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Abstract
We present VoxelPlane-Reloc, a novel indoor plane relocalization system based on voxel point clouds, designed for use with
depth cameras. First, we propose an adaptive weighted plane extraction model that allows for dynamic adjustment of the
correlation between points and plane accuracy. Second, we construct a plane merging model based on voxel growth, which
employs a voxel neighborhood growth strategy to handle unmerged planes and allows for the merging of under-growing
planes. Third, we present an incremental approach for plane input and propose a strategy for triplet selection and evaluation
based on the structural constraints of the planes. This system relies solely on point clouds for relocalization and does not
depend on other information, such as RGB data. We extensively evaluate the system on four datasets, and the experimental
results demonstrate that the system can accurately and quickly perform relocalization with an average precision of 99.37%.
The time for relocalization is improved by 92.43% compared to previous plane relocalization systems, and it exhibits strong
robustness to indoor plane structures.

Keywords Relocalization · Depth camera · Adaptive weight function · Plane merging model · Structural plane constraint

Introduction

Relocalization, also referred to as scene recognition, is
a vital component in simultaneous localization and map-
ping(SLAM) [1, 2]. It serves to adjust the current position
in cases where tracking is unsuccessful and to mitigate drift
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resulting fromprolonged systemmovement.Various sensors,
such as laser radar [3–5] and camera [6, 7], can be utilized
for relocalization. Laser radar has the capability to precisely
capture environmental information [8, 9], but it is expen-
sive and has a limited field of view, making it challenging
for widespread implementation. On the other hand, cameras,
despite having slightly lower accuracy, are gaining popularity
in the field of computer vision due to their affordability and
widefield of view.Additionally,with the increasing availabil-
ity of depth cameras, it is nowpossible to directlymeasure the
depth information of the scene, creating favorable conditions
for relocalization tasks.

Methods for relocalization using depth cameras typically
rely on feature extraction to describe the scene and fea-
ture matching to estimate pose. Most methods extract point
and line features from the image and then search for can-
didate relocalization frames in a database [10–13]. While
these methods are straightforward and computationally effi-
cient in terms of feature description and matching, they
encounter practical challenges in localization processes. For
example, extracting sufficient features in indoor low-texture
environments, such aswalls and ceilings, can be problematic,
leading to feature loss. Additionally, variations in lighting
and viewing angles within the image can affect feature data
association, making accurate estimation during subsequent
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feature matching more challenging. The accuracy of relo-
calization results largely depends on feature detection and
association, so noise caused by factors like dynamic objects
and occlusion during the measurement process can accumu-
late errors, particularly in indoor scenes. These inevitable
issues are challenging to address solely using point and line
features.

In recent years, the fields of SLAM and robotics has
extensively studied the indoor environments. These indoor
settings contain advanced and representative features, par-
ticularly planes. Plane features exhibit greater resilience to
noise points and can effectively handle lighting changes
and moving objects in indoor scenes. Moreover, they enable
faster and more accurate feature association. Consequently,
integrating plane features into indoor relocalization can sig-
nificantly enhance its performance. In consideration of the
aforementioned factors, efforts have been devoted to the
relocalization of planar features [3, 6, 10, 14–16], yielding
notable accomplishments. Nevertheless, several challenges
endure. First, the accuracy of planar relocalization hinges
on the precision of planar extraction. Therefore, address-
ing noise points in point clouds and fully recovering spatial
plane structures for robust plane estimation are imperative for
successful relocalization. Second, the planar relocalization
process involves matching and associating multiple sets of
planes, where the time consumption is directly proportional
to the number of planes in the map and the relocaliza-
tion frame. Moreover, storing plane information associations
consumes significant computational resources, posing chal-
lenges in achieving real-time and lightweight performance.

Building upon these considerations, we propose a real-
time and lightweight indoor plane relocalization system for
robust pose estimation. Leveraging a depth camera, we detect
and reconstruct 3D point cloud information, partitioning it
into voxels for efficient plane extraction. Diverging from
other plane relocalization algorithms that directly extract
planes after segmentation, our approach decomposes the
plane extraction process into two pivotal components. First,
within the voxel, we introduce an adaptive weight function
based on the depth camera’s measurement model, account-
ing for the influence of points at different positions on plane
estimation. Second, to reconstruct spatial plane structures,
even when the same plane is partitioned into different voxels,
we identify correlations and merge strongly related planes.
Recognizing the complexities introduced by plane matching
and aiming to meet the real-time and lightweight demands
of SLAM, we incorporate plane structural constraints. These
constraints expedite fast and robust plane feature matching,
optimizing the best pose estimation based on these rela-
tionships. Additionally, we design an incremental model for
plane input to minimize computational resource wastage and
reduce memory usage. In summary, our main contributions
are threefold:

1. We design an adaptive weighted plane extraction model
that conceptualizes point clouds as a compilation of
voxels. Employing a weight function, we dynamically
modulate the impact of pointswithin the voxels on the pre-
cision of plane estimation, with the objective of attaining
more robust planes.

2. We exploit a plane merging model grounded in voxel
growth, entailing the fusion of planes within the immedi-
ate voxel growth neighborhood. Additionally, we reinte-
grate planes with inadequate growth to reinstate a more
comprehensive plane structure.

3. We propose an incremental plane input model and for-
mulate two strategies for the selection and evaluation
of plane triplets, guided by plane structural constraints.
These strategies are designed to expedite the matching
process, facilitating real-time and lightweight reorienta-
tion.

The rest of this paper is structured as follows. Section
“Relatedwork” reviews existing relocalization research. Sec-
tion “Method” presents a comprehensive explanation of our
methodology, while Section “Experiment” showcases our
experimental findings. Lastly, Section “Conclusions” sum-
marizes the key points of this paper and explores potential
avenues for future research.

Related work

We primarily focus on feature-based relocalization methods
and categorize them into different types of features, including
local features, global features, and planes. Our algorithm is
closely related to those based on planar features.

Local features-based relocalization

In the initial stages, local characteristics served as inputs
for relocalization, primarily due to the emergence of the
bag-of-words (BoW) model. Originally developed for text
representation, the BoW model found applications in com-
puter vision for effectively modeling image features [17].
This technique intelligently represents images as words to
establish their relationships and has since been extensively
referenced in subsequent studies. Angeli et al. [18] employed
local shape and color features to construct an online visual
dictionary, relying on Bayesian filtering to estimate the prob-
ability of relocalization.Garcia-Fidalgo et al. [19] introduced
an indexing method for binary features, combined with an
inverted index, to obtain relocalization candidates in real-
time. To meet the demands of offline SLAM, Cummins
et al. [20] adopted a method that employed concentration
inequalities for fast approximate multiple hypothesis test-
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ing and computed relocalization probability within a filtering
framework. However, the speed improvement of this method
heavily depends on the amount of feature data. Labbe et al.
[21] proposed a memory management approach that relo-
cated positionswith highobservation frequency, significantly
enhancing real-time performance but potentially introduc-
ing feature quantization errors. To mitigate the impact of
dynamic objects in the scene on relocalization accuracy,
Gao et al. [22] used a dual Gaussian model to distinguish
foreground and background, effectively identifying dynamic
features. Yang et al. [23] employed a geometric constraint
method to filter dynamic feature points in the scene, achiev-
ing accurate pose estimation in dynamic scenes, although this
approach is less sensitive to feature extraction in lowdynamic
scenes. Hang et al. [24] improved the geometric constraint-
based dynamic–static feature point classification scheme and
developed a more refined feature partitioning strategy based
on it.

