has not released official documen-
tation detailing the integration of algorithms and hardware
within the HoloLens. The precision of the sensors and the
placement of virtual objects remain undisclosed. Based on
various cases and experiments [67], it has been observed
that under certain conditions, the accuracy of position data
can be achieved within ± a few centimeters. Therefore, in
our practical experiments and during the implementation of
HoloSLAM, we take this margin of error into account.

Proposed system andmethodology

The Microsoft HoloLens mixed-reality technique and
landmark-based SLAM approach (Ellipsoidal-SLAM) is
used with a humanoid robot (Nao) to validate the imple-
mentation of HoloSLAM application in a real-world indoor
environment application. To explain the details of the pro-
posed algorithm and approach of HoloSLAM, we start this
section by a short description of the Nao V5 humanoid
robot and its technical and mechanical characteristics. We
will mainly explain the sensors used in this work including
Nao audio system, sonar, and Nao’s odometry problem. This
background information is required before introducing the
final implementation of HoloSLAM.
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Platform and software (Nao humanoid robot)

Nao, a medium-sized humanoid robot, developed and pro-
duced for a first time by a French company “Aldebaran
“2004 by Bruno Maisonnier [68]. In 2008, the company
launched the NaoAcademics Edition, intended for education
anduniversity research. In 2014, Japanese companySoftbank
acquired this company and changed “Aldebaran “to "Soft-
bank Robotics".

The main version of Nao is the H25, which has 25 degrees
of freedom. Nao is 58 cm height and about 5 kg weight.
The robot also has an Intel ATOM Z530 1.6 GHz processor,
with 1 GB of RAM, as well as an Ethernet port, a WiFi
connection, and a USB port. Figure 9 provides a summary
of Nao robot and its main features including move, sense,
communicate and think. Gouaillier [69] describes the details
of the mechatronic design of Nao.

Themain applications of Nao occurred in indoor building-
scale environments, where navigation infrastructures like
GPS is not available, hence the need for SLAM for Nao.

Since the first Nao version, the robot has two speakers
located at the position where one would expect the ears of
a human to be (see Fig. 10). These speakers are quite large
compared to, e.g., smartphone speakers. However, their fre-
quency range is specified to be from 0.2 to 10 kHz [70]. The
older V3 version of the Nao has been designed to have a rea-
sonably flat speaker response with a frequency range from
0.2 to 7 kHz [71].

The H25 version of the V5 Nao robot has four micro-
phones that are positioned at the upper side of its head (see
Fig. 11). They allow sampling rates up to 48 kHz when using
a mix of all four channels and sampling rates up to 16 kHz
when the individual channels are required [70]. The Nao’s
microphones are significantly higher quality than the robot’s
speakers, therefore, it is not expected that they will limit the
transmission capabilities for acoustic communication [71].

Nao also is equipped with two ultrasonic sensors (or
sonars) (two are transmitters and the other two are receivers)
which allow it to estimate the distance to any obstacles in
its environment. Ultrasonic sensor can detect an obstacle at
a distance from 25 to 255 cm, but no distance information if
the obstacle under 25 cm, the robot only knows that an object
is present [70] (see Fig. 12).

Like other bipedal humanoid robots, Nao faces some spe-
cific challenges when it moves from one place to another
on relatively flat surfaces. Nao rarely achieves its desired
trajectory because of the deviation or bias generated by its
odometry during the robot walking [26]. This problem is for
different circumstances such as robot manufacturing errors,
wear and tear ofmechanic parts, or variations of floor flatness
are because of partial hardware failures, out-of-specs compo-
nents, the friction forces that are generated during motions,

additional hardware mounted, friction forces generated dur-
ingmotion, etc. [72].Whilewalking, Nao needs to constantly
adjust its pose estimate since high inaccuracies in its motion
execution might lead to a deviation from the original motion
plan. Therefore, it is also difficult for Nao to accurately fol-
low a specified trajectory and corrects its motion without
real/virtual landmark and using someprobabilistic landmark-
based filtering methods such as Kalman filter and its various
nonlinear extensions such as extended Kalman filter (EKF)
or Ellipsoidal-SLAM or other SLAM methods.

HoloSLAM algorithm implementation procedure

TheMicrosoft HoloLensmixed reality-SLAM (HoloSLAM)
is used in this study to address most of SLAM landmark-
related issues including landmark identification, data asso-
ciation, and reduce computational cost in a similar way to
robotic augmented reality. With HoloSLAM, the robot can
choose which virtual landmark to place in its environment
and modify them in the robot environment in real-time when
needed using its own voice. The robot then can interact with
these virtual landmarks in a similar way to humans. The fun-
damental idea of using robot’s voice command is give the
robot the ability to imitate humanswhen they performmixed-
reality technique.

