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Abstract
Learning with Noisy Labels (LNL) methods aim to improve the accuracy of Deep Neural Networks (DNNs) when the
training set contains samples with noisy or incorrect labels, and have become popular in recent years. Existing popular LNL
methods frequently regard samples with high learning difficulty (high-loss and low prediction probability) as noisy samples;
however, irregular feature patterns from hard clean samples can also cause high learning difficulty, which can lead to the
misclassification of hard clean samples as noisy samples. To address this insufficiency, we propose the Samples’ Learning
Risk-based Learning with Noisy Labels (SLRLNL) method. Specifically, we propose to separate noisy samples from hard
clean samples using samples’ learning risk, which represents samples’ influence on DNN’s accuracy . We show that samples’
learning risk is comprehensively determined by samples’ learning difficulty as well as samples’ feature similarity to other
samples, and thus, compared to existing LNL methods that solely rely on the learning difficulty, our method can better
separate hard clean samples from noisy samples, since the former frequently possess irregular feature patterns. Moreover,
to extract more useful information from samples with irregular feature patterns (i.e., hard samples), we further propose the
Relabeling-based Label Augmentation (RLA) process to prevent the memorization of hard noisy samples and better learn
the hard clean samples, thus enhancing the learning for hard samples. Empirical studies show that samples’ learning risk can
identify noisy samples more accurately, and the RLA process can enhance the learning for hard samples. To evaluate the
effectiveness of our method, we compare it with popular existing LNL methods on CIFAR-10, CIFAR-100, Animal-10N,
Clothing1M, and Docred. The experimental results indicate that our method outperforms other existing methods. The source
code for SLRLNL can be found at https://github.com/yangbo1973/SLRLNL.
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Introduction

Deep Neural Networks (DNNs) have achieved remarkable
success across a wide range of fields [1–7], and the research
on Learning with Noisy Labels (LNL) methods aims to
improve the accuracy ofDNNswhen the training dataset con-
tains noisy labels (i.e., incorrect labels). This field of research
has recently gained significant attention [8–16] for two main
reasons. First, DNNs are susceptible to label noise, which
can negatively affect DNNs’ performance [9, 11, 17–19].
Second, real-world datasets often contain noisy labels [8,
10, 14, 18–20]. Without effective interventions, DNNs’ per-
formance on real-world datasets will be severely degraded
by noisy labels [9, 11, 13, 17–19]. Therefore, research for
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LNL methods is crucial for improving DNN’s performance
in real-world datasets.

Popular LNL methods for DNNs can be coarsely clas-
sified into two types: loss reweighting and label correction.
Loss reweightingmethods frequently treat high-loss samples
as noisy samples and restrain their gradient [9, 11, 14, 19,
21–23]. For instance, methods that modify the loss function
to demote the gradient of high-loss samples [9, 11, 21, 24],
and methods that utilize the samples’ loss during training to
filter out potential noisy samples [12, 14, 22, 23, 25, 26]. On
the other hand, label correction methods focus on correcting
samples with low prediction probability on their observed
labels [10, 16, 18, 20, 27–33]. The main approaches for label
correction include trainingwith only corrected labels [10, 18,
30, 33], and training with a combination of noisy and cor-
rected labels [20, 31, 32]. In general, for both loss reweighting
methods and label correction methods, samples with high
learning difficulty (i.e., DNN has low prediction probabil-
ity on samples’ observed labels) are often considered noisy
[10, 14, 18, 19, 22]. Since noisy samples are usually fitted
through brute-force memorization [34, 35], they tend to have
higher learning difficulty compared to simple clean samples.
Therefore, existing LNL methods are effective in separating
noisy samples from simple clean samples.

Existing LNL methods frequently regard samples with
high learning difficulty as noisy samples. Nevertheless, irreg-
ular feature patterns from hard clean samples can also cause
high learning difficulty for DNNs, thus they can be mis-
corrected or filtered by existing LNL methods. Although
hard clean samples are only minority in the dataset, they
play a vital role in improving DNNs’ generalization [12,
35–39]. Thus, separating noisy samples fromhard clean sam-
ples through a more effective criterion can further improve
DNN’s performance in noisy labeled dataset. Although there
have been previous works on utilizing samples’ learning dif-
ficulty (logits output or loss) during different training epochs
to distinguish between noisy samples and hard clean sam-
ples [12, 14, 16], they did not utilize the primary difference
between hard clean samples and noisy samples. Hard clean
samples possess correct labels, implying that their high learn-
ing difficulty primarily stems from their irregular feature
patterns. This results in the learned features from other clean
samples being inapplicable to these hard clean samples. Con-
sequently, the learning difficulty of these samples is higher
than that of other clean samples. On the other hand, the
high learning difficulty of noisy samples is mainly caused
by incorrect labels, and many of them possess feature pat-
terns similar to those of simple clean samples. Thus, ignoring
this difference may cause the existing LNL methods to mis-
classify hard clean samples as noisy samples.

In this paper, we propose the Samples’ Learning Risk-
based Learning with Noisy Labels (SLRLNL) method to
better separate noisy samples from hard clean samples, thus

improving DNN’s learning for hard clean samples while mit-
igating label noise. To be specific, samples’ learning risks are
DNN’s accuracy variation on training dataset after learning
the sample, as will be demonstrated in this paper, samples’
learning risk is comprehensively determined by samples’
learning difficulty as well as samples’ feature similarity to
other samples, and only sampleswith high learning difficulty,
as well as similar feature patterns to other samples, will be
detected as noisy samples. Since hard clean samples often
possess feature patterns that are dissimilar to other samples,
SLRLNL can separate noisy samples from hard clean sam-
ples more effectively compared with existing LNL methods
that only rely on samples’ learning difficulty.

We divide our proposed SLRLNL method into two pro-
cesses. The first process is the label correction process, in
whichwepropose to identify noisy samples through samples’
learning risk and then correct them to obtain clean sam-
ples to improve DNN’s performance. Furthermore, to extract
useful information from the samples with irregular feature
patterns (i.e., hard samples), we propose a Relabeling-based
LabelAugmentation (RLA) process as the second process of
SLRLNL. This process can prevent the DNN from memo-
rizing hard noisy samples and enhance the learning for hard
clean samples, thus extracting useful information from the
hard samples. Specifically, in each epoch, the RLA process
selects different samples that are likely to be hard samples
and temporarily relabels them to another probable class. This
process mainly relabels the hard samples, thus can prevent
the DNN from memorizing the hard noisy samples. As the
relabeled class may contain valuable semantic information,
the temporary relabeling of the selected hard samples also
encourages the DNN to learn more generalized knowledge
from them, thereby improving DNN’s generalization perfor-
mance.

The effectiveness of the learning risk-based label correc-
tion process in identifying noisy samples, and the effec-
tiveness of the RLA process in enhancing the learning
for hard samples are evaluated through empirical stud-
ies. And we conduct experiments on five frequently used
real-world datasets to evaluate our method, including four
image classification datasets (CIFAR-10 and CIFAR-100
[40];Animal-10N [27] andClothing1M [41]) and one natural
language processing dataset (Docred [2]). The experimental
results from the aforementioned datasets demonstrate that
our proposed method achieves better performance compared
to other existingLNLmethods. The source code for SLRLNL
can be found at https://github.com/yangbo1973/SLRLNL.

In summary, the contributions of this paper are as follows.

• We propose the SLRLNL method to better separate
noisy samples from hard clean samples. To detect noisy
samples, the SLRLNL method utilizes samples’ learn-
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ing risk as selection criterion. Since samples’ learning
risk is comprehensively determined by samples’ learning
difficulty and samples’ feature similarity to other sam-
ples, the SLRLNL method can correct noisy labels more
effectively without hindering the learning of hard clean
samples. Compared to existing LNL methods, our pro-
posed SLRLNL can further enhanceDNN’s performance
in practice.

• In addition to identifying and correcting noisy labels
using the samples’ learning risk, we propose the RLA
process to extract more meaningful information from the
hard samples.

• We conduct experiments on CIFAR-10, CIFAR-100,
Animal-10N,Clothing1M, andDocred datasets. Our pro-
posed method was evaluated against existing popular
LNL methods, and the experimental results demonstrate
that our method achieved better performance compared
to other LNL methods.

