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Abstract

Network embedding is a technique used to generate low-dimensional vectors representing each node in a network while
maintaining the original topology and properties of the network. This technology enables a wide range of learning tasks,
including node classification and link prediction. However, the current landscape of network embedding approaches predom-
inantly revolves around static networks, neglecting the dynamic nature that characterizes real social networks. Dynamics
at both the micro- and macrolevels are fundamental drivers of network evolution. Microlevel dynamics provide a detailed
account of the network topology formation process, while macrolevel dynamics reveal the evolutionary trends of the network.
Despite recent dynamic network embedding efforts, a few approaches accurately capture the evolution patterns of nodes at
the microlevel or effectively preserve the crucial dynamics of both layers. Our study introduces a novel method for embed-
ding networks, i.e., bilayer evolutionary pattern-preserving embedding for dynamic networks (Bi-DNE), that preserves the
evolutionary patterns at both the micro- and macrolevels. The model utilizes strengthened triadic closure to represent the
network structure formation process at the microlevel, while a dynamic equation constrains the network structure to adhere
to the densification power-law evolution pattern at the macrolevel. The proposed Bi-DNE model exhibits significant perfor-
mance improvements across a range of tasks, including link prediction, reconstruction, and temporal link analysis. These
improvements are demonstrated through comprehensive experiments carried out on both simulated and real-world dynamic
network datasets. The consistently superior results to those of the state-of-the-art methods provide empirical evidence for the
effectiveness of Bi-DNE in capturing complex evolutionary patterns and learning high-quality node representations. These
findings validate the methodological innovations presented in this work and mark valuable progress in the emerging field
of dynamic network representation learning. Further exploration demonstrates that Bi-DNE is sensitive to the analysis task
parameters, leading to a more accurate representation of the natural evolution process during dynamic network embedding.
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Introduction
Primary motivations

Citizens have shifted from traditional media to online social
networks (OSNs) for obtaining, exchanging, and sharing
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information. The vast amount of data collected on OSNs are
invaluable for academics and economics, making these plat-
forms truly remarkable. This situation has led to the creation
of many machine learning algorithms that address different
application tasks, such as community detection [1, 2], link
prediction [3, 4], node classification [5, 6], data visualization
[7], and user alignment [8]. The volume of available social
network data and the reliance of methods on the quality of
the input pose challenges for implementing machine learn-
ing algorithms [9, 10]. To overcome these obstacles, various
representation learning techniques have been proposed.
Network embedding (NE) is a type of representation
learning strategy that has become popular for solving social
network tasks. NE is further divided into static network
embedding (SNE) and dynamic network embedding (DNE).
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SNE is commonly used in the OSN research and is employed
to extract various user node features, such as text sentiments
and user relationships in social networks. In SNE methods,
the vertices and edges remain unchanged during the time
evolution process. DSRE [11], an unsupervised method intro-
duced by Xiao et al., is a cost-effective way to extract specific
knowledge from the abundant unstructured text information
available in OSNs. Its efficacy has been proven to facili-
tate efficient OSN research while minimizing experimental
costs. However, real-world networks are dynamic and con-
stantly evolving. OSNs, such as Facebook and microblogging
sites, offer opportunities for users to meet new people and
build lasting connections, resulting in the constant formation
of new friendships. The constantly changing nature of net-
work development poses new challenges for SNE problems.
Therefore, representation learning algorithms that overlook
these dynamic features face limitations in terms of accurately
capturing the evolving characteristics of hidden nodes, thus
impeding their effectiveness in various practical applications.
A DNE approach extends a conventional static network
model to capture the evolving patterns within networks [12,
13]. Lietal. [14] employed matrix perturbation theory to iter-
atively update low-dimensional node vectors, considering the
temporal dependencies between different network represen-
tations. Goyal et al. [15] utilized a deep autoencoder called
DynGEM to capture the nonlinear information between
neighboring nodes, enhancing the learning of first-order and
second-order relationships. While these DNE methods have
provided some insights into network evolution, they still fall
short of discerning the distinctive characteristics of the vari-
ous node types within a network. Moreover, there is a dearth
of comprehensive knowledge surrounding the fundamental
dynamic mechanisms that drive network structure shifts.
Previous research has demonstrated that network dynam-
ics are heavily influenced by evolution, with triadic closure
being one of the most important structures [16]. Closed triads
are formed when all pairs of users have connections in sub-
sequent snapshots. The significance of triadic closure cannot
be underestimated in terms of the growth and progression
of OSNs. Importantly, this mechanism is not exclusive to
OSN:Ss; it also applies to the natural patterns that are present
in various types of networks. Figure 1 depicts the evolution-
ary patterns observed in the vertex and community structure
of a local social network. i and j are initially unconnected
users, and they establish a friendship with user kat time a.
This pattern unfolds in three distinct phases. Initially, user k
exhibits relatively low connectivity, indicating limited pop-
ularity. However, user k can its increase attention and effort
by maintaining strong connections with these two friends.
Subsequently, user k evaluates the relevance and similarity
between themselves and users i and j. This evaluation guides
user k’s social strategy, determining whether it is advanta-
geous to introduce their two friends to each other. In OSN,
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communities are typically subgraphs with higher internal link
densities than that of the overall network. The likelihood
of forming connections within a community surpasses that
of forming connections between different communities. In
Fig.1, i and j are not initially part of the same community,
necessitating k’s role in fostering connections across commu-
nities. As time passes and triadic closure occurs, users i and
j may change their link structures. This can lead to signif-
icant dissimilarity in their low-dimensional representations.
Consequently, the community structure that they inhabit also
undergoes an alteration.