Global features-based relocalization

In contrast to local features, global features are directly
computed as descriptors, and relocalization is achieved by
assessing the correlation between image descriptors. Oliva
et al. [25] introduced the concept of Gist global descrip-
tors, which extract image information using Gabor filters
with varying directions and frequencies, condensing it into
a single vector representation. Ulrich et al. [26] employed
the histogram of panoramic color images in combination
with nearest-neighbor learning for image matching. Sun-
derhauf et al. [14] first downsample the image and then
compute BRIEF descriptors around the center of the down-
sampled image.With the advent of deep learning, researchers
have started utilizing deep learning techniques to design
improved global descriptors. Zhao et al. [15] compress point
clouds into normal distributions transform(NDT) units using
3D Gaussian distribution transformation and learn global
descriptors from them. Hou et al. [27] introduced a hierarchi-
cal transformer that enhances the correlation between local
neighboring points and the contextual dependency between
global points.

Plane-based relocalization

As an advanced capability, plane possess attributes such as
fundamental data correlation and exceptional performance
in low-texture environments. Consequently, plane features
are widely acknowledged as valuable inputs for relocaliza-
tion, particularly in indoor settings. Sun et al. [28] proposed
using a probabilistic model to extract planes and mitigate
the influence of depth noise. Lin et al. [29] divided the
point cloud into NDT cells and used the RANSAC algo-
rithm to extract plane features in each cell. Zhang et al.

[30] generated hypothetical planes based on the detection
of plane features, which served as the foundation for pose
estimation. Dominik Belter et al. [31] used deep learning to
detect plane features and jointly optimize visual cues, normal
vectors, and plane parameters. Zi et al. [32] proposed reg-
istering point features to corresponding plane features and
then combining point features for pose estimation. Li et al.
[33] integrated point, line, and plane features for pose esti-
mation, imposing certain constraints on the plane features in
indoor scenes.Although this significantly improved the accu-
racy of pose estimation, the computational complexity was
high. Consequently, the relocalization thread only used the
pose estimated from the front end and correlated it with point
features. Shu et al. [34] followed a similar approach by incor-
porating point, line, and plane features, with the addition of
line features in the relocalization process for more robust
pose estimation. However, this method may not perform
well in low-texture scenes where sufficient features cannot
be extracted to support relocalization. J. Wietrzykowski et
al. [35–37] proposed a method using RGB-D cameras to
extract plane features by leveraging color information and the
flood-fill algorithm. They transformed pose estimation into
a calculation of Gaussian kernel probability distributions for
relocalization. However, this method has limitations in plane
segmentation, resulting in poor edge detection of the planes.

While the aforementioned work has yielded promising
results in certain cases, it still encounters challenges due
to inherent limitations. One such challenges is that extract-
ing a large number of local features can hamper real-time
performance. Moreover, employing local feature matching
across the entire map can reduce the matching success rate.
Conversely, global features heavily rely on training with
outdoor large-scale datasets and are not suitable for indoor
conditions, posing difficulties in achieving optimal results.
Existing plane relocalization systems often suffer from inac-
curate plane estimation due to coarse plane segmentation and
encounter real-time processing difficulties during brute-force
plane matching. Our approach offers a different perspec-
tive by leveraging a voxel structure to streamline the plane
extraction process, enhancing robustness and accuracy. Fur-
thermore, to address the computational resource demands
introduced by incorporating plane features, we integrate
structural constraints and pruning strategies based on the
indoor scene itself, ensuring compatibility with the real-time
requirements of relocalization.

Method

We have developed a model for extracting planes and a
relocalization strategy based on 3D point clouds from the
depth camera, which is called VoxelPlane-Reloc. The over-
all methodology of our model is depicted in Fig. 1.
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Fig. 1 Overview of our architecture

Ourmain objective is to establish the relationship between
the global map and the local map to facilitate matching. We
have developed a relocalization system that integrates a depth
camera with plane feature extraction. This system comprises
three modules: voxelplane extraction module, plane merg-
ing module, and plane matching module. In the subsequent
sections, we will provide a detailed explanation of our work.

Voxelplane extraction

To ensure the precise and comprehensive extraction of planes
in space, we have introduced the concept of voxels. Ini-
tially, the input point cloud information is mapped to an
n × n × n (m) voxel grid, followed by the extraction
of planes from the points within each voxel. Traditional
plane extraction strategies fall short of meeting the precision
requirements of our system. For instance, the least squares
(LS) methods are highly sensitive to outliers and may result
in local convergence issues [38, 39]. RANSAC may lead to
non-uniqueness of the plane [7, 40].Algorithms based on fea-
ture space transformation, such as PCA [41, 42] and Hough
Transform [43], require an analysis of point cloud quality. To
address this, we incorporated information about point cloud
quality and noise characteristics obtained during the actual
collection process using the depth camera. Subsequently, we
devised an adaptive weighting function. This function opti-
mizes the initial plane parameter estimation by allocating
varied contributions to the plane extraction accuracy at dif-
ferent positions, thereby enhancing the overall robustness of
plane extraction.

First, the adjustment involves the extraction of the initial
plane P0 through PCA decomposition applied to all points
within the voxel. The theoretical equation for the plane is
formulated as n · pi − d = 0. However, due to potential
disturbances in measurements, certain points may exhibit
deviations from this ideal equation. Consequently, the opti-

mization objective function is defined as follows:

S =
m−1∑

i=0

(n · pi − d)2, (1)

where n and d serve as the parameters characterizing the
plane, n specifically designates the normal vector of the
plane, while d signifies the distance from the plane to the ori-
gin. The variable m comprehensively encapsulates all points
situated on the plane within the voxel, and the symbol p is
employed to denote the coordinate values associated with
these points.

The current problem is to update and obtain the optimal
plane parameters n and d such that the objective function
S approximates to 0. However, given the presence of noise
points in actual measurements, we aim to derive more robust
plane parameters. To achieve this, we consider assigning
differentweights to eachpointwithin the voxel, thereby adap-
tively distinguishing between inliers and outliers of the plane.
Previously, several works have explored the use of different
weight functions to obtain robust estimates. Tukey function
[44], for instance, proposed reducing and eliminating out-
liers to determine the weights and selected the square model
as the basis for weight reduction. Danish function [45], on
the other hand, employed an exponential model to shrink
values that deviated significantly from the residuals. Ham-
pel function [46] and IGG-3 function [47] combined these
approaches, using a polynomial model with three modes to
allocate weights. Through a series of experiments, it was
found that while there is not a substantial difference in the
final performance of planar detection using different weight
functions, the best results were achieved by combining the
exponential and square models.

Although these weight functions are carefully designed,
they all rely on iterative residual calculations to determine
weight categories.However, this approach is not entirely con-

123



Complex & Intelligent Systems (2024) 10:3925–3941 3929

sistent with the actual plane extraction situation. Through
experiments, we identified an issue related to inaccurate
original depth images when employing a depth camera to
measure planar point clouds, particularly at the image edges
[48]. The edges exhibit lower signal intensity compared to the
center and are more susceptible to noise interference. Con-
sequently, for a plane, the contribution of the center points
and the surrounding points, especially the edges, to the plane
is not uniform. To address this phenomenon, we propose an
adaptive weight function that aligns with the depth camera
point cloud measurement model:

Wi =
{

−αr2i + 1, if |ri | ≤ σ

exp(−βr2i ), if |ri | > σ,
(2)

whereWi denotes the weight value corresponding to point pi
and ri represents the distance from a specific point pi to the
center of the plane, the parameter α influences the steepness
of the squaremodel, leading to a faster decrease in the weight
function. Simultaneously, β governs the convergence speed
of the exponential model to 0. In our pursuit of extracting
more precise plane parameters, we align the objective of the
weight function by assigning greater weights to points in
closer proximity to the center. This is achieved by selecting a
smaller α when the gradient of the planemodel is diminutive.
Conversely, lesserweights are assigned to points farther away
from the center, indicating a larger β when the gradient of
the exponential model is more substantial. The parameter σ

delineates the boundary of the weighted calculation model
for partitioning plane points. It is determined as half of the
distance between the center point of the extracted plane and
the farthest point from the center, contributing to the accurate
delineation of the weighted calculation boundaries.