HoloSLAM will provide a new robotic environment to
the robotic SLAM literature. The approach is also optionally
able to instruct the robot to navigate to a specific position by
saying “go to the landmark” rather than giving an explicit
navigation instruction.

HoloLens is mounted on Nao ’s head as shown in Fig. 13
and HoloLens’s camera is being used to capture QR codes
which are used as artificial landmarks. The QR codes are
strategically placed randomly in the robot operating envi-
ronment to provide global pose references real landmarks for
SLAM applications. These QR codes can be augmented with
some information that can help to improve mapping process,
reduce the computational cost and to solve data association
in a way like RAR (robotic augmented reality).

Through our experiments, we have discovered two notable
disadvantages of using QR codes as artificial landmarks for
mapping the environment. First, detecting and extracting a
bare QR code becomes quite challenging when it is beyond a
distance of 1 m, which is a common condition for indoor
mobile robots. Second, the quality of QR code detection
is highly reliant on the angle between the camera and QR
code planes. Only when these planes are almost parallel
can acceptable quality and robustness be achieved. However,
with the implementation of our HoloSLAMmethod, most of
the issues related to landmarks and their detection can be
resolved.
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Fig. 9 Nao robot’s sensors

Fig. 10 Nao robot’s main
speakers’ locations

Fig. 11 Nao robot’s main speakers’ locations

Fig. 12 Nao robot’s main sonars

To obtain the HoloLens’s camera parameters in each
distance with respect to QR codes, HoloLens’s camera cal-
ibration needs to be done. We utilize the cameras of the

HoloLens,whichoperate basedon thePinhole cameramodel,
also referred to as the perspective camera model. This is a
widely used and recognized method for detecting QR codes
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Fig. 13 Nao robot acquires QR
code data using HoloLens

Fig. 14 Pinhole camera model. A Point pin 3D space is mapped to a 2D point p on image plane I by the ray connecting P with the center of projection
C [75]

as realistic and natural landmarks in robotic environments.
Pinhole model provides us with a mathematical relation
between the points at 2D image plane and the re-projected
3D points in world coordinates [73, 74]. For calibration, at
first, we need to understand the relationship between the four
plane coordinate systems of camera model, namely the pixel
plane coordinate system (u, v). The camera coordinate sys-
tem (XC ,YC , ZC ) and theworld coordinate system (Xw,Yw,
Zw) are shown in Fig. 14.

The pinhole camera model is described as [76]
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In this linear model, f x � 1/dx , f y � 1/d y and which
dx and d y are representing for the physical size of each

pixel on the X axis and Y axis direction, and f is the focal
length; M1 is a 3x4 projection matrix; M1 known as the
camera internal parameters is totally determined by f x , f y,
u0 and v0, which are only related to the camera internal
structure; M2 known as the camera external parameters is
completely determined by the position of camera relative to
the world coordinate system.

There are many different approaches to calculate the
intrinsic and extrinsic parameters for a specific camera setup.
In our approach, the camera parameters are obtained by a
Canny Edge detection [77, 78]. The result is a transforma-
tion matrix which includes the (x, y, z) coordinates of the
landmark in the robot frame.

Figure 15 illustrates the process of converting the global
frame of the world to the local frames of the Nao robot using
the HoloLens and QR codes landmark.
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Typically, a 2D transformation that links two frames
involves both rotation and translation. This type of trans-
formation can be expressed as

[
Xglobal

Yglobal

]

�
[
cos∅ −sin∅

sin∅ cos∅

][
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where “QR/Hololens” indicates QR coordinates in the
HoloLens/robot frame (X QR/Hololens, Y QR/Hololens) and
X0 and Y0 are the robot location in the global frame. The
angle ∅ denotes the orientation of the robot in the global
frame. The equation can be rewritten as
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Now, it is possible to get the global coordinates of any QR
code in the environment.

The pseudocode for the hologram app to capture QR code
and places virtual landmarks using HoloLens mixed-reality
technique is presented below. The execution of this hologram
takes place within the HoloLens device, and it can only be

Fig. 15 QR code global coordinates

initiated by a voice command (Start)issued through the Nao
robot’s speakers. The pseudocode is included below:

Start- Launch the Holo-landmarkhologram app
voice function command ( Start ).