Although past studies have recognized the impacts of
alterations on network dynamics and the significance of
incorporating events such as triadic closure into the devel-
opment of social networks, little research has adequately
merged DNE with triadic closure to address problems within
OSNs. Yang et al. [17] presented DNETC, a novel DNE
model that combines DNE coordination and triadic clo-
sure to effectively capture network evolution patterns. Their
approach employs an ensemble technique using vertex simi-
larity and emphasizes two factors, vertex popularity and com-
munity structure, enhancing the learning of a discriminative
low-dimensional network representation. By incorporating
this feature-enhanced representation, the authors optimized
the evolution process of triadic closure within the network.
However, understanding network evolution requires the con-
sideration of both the micro- and macrolevels. The microlevel
captures the intricate formation process of the network struc-
ture, involving the gradual generation of new edges through
strengthened ternary closure. It provides insights into the
specific structure adopted by the network at a given time,
explaining the evolution process of the network. In contrast,
macrolevel dynamics focus on network size changes, which
are measured by the quantity of edges. This dynamic evo-
lution process exhibits discernible nonrandom patterns and
aims to answer the question of “how many edges should
be generated in total by the dynamic evolution process of
the network at the microlevel at time 7.” Understanding the
dynamics at both the micro- and macrolevels is crucial for
comprehending the evolution of a network, as these factors
significantly influence how networks grow and transform.

Innovation aspect

This study proposes bilayer evolutionary pattern-preserving
embedding for dynamic networks (Bi-DNE), which is a
novel approach for dynamic network representation learn-
ing that captures evolution patterns at both the micro-
and macrolevels, thus addressing the challenges associated
with network representation learning in dynamic networks.
Bi-DNE offers methodological innovations in terms of net-
work representation learning by integrating triadic closure
and dense power laws. We use enhanced triadic closure
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Fig.1 Evolutionary patterns of time step a time step a+1
vertices and the resulting
community structures in
localized social networks. The
red solid line represents the
addition of a new link at the
subsequent moment. The circles Triadic
with different colors represent closure
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microlevel. At the macrolevel, we use dense power-law
principles to impose constraints on how a network struc-
ture evolves. Our method effectively captures the dynamic
characteristics of the network evolution process through low-
dimensional representations, showcasing its methodological
advancements. The visualized pipeline offers a clear and con-
cise representation of the Bi-DNE method, as described in
Fig.2. The process begins with the input of a dynamic net-
work and then divides it into two primary components that
represent the micro- and macrolevel dynamics. It then learns
the community structure of the network and finally con-
verges to the Bi-DNE embedding process. The result is an
evolved network representation that effectively demonstrates
the fusion of micro- and macrodynamics during dynamic net-
work embedding.