This weighting function segregates the points used for
plane extraction into two groups. It leverages the center of
the plane obtained from PCA as prior information and estab-
lishes a spherical model around this center point within the
voxel. By evaluating the relationship between the points and
this sphere, it reduces the weighting coefficient of the points
at the edges, thereby diminishing their influence on plane
extraction. Ultimately, the objective function optimized is as
follows:

min
∑

n,d

|Wi (n · pi − d)|2 , (3)

where pi signifies the set of all points constituting the inter-
nal plane of a voxel, andWi represents the weight coefficient
assigned to point pi , the parameters n and d characterize the
plane parameters subject to optimization. The primary objec-
tive is to ascertain the weight contribution of each individual
point to the plane. Given this objective, the optimization aims
to derive optimal values for n and d that minimize the cumu-

lative sumof point-to-plane distances, effectively converging
toward zero.

Planemerging

With the introduction of the voxel concept, we cannot guar-
antee the seamless division of the same plane within voxel
space. To reconstruct a comprehensive plane structure, we
have introduced a plane merging module. This module con-
solidates all point clouds representing the same plane in
adjacent voxels, culminating in amore accurate and complete
plane estimation.We propose a planemerging strategy: voxel
growth and under-growing merge model. Further details are
provided in Fig. 2.

The representative plane detection algorithm for merg-
ing on the same plane is the region growing algorithm [49].
It operates by applying region growing on a patch in a
2D depth map to identify a plane. To adapt this strategy
to our 3D voxel point cloud model, we have made certain
enhancements. To facilitate plane expansion using voxels,
we examine the voxels within the 3×3×3 vicinity and their
associated plane data. The process of voxel plane growth
involves several steps. Initially,we create a seed listV1,which
includes all voxels containing planes. This list is denoted as
V1 = {∀vi ∈ V1, Pi ∈ vi }, where vi represents the voxels,
and Pi indicates the presence of a plane within that voxel.
Next, we initiate the growth process by selecting the first
voxel from the list as the seed. We then iterate through its
26 neighboring voxels. If a neighboring voxel meets specific
criteria, it can be merged:

1. There is an ungrown plane within the voxel.
2. The plane’s parameters (n and d) in the neighboring voxel

closely resemble those of the seed voxel, exhibiting a
difference smaller than predefined thresholds. While the
ideal scenariowould involve identical plane parameters (n
and d) for merged planes in adjacent voxels, the presence
of noise points during the actual measurement process
introduces minor errors in plane estimation. Therefore,
we establish a threshold of sufficient sensitivity to accom-
modate these small errors, ensuring the comprehensive
merging of segmented planes.

And then, we proceed to update the merged planes and
upgrade the voxel seed list to V2, removing the seed voxels
and the voxels that have already been merged in the previous
stages. This updating process is carried out once the growth
process of each voxel is completed. In summary, we repeat
the aforementioned process continuously until the seed list
becomes empty.

Following the voxel growth in the previous stage, cer-
tain small planes that were initially segmented may still be
separated due to insufficient growth or viewing angles. To
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Fig. 2 Overview of the plane merging model based on voxel growth.
The system comprises two essential components: the voxel growth and
under-growing models. The cross section of the voxel growth cube is
depicted as a large square composed of 3×3 smaller squares. On the left
square, the pink area designates the seed voxel, the blue area signifies
adjacent voxels undergoing evaluation for growth. On the right square,
the pink area represents voxels that have successfully grown, the blue

area designates voxels under evaluation for growth, and the green area
indicates voxels that do not meet the growth conditions. In the under-
growing model, the pink plane represents the initial plane slated for
merging, yellow signifies the plane eligible for merging (denoted by
Y, indicating that the merging condition is satisfied), and green desig-
nates the plane ineligible for merging (denoted by N, indicating that the
merging condition is not met)

address this concern, we have proposed additional opera-
tions for merging these planes. If a plane is identified as a
distinct and similar fragment due to inadequate growth in the
actual area, it needs to bemerged. This merging process must
satisfy three specific conditions:

1. The angle between the normal vectors of the two planes
is sufficiently small, indicating that the planes are nearly
parallel.

2. The angle formed by the vectors connecting the centroids
of the two planes is approximately 90 degrees, suggesting
that they are at the same depth.

3. The merging process is constrained to the extent of the
plane’s radius multiplied by a scaling factor to prevent
excessive merging.

After performing checks for parallelism, same depth, and
proximity,we incorporate the small plane input into the larger
plane. We then proceed to recalibrate the plane parameters
to obtain more precise and consistent observations about the
plane.

Planematching

Our plane matching module expands upon the traditional
algorithm framework of planeloc [36]. It calculates the trans-
formation by selecting sets of three planes and establishes
a probability density function(PDF) to model the relation-
ship between pose transformations. We depart from the
previously mentioned method to establish a real-time and
lightweight relocalization system by exclusively incorporat-
ing point cloud information, eliminating dependencies on
RGB data. Concurrently, we propose an incremental plane

input model and integrate structural constraints based on the
Manhattan assumption to eliminate redundant plane associa-
tions. For the sake of clarity and streamlined expression, we
consistently employ the notation PM to denote planes within
the map and PS to signify planes within the submap in the
subsequent text.

Incremental input model

To effectively prevent misalignment resulting from the simi-
larity of indoor scene planes, our algorithm design stipulates
the presence of at least 5 sets of matching planes for plane
relocalization. The threshold setting should align with the
unique scene identification strategy in subsequent transform
evaluations, ensuring compatibility with the distinctiveness
of planar scenes. Once the correct 5 sets of planes are found
and the correct transformation relationship is calculated, the
input of additional planes not only has no impact but also
introduces redundancy.

We have devised a unique model for incrementally
inputting submap planes, as illustrated in Fig. 3. To filter
the input submaps comprehensively, we systematically select
five representative planes with a defined angular separation
in space and substantial size as the initial input. Subse-
quently, we identify three pairs of matching triplets from
the newly introduced submap input planes and the existing
map, computing the transformation relationships for each
triplet. The remaining planes in the initial submap are then
subjected to transformation based on the calculated relation-
ships. We verify whether the majority of these planes align
with their corresponding counterparts in the map. Concur-
rently, we restore the original order to scrutinize the plane
correspondence. If the preponderance of planes successfully
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Fig. 3 Overview of the incremental input model

aligns with their correct matches, indicative of successful
repositioning, we output the transformation relationship for
the optimal triplet. In cases where this alignment is not
achieved, we proceed to select the subsequent plane input
from the remaining planes, update the submap accordingly,
and iteratively repeat the aforementioned steps until success-
ful repositioning is attained.

Triplet selection

For plane relocalization, we utilize the point cloud planes
from both the global map and the local map. Typically,
three sets of matched planes are sufficient to establish the
pose transformation relationship. The selection of triplets
is directly influenced by the number of planar maps and
submaps. In prior methodologies, triplets were chosen using
color histogram filtering and brute-force matching, result-
ing in a substantial number of triplets. This led to significant
computational and evaluative demands in terms of time and
space. Our approach incorporates the Manhattan hypothe-
sis theory, which reduces the number of triplets based on the
structural constraints of indoor scenes. Furthermore, we have
implemented algorithm pruning and acceleration techniques
to enhance the real-time performance of the relocalization. A

detailed description of the key strategies used in this module
will be provided in the following section.