The structure of this paper is as follows: The section
Related work provides a review of related works in the con-
text of our method. The section Preliminaries presents the
preliminaries necessary for our proposed method. In the sec-
tion The proposed method, we outline our proposed method.
The section Experimental setup presents the experimental
results obtained using our method. In the section Experi-
mental results, we conclude this paper.

Related work

Loss reweightingmethods

Loss reweightingmethods are effective in demoting the influ-
ence from noisy samples. Popular loss reweighting methods
first detect noisy samples through samples’ learning diffi-
culty (e.g., loss value or prediction probability on observed
label) and then reduce the weight from detected samples or
filter them. For example, methods that utilize DNN’s pre-
diction probability to detect and filter the noisy samples
[12, 14, 19, 22, 25, 26, 42–45]; methods that modified the
loss function to reduce the weight from high-loss samples
[9, 11, 24, 46]. These methods yield effective results in
mitigating the adverse impact from noisy labels; however,
since hard clean samples frequently possess irregular feature
patterns, the existing loss reweightingmethods have an unde-
sirable tendency to ignore the useful hard clean samples and
train DNN with only simple samples. Consequently, these
methods can probably bias DNN’s training process [32] and
damage DNN’s performance.

Label correctionmethods

During the training of a DNN, the gradient from clean sam-
ples can influence the DNN’s prediction probability for noisy
samples [19, 35], and therefore, DNN’s prediction probabil-
ity can be utilized to detect and correct noisy labels [10,
15–18, 20, 27–33]. In general, these methods regard samples
whose labels are highly inconsistent with DNN’s predic-
tion probability as noisy ones, then correct these samples
withDNN’s prediction output. Nevertheless, since hard clean
samples possess feature patterns that are dissimilar to other
simple clean samples, the existing label correction methods
can easily misinterpret hard clean samples as noisy sam-
ples and mis-correct them. Since hard clean samples play an
important role in DNN’s generalization performance [36–
39], mis-correcting them can lead to DNN’s performance
degradation.

Identify hard samples

Hard samples are essential for DNN’s generalization [35, 37,
47], and thus, research in identifying hard clean samples are
also important. For example, Lin et al. [48] regard samples
with rare labels as hard samples, and Huang et al. [49] iden-
tify hard samples throughDNN’s prediction probability. And
Koh et al. [50] evaluate samples’ informativeness through
DNN’s parameters variation after sample removal, andHaru-
tyunyan et al. [37] search for hard samples through themutual
information between the sample and DNN’s parameters.

Data augmentation

Data augmentation is an effective measure for improv-
ing DNNs’ generalization. In general, data augmentation
methods improve DNNs’ generalization through adopting
transformations to the samples’ input. For example, image
rotation, flipping, cropping, and random scaling in image
classification tasks [51], synonym replacement, random
insertion, swapping, and deletion in natural language pro-
cessing tasks [52]. While the methods listed above are
task-specific, label augmentation, which trains DNNs with
constructed artificial labels, can be used in various tasks to
encourage DNNs to learn more generalized knowledge from
the training samples [53, 54].

Preliminaries

In this section, we provide notations and definitions related
to our proposed method, and the basic notations are listed
in Table 1. Generally, the aim of this paper is to improve
the DNN’s accuracy when the training dataset contains noisy
samples.We focus on themulti-classification task and denote

123



4036 Complex & Intelligent Systems (2024) 10:4033–4054

Table 1 Basic notations Notation Meaning

D The clean training dataset, where D = {s1, s2, . . . , sn}
D̃ Observed training dataset, where D̃ = {s̃1, s̃2, . . . , s̃n}
si i th sample in the clean training dataset D

s̃i i th sample in the observed training dataset D̃

xi Input for i th sample in D, where x ∈ X
X The space for input data.

yi Ground truth label for si , where y ∈ Y
Y The set of categories, where Y = {1, . . . , K }
yi One-hot form of label yi
ỹi Observed label for s̃i
ỹi One-hot form for the observed label ỹi
y̆i Label for i th sample after label correction

D̆ Training dataset after label correction

n Size of training dataset D

K Number of categories

θ DNN’s parameters, where θ ∈ �

� Space for DNN’s parameters.

φ(·; θ) Function that generates DNN’s penultimate layer output

g(·; θ) Function that generates DNN’s logits output

f (·; θ) Function that generates DNN’s prediction probability

�(y, f (x; θ)) Loss function

E(y, f (x; θ)) Evaluation metric function

Nl Dim of the penultimate layer

α Learning rate.

zi Abbreviation for φ(xi ; θ) ∈ R1×Nl

ui Abbreviation for g(xi ; θ) ∈ R1×K

pi Abbreviation for f (xi ; θ) ∈ R1×K

ZD Abbreviation for [z1; z2; ...zn], where ZD ∈ Rn×Nl

UD Abbreviation for [u1; u2; ...un], where UD ∈ Rn×K

YD Abbreviation for [y1; y2; ...yn], where YD ∈ Rn×K

ỸD̃ Abbreviation for [ỹ1; ỹ2; ...ỹn], where ỸD̃ ∈ Rn×K

PD Abbreviation for [p1; p2; ...pn], where PD ∈ Rn×K

D = {s1, s2, . . . , sn} as the clean training dataset, where
si = (xi , yi ) ∈ (X ,Y) is the i th sample of D. x ∈ X is the
input for the DNN, y ∈ Y is the ground truth label, where X
is the space for input data, andwe haveY = {1, . . . , K }, K is
the number of categories for the classification task. Then, we
define the observed training dataset as D̃ = {s̃1, s̃2, . . . , s̃n},
where s̃i = (xi , ỹi ) is the i th sample of D̃. In practice, it
is unknown whether the label of an observed sample s̃i is
correct or not. We define the noisy samples as follows:

Definition 1 (Noisy sample)
For an observed sample s̃i = (xi , ỹi ), s̃i is noisy sample

if ỹi �= yi .

Define θ as the parameters for the DNN.When given DNN’s
parameters θ , define φ(·; θ) : X → RNl , g(·; θ) : X →

RK , and f (·; θ) : X → RK as the functions that map the
sample’s input to DNN’s penultimate layer output, DNN’s
logits output, and DNN’s prediction probability (output after
the softmax layer), respectively. g(·; θ) can be considered
as DNN’s feature extractor, and DNN’s penultimate layer
output for the sample can also be considered as the feature
representation for that sample.

In this paper, for the sake of simplicity, when given the
DNN’s parameters θ , the DNN’s penultimate layer output,
logits output, and prediction probability for the sample with
input xi can be abbreviated as zi , ui , and pi , respectively.
The matrices for the DNN’s penultimate layer output, logits
output, and prediction probability for the dataset D can be
abbreviated as ZD , UD , and PD , respectively. The matrices
for the one-hot form of clean labels and observed labels for
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datasets D and D̃ can be abbreviated as YD and ỸD̃ , respec-
tively. When replacing the subscript D of these abbreviated
symbols above with another set of samples, it denotes the
DNN’s output matrices for that set.

Generally, existing LNL methods frequently attempt to
identify noisy samples through DNN’ learning difficulty or
its extension (sample’s loss value or prediction probability)
[10, 19, 22]. Then, the learning difficulty is defined as fol-
lows:

Definition 2 (Learning difficulty)
Define 1 − f ỹi (xi ; θ) be DNN’s learning difficulty for

observed sample (xi , ỹi ).

Higher learning difficulty for sample s̃i indicates that the
DNN will take a longer time to eventually fit these data.
Although utilizing samples’ learning difficulty can effec-
tively identify noisy samples, they may tend to mistake hard
clean samples with irregular feature patterns as noisy sam-
ples . Although these samples are the minority in the dataset,
they are essential for DNN’s generalization [35–39]. In this
paper, we define hard samples as samples with high learning
difficulty when trained with a clean dataset. They are defined
as hard clean samples if their observed labels are consistent
with their ground truth labels; otherwise, they are defined as
hard noisy samples, as shown below:

Definition 3 (Hard clean/noisy sample)
For an observed sample s̃i = (xi , ỹi ), s̃i is hard clean

sample if ỹi = yi and 1− fyi (xi ; θ∗) > τ , and is hard noisy
sample if ỹi �= yi and 1− fyi (xi ; θ∗) > τ . θ∗ is the optimal
parameters for DNN trained with clean dataset D, and τ is
the selection criteria for hard clean samples.