The Bi-DNE model is tested through various experiments
that involve link prediction, link reconstruction, changed
link prediction, and reconstruction tasks conducted on real
datasets. Through these experiments, it is shown that the
model can accurately preserve dynamic network evolution
patterns. Our proposed model successfully captures high-
quality feature representations from social network data.
These findings underscore the methodological innovations
and practical value of the Bi-DNE algorithm.

The specific contributions of this study are listed below:

e Bi-DNE, a new approach that integrates micro- and
macrodynamics to learn embeddings for dynamic net-
works, captures the natural evolution process of a net-
work and improves network analysis tasks, is presented.

e Microlevel modeling is performed via enhanced triadic
closure to capture granular network formation.

e Macrolevel modeling constrains the overall growth trends
through a power law.

e Multiscale dynamics unification enables the evolution
process to be more accurately represented.

e The proposed approach significantly outperforms the
baselines on predictive tasks concerning time-evolving
networks.

e This study advances the state-of-the-art representation
learning research for dynamic networks.

e The sensitivity of the parameters in Bi-DNE is val-
idated for the analysis task, demonstrating that the
network representations learned by Bi-DNE are capable
of addressing different types of variations.
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Fig.2 A visualization pipeline of Bi-DNE

Manuscript structure

The rest of the paper is organized into the following sec-
tions. The section “Related work™ provides a brief review
of related work. The notation and definition of the DNE
problem are given in the section “Problem definition”. The
section “Framework of Bi-DNE model” presents the Bi-
DNE model in detail and the section “Experiment settings”
presents the experimental setup. The section “Results” ana-
lyzes the experimental results and the section “Conclusion”
concludes the paper.

Related work

In this section, we will discuss the various approaches to
NE models, both static and dynamic, as explored in previous
research. Abbreviations involved in the full text are enumer-
ated in Table 1 for easier understanding.

SNE models

In the early stages, matrix factorization techniques, such as
Laplacian eigenmapping [18] and locally linear embedding
(LLE) [19], were commonly used. These approaches aim
to obtain node representations of dimensionality k by com-
puting eigenvectors. However, they often face challenges,
including high computational costs and statistical perfor-
mance limitations, when dealing with large-scale networks.

Deep learning has emerged as a prominent approach for
network representation learning, leveraging neural network-
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based models to capture the intricate patterns and relation-
ships within a network. DeepWalk [20] draws inspiration
from the skip-gram word representation model [21] and
learns latent representations. Node2Vec [22] extends Deep-
Walk by introducing a bias parameter that enhances the
walking strategy by controlling the preference for depth-
or breadth-first search. Line [23] focuses on capturing the
second-order proximity information by considering the com-
mon neighbors of indirectly connected nodes, complement-
ing the information acquired from the first-order proximity.
SDNE [24] utilizes a deep neural network, modeling the
highly nonlinear relationships between node representations,
and uses the middle layer of a deep autoencoder to represent
network nodes. GraRep [25] incorporates a specific relation
matrix and reduces its dimensionality through singular value
decomposition, resulting in a k-step network representation.
These deep learning-based models have advanced the field
of network representation learning by effectively capturing
complex network structures.

The existing methods primarily focus on preserving the
pairwise relationships between nodes while overlooking
the valuable community structures in networks. Notable
approaches such as BIGCLAM [26] and MemeRep [27]
incorporate community structures into the network embed-
ding (NE) process, but they do not consider the dynamic
evolution characteristics of the target network. To obtain
precise network representations, it is essential to include
diverse and varied external information alongside the net-
work topology. TADW [28] addresses this issue by incorpo-
rating the text features of nodes through matrix factorization,
enhancing the strength and effectiveness of network node
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Table 1 List of abbreviations
Abbreviation Description Abbreviation Description
OSN Online social network NE Network embedding
SNE Static network DNE Dynamic network
embedding embedding
Bi-DNE Bi-layer dynamic LR The task of link
network embedding reconstruction
(proposed model)
LP The task of link C.LR Changed link
prediction reconstruction
C.LP Changed link prediction W/o mic Removing the
microlevel
structure of
Bi-DNE in the
ablation
experiment
W/o mac Removing the W/o ss Removing the social
macrolevel structure structure of
of Bi-DNE in the Bi-DNE in the
ablation experiment ablation
experiment
W/o cs Removing the