Ground plane constraint. The ground plays a pivotal role in
indoor scenes as it provides a stable support surface for all
viewpoints and scenarios. It can be regarded as the primary
group of matching planes. By leveraging ground constraints,
the initial set of matches can be determined, designating the
ground plane. Following the preceding plane extraction and
merging process, only one ground plane remains, consider-
ably reducing the number of triplets. After determining the
map plane PM and the submap plane PS , we calculate the
angle relationship between each plane and the actual normal
vector ng of the ground. Subsequently, we select the ground
planes PM

g and PS
g accordingly.

< nMg , ng >= arccos(nMg · ng) < τg, (4)

< nSg , ng >= arccos(nSg · ng) < τg, (5)

where nMg and nSg represent the normal vectors of the ground
planes PM

g and PS
g respectively, with the true ground normal

vector ng is (0,−1, 0)T . The symbol< n1, n2 > denotes the
angle measurement between two vectors. The threshold τg is
specifically designed to filter the ground plane. Ideally, the
angle between nMg (nSg) and ng should be 0◦. However, due
to the presence of noise points in the actual measurement
process, the estimation of the ground normal vector is not
entirely accurate. Additionally, to accommodate a larger field
of view, cameras are typically installed with a certain tilt
angle. Consequently, a threshold aligned with the practical
situation needs to be established.

Orthogonal plane constraint. The walls, floors, and ceil-
ings in each room are either mutually orthogonal or parallel,
adhering to the Manhattan assumption. To ensure accurate
pose calculation, we have devised the following approach
for filtering triplets:

1. The angle variation between the chosen PM and PS falls
within a specific range, determined by the plane structure.
Given that parallel or coplanar planes serve a similar role
in transformation calculations, we prefer the three planes
selected in the triplet to be approximately perpendicular
to each other. However, the actual calculation angle dif-
ference may not be entirely accurate, and the existence of
inclined planes in space cannot be ruled out. Therefore,
the range is set to [40◦, 140◦].

2. The distance between the selected three map planes in the
triplet should not be too far apart, as it wouldmake it chal-
lenging for them to appear in the same scene within the
submap. Traditionally, the distance between planes is rep-
resented by their closest points. However, in certain cases,
this method can lead to inaccuracies, inconsistencies, and
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complexities, especially when dealing with non-convex
shapes. To address this, we have developed a novel dis-
tance representationmethodwhere themaximumdistance
from all decentralized points to the origin is considered
as the radius, signifying that all points in the plane are
enclosed within a sphere. Thus, comparing the distance
between two planes is converted into comparing the dis-
tance between two spheres in 3D space.

3. During the extraction process, PM and PS exhibit a
specific dimensional relationship due to perspective con-
straints. Typically, the area of the same plane in the map is
equal to or larger than the area of the submap. To account
for this, we utilized a grid-based method to estimate the
planar area based on their relative relationship. Initially,
the point cloud was divided into smaller patches with
dimensions of l × l. Then, we counted the number of
point clouds in each patch to determine the relative rela-
tionship between the ground plane area and the submap
plane area.

Transform calculate and evaluate

After triplet filtering, determining the optimal triplet to attain
the correct pose transformation relationship becomes imper-
ative. This entails the evaluation of triplets. By leveraging
the matching relationship of the three planes, we can cal-
culate the corresponding pose transformation to verify the
correctness of the matching relationship. By minimizing
the disparity between the normal vectors nMi and nSj of

PM
i and the transformed current submap PS

j , a quaternion

r = [rx ry rz rw]T is derived to signify the rotation. Sim-
ilarly, the discrepancybetween the offset componentsdM

i and
dS
j of P

M
i and the transformed PS

j is minimized to determine

the translation component t = [tx ty tz]T .

Er =
∑

(i, j)∈T

∣∣∣W (r)T Q(r)nSj − nMi

∣∣∣
2
, (6)

Et =
∑

(i, j)∈T
[(dM

i − dS
j − (nSj )

T t]2, (7)

where Er denotes the disparity between the transformed nSj
and nMi , while Et signifies the difference between the trans-
formed dS

j and dM
i . Ideally, these discrepancies should be

null, yet in practical scenarios, a certain degree of error per-
sists. Our objective is to determine optimal values for r and t
thatminimize these discrepancies to the greatest extent possi-
ble. The pair (i, j)within the tripletT , denoted as (i, j) ∈ T ,
represents a set of corresponding planes. The matrices Q(r)
andW (r) are two essentialmatrix functions related to quater-
nions and can be defined as follows:

Q(r) =
[
r I + K (r) r

−rT r

]
, (8)

W (r) =
[
r I − K (r) r

−rT r

]
, (9)

where K (r) is the anti-symmetric matrix and I is the iden-
tity matrix. To find the rotation quaternion r , we can set the
partial derivatives to zero and perform an eigenvalue decom-
position on the matrix, introducing Lagrange multipliers as
necessary. The translation component t can be obtained using
the method of singular value decomposition(SVD).

The transformation accomplished by matching triplets
one-to-one solely emphasizes error reduction and does not
account for situations where there is no matching relation-
ship between the triplets. Hence, it is crucial to implement
supplementary filtering and evaluation techniques. In the fol-
lowing section, we will provide comprehensive explanations
of the three evaluation strategies that will be employed:

Map plane projection strategy. The accurate transformation
relationship ensures that planar points in the transformedmap
exhibit an approximate distance to the planar points in the
submap, approaching zero. We will convert PM

i to the coor-
dinate systemof the submapplane, represented as TM→S PM

i .
By calculating the distance from the transformed map plane
coordinates to the submap plane, we can identify the points
within a specified range as internal points. Then, we can
assess the transformation’s effectiveness by determining the
proportion of internal points.

p(i, j) = v(TM→S PM
i , PS

i ) × scale

TM→S PM
i

, (10)

where p(i, j) represents the fraction of points within a
submap categorized as inliers when projected onto the map
coordinate system. The function v(a, b) calculates valid
points in a that lie on the plane represented by b. The param-
eter scale constitutes a fixed threshold contingent on the
number and density of the point cloud. In scenarios where
the number of point clouds is substantial, the process of pro-
jecting points becomes time-consuming. To streamline this
process, we employ the projection result of one point to rep-
resent all points in its surrounding area.

Submap plane overlap strategy. By utilizing the method of
overlapping in the provided image, we successfully aligned
and edited two images. This alignment requires the images
to have overlapping areas [5]. To determine the extent of the
overlap, we employ a novel distance representation approach
based on the plane’s center and the constraints established
within the orthogonal plane.
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o(i, j) =max

(
p(TM→S PM

i ) − CS < RS

p(TM→S PM
i )

,

p(PS
j ) − TM→SCM < TM→S RM

p(PS
j )

)
,

(11)

where o(i, j) denotes the overlapping area between a pair
of planes (i, j) within the triplet. The notation p(A) refers
to the ensemble of all points in set A. The transformation
TM→S denotes the conversion from the map coordinate sys-
tem M to the submap coordinate system S. Additionally, C
and R signify the center of the plane and the radius of the
corresponding spatial sphere, respectively.

Scene identification unique strategy. In indoor environments,
considering only three sets of planematches can lead to false-
positive cases. To address this, we have introduced a scene
uniqueness criterion to guide the transformation evaluation
function in eliminating triplets that do not meet the require-
ments. By ensuring that the number of matches between the
transformed submap planes and the map planes is not less
than the threshold value (τm = 5), we can ensure that the
obtained transformation is more consistent with the actual
observational relationship. The establishment of this thresh-
old is intricately linked to the planar complexity of the indoor
scene. When assessing the matching of a triplet, challenges
arise in avoiding triplets composed of wall corners in the
indoor environment, where determining the position in the
roomwith just onewall corner proves difficult.Consequently,
more planes need to be incorporated formatching constraints.
Through extensive experimentation, we have determined that
achieving more efficient repositioning is feasible with five
groups of planematches. Naturally, this value can be adjusted
based on the planar complexity of the indoor scene. The pres-
ence of more similar planes or spatial structures corresponds
to a larger value for optimal performance.