Get Observation– Capture a QR code using Hololens’s camera and send it to Python code to localize it with respect to Hololens 
camera and then to robot body.
Looking for QR codesYes - turning Nao’s head by 30 degrees.

-localize QR codes with respect to robot location.
- voice function command (takepicture).

No -place virtual landmark.
-voice function command (place virtual landmark).

Exit- close the Holo-landmark hologram app
voice function ( Exit )

Initially, after deploying theHolo-landmark hologramapp
within the HoloLens device via the Nao robot’s voice com-
mand function (Start), the robot can initialize the HoloLens
and verify that the application is operational. The app has
two main stages. In the first stage, the app involves the
Nao robot and HoloLens to recognize some of QR codes
and obtain some preloaded augmented information. In every
head turn, Nao robot commands HoloLens to take picture
and look for any QR codes inside. This is done by the voice
command function (takepicture) in the Holo-landmark holo-
gram app. Once the QR code is detected, any information
augmented inside it will be captured and the QR code loca-
tion will be localized with respect to robot frame and global
frame respectively. This information can later be used for
the simplification of data association problem in SLAM and
help navigate in the robot environment. In the next stage, the
robot commandsHoloLens and theHolo-landmark hologram
app using voice function command (place virtual landmark)
to place virtual landmark in its environment. This helps the
robot to perform SLAM even though no real landmark is
detected. The Holo-landmark hologram app developed in
this work is designed to allow the placement of a single land-
mark, whether it be a cube, sphere, or diamond shape, each
time the voice function command “place virtual landmark
“is initiated. However, it is possible to include additional
objects or landmarks by simply adding new functions such
as "place sphere", "place desk," and "place virtual robot".
Unity3D has many ready 2/3D objects that can be easily
used as a landmark. In addition, some special landmarks can
be designed using 2/3D software design such as Morphi, 3D
Slash, Fusion 360, and Blender [79]and then can be imported
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to Unity3D engine. The designed virtual landmarks can be
randomly placed in any position. In our approach, the Nao
robot’s sonar is utilized to determine a secure distance for
the robot to navigate and avoid any obstructions while exe-
cuting the SLAM algorithm. Within this distance, the robot
can place a virtual landmark.

Other functions can be added to theHolo-landmark holo-
gram app to give the robot the ability to interact with land-
mark such as move(up), move(down), and move(right). All
these functions are tested in our main hologram. The added
function depends on the robot application and app function-
alities. Finally, the voice function (Exit) is used to give the
robot the ability to stop the app and exit for any reason.
The pseudocode for the HoloLens mixed reality-SLAM inte-
grated with EKF/Ellipsoidal-SLAM of is presented below:

Start- 
Initialization- SLAM Initialization, Nao Robot Initialization, Launch Holo-landmark hologram app (voice 
function command(start)).
Get Observation – 
Looking for QR codes(turningNao’s head by 30 degrees) (voice function command (takepicture)).
           Yes-localize the QR codes with respect to robot location.
           No - Hologram-landmark app launched.

- Place Virtual Landmark (voice function command (place virtual landmark))
while not_stop
Prediction Step - Check safe distance to move by sonar. (Move command)

 No- safe distance. Turn 180 degree
Get Observation (4)- Looking for QR codes by turning head by 30 degrees.
                                    If   Nao find QRcodes to robot frame 

Yes – Are there any Augmented QR codes.
          No - Use virtual Landmark Holograms

launch voice function command (place virtual landmark).
Data Association- 
          Real landmark and Virtual Landmark matching and data- association simplification 
Correction _Step - Run standard EKF/ Ellipsoidal - SLAM update step.
Augmented _Map- Add new Real and Virtual Landmarks to the map.
Check if iteration numbers are achieved.
        No Go to step 4
End- Close-Holo-landmark hologram app.  Voice function command (Stop)

TheEKF/Ellipsoidal-SLAMsperform regularmap initial-
ization process and at the same time, the robot starts theHolo-
landmark hologram app using his voice command (start).
Nao starts turning its head by 30-degree steps and at the same
time looking for QR codes. In each head turn, the robot com-
mands the HoloLens to take picture and look for QR codes
inside it and once any of QR code is detected, it will get the
augmented data and all information associated with it and
at the same time it calculates the QR code coordinates with
respect to the robot frame. If the robot did not find any QR

code, it will place virtual landmark using voice function com-
mand (place virtual landmark). The sonar checks available
space before the robot moves to the for next prediction step.