conjunctive structure
of Bi-DNE in the
ablation experiment

representations. CANE [29] is another noteworthy method
that captures contextual information by considering node
neighbors, improving the quality of the resulting network
representations. These approaches provide insights into the
integration of community structures, external information,
and contextual dependencies for effective network represen-
tation learning. Li et al. [30] proposed using neural networks
to learn node embeddings that capture air transportation net-
work features. These embeddings were utilized to predict
market influences for flight frequency optimization. In addi-
tion to network topology information, incorporating node
attribute information into embeddings has shown promise.
Li et al. [31] modeled the influence propagation process by
jointly representing users in a social network structure and a
multidimensional attribute space.

DNE models

Many methods have been suggested for preserving evolution-
ary trends in dynamic networks. DANE [14] and DHPE [32]
employ matrix perturbation theory and generalized singular
value decomposition to update node vector representations
in dynamic networks while preserving high-order proximity.
DNE [33] enables separate learning of node embeddings,
enhancing the efficiency of vector representation updates.
These methods contribute to preserving evolutionary patterns
in dynamic networks by incorporating different techniques

for updating node vector representations. Yu et al. [34] intro-
duced NetWalk, a clique-based DNE approach for anomaly
detection. Zhou et al. [35] proposed a method that incor-
porates dynamic information into a vector representation.
A triadic closure simulation mechanism helps their model
achieve excellent results. Ma et al. [36] presented a smooth-
ing technique to maintain continuous community dynamics.
This community-aware mechanism greatly improves the
model fitting degree of real community change. CTDNE [37]
is a dynamic network that captures time sequence informa-
tion with continuous-time series represented as random walk
sequences. The influence of past neighbors on neighbor for-
mation for node vector representations is captured by HTNE
[38] using the Hawkes process. However, the driving force
behind the evolution of dynamic networks, especially the ver-
tex evolution patterns, is often overlooked by these methods.

Lu et al. [39] proposed a novel approach for representing
temporal networks by incorporating both micro- and macro-
dynamics, enabling the modeling of temporal dependencies
and capturing microlevel network evolution. Additionally,
they addressed macroscopic dynamics by defining a generic
dynamical equation parameterized with network embed-
dings. This equation captured the inherent evolutionary
patterns of the network and imposed constraints on the
embeddings at higher structural levels. By considering both
micro- and macrodynamics, their approach acknowledged
the mutual influence between these dynamics and their
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impact on node embedding learning in temporal networks.
The innovative combination of micro- and macrodynamics in
their work has served as an inspiration for our own research.

Zhou et al. [40] introduced DynamicTriad, a novel rep-
resentation learning method that preserves the structural
information and evolution patterns of networks. They pro-
posed using triples, comprising three vertices, to capture the
fundamental triadic closure process that drives network for-
mation and evolution. By incorporating this process into their
model, DynamicTriad effectively captures network dynam-
ics and learns vertex representation vectors at different time
steps. This innovative approach provides insights into the
temporal dynamics of networks and holds promise for net-
work representation learning. Zhang et al. [41] designed a
dynamic graph convolutional network to extract structural
embeddings for DNE. Their method learns node represen-
tations via a leader-based fake labeling scheme. DynamiSE,
proposed by Sun et al. [42], is a novel approach for link
prediction that encodes both the dynamic and symbolic
semantics of a network. The model integrates balance theory
and ordinary differential equations in combination with node
representation learning to build a deeper dynamic signed
graph neural network. This network is designed to capture the
complex symbolic semantics formed by two types of edges,
resulting in a more comprehensive and accurate representa-
tion of the underlying network dynamics.

Yang et al. [17] proposed a novel network embedding
approach for dynamic networks. This method considers
vertex similarity and incorporates user popularity and com-
munity structure information to capture evolution patterns.
By employing the ensemble idea and quantifying the prob-
ability of closing open triples, DNETC effectively captures
the dynamics of network evolution. Additionally, the authors
enhanced the discriminative power of low-dimensional net-
work representations by utilizing community structure infor-
mation as a higher order proximity measure for vertices.
This optimization process yields improved dynamic network
evolution predictions and aids in discovering macroscopic
community structures. DNETC successfully captures diverse
evolutionary patterns while preserving dynamic information
in real networks. Du et al. [43] proposed ERM-ME to divide
emotional communities based on user emotional preference.
Then, the sentiment features are used to train the base clas-
sifiers, which are combined into a meta-classifier. Zhang et
al. [44] introduce a novel method called DINE that learns
vertex representations for dynamic networks. Their approach
models users and items concurrently and integrates their rep-
resentations in dynamic and static information networks.