We use the overlap rate generated by plane transforma-
tion as the fundamental measure for computing weights, as
defined in Eq. 12. Additionally, we consider the frequency of
each plane and plane pair in the triplet. The more represen-
tative a plane is, the less frequently it appears, resulting in a
higher weight. The weight wa(i, j) of the plane pair (i, j) in
the triplet can be expressed as:

wa(i, j) =
⎡

⎣
∑

b∈T

∑

(k,l)∈b

∏

i=k

exp(−y(a, b))

⎤

⎦
−1

=
⎡

⎣
∑

b∈T

∑

(k,l)∈b

∏

i=k

exp
(
−

∣∣∣log (v−1
a vb

∣∣∣
)
⎤

⎦
−1

, (12)

where function function
∏

i=k is a binary operator yield-
ing a value of 1 exclusively when the parameters it operates

on are equal. Additionally, y(a, b) denotes the dissimilarity
between transformations a and b. The pair (i, j) signifies the
plane pair within triplet a, and (k, l) denotes the plane pair
within triplet b. The variables va and vb, respectively, repre-
sent the solutions for the transformations in triplets a and b,
conceptualizing them as points in space. By systematically
traversing through the set of triplets b = {b ∈ T , b �= a}, we
can compute the comprehensive weight proportion:

wa =
∑

(i, j)∈a
o(i, j)w−1

a(i, j), (13)

where o(i, j) is the overlap as defined in Eq. 11.
Using the method proposed by Wietrzykowski et al. [35],

a probability distribution model is employed to describe the
weights of the triplets:

P(x) = 1

Z

∑

a∈T
wa exp

{
− log(v−1

x va)
T Ia log(v

−1
x va)

}
,

(14)

where Z is a constraint that ensures normalization. The dis-
tance between the kernel’s center, represented by vx , and the
transform for triplet a, represented by va , is computed using
logarithmmap. Ia is the information matrix that corresponds
to it. Using the probability distribution model mentioned
above, we can identify the point with the highest probability,
which corresponds to the optimal triplet transformation.

Utilizing the three modules of plane extraction, plane
merging, and plane matching, we ultimately obtained an
accurate pose transformation relationship, achieving a real-
time, lightweight, and robust relocalization system.

Experiment

We evaluated the proposed VoxelPlane-Reloc system on four
different datasets:

• ICL-NUIM dataset [50] is a simulated indoor environ-
ment dataset that includes living room and office scenes
with a large amount of planar information, which makes
it highly suitable for our indoor relocalization system.

• Simulation dataset for plane extraction using noisy data
that follows a Gaussian distribution at different depths to
obtain ground truth. This dataset is created to evaluate
the accuracy of our plane extraction model.

• The mToF dataset is a collection of data captured using
mToF cameras in real-world environments, includingfive
common indoor scenes.

• TheL515 dataset utilizes theL515 camera,with its acqui-
sition mode being consistent with the mToF dataset.
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Evaluation details

Since our system operates within a global localization frame-
work with pre-existing maps, we employed the adapted
VoxelMap [51, 52] algorithm to accurately estimate visual
odometry and facilitate the creation of global and local plane
maps. The operating system used was Ubuntu Linux 20.04
LTS, along with ROS2 galactic.

We will compare our proposed system with other relo-
calization systems. Planeloc [36] is a state-of-the-art plane
feature-based relocalization system,which utilizes bothRGB
and depth inputs. To demonstrate the performance of our
algorithm, we compared it with the loop closure compo-
nents of several planar SLAM systems. SP-SLAM [30] is
a system that estimates pose using both real and inferred
planes and detects relocalization frames using point fea-
tures. PlanarSLAM [33] is a system that estimates pose
using a combination of point, line, and plane features, while
also recovering localization using point features. Structure-
PLPSLAM [34] builds upon previous work by incorporating
line feature constraints for relocalization. To showcase the
performance of our repositioning system,we conducted com-
parative experiments with the aforementioned algorithm.
Furthermore, to validate the accuracy of our plane extraction,
we compared our proposed plane extractionmodelwith other
existingmodels. NDT-RANSAC [29] is a system that divides
point clouds intoNDTunits for LS plane extraction. PCA-LS
[53] is a plane extraction system that combines PCA and LS,
but it is worth noting that it does not include weights. PCA
[51] and LO-RANSAC [54] are two widely recognized algo-
rithms in the field of plane extraction. Enhanced-VSLAM
[32] utilizes region growing combined with RANSAC for
plane extraction models. During the design phase of our sys-
tem, numerous optimization strategies were proposed. To
assess the effectiveness of these strategies, we conducted
ablation experiments. Among them, VR-NE represents the
relocalization system after closing the adaptive weight func-
tion in the planar extraction module, VR-NM represents the
closure of the plane merging module, VR-NI represents the
closure of the incremental input model, VR-NG represents
the closure of the ground and orthogonal plane constraints in
the triplet selection strategy, VR-NP represents the closure
of the map plane projection strategy, VR-NO represents the
closure of the submapplane overlap strategy, andVR-NS rep-
resents the closure of the scene identification unique strategy.
In all experimental tests, the evaluation of relocalization per-
formance included identifying true-positive positions (TP),
false-negative positions (FN), true-negative positions (TN),
and false-positive positions (FP). Furthermore, precision (P)
and recall (R) were evaluated in all experiments. Preci-
sion refers to the probability of correctly predicting positive
samples among all predicted samples, while recall repre-
sents the probability of correctly predicting positive samples

among all actual positive samples. Additionally, to verify
the advantages of our system in terms of time consumption,
we included a comparison of the average relocalization time
(avg_time) in the ablation experiment. The bold font in all
tables indicates the optimal data for that experiment.

Simulation dataset

For the two distinct situations in ICL-NUIM, we utilized the
seq-kt1 to create the global map planes. The remaining three
sequenceswere employed to create local submapplanes,with
each set comprising 50 frames. To assess the distinctiveness
of the scenarios, we included 20 negative samples in each
scenario test. These negative samples consisted of submap
planes that were not part of the specific scenario. Table 1
presents the results of indoor sequence relocalization in pub-
licly available datasets.

Based on the findings presented in Table 1, our method
has demonstrated the highest precision and recall rates in
indoor scenes. Additionally, Furthermore, Planeloc demon-
strates strong performance in screening negative samples.
In comparison to the two scenarios, some negative samples
are extracted from self-built indoor scenes, and their plane
features are relatively rich, presenting significant differences
from the test sequences. Additionally, given that the Planeloc
system takes RGB and point cloud inputs, localization ben-
efits from the color information in RGB, imposing certain
constraints. However, testing revealed that its recall rate in
positive samples remains suboptimal, with only half of the
localization frames being correctly identified on average. In
contrast, our method has shown a 10.24% improvement in
precision and a remarkable 58.76% improvement in recall
rate, highlighting our method’s strong generalization per-
formance in indoor scenes. Although both SP-SLAM and
PlanarSLAM incorporate planar features for pose estima-
tion, they exhibit poor relocalization performance for scenes
with a close view of the wall due to the use of point features
for loop closure pose recovery. While Structure-PLPSLAM
enhances performance by incorporating line feature con-
straints, there is still a noticeable gap when compared to our
algorithm. This indicates that using planes for relocalization
in indoor scenes can eliminate some undesirable landmarks
and achieve more accurate relocalization.