Other than noisy samples and hard clean samples, the simple
clean sample is defined as follows:

Definition 4 (Simple clean sample)
For an observed sample s̃i = (xi , ỹi ), s̃i is simple clean

sample if ỹi = yi and 1 − fyi (xi ; θ∗) ≤ τ , where θ∗ is the
optimal parameter for DNN trained with clean dataset.

Define �(y, f (x; θ)) and E(y, f (x; θ)) as the loss function
and evaluation metric function, respectively. Both functions
can be utilized to measure how close the DNN’s prediction
probability is to the sample’s label. In this paper, we propose
to better separate noisy samples from both hard clean sam-
ples and simple clean samples through the learning risk of
samples. The definitions of samples’ learning risk are given
as follows:

Definition 5 (Learning risk)
Denote the learning risk from sample s̃i to be �Es̃i→D ,

which is the variation of DNN’s empirical risk in clean train-
ing set D after updating the gradient from s̃i :

�Es̃i→D = 1

|D|
∑

(xd ,yd )∈D
E(yd , f (xd; θ + �θ i ))

− E(yd , f (xd; θ)), (1)

where �θ i is the variation of the DNN’s parameters after
updating the gradient from s̃i .

The proposedmethod

Our proposed method is presented in this section. In the sec-
tion Calculation for samples’ learning risk, we demonstrate
the calculation method for samples’ learning risk. The sec-
tion Empirical study of separating noisy samples from hard
clean samples provides an empirical study of our method in
separating hard clean samples from noisy samples. We illus-
trate the methods for label correction in the section Label
correction for noisy samples and present the proposed RLA
in the section Relabeling-based label augmentation. Finally,
in the section Implementation detail, we present the overall
algorithm for SLRLNL and implementation details.

Calculation for samples’ learning risk

This subsection demonstrates the calculation method for
samples’ learning risks. To calculate the learning risk, we
use Mean Square Error (MSE) as the evaluation metric func-
tion for DNN accuracy

EMSE (y, g(x; θ)) = ||y − g(x; θ)||22, (2)

then DNN’s empirical risk in D is

1

n

∑

(xd ,yd )∈D
||yd − g(xd; θ)||22, (3)

then, for a DNNwith parameters θ , suppose MSE is adopted
as the loss function and gradient descent is adopted as the
optimizer, after updating gradient from s̃i = (xi , ỹi ), the
variation for the logits output of sample sd = (xd , yd) is

�us̃i→sd = −2α(zi (zd + �zs̃i→sd )
T + 1)(ui − ỹi ), (4)

where α is the learning rate, zi = φ(xi ; θ) ∈ R1×Nl and
zd = φ(xd ; θ) ∈ R1×Nl are DNN’s penultimate layer output
for sample s̃i and sample sd , respectively. ui = g(xi ; θ) ∈
R1×K and ỹi ∈ R1×K are the logits output and one-hot
form observed label for sample s̃i , respectively. �zs̃i→sd is
the variation for DNN’s penultimate layer output for sample
sd after updating gradient from sample s̃i . Then, the learning
risk �Es̃i→D for sample s̃i = (xi , ỹi ) is
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(c) Influence from noisy samples(a) Ignoring influence from hard clean samples and noisy samples (b) Influence from hard clean samples
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Fig. 1 Illustration for the difference between hard clean samples and noisy samples

� Es̃i→D

= 1

|D|
∑

(xd ,yd )∈D
||yd − ud − �us̃i→sd ||22 − ||yd − ud ||22

= 4α

|D| (zi (ZD)T + 1)(UD − YD)(ỹi − ui )T

+ 4α2

|D| (1 + uiuTi − 2ui ỹ
T
i )

∑

sd∈D
(zi (zd)T + 1)2. (5)

The proof for Eq. (4) and Eq. (5) can be found in Appendix
A. In Eq. (5), ud ∈ R1×K , zd ∈ R1×Nl , and yd ∈ R1×K

are sample sd ’s logits output, penultimate layer output, and
one-hot form clean label, respectively. ZD ∈ Rn×Nl , UD ∈
Rn×K , and YD ∈ Rn×K are matrices for clean dataset D’s
penultimate layer output, logits output, and one-hot form
clean label, respectively. Since the clean dataset D is gen-
erally unavailable in practice, in this paper, we adopt low
learning difficulty samples as replacements, which are likely
to be simple clean samples [35, 55]. In each epoch, we select
a subset of the observed dataset as the nearly clean samples
C (t)

C (t) =
{

(xi , ỹi )|1
t

t∑

m=1

(
1 − f ỹi (xi ; θ (m))

)
≤ τ(t, nC )

}
,

(6)

where t is the current epoch, τ(t, nC ) is the threshold for
selecting C (t), and is the nC% lowest average learning diffi-
culty from 1th to t th epoch, and nC is the hyper-parameter
of our method in selecting nearly clean samples. Then, the
nearly clean samples C (t) are utilized to represent the clean
dataset D. Note that the learning rate α is also involved in
Eq. (5). In practice, the learning rate α will be set to a small
value, and thus, for the sake of simplicity, we set α → 0+
and ignore the latter part in Eq. (5). Then, the learning risk
for sample s̃i is

�Es̃i→C(t) = 4α

|C (t)| (zi (ZC(t) )
T + 1)

(UC(t) − ỸC(t) )(ỹi − ui )T , (7)

where ZC(t) , UC(t) , and ỸC(t) are the matrices for the nearly
clean samples C (t)’s penultimate layer output, logits output,
and one-hot form observed label, respectively. Moreover,
since in practice the cross-entropy loss is frequently utilized
for classification tasks, in this paper, we use the cross-entropy
loss function to train the DNN. Then, to represent samples’
learning risk when trained with cross-entropy, we replace the
logits output terms inEq. (7)withDNN’spredictionprobabil-
ity, and thus, the learning risk for sample s̃i can be represented
as

�Es̃i→C(t) = 4α

|C(t)| (zi (ZC(t) )
T + 1)(PC(t) − ỸC(t) )

(ỹi − pi )
T , (8)

where pi = f (xi ; θ) is DNN’s prediction probability for
sample s̃i , andPC(t) is the matrix for the nearly clean samples
C (t)’s prediction probability. In this paper, we utilize Eq. (8)
to calculate samples’ learning risk. As shown in Eq. (8), the
learning risk of the i th sample is mutually determined by the
term (ỹi − pi ) that similar to sample’s learning difficulty,
and its feature similarity to other samples: zi (ZC(t) )T . This
equation indicates that the influence of sample s̃i on DNN’s
empirical risk is comprehensively determined by its feature
similarity to other samples and its learning risk, and samples
with higher feature similarity and higher learning difficulty
will have a greater learning risk.

Hard clean samples typically exhibit irregular feature
patterns. Therefore, for a hard clean sample si , its feature
representation zi will be different from any other sample sd ,
resulting in a small feature similarity zi (zd)T . According to
Eq. (8), learning these hard clean samples does not signifi-
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cantly increase the DNN’s empirical risk. In contrast, many
noisy samples often have both high feature similarity and
high learning difficulty. This means that learning such sam-
ples can distort theDNN’s decision boundary and increase its
empirical risk. Therefore, by setting an appropriate thresh-
old, the learning risk can accurately detect and correct noisy
samples while avoiding mis-correcting hard clean samples.
The difference between hard clean samples and noisy sam-
ples is illustrated in Fig. 1.

In the next subsection, it will be demonstrated that existing
LNL methods are ineffective in distinguishing noisy sam-
ples from hard clean samples, while from the perspective
of samples’ learning risk, these samples can be effectively
separated.