To provide a more intuitive summary of previous stud-
ies, Tables 2 and 3 highlight the strengths and limitations of
related SNE and DNE approaches, respectively. Early SNE
approaches, such as DeepWalk [20], Node2Vec [22], and
LINE [23], have been successful in modeling network topol-
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ogy. However, they do not consider the temporal nature and
dynamics of real-world networks. Nevertheless, the initial
DNE techniques that rely on matrix perturbation theory or
factorization, such as CTDNE [37] and DANE [14], do not
fully model the complex microlevel processes that underlie
network formation over time. In the work of Yang et al. [17],
community information and triadic closure rules are embed-
ded, but the realistic constraint problem of dense power laws
is not considered.

This paper proposes Bi-DNE, an improved model that uses
an enhanced triadic closure process to simulate the formation
of microlevel networks. This model takes important factors,
such as node similarities and community structures. Addi-
tionally, macrolevel dynamics are governed by a power-law
equation that controls the evolution scale of the target net-
work. The fusion of both micro- and macrodynamics enables
more precise characterizations of network evolution pat-
terns. This approach can address the limitations of previous
research and provide a better understanding of the network
formation and evolution process.

Problem definition

In this section, we introduce the notations and definitions
used throughout our work. The variable symbols and their
meanings involved in this paper are listed in Table 4.

Definition 1 (Undirected network) A dynamic network is
defined as a sequence of undirected graphs, represented as

network snapshots GV, G@, ..., GD, where T denotes
the set of finite time steps. At each time step a €
{1,2,...,T}, the network state is denoted as G@ =

{V, E@, W(“)}, where V is the set of nodes, E@ is the
set of edges, and each edge el.(;) represents the connection

between nodes v; and v; with weight wi(;). The edges in E (@)
are undirected in networks. This definition assumes that the
network topology evolves over time rather than remaining
static.

Definition 2 (Dynamic network embedding) Let G =
(GV, G, ..., G} beadynamic network, where T snap-
shots represent the network at different time steps. A positive
integer d denotes the dimension of a low-dimensional rep-
resentation space R?. The mapping f@ : V(@ — R@  for
a € {1,2,..., T} refers to a function that embeds vertices
V@ in snapshot G'® into d-dimensional vectors. Letv; € V
denote vertex i and ul@ its corresponding low-dimensional
representation. The mapping function f is assumed to learn
low-dimensional representations u that can express features
of both network topology and dynamics.

Definition 3 (Microevolution pattern) Given a dynamic net-
work, the microscopic microevolution pattern refers to the
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Table 2 A detailed comparison of the SNE studies

Methods

Highlight

Limitation

LE [18], LLE [19]

DeepWalk [20]

Node2Vec [22]

LINE [23]

SDNE [24]

GraRep [25]

AGA [30]

GDM [31]

TFIP [46]

1. Utilizing graph structure information without
random walks efficiently to obtain context

2. Learned representations directly preserve key
graph structure information

1. Representing graph data by converting a
continuous vector format

2. Applying a random walk to the graph structure

1. Controllable random walk strategy to learn
comprehensive node embeddings

2. Sampling neighbor nodes with BIAS random
walks for richer context

3. Adopting Skip-gram from word2vec to get better
quality low-dimensional embeddings

4. Combining first-order and second-order random
walk strategies to consider both local and global
structures

1. Introducing proximities to model relationships
between nodes

2. Employing contrastive loss functions for
hierarchical representation learning

3. Scaling to large networks through negative
sampling and approximate training

1. Minimizing network reconstruction cost with
autoencoders

2. Introducing adaptive weight hierarchical
orthogonal constraints to reduce redundancy

1. Defining high-order transition probability

matrices to model relationships between nodes at
different orders

2. Using sparsity regularization to avoid overfitting
and maintain efficiency

3. Encoding higher order representations for more
global structure

Manipulates gradients to ensure the budget limit and
achieve efficient optimization dynamically