The fundamental structures of EKF-SLAM and
Ellipsoidal-SLAM remain while the HoloLens mixed-
reality processes take place when virtual landmark is placed
and where additional information is retrieved regarding to
the detected landmark in both virtual and real landmark.
ALL detected virtual/real landmarks are then mapped to
global location using EKF/Ellipsoidal-SLAM.

The implemented SLAM (HoloSLAM) is designed to
work using only virtual landmarks to map the environment
or using a mixed environment that includes real and virtual
landmarks at the same time. Our goal is to map the robot
environment using both kinds of landmarks.

The main contribution of integrating HoloLens mixed
reality into EKF-SLAM or Ellipsoidal-SLAM is the use of
the virtual landmarks when there are not any real landmarks
in the environment to avoid any failure to SLAM process
and to use the augmented additional information in vir-
tual and real landmarks. This will improve the performance
of EKF/Ellipsoidal-SLAM in terms of reducing the com-
putational effort, simplifying the data association problem,
improving the SLAM algorithm, and assisting robots in nav-
igation tasks within a practical environment.
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Experimental results

HoloSLAMwas assessed in the Autonomous and Intelligent
Systems Laboratory (AISL), where QR codes were posi-
tioned at undisclosed spots throughout the lab, aligned with
the Nao robot’s height as shown in Fig. 16. The robot rises
and commences its quest for landmarks (QR codes) by rotat-
ing its head 30°.

The objective is to enable the Nao robot to move indepen-
dently while continually estimating its position and creating
a map of the surrounding environment. The robot initiates
movement and utilizes its sonar sensor to ensure a safe dis-
tance. With each step, the robot is instructed to proceed
straight using a move command, and at each instance of
motion, the Nao employs the HoloLens device affixed to its
head to search for landmarks (QR codes).

Two distinct scenarios are under investigation. The first
scenario entails examining the robot’s operation in an envi-
ronment devoid of any artificial landmarks (QR codes) and
the second scenario involves a combination of virtual and
artificial landmarks.

First scenarios: virtual HoloSLAM (SLAMwith virtual land-
mark only). In this scenario, the Nao robot was placed in
an environment free of any QR codes, as shown in Fig. 17.
The experiment will assess how effectively the robot can
estimate its position in the absence of physical or artifi-
cial landmarks. By relying solely on virtual landmarks, the
HoloSLAM algorithm will be evaluated for its ability to pro-
vide accurate position estimates. The robot is tasked with

placing virtual objects in its environment without any prior
knowledge or human assistance. The aim is to evaluate the
effectiveness of utilizing these virtual landmarks exclusively
in the HoloSLAM algorithm, which facilitates the robot’s
navigation task. The robot builds a virtual map of the envi-
ronment and can experience mixed reality in a similar way
to the human. The robot places virtual objects in its environ-
ment without prior knowledge and without any human help.
The Nao’s ability to estimate its position and construct an
accurate map of its environment with the absence of real or
artificial landmarks would provide valuable insights into the
usefulness of virtual landmarks in the SLAM algorithm.

The robot is expected to move in a straight line due to
the given command; however, it deviated to the left and right
because of the uncertainty in the odometry systems. The lack
of landmarks leads to an increase in uncertainty error in every
movement, resulting in eventual inaccurate SLAM.Themea-
surements from feet encoders are subject to inherent errors
and uncertainties that accumulate over time. As a result, the
predicted robot position based solely on odometry tends to
deviate from the actual path the robot has traveled. This error
could be minimized using external sensor data to correct the
robot’s position using the Ellipsoidal-SLAM algorithm. As a
result of this error, the odometry alone cannot be relied upon
for accurate navigation tasks. Figure 18 shows the uncer-
tainty of the estimated robot motion, which is represented by
an ellipse, along with robot’s real trajectory.

At each step, the Nao robot systematically examines its
surroundings to detect QR codes. In the absence ofQR codes,

Fig. 16 Experimental environment
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Fig. 17 Virtual HoloSLAM
experimental environment

Fig. 18 Estimated and real robot position

the robot can autonomously place one or more virtual land-
marks positioned at predetermined distances. Our virtual
landmark app provides a selection of three distinct virtual
landmark types, including diamonds, spheres, and cubes.

In this experimental setup, the robot receives instructions
to position a virtual landmark in space, leaving it in place,
and subsequently capture images, as illustrated in Fig. 19.
The virtual objects are consistently positioned 2 m along the
x-axis of the Nao robot. The orientation of the robot’s body

determines the angle at which these virtual landmarks are
situated.