Empirical study of separating noisy samples from
hard clean samples

Weconduct numerical experiments onCIFAR-10andCIFAR-
100 with artificially generated label noise to compare our
proposed SLRLNL with the existing LNL methods in sepa-
rating noisy samples from hard clean samples. The selection
criteria used by the existing LNL methods to identify noisy
samples are listed below:

• Co-teaching [22]: Han et al. [22] train two DNNs, and
utilize the loss value from another DNN to identify noisy
samples. The selection criteria for identifying noisy sam-
ples for co-teaching are samples’ loss value from theother
DNN

− log f ỹi (xi ; θ ′), (9)

where θ ′ is the parameters from another DNN.
• Progressive Label Correction (PLC) [10]: Zhang et al.
[10] regard samples whose labels are highly inconsistent
withDNN’s prediction probability as noisy samples, then
progressively correct them.The selection criteria for PLC
in identifying noisy samples are

max
j �=ỹ

(
f j (xi ; θ) − f ỹi (xi ; θ)

)
. (10)

• Area Under the Margin ranking (AUM) [19]: Pleiss et
al. [19] utilize the average difference between the logits
values for sample’s observed class and its highest other
class to identify noisy samples. Their selection criteria
for identifying noisy samples are

1

t

t∑

m=1

(
max
j �=ỹ

(
g j (xi ; θ (m))

)
− gỹi (xi ; θ (m))

)
. (11)

Existing LNL methods consider samples with high selec-
tion criteria listed above to be noisy. In the numerical
experiments, hard clean samples are selected as the samples
whose learning difficulty 1− fyi (xi ; θ∗) are above the high-
est 10% learning difficulty, and DNN’s parameters θ∗ are
obtained by training a DNN with clean dataset. To simulate
noisy labels in real-world datasets, we generate 80% uniform
flip and 40% pair flip label noise for CIFAR-10 and CIFAR-
100, respectively (the details for generating label noise are
illustrated in Section 5). Other samples are regarded as sim-
ple clean samples if they are neither noisy samples nor hard
clean samples. The adopted DNN is ResNet-18 trained from
scratch. The batch size is 64, and we train the DNN with
SGD. The learning rate is 2e-2, the momentum is set to 0.9,
and the weight decay rate is 5e-4. After the warm-up pro-
cess (we set a 10-epoch warm-up process for CIFAR-10 and
30-epoch warm-up for CIFAR-100), the experimental results
are shown in Fig. 2.

Figure2 shows the histogram of each selection criteria
(Co-teaching, PLC, AUM, and learning risk) for CIFAR-10
and CIFAR-100 with different types of label noise. The hor-
izontal axis represents the value of selection criteria. The
vertical axis in Fig. 2 represents the density of the selection
criteria, which shows the proportion of data points within
each range. To effectively separate noisy samples from sim-
ple clean samples and hard clean samples, the selection
criteria for noisy samples need to be higher than those for
clean samples.

The results presented in Fig. 2 demonstrate that the pro-
posed learning risk criterion can more effectively distinguish
noisy samples fromboth simple clean samples and hard clean
samples in both CIFAR-10 and CIFAR-100 under different
noise types. Moreover, as shown in Fig. 2b, d, when facing
pair flip label noise, existing LNL methods can barely sep-
arate noisy samples from hard clean samples. This is due
to the fact that pair flip label noise will flip the ground truth
labels into other similar classes, therebywill not significantly
increasing their learning difficulty. On the other hand, since
pair flip label noise can still damage DNN’s accuracy per-
formance, the samples with pair flip label noise can still be
effectively separated from hard clean samples by the learning
risk criterion, as shown in Fig. 2b, d. In this case, correcting
samples with high learning risk is able to mitigate the noisy
labels without hindering the learning of hard clean samples
and further improve DNN’s performance in practice.

After evaluating the effectiveness of learning risk in sepa-
rating noisy samples, the label correction method utilized in
this paper will be demonstrated in the next subsection.

Label correction for noisy samples

The label correction method utilized in this paper is illus-
trated in this subsection. As shown in Fig. 2, unlike hard clean
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Fig. 2 Comparison between SLRLNL and existing LNL methods in separating noisy samples from hard clean samples
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samples and simple clean samples, noisy samples tend to
have higher learning risk. Thus, we conduct label correction
on samples with high learning risk to mitigate the negative
impact from noisy samples, as shown in Eq. (12)

y̆(t+1)
i =

⎧
⎨

⎩

argmax
j∈Y

f j (xi ; θ (t)), �Es̃i→C(t) ≥ υ(t, nV ),

ỹi , �Es̃i→C(t) < υ(t, nV ),

(12)

where �Es̃i→C(t) is calculated through Eq. (8), and υ(t, nV )

is the selection threshold, which is the nV% highest learn-
ing risk in the t th epoch. nV ∈ [0, 100) is the correction
proportion, and is a hyper-parameter of our method. In this
paper, we set nV to be increased along the training process to
achieve more effective label correction, and the implemen-
tation detail can be found in hyper-parameters setting part in
Section 5.

The label correction process based on samples’ learning
risk can detect and correct noisy samples without mis-
correcting the hard clean samples, thereby improving DNN’s
performance in practice.

Relabeling-based label augmentation

Since samples with irregular feature patterns are important
for DNN’s generalization, to better utilize the information
contained in these hard samples, we propose theRelabeling-
based Label Augmentation (RLA) process, which focus on
relabeling samples with high learning difficulty. Since sam-
ples with common features and noisy labels can be easily
corrected by the learning risk-based label correction, those
sampleswith high learningdifficulty after the label correction
process are typically attributed to their irregular feature pat-
terns, making them likely to be hard samples. Thus, selecting
samples with high learning difficulty can focus on relabeling
the hard samples.

Specifically, theRLAprocess is to select different samples
with high learning difficulty in each epoch then temporarily
relabel them to themost probable class other than the training
labels in the previous epoch, as shown in Eq. (13)

�RLA(y̆(t)
i , f (xi ; θ (t)))

=
{

�
(
argmax

j �=y̆(t−1)
i

f j (xi ; θ (t)), f (xi ; θ (t))
)
, i ∈ I (t)

R ,

�(y̆(t)
i , f (xi ; θ (t))), else,

(13)

where I (t)
R is the index set of selected samples for the RLA

process in the t th epoch, and we set I (t)
R to select high learn-

ing difficulty samples different from the previous epoch, as
shown as follows:

I (t)
R =

{
i |1 − f

y̆(t)
i

(xi ; θ (t)) ≥ ρ(t, nR) & i /∈ I (t−1)
R

}
,

(14)

where ρ(t, nR) is the threshold for selecting I (t)
R , and is nR%

highest learning difficulty in the t th epoch, and nR ∈ [0, 100)
is the relabeling proportion that determines the effectiveness
of RLA, and is one of the hyper-parameters of our proposed
method.

As shown in Eqs. (13) and (14), in each epoch, different
samples with high learning difficulty will be selected by the
RLA process. Therefore, in each epoch, the RLA process
will temporarily relabel the selected samples, preventing the
DNN from memorizing hard noisy samples. Moreover, as
shown in Eq. (13), the selected samples will be relabeled
with the class to which the DNN assigns a certain degree
of prediction probability. In a multi-classification task, the
relabeled class can retain a certain amount of semantic infor-
mation, thus assisting theDNNin acquiringmore generalized
knowledge about the selected hard samples, which will be
beneficial for DNN’s generalization performance. Addition-
ally, according to Eq. (14), the RLA process does not perma-
nently modify the labels of the hard clean samples, it will not
bias their gradient in an incorrect direction, and thus, overall,
this process can enhance the learning of hard clean samples.

As will be demonstrated in section 6.5, for CIFAR-10
and CIFAR-100 datasets with different types of label noise,
the proposed RLA process can improve the DNN’s test
accuracy, which indicates that the RLA process effectively
mitigates the negative impact of hard noisy samples and
improve DNN’s generalization performance. Additionally,
the experimental results in section 6.6 illustrate that the RLA
process can reduce the minimal training loss for the hard
clean samples, which proves the efficacy of the RLA process
in enhancing the learning process for hard clean samples.

The implementation detail of our method is provided in
the next subsection.