1. Applying Gaussian propagation model to solve
the social network problems

2. Constructing a multidimensional space model
based on offset, motif and degree dimension

Defining user sentiment power and clustering
credibility for network embedding

1. Expensive eigendecomposition and hard to scale
up

2. Learned representations have high symmetry,
weak discriminative ability

1. Relying on random walk process make some
nodes being overlooked or poorly represented in
large-scale graphs

2. Lack of nodes’ context, leading to a loss of crucial
semantic information

1. Extremely high computational complexity for
large-scale networks

2. Insensitive to network changes, requiring
retraining to adapt

3. The embedding space has redundancy and high
symmetry, leading to weak discriminative ability

4. Node attribute information can not be utilized
directly

1. Needs predefined order, cannot adaptively learn
network characteristics

2. Only considers network topology, does not utilize
node content information

3. High complexity for second-order model in time
and space

1. Insensitive to dynamic network changes

2. Requires careful architecture design and
hyperparameter tuning

1. Lacks capability of inductive learning for unseen
nodes and explicit mechanisms for handling
dynamic graphs

2. Embedding dimensionality increases linearly with
number of orders

3. Assumes discrete node attributes which may lose
information

Limits the optimization possibilities in terms of
network expansion or resource allocation

1.Lacks capability of model the temporal evolutions
characteristic of real-world networks

2. The simulation effect is easily affected by the
network

Lack of propagation characteristics of different
topics in the network

network structure’s formation process through triads. An
open triad (vi, vj, vk) evolves into a closed triad. The set
Ef) = {eij | eij ¢ E Nejj € E@TDY) is defined to rep-
resent the new edges generated during this process. Triadic
closure between time steps is assumed to be one of the pri-
mary microlevel drivers of network evolution.

Definition 4 (Macroevolution pattern) Given a dynamic net-
work, the macroevolution pattern at the macroscopic level

represents the evolution process in which the network scale
follows a certain distribution rule. The notation A =
{nél), n®, ..., ne™! is defined to represent the set of
edge numbers for 7" time steps of the dynamic network, where
néd) represents the total number of edges in the network up
to time point a. The evolution of network edge numbers is
assumed to follow certain statistical distribution laws, reflect-

ing macrolevel network evolution characteristics.
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Table 3 A detailed comparison of the model proposed in this paper and other DNE studies

Method Highlight Limitation
DANE [14] 1. Capturing the co-evolution of network structure 1. Applicable only to networks with discrete
and node attributes temporal snapshots
2. Developing LSTM-based sequence model to fuse 2. Suffers from error accumulation problem in long
temporal network snapshots sequences
3. Combining optimizes structural and attribute 3. Lacks capability to handle unseen nodes in
representations continuous-time dynamic networks
DHPE [32] 1. Utilizing high-order proximity in topological 1. High computational complexity in calculating
structure changes high-order proximities
2. Enforcing smooth embedding changes between 2. Constrained flexibility in modeling diverse
consecutive time steps topological structure changes
DNE [33] Extending random walk process in skip-gram model Limited capability in handling more complex

NetWalk [34]

CTDNE [37]

HTNE [38]

DynamicTriad [40]

DGCN [41]

DynamiSE [42]

to adapt to dynamic networks

1. Enhancing the quality of embeddings by improved
negative sampling

2. Proposing a flexible random walk strategy to
adaptively explore dynamic networks

1. Modeling continuous-time network dynamics
directly without relying on discrete snapshots

2. Proposing a residual network model based on

Hawkes processes to capture node interaction
dynamics

1. Considering the neighborhood formation process
for network dynamics

2. Proposing maximum likelihood-based objective
for representation learning

1. Introducing DNE framework based on triadic
closure process innovatively

2. Maximizing probabilities of triadic paths to learn
features of network closure formation

Using a graph convolutional network for extracting
and embedding node features

Encoding the dynamics and sign semantics of
dynamic signed networks simultaneously