Due to the unavailability of ground truth data for the
given dataset, we conducted a simulation experiment to fur-
ther evaluate the accuracy of the plane extraction model.
Specifically, we randomly generated points within a range
of 1m–9m with a certain depth and ensured that they lie
on a given plane. We used this set of plane parameters as
the ground truth and added noise along the direction of its
normal vector, following a Gaussian distribution. Table 2
presents a comparison between the results of five different
plane extraction methods and the ground truth. The value
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Table 1 Relocalization results
of ICL-NUIM dataset

Methods Sequence Statistics P [%] R [%]

TP TN FP FN

Ours Living room 52 19 1 9 98.11 85.24

Office room 47 20 0 13 100.00 78.33

Planeloc [36] Living room 29 16 4 32 87.88 47.54

Office room 34 17 3 26 91.89 56.67

SP-SLAM [30] Living room 26 6 14 35 65.00 42.63

Office room 29 8 12 31 71.43 48.33

PlanarSLAM [33] Living room 29 7 13 32 69.05 47.54

Office room 37 7 13 23 74.00 61.67

Structure-PLPSLAM [34] Living room 34 11 9 27 79.07 55.74

Office room 41 13 7 19 85.42 68.33

Table 2 Precision for simulation plane extraction

Plane NDT-RANSAC [29] PCA-LS [53] LO-RANSAC [54] PCA [51] Enhanced-VSLAM [32] Ours

α [◦] d [m] α [◦] d [m] α [◦] d [m] α [◦] d [m] α [◦] d [m] α [◦] d [m]

1 14.259 0.072 15.425 0.104 15.411 0.103 15.604 0.107 9.548 0.307 0.934 0.069

2 7.062 0.176 15.420 0.223 13.802 0.494 15.790 0.221 12.878 0.283 1.113 0.138

3 11.043 0.225 22.006 0.153 11.105 0.160 19.879 0.130 13.128 0.106 1.749 0.040

4 4.074 0.090 3.332 0.203 5.152 0.235 1.608 0.076 13.374 0.191 1.502 0.112

5 3.781 0.145 0.158 0.047 6.677 0.500 4.128 0.083 3.922 0.262 1.059 0.359

6 6.351 0.626 10.761 0.414 11.784 0.349 4.002 0.332 10.684 0.488 2.165 0.068

7 9.889 0.183 14.330 0.083 13.900 0.133 20.372 1.247 13.519 0.181 3.223 0.092

8 4.810 0.146 9.587 0.633 8.325 0.794 12.766 0.736 7.676 0.503 1.576 0.078

9 9.171 0.210 6.505 0.130 13.676 0.259 21.081 0.139 13.469 0.383 0.890 0.034

Mean 7.827 0.208 10.836 0.221 11.092 0.336 12.803 0.341 10.911 0.301 1.579 0.110

α [◦] denotes the angle between the normal vector of the
extracted plane and the ground truth, while d [m] represents
the distance between the extracted plane and the ground truth
plane. In this table, Mean represents the average value. Our
method outperforms other algorithms in terms of both angle
and distance. However, for planes 5 and 7, the concentration
of noisy points resulted in excessive iterations, and the plane
parameter updates got trapped in local minima. Despite this,
our algorithm performs comparably well with the optimal
solution for these planes.

The results of the ablation experiments on the ICL-NUIM
dataset are detailed in Table 3. Our optimization strategy
has yielded substantial improvements in relocalization preci-
sion, recall rate, and time consumption. Specifically, VR-NE
exhibits a marginal 4% difference in precision compared to
our algorithm.This suggests thatwhile our algorithm initially
acquires less accurate planar features, the remaining opti-
mization strategies enable the system to identify the correct
pose, albeit at the expense of recall rate. VR-NM demon-
strates no significant difference from the final algorithm in
terms of both precision and recall rate. However, the surplus

of planar features inevitably leads to increased relocalization
time. Testing VR-NI and VR-NG confirms that our opti-
mization strategy provides time and computational resource
advantages to the relocalization system. The three strategies
VR-NP, VR-NO, and VR-NS focused on evaluating the opti-
mal pose transformation, exhibit an average improvement of
17.87%inprecision and48.49%in recall rate.Although there
is some time cost due to the addition of evaluation strategies,
the overall difference is not significant.

Real indoor dataset

The experimental setup consists of an mToF depth camera,
an L515 camera, and a Turtlebot4 Lite. The mToF is a ToF
camera developed by Deptrum, which has the advantage
of long-distance capability and strong resistance to multi-
path interference. It also offers a wide field of view, up
to 100◦ × 75◦, although its precision is relatively lower.
The L515 is a solid-state laser radar camera under Intel’s
brand, known for its high measurement point accuracy and
depth information for each pixel. However, it has a relatively
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Table 3 Ablation experiments of ICL-NUIM dataset

Methods Statistics P [%] R [%] avg_time [s]

TP TN FP FN

VR-NE 88 35 5 33 94.62 72.73 2.21

VR-NM 96 32 8 25 92.31 79.34 8.32

VR-NI 93 35 5 28 94.90 76.86 4.70

VR-NG 86 33 7 35 92.47 71.07 14.83

VR-NP 77 30 10 44 88.51 63.64 1.68

VR-NO 69 28 12 52 85.19 57.02 1.23

VR-NS 54 25 15 67 78.26 44.63 1.18

Ours 99 39 1 22 99.00 81.82 1.47

smaller field of view and a higher price. The Turtlebot4 Lite
is built on the iRobot Create3 platform and is equipped with
wheel encoders. The camera is positioned at the front of the
robot, and the robot itself provides wheel odometry infor-
mation. Sensor data, including data from the mToF depth
camera, are transmitted as ROS topics via the ROS2 API
over a network connection. We collected an indoor scene
dataset in an office environment. The dataset comprises five
sequences (seq1–seq5), featuring various office structures,
including common office layouts, an activity room, a long
corridor, and an open room. The dataset contains a total
124 planar samples. Employing an mToF camera enabled
us to capture a more extensive visual range. Consequently,
the global map we generated encompasses the unobstructed,
condensed ceiling plane, which exists at a specific eleva-
tion relative to the ground. This provides valuable additional
information for plane relocalization.

mToF dataset

We use the same experimental evaluation method as the
ICL-NUIM dataset. Since the mToF camera captures only
point cloud data and does not obtain the original RGB
and depth information, Table 4 only shows the comparison
results with Planeloc. We partitioned the dataset into two
modes: same-sequence testing and cross-sequence testing,
to mimic the mapping and relocalization outcomes in real-
world situations. We considered minor differences in both
time and spatial positions between the relocalized plane map
and the globally mapped map. Furthermore, including cross-
sequence testing provides a more comprehensive assessment
of the algorithm’s precision in identifying similar scenes
across different sections of the indoor environment.

The results of the tests conducted using both same-
sequence and cross-sequence testing methods indicate that
the proposed method is highly reliable. It can accurately
identify a significant number of locations in real indoor tra-
jectories. To showcase the superior plane relocalization effect

Table 4 Relocalization results of Indoor dataset built with mToF

Methods Sequence Statistics P [%] R [%]

TP TN FP FN

Ours Same-seq 49 0 0 5 – 90.7-4

Cross-seq 17 49 0 1 100.00 94.44

Planeloc [36] Same-seq 33 0 0 21 – 61.11

Cross-seq 7 26 23 11 23.33 38.89

of VoxelPlane-Reloc, we divided the indoor plane dataset
into subsets and compared them to Planeloc. We differen-
tiated between global maps and local submaps that were
constructed from same-sequence and different-sequence data
while utilizing the same plane information andmetrics.Over-
all, the Recall of VoxelPlane-Reloc in the same-sequence
test reached 90.7%, which represents a 32.1% improvement
compared to Planeloc. In the cross-sequence test, we also
evaluated Precision by introducing negative samples. It is
evident that our algorithm effectively avoids misalignment
when negative samples are present. However, there are still
situations in which the algorithm proposed in this paper fails
to recognize correct loop closures. This is because we inten-
tionally relaxed Recall to achieve higher Precision and avoid
incorrect matches. However, this issue can be addressed by
increasing the number of local map planes or incorporating
richer planar scenes.