Implementation detail

Basic implementation detail

The hyper-parameters related to SLRLNL mentioned above
include: nearly clean samples selection parameter nC , max
correction proportionmax nV , and relabeling proportion nR

for RLA. For the label correction process, in each dataset, we
increase the correction proportion nV by 2 during each epoch
until it reaches the maximum proportionmax nV . Other than
the mentioned parameters, we also set up a hyper-parameter
warm-up epoch tw to attain a DNN with basic classifica-
tion ability before conducting SLRLNL. The details of our
hyper-parameter settings can be found in "Hyper-parameters
setting" in section “Experimental setup”. The flowchart of
our SLRLNL method is shown in Fig. 3.
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Fig. 3 The flowchart for our method, where tw is the warm-up epoch
and tm is the total training epochs

The overall algorithm is presented in Algorithm 1. The
extra computational complexity of our SLRLNL method is
listed in Table 2. The extra computational time is primar-
ily generated during the calculation of the samples’ learning
risk, which is O(n2nC%(Nl + K )), where n is the size of
the training dataset, nC% is the ratio for selecting the nearly
clean samples, and Nl is dim of DNN’s penultimate layer.
In practice, we can adjust the proportion for selecting the
nearly clean samples nC to reduce the extra computational

time from our proposed method. As will be shown in the
experiment section, the extra computation time for our pro-
posed SLRLNL is feasible.

Class imbalance issue

Class imbalance is a common issue in practice. For instance,
the data sizes of different classes can significantly vary in
real-world scenarios (e.g., datasets such as Clothing1M [41]
andDocred [2] utilized in this paper). Consequently, this vari-
ation leads to differences in learning difficulty across classes
and ultimately impacts the effectiveness of label correction
methods. To improve the performance of our method in prac-
tice, in this paper, for all datasets, the selection threshold
(τ(t, nC ), υ(t, nV ), and ρ(t, nR)) and the ranking process
are performed separately for each class. Let K j = {i |ỹi = j}
be the set of indexes of samples with observed label j . For
class imbalanced datasets, the selection process in t th epoch
for the nearly clean samples C (t) is as follows:

C(t) =∪K
j=1

{
(xi , ỹi )|1t

t∑

m=1

(
1 − f ỹ(xi ; θ (m))

) ≤ τ j (t, nC ) & i ∈ K j

}
,

(15)

where τ j (t, nC ) is the nC%lowest average learning difficulty
among samples in K j from 1th to t th epoch, and the label
correction process for the class imbalanced dataset is

y̆(t+1)
i =

⎧
⎨

⎩

argmax
j∈Y

f j (xi ; θ (t)), �Es̃i→C(t) ≥ υỹi (t, nV ),

ỹi , �Es̃i→C(t) < υỹi (t, nV ),

(16)

where υỹi is the nV% highest learning risk among samples

in Kỹi in the t th epoch. The selection for I
(t)
R for class imbal-

anced dataset is

I (t)
R =∪K

j=1{i |1− f ỹi (xi ; θ (t))≥ρ j (t, nR) & i /∈ I (t−1)
R & i ∈ K j },

(17)

whereρ j (t, nR) is the nR%highest learning difficulty among
samples in K j in the t th epoch.

Experimental setup

Datasets

The experiments are conducted on four image classification
datasets: CIFAR-10 and CIFAR-1001 [40], Animal-10N2

1 https://www.cs.toronto.edu/ kriz/cifar.html.
2 https://dm.kaist.ac.kr/datasets/animal-10n/.
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Table 2 Computational
complexity of the major
components and the overall
complexity of our proposed
method

Operation Computation complexity during each epoch

Searching nearly clean samples O(n log n)

Calculating samples’ learning risk O(n2nC%(Nl + K ))

Identifying noisy samples O(n log n)

Label correction O(n)

Relabeling-based label augmentation O(nK )

Overall O(n2nC%(Nl + K ))

Fig. 4 Best test accuracy of SLRLNL on CIFAR-10 with different set of hyper-parameters

[27], Clothing1M3 [41], and one natural language processing
dataset: Docred4 [2]. In this paper, label noise in the orig-
inal CIFAR-10 and CIFAR-100 datasets can generally be
ignored, while Animal-10N and Clothing1M datasets both

3 https://github.com/Cysu/noisy_label.
4 https://github.com/thunlp/DocRED.

contain real-world label noise. Docred includes both clean
and noisy labeled datasets. To better evaluate our proposed
method, two types of artificial label noise are generated for
CIFAR-10 and CIFAR-100: uniform flip noise and pair flip
noise. Following existing research [15, 18], artificial noise is
generated by replacing labels from randomly selected sam-
ples, with samples being selected with the probability of the
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Algorithm 1 Overall algorithm for SLRLNL

Input: Observed dataset D̃, initial DNN parameters θ (0), nearly clean
samples’ selection parameter nC , max correction proportion max nV ,
relabeling proportion nR , warm-up epoch tw , training epoch tm . Out-
put: θ (tm ) and relabeled dataset D̆.
1: t ← 0
2: D̆ ← D̃
3: for t < tw do
4: θ (t+1) ← training θ (t) using D̃
5: t ← t + 1
6: end for
7: for t < ttrain do
8: search for nearly clean samples C (t) using Eq.(15).
9: for mini-batch ∈ D̆ do
10: Update θ (t) with RLA with Eqs. (13) and (17).
11: end for
12: for d ∈ D̆ do
13: Calculate samples’ learning risk with Eq. (8).
14: Update y̆(t+1)

i using Eq. (16).
15: end for
16: D̆ ← [(x1, y̆(t+1)

1 ), . . . , (xn, y̆
(t+1)
n )]

17: t ← t + 1
18: end for
19: return θ (tm ),D̆

noise rate. For uniform flip noise, we replace original labels
with other random labels, and for pair flip noise, we replace
the sample’s label with a similar category.

For datasets that contain real-world label noise, both
Animal-10N and Clothing1M contain images crawled from
online websites and are poor in label quality. Animal-10N
contains 50000 training samples and 5000 testing samples,
and the categories for this dataset contain five pairs of animals
with similar appearances.Meanwhile, Clothing1M is amuch
larger dataset, containing 1million clothing images collected
from various online shopping websites, and this dataset con-
tains 14k images with correct labels for validation and 10k
images for testing.

We also evaluate our method on the relation extrac-
tion task in the field of NLP. The popular method for
the relation extraction task is distantly supervised learning
[57–59], which annotates the entity pairs in the plain text
through the open-source knowledge base. Therefore, labels
for distant-supervised datasets are generally erroneous [57–
59]. The experiments are conducted on the recently proposed
Docred dataset [2], which contains 101873 distantly labeled
documents, and 3053, 1000, and 1000 documents strictly
annotated bywell-trained human annotators for training, val-
idation, and testing, respectively.

Meanwhile, many of the datasets in practice are class
imbalanced (e.g., Clothing1M [41] and Docred [2]), and
thus, to improve the effectiveness of SLRLNL in practice,
for all the datasets, the selection threshold and ranking pro-
cess related to our method are performed separately for each
class; the details can be found in the "Class imbalance issue"
part of section 4.5.

Backbones

The backbone for CIFAR-10 and CIFAR-100 is ResNet-18
[1], and for Clothing1M, the backbone is ResNet-50 pre-
trained on Imagenet. For Animal-10N, we use VGG-19 with
batch normalization [60] as our backbone. For Docred, we
adopt theBiLSTM fromYao et al. [2] as backbone andGloVe
[61] as word embedding.

Baselines

To evaluate the effectiveness of our proposed SLRLNL,
we compared our method with several recent or classic
loss reweighting methods and label correction methods. In
CIFAR-10 and CIFAR-100, the compared loss reweighting
methods includeMentorNet [42], GeneralizedCross Entropy
(GCE) [9], Symmetric Loss (SL) [24], Co-teaching [22],
Area Under the Margin ranking (AUM) [19], SELFIE [27],
Co-teaching+ [25], Robust inference via Generative classi-
fiers (RoG) [28], Probabilistic End-to-end Noise Correction
In Labels (PENCIL) [29], TopoFilter [26], Momentum of
Memorization (Me-Momentum) [12], and Soft version of
CombatsNoisyLabels byConcerningUncertainty (CNLCU-
S) [14]. The compared label correction methods include
Likelihood Ratio Test (LRT) [18], Progressive Label Correc-
tion (PLC) [10], and Forward-Backward Cycle-Consistency
Regularization (FBCCR) [15].

In Animal-10N, the compared baseline loss reweighting
methods include ActiveBias [56] and Co-teaching [22]. The
compared label correctionmethods include SELFIE [27] and
PLC [10].