With HoloSLAM, the robot gains the capacity to pre-
cisely position virtual landmarks, eliminate them when they
become unnecessary, and establish real-time communication
with them. In addition, it empowers the robot with greater
autonomy and control over its build map. Consequently, this
ensures that the SLAM algorithm remains reliable even if the
robot’s sensors fail to detect any of the landmarks during the
observation step.
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Fig. 19 Various virtual
landmarks placed by the robot

The new virtual SLAM state vector now has only infor-
mation about the robot’s location and virtual object in its
environment with its locations as follows:

st � (px, t, py, t, pθ , t, )Cube
(
vmx, 1, vmy, 1,

)
, Sphere(vmx, 2, vmy, 2)

. . . . . . , Diamond(vmx,N, vmy,N)
T

where vm indicates the virtual landmark type.
In Fig. 20, the virtual Ellipsoidal-HoloSLAM depicts the

estimated robot position. Remarkably, the estimated tra-
jectory closely aligns with the ground truth of the robot’s
position, as illustrated in Fig. 18. This suggests that the
SLAMalgorithmemployed,Virtual Ellipsoidal-HoloSLAM,
is performing well in accurately estimating the robot’s posi-
tion. Figures 18, 19, 20 illustrate that the estimated robot
trajectory with virtual Ellipsoidal-HoloSLAM closely aligns
with the actual robot position. This is attributed to the
HoloLens, which furnishes a highly accurate position for the

virtual landmark. This, in turn, significantly diminishes the
error in Nao odometry.

Figures 21, 22 depict the actual and estimated positions
of virtual landmarks using the virtual HoloSLAM system.
Second scenarios: HoloSLAM (combination of virtual and
artificial landmarks).This scenario involves placingQRcode
landmarks in the path of the robot, as shown in Fig. 23. Some
of which are positioned in locations that are challenging for
the robot to scan. The objective is to achieve precise SLAM
and navigation when landmarks are scarce or hard to detect
due to either issues with the detection system or the compu-
tational cost involved in image processing. In addition, the
robot can place some virtual landmarks like the first scenario
and interact with them. The robot can hide, remove, move up,
move down, etc. of this virtual landmark. The robot is com-
manded to place the virtual landmark with a random angle.

Based on real-time experiments, we have observed certain
challenges associated with QR codes. First, it is crucial to
adjust the image resolution based on the distance between the

123



Complex & Intelligent Systems (2024) 10:4175–4200 4195

Fig. 20 Estimated robot position
using virtual HoloSLAM

Fig. 21 Estimated real virtual
landmarks position using virtual
HoloSLAM

Fig. 22 Real virtual landmarks position using virtual HoloSLAM
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Fig. 23 HoloSLAM experimental environment with QR codes

Fig. 24 Robot position using HoloSLAM algorithm

camera and the code. Second, the Nao robot can detect the
designed QR codes effectively within a maximum distance
of approximately 2 m. However, this range diminishes when
the code is not directly within the camera’s line of sight. The
distance at which a QR code can be successfully scanned
depends on factors such as the resolution and quality of the
scanning device, lighting conditions, QR code size, and any
potential obstructions between the QR code and the scanner.
It is important to note that while increasing the size of a
QR code can improve its readability at a distance, there are
practical limits to consider. Extremely largeQRcodemay not
be suitable for certain applications due to space constraints
or the need for high-resolution printing.

The position accuracy of QR code is less accurate than
when using virtual HoloSLAMonly. The odometry error and

QR code calculated position error accumulated oversteps.
The new SLAM state vector now has mixed information for
both virtual and real landmarks. The object in its environment
with its locations as follows:

st �
(
px, t, py, t, pθ , t,QRcode1

(
vmx, 1, vmy, 1,

)
, Sphere

(
vmx, 2, vmy, 2

)
. . . ,

QRcode2
(
vmx, 2, vmy, 2,

)
. . . , Diamond

(
vmx,N, vmy,N

))T

QR codes are augmented with some information to help
simplify the data association and reduce the computational
cost. The estimated, real robot trajectory, QR code, and vir-
tual landmarks after 10 iterations are shown in Figs. 24, 25,
26.