network dynamics like sudden changes

1. Applicable only to discrete snapshot-based
dynamic network data

2. Lacks theoretical analysis on the relationship
between embedding space and anomalies

1. Sensitive to hyperparameters like decay rates in
Hawkes processes

2. Limited capability in handling more complex
node interaction mechanisms

1. Relies heavily on attention distributions being
accurate

2. Sensitive to perturbations and propagation errors

1. Only models triadic closures, inadequate to
capture complex network dynamics

2. Applicable only to discrete snapshot-based
dynamic network data

Node features have the problem of convergence and
lack of discrimination

Requires a lot of pretraining and parameter tuning

ERM-ME [43] Detecting emotion roles in social networks by fusing Be susceptible to hyperparameters and has poor
the information contained in different features scalability
DINE [44] Modeling users and items simultaneously for fusing Be vulnerable to hyperparameters and not scale well
into dynamic and static information networks
DNETC [17] Combining the popularity and proximity of vertices The constraint rules of triadic closure are not
with community structures to enhance DNE considered
structures
Table4 List of variables Variable Description Variable Description
G(t) Network snapshot at time step ¢ Vv Set of nodes in the network
E(1) Set of edges in snapshot G (¢) u; Embedding vector for node i
Ane Number of changed edges e Total number of edges
C Community divided by the network ] A collection with no elements
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Definition 5 (Community structure) Communities in dynamic
networks consist of nodes that are densely interconnected
within each community while having sparse connections
with nodes outside the community. Let cC@o =
{C @ c (a), . C,gf )} represent the division of the net-
work at time a into m communities. Then, we have V =
Cfa) U Céa) u...u C,Sf), and for any pair of nodes (i, j) with
i # j,itholds that C[‘(“) N C;”) = (J. The network is assumed
to exhibit community structure characteristics, where nodes
have dense connections within communities but sparse con-
nections between communities.

Framework of Bi-DNE model

This section comprehensively introduces the proposed dynamic

network representation learning model (Bi-DNE) and its
details. Bi-DNE includes three components: multigranularity
attribute embedding (the sections “Preservation of dynamic
embedding through microscopic evolution”, “Preservation
of dynamic embedding through macroscopic evolution and
“Microscopic and macroscopic representations of dynamic
evolution”), attention-based structure embedding (the sec-
tion “Preservation of dynamic embedding through com-
munity structure”), and an iterative training process (the
section “Conjunctive model”). Among them, the multigran-
ularity attribute embedding method comprises two essen-
tial processes: the micro-level enhanced triadic closure
process, which models network structure formation (the
section “Preservation of dynamic embedding through micro-
scopic evolution”), and the macrolevel constraints that
enforce a dense power-law evolution pattern through dynamic
equations (the section “Preservation of dynamic embedding
through macroscopic evolution”). Figure3 illustrates the
framework of Bi-DNE, providing informative details about
its structure.

Preservation of dynamic embedding through
microscopic evolution

In a social network, when an open triple arises at a cer-
tain time, certain users actively introduce their friends, thus
transforming it into a closed triple. Conversely, other users
opt to maintain the original social status of their friends,
thereby displaying a decision distinction based on individ-
ual considerations and variations in social strategies. User
considerations encompass factors, such as user popularity,
similarity, and the community structure to which they belong.
As the network evolves, its nodes continually form new con-
nections through the triadic closure mechanism, taking place
at various points in time. This evolutionary process is influ-

enced by factors, such as node popularity, similarity between

nodes, and the community in which the nodes reside.
Considering the aforementioned factors, we utilize a d-

dimension vector Dl(ﬁ to assess the decision of user vy

w@ (c]?
(@) _ ik ( (a) _ <a>> W) ( (@ _ (a)) (a)
D = * (u u’' )+ ——=x*\u u: *E:07,
ijk |id€g](ca) k i de @) J ij

8k
ey

where the edge weight w; k) denotes the tie strength of v; and
Uk, degk is the degree of vy, and u, @) denotes the embed-
ding vector of vy. Si(ja) is defined as a function of community

influence, that is
(@) _
S = { 1 —«,

Furthermore, to calculate the probability of an edge form-
ing between users v; and v; under the influence of user vy at
time step a + 1, use the following formula:

if 0 e CpY N\ @S e

otherwise.