In Clothing1M, the compared baseline loss reweighting
methods include GCE [9], SL [24], MentorNet [42], Co-
teaching [22], AUM[19], andCNLCU-S [14]. The compared
label correction methods include LRT [18], PLC [10], Uni-
versal Probabilistic Model (UPM) [20], and FBCCR [15].

In Docred, the compared baseline LNL methods include
Generalized Cross Entropy (GCE) [9], Symmetric Loss (SL)
[24], Noisy Label andNegative SampleRobust Loss function
(NLNSRL) [11], AUM [19], LRT [18], and PLC [10].

Hyper-parameters’ setting

For datasets CIFAR-10 and CIFAR-100, we adopt random
flip, brightness, contrast, and saturation data augmentation.
We adopt SGD with an initial learning rate of 2e-2 as our
optimizer, and the learning rate is divided by 10 in the 50th
and 100th epochs. We set the monument to 0.9 and weight
decay rate to 5e-4. Then, we train DNN for 150 epochs with
a batch size of 64. For the hyper-parameters of our method,
we set nC = 10, nR = 2, and set tw = 10 for CIFAR-10, set
nC = 10, nR = 10, and tw = 30 for CIFAR-100. To avoid
mis-corrections during the label correction process, we set
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themax nV to be half the value of the noise rate. For CIFAR-
10 with 40% uniform flip label noise, we set max nV to be
20, and for CIFAR-100with 30%pair flip noise,max nV will
be set to 15. And in each epoch, the correction proportion is
increased by 2 until it reaches the max nV .

For Animal-10N, we adopt random flip as data augmenta-
tion. We set SGD as the optimizer and train the DNN for 360
epochs with an initial learning rate of 1e-1, and is divided
by 10 in 150th and 250th epochs. The batch size is 64. For
the hyper-parameters related to our method, we set nC = 10,
max nV = 4, nR = 2, and tw = 50. And in each epoch,
the correction proportion is increased by 2 until it reaches
max nV .

For Clothing1M, we follow the experiment setting in
Zhang et al. [10], and use a randomly sampled pseudo-
balanced subset, including about 260k images. The data
augmentation strategies adopted include random crop and
random flip. And we train the DNN with a batch size of 32,
adopt the SGD as optimizer with a learning rate of 1e-2 for
20 epochs, and we divide the learning rate by 10 at the 3rd,
6th, and 9th epochs. The hyper-parameters of our method are
set as nC = 10, max nV = 10, nR = 5, and tw = 1. And in
each epoch, the correction proportion is increased by 2 until
it reaches max nV .

For Docred, Adam with a learning rate of 2e-4 is adopted
as the optimizer. Eachmini-batch contains 30documents, and
we train DNN for 20 and 100 epochs for the distantly super-
vised dataset and the human-annotated dataset, respectively.
For the hyper-parameters of our method, we set nC = 1 and
nR = 1 for both datasets, and the correction proportion nV
is directly set to 2. We set tw = 0 for the distantly supervised
dataset, and set tw = 30 for the human-annotated dataset.

Experimental results

This section includes the experimental results for SLRLNL
and other methods. The source code for SLRLNL can be
found in https://github.com/yangbo1973/SLRLNL.

Experimental results for CIFAR-10 and CIFAR-100

This subsection includes the experimental results for artifi-
cially noised CIFAR-10 and CIFAR-100. The performance
on the test dataset is reported in Tables 3 and 4. Zheng et
al. [18] reported the results of Standard, MentorNet, Co-
teaching, and LRT in their study. Wu et al. [26] reported
the results of Co-teaching+ , RoG, PENCIL, and TopoFilter
in their study. Song et al. [27] reported the results of SELFIE
against pair flip noise, and the results for uniform flip noise
with rate of 20% and 40%. Wang et al. [24] reported the
results of GCE and SL against uniform flip noise. Pleiss et
al. [19] reported the results of AUM against uniform flip

Table 5 Average training time and their standard deviation over three
trials for DNN trained on CIFAR-10 and CIFAR-100 during each epoch
with standard method and our method

CIFAR-10 CIFAR-100

Standard 15.7 ± 0.2s 16.1 ± 0.2s

Ours 18.3 ± 0.2s 18.5 ± 0.2s

noise. Bai et al. [12] reported the results of Me-Momentum
against uniform flip noise with rate of 20% and 40%. Cheng
et al. [15] reported the results of FBCCR against pair flip
noise with rate of 20% and 40%, and the results for uniform
flip noise with rate of 20%, 40%, and 60%. Xia et al. [14]
reported the results of CNLCU-S against pair flip noise with
rate of 20% and 40% and uniform flip noise with rate of 20%
and 40%. And we reproduced the other experimental results
that are listed in Tables 3 and 4 but are not reported in the
researches mentioned above.

The results in Tables 3 and 4 depict that the accuracy
score of our method exceeds other methods when faced with
noisy samples, which indicates that the proposed SLRLNL
can better learn the hard clean samples while mitigating the
negative impact from noisy samples. These experiments are
conducted with RTX 3080, and the training time in Table 5
also depicts that the extra computation time of our method is
feasible.

Experimental results for Animal-10N and
Clothing1M

To evaluate the effectiveness of our method when deal-
ing with real-world label noise, we conduct experiments on
Animal-10N [27] and Clothing1M [41].

Other than the standard method that only utilizes cross-
entropy, we compare our proposed method with the existing
LNL methods: ActiveBias [56], Co-teaching [22], SELFIE
[27], and PLC [10]. The experimental results are reported
in Table 6, where the results of Standard, ActiveBias, Co-
teaching, and SELFIE are reported in Song et al. [27], and
the results of PLC [10] are reported in it’s own paper. The
results presented in Table 6 demonstrate that our method
surpasses the performance of the existing LNL methods.

For Clothing1M, the experimental results for Clothing1M
are reported in Table 7, where the results of Standard, GCE,
SL, LRT, andPLCare reported inZhang et al. [10], the results
of MentorNet, Co-teaching, and CNLCU-S are reported in
Xia et al. [14], and the results of AUM [19], UPM [20],
and FBCCR [15] are reported in their respective papers.
Our method is compared against these existing popular LNL
methods, and the results listed in Table 7 demonstrate that
our method is more effective than the existing baselines.
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Table 6 Average test accuracy
and its standard deviation over
three trials for DNN trained on
Animal-10N with standard
method, other LNL methods,
and our method

Methods Standard ActiveBias Co-teaching SELFIE PLC Ours
[27] [27, 56] [22, 27] [27] [10]

Accuracy 79.4 ± 0.1 80.5 ± 0.3 80.2 ± 0.1 81.8 ± 0.1 83.4 ± 0.4 86.4 ± 0.2

The best results are boldfaced and the second best are italics

Table 7 Accuracy score for test dataset for DNN trained on Clothing1M with standard method, other LNL methods, and our method

Methods Standard GCE SL MentorNet Co-teaching AUM UPM LRT PLC CNLCU-S FBCCR Ours
[10] [9, 10] [10, 24] [14, 42] [14, 22] [19] [20] [10, 18] [10] [14] [15]

68.94 69.75 71.02 68.36 69.37 66.50 74.02 71.74 74.02 71.57 70.73 74.15 ± 0.10

The best results are boldfaced and the second best are underlined. And we conducted three trials for our method to show the average accuracy score
and its standard deviation

Table 8 Evaluation results of average F1 score and its standard devia-
tion over three trials on Dev set for DNN trained on Human-annotated
and Distantly supervised dataset of Docred with standard method, other
LNL methods, and our method

Human annotated Distantly supervised (Noisy)

Standard 50.26 ± 0.22 49.17 ± 0.41

GCE 49.91 ± 0.15 49.86 ± 0.14

SL 50.73 ± 0.11 49.78 ± 0.31

NLNSRL 51.25 ± 0.23 50.85 ± 1.26

AUM 51.37 ± 0.35 49.98 ± 0.23

LRT 51.50 ± 0.30 49.36 ± 0.12

PLC 51.15 ± 0.26 49.74 ± 0.33

Ours 52.20 ± 0.22 51.03 ± 0.13

The best results are boldfaced, the second best are italics

The experimental results in Animal-10N and Clothing1M
indicate that improving DNN’s learning for hard clean sam-
ples while mitigating label noise is beneficial for DNN’s
generalization in practice.