The RMS is calculated as follows: the evaluation of the
implemented HoloSLAM included an analysis of the accu-
racy and consistencyof both the state vector and the estimated

123



Complex & Intelligent Systems (2024) 10:4175–4200 4197

Fig. 25 Real and virtual landmark real positions using HoloSLAM algorithm

Fig. 26 Real and virtual landmark estimated positions using HoloSLAM algorithm

Table 1 Analyzing the effectiveness and performance of implemented SLAM algorithms

Algorithm Nao position error/m Nao orientation error/rad Real landmark error/m Virtual landmarks error/m

Nao IMU 50.01 0.78558 – –

Ellipsoidal-HoloSLAM 0.0184 0.17975 0.1413 0.4022

Virtual Ellipsoidal-HoloSLAM 0.09010 0.10128 – 0.2044
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positions of landmarks. We utilized the root mean square
(RMS)method tomeasure thesemetrics. TheRMS is defined
as

e �
√∑nx

i�1 (xi − x̂i)2

nx
(14)

The RMS is computed by taking the square root of the
average of the squared differences between the true values
(xi ) and the estimated values (̂xi ) of the state vector. Simi-
larly, the estimated positions of landmarkswere also assessed
using the RMS method.

Table 1 presents detailed results obtained from real-
time experiments, where the values listed are the average
RMS values across these experiments. These results provide
insights into the overall performance of theHoloSLAMalgo-
rithm in terms of accuracy and consistency. Furthermore, the
estimated positions of the virtual landmarks were also evalu-
ated. As the table shows, the Nao’s IMU has the largest error
in the robot position and orientation. Ellipsoidal-HoloSLAM
reduces the heading error by 66.6% of the total error of the
IMU, but this is not enough to perform an accurate SLAM.

The experimental findings not only affirm the superior per-
formance of the virtual Ellipsoidal-HoloSLAM algorithms
but also highlight their outperformance over the conventional
Ellipsoidal-SLAM method. This heightened effectiveness
can be directly attributed to the integration of Microsoft
HoloLens, which furnishes exceptionally accurate positions
for virtual landmarks within the HoloSLAM application.
Consequently, HoloSLAM systems emerge as potent tools
capable of substantially mitigating errors, thereby providing
more precise estimates of the robot’s pose and the locations
of real QR codes.

Remarkably, both the virtual and HoloSLAMEllipsoidal-
SLAM approaches showcase exceptional performance in
accurately determining the robot’s position at each time
step, displaying minimal errors when compared to con-
ventional odometry or regular Ellipsoidal-SLAM methods.
This heightened level of accuracy and reliability positions
HoloSLAM as a valuable and effective solution for tasks
requiring precise localization and mapping capabilities.

Conclusions

The primary goal of the project was to address the chal-
lenges associated with landmark-based SLAM systems and
develop innovative solutions to overcome issues such as
absences, scarcity, shortage, and inaccurate detection of
landmarks in the environment. The implemented system uti-
lizes mixed reality to provide virtual landmarks to model
the environment and provide accurate solutions to SLAM
problem and implement them on the Nao humanoid robot.

Virtual HoloSLAM solutions, which integrate Microsoft
HoloLens mixed-reality techniques with Ellipsoidal-SLAM
were explained and tested on the Nao humanoid robot
to enable the Nao to move through its environment. This
groundbreaking SLAM algorithm empowers the robot with
the unique capability to interact with and exert control over
its environment. The fundamentals of each step of mapping
and localization have been explained and implemented with
the Nao robot for Ellipsoidal-SLAM algorithms. The results
of the experiments performed in the AISL lab showed that
regular virtual Ellipsoidal-HoloSLAM algorithm has a bet-
ter performance than traditional Ellipsoidal-SLAM in terms
ofmapping the environment. Virtual Ellipsoidal-HoloSLAM
was more robust in modeling the motion errors. Besides the
improvement of the algorithm itself to include some land-
mark information, we have reported great improvement in
consistency and accuracy. Noticeably, virtual Ellipsoidal-
HoloSLAM improves localization and mapping. The virtual
Ellipsoidal-HoloSLAM was able to estimate the robot’s
position each time with very small errors when compared
to localization done by odometry or by both HoloSLAM
and regular Ellipsoidal-SLAM. The virtual Ellipsoidal-
HoloSLAM results decreased IMU errors by 95%, while
Ellipsoidal-HoloSLAM reduced this in the range of 70–80%.
The experiments show that the robot can find its location
and build an acceptable map around itself successfully at
each step in an acceptable time using virtual Ellipsoidal-
HoloSLAM.

Data availability The data is available upon request.
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