The outcomes and comparisons of indoor relocaliza-
tion, both intra-sequence and inter-sequence, are depicted
in Fig. 4. This figure serves as a visual representation of the
influence of our pioneering system on the relocalization pro-
cess. The scenes include: (a) An office scene, spanning 832
square meters and featuring common office elements such as
desks, chairs, office supplies, and glass doors. (b) An activ-
ity area scene, covering 70 square meters and showcasing
sliding doors, display screens, and storage cabinets. (c) An
apartment scene, with an area of 56 square meters, display-
ing common living elements such as sofas, wardrobes, and
curtains. (d) A long corridor scene, stretching over 40ms,
characterized by a lack of distinct objects and a low-texture
environment, posing challenges for localization. In scene (a),
the office setting contains multiple relatively similar con-
ference room scenes. The cross-sequence on the left and
the same sequence on the right involve the relocalization
of the conference room. Despite the scenes’ similarity and
the absence of obvious tilted plane features, our system con-
sistently provides relatively accurate relocalization results.
Scene (b) involves a more complex activity area. Whether
the submap scene includes the outline wall feature or not, it
consistently achieves excellent relocalization. For example,
the same-sequence scene on the right successfully achieved
relocalization through the table and the tilted monitor. Scene
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Fig. 4 Some examples of our
relocalization results. The first
column of (a–c) and the first row
of (d) show the mapping effect
in the real indoor environment.
The second and third columns of
(a–c) and the second and third
rows of (d) display the effect of
relocalization in the same order,
where the white point cloud
represents the global map, and
the green point cloud represents
the transformed local submap.
The fourth column of (a–c) and
the fourth row of (d) show the
effect of cross-sequence
relocalization, where the white
point cloud represents the global
map extracted from one
sequence, and the red point
cloud represents the local
submap extracted from another
sequence
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Table 5 Precision for mToF Plane Extraction

Plane NDT-RANSAC [29] PCA-LS [53] LO-RANSAC [54] PCA [51] Enhanced-VSLAM [32] Ours

α [◦] d [m] α [◦] d [m] α [◦] d [m] α [◦] d [m] α [◦] d [m] α [◦] d [m]

1 0.329 0.040 0.546 0.121 0.922 0.362 0.596 0.141 0.680 0.017 0.376 0.005

2 1.524 0.100 0.602 0.045 0.792 0.098 0.632 0.045 0.387 0.264 0.345 0.004

3 0.446 0.077 0.424 0.073 0.670 0.406 0.425 0.173 0.779 0.174 0.289 0.007

4 0.598 0.012 0.383 0.124 0.843 0.174 1.856 0.129 0.653 0.157 0.160 0.004

5 0.681 0.016 0.867 0.075 0.869 0.196 0.887 0.152 0.585 0.147 0.705 0.007

6 0.292 0.012 0.280 0.133 0.703 0.006 0.485 0.385 0.741 0.075 0.279 0.002

Mean 0.645 0.043 0.517 0.088 0.800 0.207 0.813 0.171 0.637 0.139 0.359 0.005

(c) depicts an apartment setting, showing undulations in the
bottom curtain part on the left. However, our relocalization
accurately and completely extracts this part of the plane.
Additionally, in the cross-sequence on the right, not only
is the point cloud forming a plane in the sofa area extracted,
but this part also exhibits a remarkable overlap effect. Scene
(d) poses a challenge with a long corridor lacking distinc-
tive plane features, presenting a relatively simple and similar
scene prone tomismatching. In this low-texture environment,
the system proposed in this paper demonstrates a supe-
rior relocalization effect, illustrating the versatility of our
algorithm for most indoor scenes. However, our algorithm
exhibits certain limitations. In scenarios where the plane
count within the submap is constrained (specifically limited
to five planes), challenges arise when dealing with scenes
characterized by significant height symmetry. An example
is encountered when attempting to match two diagonals of a
meeting room,where the planes are identical, posing difficul-
ties in achieving accurate repositioning based solely on these
five planes. In such instances, a pragmatic approach involves
expanding the field of view by introducing additional planes
capable of discerning nuances between the identical diag-
onals, thereby facilitating successful repositioning. While
this often yields correct pose transformations, it introduces
a caveat-the potential emergence of new planes that remain
highly similar, such as in the case of a square roomwith diag-
onals of equal length. In scenarios where discernible plane
features are entirely absent, the existing algorithmencounters
challenges in effecting repositioning, unless supplementary
sensors (e.g., wheel odometers) are incorporated to provide
additional constraints.

Based on the evaluation of the simulation data, we have
extracted a subset of planes from the dataset to assess the
accuracy of the plane extraction model. Since obtaining the
complete real parameters of indoor planes during the mea-
surement process is impractical, we utilized the Fit Plane
function in the CloudCompare software to fit the plane’s
normal vector and calculate the parameter d as the ground
truth. Table 5 provides a comparison of the plane parameters

extracted by our method and other methods, in comparison
to the ground truth.

By conducting comparative experiments, it becomes evi-
dent that all of these algorithms are capable of accurately
extracting plane information. Our approach significantly out-
performs other algorithms in terms of extraction accuracy,
while also achievingmuch higher precision in distance calcu-
lation. In the cases of planes 1 and 5, NDT-RANSACexhibits
better performance in terms of angle, as it ignores the influ-
ence of some larger error outliers during extraction and does
not consider all the data. However, it is worth noting that our
algorithm still achieves remarkable results despite consider-
ing these outliers. There is a certain degree of error in the
ground truth calculation using the CloudCompare software,
which may affect the clarity of our algorithm’s performance
in plane extraction accuracy.

The outcomes of ablative experiments conducted on the
mToF dataset are elucidated in Table 6. Specifically, VR-NE,
VR-NP, VR-NO, and VR-NS substantiate the enhanced pre-
cision and recall achieved by the positioning system, with
our system attaining 100% precision. On the other hand,
VR-NM, VR-NI, and VR-NG primarily showcase a notable
reduction in time and computational resource consumption,
attributed to the strategies of merging, incremental input, and
planar structure constraints. These experiments conclusively
demonstrate that the proposed optimization strategies have
significantly elevated the positioning system in termsof accu-
racy, robustness, and real-time performance.

L515 dataset

To showcase the generalization capability of our relocaliza-
tion system across diverse camera sensors, we performed
ablative experiments on a dataset captured with the L515
camera. The results, depicted in Table 7, underscore the
persistent efficacy of our proposed optimization strategy,
yielding noteworthy improvements in precision, recall, and
timing. This experiment serves as additional evidence of the
system’s robust generalization across varied sensors and its

123



Complex & Intelligent Systems (2024) 10:3925–3941 3939

Table 6 Ablation experiments of mToF dataset

Methods Statistics P [%] R [%] avg_time [s]

TP TN FP FN

VR-NE 57 41 8 15 87.69 79.17 1.68

VR-NM 63 35 14 9 81.82 87.50 9.37

VR-NI 62 43 6 10 91.18 86.11 5.02

VR-NG 55 38 11 17 83.33 76.39 14.68

VR-NP 47 34 15 25 75.81 65.28 1.49

VR-NO 43 32 17 29 71.67 59.72 1.38

VR-NS 38 27 22 34 63.33 52.78 1.27

Ours 66 49 0 6 100.00 91.67 1.45

Table 7 Ablation experiments of L515 dataset

Methods Statistics P [%] R [%] avg_time [s]

TP TN FP FN

VR-NE 52 40 9 17 85.25 75.36 1.74

VR-NM 58 36 13 11 81.69 84.06 9.76

VR-NI 59 42 7 10 89.39 85.51 4.36

VR-NG 54 39 10 15 84.38 78.26 15.10

VR-NP 42 32 17 27 71.19 60.87 1.97

VR-NO 37 28 21 32 63.79 53.62 1.34

VR-NS 34 22 27 35 55.74 49.28 1.86

Ours 63 45 4 6 94.03 91.30 1.52

effectiveness in dense mapping scenarios. However, given
that this is not the primary focus of our experiment, we refrain
from delving into further details.