Experimental results for Docred

We conducted experiments on both the distantly supervised
dataset and the human-annotated dataset for Docred, and
evaluated the results on the validation dataset. We repro-
duced the results of existing LNL baselines, and we used
the F1 score to evaluate the performance of DNN. Table 8
displays the experimental results. The results indicate that
our method outperforms several baseline LNL methods for
both the distantly supervised and human-annotated datasets,
which indicates that SLRLNL can also be applicable for the
tasks in the NLP field.

Hyper-parameters’ analysis

Four hyper-parameters are involved in theproposedSLRLNL:
warm-up epoch tw, nearly clean samples selection propor-

tion nC , max correction proportion max nV , and relabeling
proportion nR for RLA. Each of these hyper-parameters is
determined bydifferent characteristics of the training dataset:
Setting the hyper-parameter tw is to better utilize DNN’s
memorization effect [34, 35], which indicates that the DNN
will first learn the sampleswith a clean label. And this param-
eter is determined by the learning efficiency of the DNN
on the training dataset. Setting the hyper-parameter nC is
to ensure that the samples’ learning risk can be calculated
accurately, and this parameter is determined by the sever-
ity of the label noise. Setting the hyper-parameter nV is to
adjust the effectiveness of the label correction process, and
it is also determined by the severity of the label noise. Set-
ting the hyper-parameter nR is to regulate the effectiveness
of the RLA process, and its value is associated with the
overall learning difficulty of the training dataset. A train-
ing dataset with a higher proportion of samples exhibiting
high learning difficulty suggests that this parameter should
be set to a higher value. To evaluate the effect of these
parameters and determine the best values for our method,
we adjust each of these parameters individually while leav-
ing the other three fixed. First, we fix the hyper-parameters
as tw = 10, nC = 10, max nV = 20, and nR = 2, and
then test tw in the range of [0, 10, 20, 30], nC in the range
of [5, 10, 20, 40], max nV in the range of [10, 20, 40, 80],
and nR in the range of [2, 5, 10, 20]. The backbone DNN
and optimization parameters are identical with the setting for
CIFAR-10 in "Hyper-parameters setting" part of Section 5.
The experimental results on CIFAR-10 are reported in Fig. 4.

As shown in Fig. 4a, for the hyper-parameter tw, when
the dataset is heavily noised, starting the correction process
in an early time can benefit DNN’s performance. And if the
dataset contains only a few noisy labels, extending the warm-
up process reasonably can mitigate the mis-correction from
DNN.

When the dataset contain only a few label noise, the influ-
ence of the nearly clean samples’ selection proportion nC on
DNN’s performance is negligible, as shown in Fig. 4b. How-
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Table 9 Average test accuracy and its standard deviation over three trials on CIFAR-10 and CIFAR-100 for SLRLNL with or without RLA

CIFAR-10
20 % pair flip 30 % pair flip 40 % pair flip 20 % uniform flip 40 % uniform flip 60 % uniform flip 80 % uniform flip

With RLA 93.1 ± 0.1 92.4 ± 0.1 91.4 ± 0.2 92.5 ± 0.1 91.5 ± 0.2 88.9 ± 0.4 78.9 ± 1.2

Without RLA 93.0 ± 0.1 92.2 ± 0.3 91.2 ± 0.2 92.2 ± 0.2 91.3 ± 0.2 88.3 ± 0.6 78.0 ± 1.2

CIFAR-100
20 % pair flip 30 % pair flip 40 % pair flip 20 % uniform flip 40 % uniform flip 60 % uniform flip 80 % uniform flip

With RLA 72.5 ± 0.2 71.4 ± 0.8 69.7 ± 0.2 69.4 ± 0.3 64.0 ± 0.5 53.8 ± 0.3 32.6 ± 1.1

Without RLA 70.9 ± 0.4 69.0 ± 0.6 67.0 ± 0.3 66.4 ± 0.3 62.0 ± 0.5 52.1 ± 0.4 31.1 ± 1.2

The best results are boldfaced

ever, for the heavily noised dataset, the proportion nC needs
to be tuned to improve the efficacy of label correction.

As for the max correction proportion max nV , it is sug-
gested to set max nV to a lower value when the dataset
contains only a few label noise to guarantee the precision of
correction. When the dataset is heavily noised, max nV can
be set to a higher value to eliminate the negative impact from
the label noise. However, it is important to note that setting
max nV too high can result in a significant amount of mis-
correction. This is evident from the results shown in Fig. 4c
where settingmax nV to 80 lowers the DNN’s performance.
Therefore, it is crucial to carefully tune this hyper-parameter
in practical applications.

Under different level of the label noise, DNN’s perfor-
mance is insensitive to the setting of nR . However, to extract
more information from the hard samples, it is recommended
to adjust this parameter to a reasonably higher value when
the training dataset contains high proportion of samples with
high learning difficulty.

In general, DNN performance remains insensitive to dif-
ferent settings of SLRLNL’s hyper-parameterswhen the label
noise is not severe (20%, 40%, and 60% uniform flip label
noise). However, when the training dataset is heavily noised
(80% uniform flip label noise), the warm-up epoch tw, the
nearly clean samples’ selection proportion nC , and correc-
tion proportion nV cause influence to DNN performance.
This indicates that these three hyper-parameters need to be
carefully tuned in practice.

Ablation study

An ablation study is conducted in this subsection to validate
the effectiveness of RLA in improving DNN’s generaliza-
tion performance. To be specific, we perform SLRLNL on
CIFAR-10 andCIFAR-100with artificial noise, and theDNN
adopted is ResNet-18, and hyper-parameters’ setting is iden-
tical with the "Hyper-parameters setting" part in Section 5.
Then, we compare DNN’s performance between SLRLNL
with RLA (nR = 2 for CIFAR-10, nR = 10 for CIFAR-

100) and SLRLNL without RLA (nR = 0 for CIFAR-10 and
CIFAR-100), and the results are reported in Table 9.

As shown in Table 9, the proposed RLA process achieved
greater improvement in CIFAR-100. This is because the
learning difficulty for samples in CIFAR-100 is higher than
that in CIFAR-10. Thus, the RLA process, which aims to
extract more information from the hard samples, can bring
about more significant improvements. This finding indicates
that after the risk-based label correction process, the RLA
process can effectively prevent the DNN from memorizing
hard noisy samples, and enhance the learning for the hard
samples, thus improvingDNN’s generalization performance.

Empirical study of influence of the RLA process on
the hard clean samples

The hard clean samples are vital for DNN’s generalization
performance, since the RLA process focus on relabeling the
hard samples, and it is important to validate whether this
process will influence DNN’s learning for the hard clean
samples.

In this subsection, we conducted empirical study exper-
iments on CIFAR-10 and CIFAR-100 with uniform flip or
pair flip label noise to test the influence of the RLA process
on the hard clean samples. The backbone DNN adopted is
ResNet-18, and the hyper-parameters setting is identical with
the "Hyper-parameters setting" part in Section 5. Then, we
compare DNN’s training loss on the hard clean samples. The
hard clean samples selected as the samples with the highest
10% learning difficulty from the DNN trained by the clean
training dataset, andwe keep these samples clean in the train-
ing dataset. And the experimental results are listed in Table
10, which show the minimal training loss for the hard clean
samples during the training process. Moreover, we also eval-
uated DNN’s performance on the hard clean samples in the
test set. These hard clean samples in the test set are selected
as the highest 10% learning difficulty from the DNN trained
by the clean training dataset. And the experimental results
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Table 10 Average minimal training loss (cross-entropy) over three trials on the hard clean samples of CIFAR-10 and CIFAR-100 during training
process

CIFAR-10
20 % pair flip 30 % pair flip 40 % pair flip 20 % uniform flip 40 % uniform flip 60 % uniform flip 80 % uniform flip

With RLA 0.1302 0.1745 0.2274 0.2037 0.3762 0.5550 0.8726

Without RLA 0.1370 0.1857 0.2471 0.2229 0.3912 0.5755 0.9050

CIFAR-100
20 % pair flip 30 % pair flip 40 % pair flip 20 % uniform flip 40 % uniform flip 60 % uniform flip 80 % uniform flip

With RLA 0.3213 0.4900 0.6330 0.5920 1.2260 1.8961 2.9281

Without RLA 0.4071 0.5003 0.6574 0.7098 1.3716 1.9977 2.9692

The best results are boldfaced

Table 11 Average minimal loss (cross-entropy) over three trials on the hard clean samples in the test set of CIFAR-10 and CIFAR-100

CIFAR-10
20 % pair flip 30 % pair flip 40 % pair flip 20 % uniform flip 40 % uniform flip 60 % uniform flip 80 % uniform flip

With RLA 1.2036 1.2778 1.3182 1.2713 1.5669 2.3464 2.4521

Without RLA 1.2433 1.3366 1.3530 1.3452 1.6083 2.3982 2.4920

CIFAR-100
20 % pair flip 30 % pair flip 40 % pair flip 20 % uniform flip 40 % uniform flip 60 % uniform flip 80 % uniform flip

With RLA 1.1722 1.2703 1.3097 1.3013 1.6514 2.0240 3.1386

Without RLA 1.2751 1.3067 1.3897 1.3844 1.8086 2.1340 3.2123

The best results are boldfaced

are listed in Table 11, which show the minimal loss for the
hard clean samples in the test set.

As shown in Tables 10 and 11, for CIFAR-10 and CIFAR-
100 datasets, the RLA process reduced the loss for hard clean
samples in both the training and test datasets. This indicates
that the RLA process encourages the DNN to extract useful
information from the hard clean samples. Thus, in summary,
although the RLA process may temporarily relabel the hard
clean samples and slow down the DNN’s learning on them,
this process can still improves the learning for the hard clean
samples.

Discussion

In contrast to the existing LNLmethods that rely on samples’
learning difficulty [10, 18, 19, 22], our proposed SLRLNL
method can better distinguish noisy samples from hard clean
samples. As a result, it effectively mitigates the adverse
effects of label noise without compromising the learning
progress of hard clean samples, ultimately leading to better
performance compared to the existing baseline LNL meth-
ods. Moreover, to extract extra information from the hard
samples, we proposed the RLA process to prevent the DNN
frommemorizing the hard noisy samples and further enhanc-
ing DNN’s learning for hard clean samples.

In general, the experimental results from Subsection 6.1
reveal that our proposed method can effectively improve
DNN’s performance when the training dataset contains arti-
ficially generated noisy labels. And the experimental results
fromSubsections 6.2 and 6.3 reveal that ourmethod achieved
better performance when compared with baseline label cor-
rection and loss reweighting methods, which shows that our
proposed method can detect noisy samples more effectively
in practice.

Conclusion and future work

Conclusion

In conclusion, the primary purpose of the proposed SLRLNL
is to detect and correct noisy samples without mis-correcting
hard clean samples, and thus improve DNN’s performance
in practice. Its benefits for DNN accuracy stem from two
aspects. First,weutilize the learning riskof samples to correct
noisy samples without mis-correcting hard clean samples.
Since the latter are vital for DNN generalization, SLRLNL
can further improve DNN performance in practice. Sec-
ond, our proposed RLA can enhance DNN generalization
by encouraging the learning of more generalized knowledge
about the hard samples, resulting in improved generaliza-
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tion performance in practice. The empirical study in section
“Empirical study of separating noisy samples fromhard clean
samples” shows that our method can more accurately sepa-
rate noisy samples fromhard clean samples, and the empirical
study in section “Emprical study of influence of the RLA
process on the hard clean samples” indicates that the RLA
process can enhance the learning for hard clean samples.
The experimental results in sections “Experimental results
for CIFAR-10 and CIFAR-100”, “Experimental results for
Animal-10N and Clothing1M”, and “Experimental results
for Docred” demonstrate the effectiveness of our proposed
SLRLNL in improving DNN accuracy when trained with
artificial or real-world label noise compared to existing pop-
ular LNL methods.

Future work

The proposed SLRLNL is effective in separating noisy sam-
ples from hard clean samples, and in the future works, we
will incorporate our work with Semi-Supervised Learning
method to further improve the performance of our work in
practice.

Limitations

Thiswork still has a few limitations. First, althoughcompared
to existing LNL methods that are based on the learning dif-
ficulty, the proposed SLRLNL can separate noisy samples
from hard clean samples more effectively, separating hard
noisy samples from hard clean samples still remains chal-
lenging for the proposed SLRLNL method. To effectively
separate these two types of samples, it is required to con-
struct a more efficient feature extractor, which, in practice, is
frequently task-specific and is out of the scope for this paper.

Second, although the experimental results in the abla-
tion study show that the proposed RLA process can improve
DNN’s performance, it lacks sufficient theoretical evidence
to prove that it can reduce the noise rate or contribute to bet-
ter convergence toward the optimal classifier learned in the
clean dataset.

Third, the proposed method in this paper aims to avoid
mis-corrections on samples with clean labels but irregu-
lar feature patterns. However, in multimodal scenarios, the
high learning risk of the samples can also be caused by the
inconsistency between the different modalities of the sam-
ples’ input (e.g., in the image-text multimodal scenario, the
image input is mismatched with the text). Under such cir-
cumstances, the proposed method can potentially mistake
samples with inconsistent input from different modalities as
samples with noisy labels, thus degrading the performance
of the proposed
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Appendix A: Proof for Eqs. (4) and (5)

Proof This is the proof for Eq. (5). First, when adopting
MSE as loss function, after updating the gradient from s̃i ,
the update for weight parameters Wu and bias parameters
Bu in the output layer is

� Wu = −2α(ui − ỹi )zi
� Bu = −2α(ui − ỹi ), (A.1)

whereα is the learning rate,ui , and zi areDNN’s logits output
and penultimate layer output for sample s̃i , respectively. ỹi
is the one-hot form of the observed label ỹi . According to
Eq. (A.1), after updating gradient from s̃i , the variation for
the logits output of sample sd = (xd , yd) is

�us̃i→sd = −2α(zi (zd + �zs̃i→sd )
T + 1)(ui − ỹi ). (A.2)

This complete the proof for Eq. (4). In Eq. (A.2), �zs̃i→sd is
the variation for DNN’s penultimate layer output for sample
sd after updating gradient from sample s̃i , and zd is DNN’s
penultimate layer output for sample sd . Then, the learning
risk from sample s̃i in dataset D is

� Es̃i→D

= 1

n

∑

sd∈D

(
||yd − ud − �us̃i→sd ||22 − ||yd − ud ||22

)

= 1

n

∑

sd∈D

(
2 � us̃i→sd (ud − yd )

T + || � us̃i→sd ||22
)

(A.3)
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= 1

n

∑

sd∈D
4α(zi (zd + �zs̃i→sd )

T + 1)(ỹi − ui )(ud − yd )
T

+ 1

n

∑

sd∈D
(2α(zi (zd + �zs̃i→sd )

T + 1))2||ui − ỹi ||22 (A.4)

= 1

n

∑

sd∈D
4α(zi (zd + �zs̃i→sd )

T + 1)(ud − yd )(ỹi − ui )T

+ 1

n

∑

sd∈D
(2α(zi (zd + �zs̃i→sd )

T + 1))2||ui − ỹi ||22 (A.5)

= 4α

n
(zi (ZD + �Zs̃i→D)T + 1)(UD − YD)(ỹi − ui )T

+ 4α2

n
(1 + uiuTi − 2ui ỹ

T
i )

∑

sd∈D
(zi (zd + �zs̃i→sd )

T + 1)2,

(A.6)

where ZD ∈ Rn×Nl ,UD ∈ Rn×K , andYD ∈ Rn×K are the
matrices for the clean dataset D’s penultimate layer output,
logits output, and one-hot form label, respectively. yd and ud
are the one-hot form label and logits output for sample sd ,
respectively. �Zs̃i→D and �zs̃i→sd are the variations after
updating the gradient from s̃i in the penultimate layer output
of sd and D, respectively.

When the learning rate α is set to a small value, �Zs̃i→D

and �zs̃i→sd can be ignored compared to ZD and zd , and
thus, the learning risk can be represented as

�Es̃i→D = 4α

n
(zi (ZD)T + 1)(UD − YD)(ỹi − ui )T

+ 4α2

n
(1 + uiuTi − 2ui ỹ

T
i )

∑

sd∈D
(zi (zd)T + 1)2.

(A.7)

This completes the proof. �
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