Runtime

In a laptop computer equipped with a Core i5-8250U
3.40GHz processor, the average duration for recognizing one
relocalization is 1.48s. This method, described in the arti-
cle, is more appropriate for real-time systems compared to
Planeloc, which takes 19s. The computational time of the
four main modules in VoxelPlane-Reloc has been analyzed
in Table 8, and the majority of the time is spent on comput-
ing pose likelihood, accounting for 78.8% of the total time.
The average time for plane relocalization is 157ms, ranging
from 44.6ms to 172ms. The number of triplets is the main
factor that affects the time, and without any other prior infor-
mation, it is challenging to impose sufficient constraints on
them based solely on structural information.

Table 8 Average runtime (unit: ms) of different components

Main components Ours Planeloc [36]

Single frame 53.763 736

Local observation 101.513 518

Pose likelihood 1165.624 16,439

Localization 157.471 2255

All 1478.371 19,848

Conclusions

The VoxelPlane-Reloc algorithm proposed in this paper uti-
lizes the plane feature extraction module to improve the
performance of relocalization. In the plane feature extraction
phase, plane information and an adaptive threshold function
are combined to accurately extract planes even in the pres-
ence of dynamic targets and noisy environments. The plane
merging component enables local voxel plane growth, opti-
mization of plane parameters, reduction in the number of
planes, and enhancement of relocalization accuracy. Addi-
tionally, by analyzing indoor structures, pre-constraints are
applied to global map and submap matching, and a probabil-
ity density function is constructed using an incremental input
model of the submap to determine correct pose relationships.
Experiments conducted on the ICL-NUIM dataset and real
indoor scenes demonstrate that VoxelPlane-Reloc achieves
high precision and recall rates. In the plane feature extraction
test, VoxelPlane-Reloc also improves the accuracy of plane
information while maintaining high real-time performance
for localization.

The VoxelPlane-Reloc algorithm is highly effective, pre-
cise, and reliable. It can be utilized for loop detection
and scene recognition in indoor environments, specifically
for SLAM of service robots. During our experiments, we
observed that the algorithm faces difficulties in accurately
identifying similar scenes with limited planar features. To
address this issue, our next objective is to integrate supple-
mentary features such as plane edges and intersections. This
enhancement will broaden the algorithm’s applicability to a
wider range of scenes.
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11. Wietrzykowski J, Skrzypczyński P (2020) A fast and practical
method of indoor localization for resource-constrained devices
with limited sensing. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, pp 293–299

12. CamposC, Elvira R, Rodríguez JJG,Montiel JM, Tardós JD (2021)
Orb-slam3: an accurate open-source library for visual, visual-
inertial, and multimap slam. IEEE Trans Rob 37(6):1874–1890

13. Qin T, Li P, Shen S (2018) Vins-mono: a robust and versa-
tile monocular visual-inertial state estimator. IEEE Trans Rob
34(4):1004–1020

14. Sünderhauf N, Protzel P (2011) Brief-gist-closing the loop by
simple means. In: 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, pp 1234–1241

15. ZhouZ,ZhaoC,AdolfssonD, SuS,GaoY,Duckett T, SunL (2021)
Ndt-transformer: large-scale 3d point cloud localisation using the
normal distribution transform representation. In: 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), IEEE,
pp 5654–5660

16. Wietrzykowski J (2018) Probabilistic reasoning for indoor posi-
tioning with sequences of wifi fingerprints. In: 2018 Signal

Processing: Algorithms, Architectures, Arrangements, and Appli-
cations (SPA), IEEE, pp 338–343

17. Gálvez-López D, Tardos JD (2012) Bags of binary words for
fast place recognition in image sequences. IEEE Trans Rob
28(5):1188–1197

18. Angeli A, Filliat D, Doncieux S, Meyer J-A (2008) Fast and incre-
mental method for loop-closure detection using bags of visual
words. IEEE Trans Rob 24(5):1027–1037

19. Garcia-Fidalgo E, Ortiz A (2014) On the use of binary feature
descriptors for loop closure detection. In: Proceedings of the 2014
IEEE Emerging Technology and Factory Automation (ETFA),
IEEE, pp 1–8

20. Cummins M, Newman P (2010) Accelerating fab-map with con-
centration inequalities. IEEE Trans Rob 26(6):1042–1050

21. LabbeM,Michaud F (2013) Appearance-based loop closure detec-
tion for online large-scale and long-termoperation. IEEETransRob
29(3):734–745

22. Gao C, Zhang Y, Wang X, Deng Y, Jiang H (2019) Semi-direct
rgb-d slam algorithm for dynamic indoor environments. Robot
41(3):372–383

23. Yang S, Fan G, Bai L, Li R, Li D (2020) Mgc-vslam: a meshing-
based and geometric constraint vslam for dynamic indoor environ-
ments. IEEE Access 8:81007–81021

24. Hang C, Zhao B, Wang B (2021) A loop closure detection algo-
rithm based on geometric constraint in dynamic scenes. In: CAAI
International Conference on Artificial Intelligence, Springer, New
York, pp 516–527

25. Oliva A, Torralba A (2001) Modeling the shape of the scene: A
holistic representation of the spatial envelope. Int J Comput Vision
42:145–175

26. Tjaden H, Schwanecke U, Schomer E (2017) Real-time monocu-
lar pose estimation of 3d objects using temporally consistent local
color histograms. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp 124–132

27. Hou Z, Yan Y, Xu C, Kong H (2022) Hitpr: Hierarchical trans-
former for place recognition in point cloud. In: 2022 International
Conference on Robotics and Automation (ICRA), IEEE, pp 2612–
2618

28. SunQ,Yuan J, ZhangX,DuanF (2020) Plane-edge-slam: Seamless
fusion of planes and edges for slam in indoor environments. IEEE
Trans Autom Sci Eng 18(4):2061–2075

29. Li L, Yang F, Zhu H, Li D, Li Y, Tang L (2017) An improved ransac
for 3d point cloud plane segmentation based on normal distribution
transformation cells. Remote Sens 9(5):433

30. Zhang X, Wang W, Qi X, Liao Z, Wei R (2019) Point-plane
slam using supposed planes for indoor environments. Sensors
19(17):3795

31. Wietrzykowski J, Belter D (2022) Stereo plane r-cnn: accurate
scene geometry reconstruction using planar segments and camera-
agnostic representation. IEEE Robot Autom Lett 7(2):4345–4352

32. Zi B, Wang H, Santos J, Zheng H (2022) An enhanced visual slam
supported by the integration of plane features for the indoor envi-
ronment. In: 2022 IEEE 12th International Conference on Indoor
Positioning and Indoor Navigation (IPIN), IEEE, pp 1–8

33. Li Y, Yunus R, Brasch N, Navab N, Tombari F (2021) Rgb-d slam
with structural regularities. In: 2021 IEEE InternationalConference
on Robotics and Automation (ICRA), IEEE, pp 11581–11587

34. ShuF,Wang J, PaganiA, StrickerD (2023)Structure plp-slam:Effi-
cient sparse mapping and localization using point, line and plane
for monocular, rgb-d and stereo cameras. In: 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), IEEE, pp
2105–2112
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