CYYA(p #q),

2

1
P, = 3)

1 +exp (— <0 ijali»

where the vector § with d-dimensions represents the social

strategy information extracted from latent vertices.
Consequently, the probability of creating a new connec-
tion follows the formula below:

i Ry
P = T () (=) )

" #£0keCN)

“

The vector wi, j'@ = (uk — i, j“)k € CNi, j@ indi-
cates the state of an open triad involving nodes v; and v;
at time step a. Specifically, Mk—n J = 1 if nodes v; and v;
will form an edge at time step @ + 1 under the influence of
their common neighbor v;. The set CNi, j @ contains all
common neighbors of nodes v; and v; at time step a. The
vector ui, j encodes which open triads will close due to
triadic closure in the next time step. The probability of not
generating edge ¢;; at time a + 1 follows the formula below:

p@ =TT (1-

keCN

@
P, n) ®)

The loss function for the triadic closure process combines
two user edge evolution patterns with the objective of mini-
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Fig.3 Schematic diagram of
the Bi-DNE model. Bi-DNE
retains the evolution pattern and
community structure of the
vertices as the microscopic
expression during the
embedding process and uses the
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the densified power-law
evolution pattern as the

‘
‘
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i
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Lt(a)
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!
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Linked vertices

’ ‘ Unlinked vertices |
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i | Different communities |

mizing negative log-likelihood, which is below [17]

(a)
L’ =— Y logP® — > logP{., (6
(v;,vj)es (i,vj)es
where Sg_a) = (vi,v)) |ej ¢ E@ N ejj € Ela+D represents

the set of open triads composed of nodes v; and v; that
become closed at time step a 4+ 1. In other words, S_(f)
contains node pairs (v;, v;) that do not have an edge e;;
in snapshot £, but gain an edge e;j in snapshot E@+D,
SO — (v, vj) leij ¢ E@ Nej ¢ E@TD indicates open
triads that remain open, i.e., node pairs (v;, v;) that do not
have an edge e;; in snapshot E (@ and continue not to have
an edge e;; in snapshot E@*D_ The sets Sf) and S cat-
egorize open triads based on whether they close or remain
open between time steps @ and a + 1.

@ Springer

Time step a

Preservation of dynamic embedding through
macroscopic evolution

The ternary closure evolution process at the microlevel con-
tinuously drives network node topology changes, which are
manifested in the continuous formation of new edges. At
the macrolevel, the formation process is constrained by the
network size, which determines the number of edges to be
generated at a given time. Macrolevel dynamics encompass
the evolution pattern of the network size, which typically
follows a distinct distribution. This distribution allows the
network size to be described by a dynamic equation. Incor-
porating this high-level structure into the network embedding
process greatly enhances its effectiveness. Therefore, estab-
lishing a dynamic equation with a network embedding vector
as a parameter establishes a connection between the network
dynamics analysis and DNE tasks.
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In a dynamic network, we use the notation G@ =
{V.E@ W@} at time a. Here, V represents the set of
nodes, E® represents the set of edges, and W@ represents
the weights associated with the edges. The total number of
nodes in the network is represented by n(?), while the total
number of edges is represented by né“). The dense power-
law model describes the network evolution process, stating
that as the graph becomes denser over time. Based on this
model, we define the average number of accessible neighbors
for each node when attempting to establish a new edge with
another node in a dynamic network

w
Mae = (0@ =1)", )

where ¢ represents the linear sparse index and w represents
the dense power index. Typically, w falls between 1 and 2.
A value of 1 for the index a indicates a constant average
number of degrees over a specified timeframe, while a value
of 2 signifies a highly dense configuration.

The link rate r (a) is crucial in developing network size, but
its importance diminishes as the network progresses due to
its temporal dynamics. This is because the majority of edges
are formed in the early stages, and as the network becomes
denser, the edge generation rate naturally decreases. The link
rate r(a) is also influenced by the underlying network topol-
ogy. Since the network structure is not static but evolves with
new edges, considering this aspect in network embedding
is essential. Aiming at incorporating both the temporal and
structural information, we propose a parameterized formu-
lation for the network’s link rate using the network dynamic
finalization term a€ and the node embedding U/, which can
be expressed as follows:

2
)

where € is network dynamic end item, ox = exp (x)/
(1 4+ exp (x)) is the sigmoid function. When network evo-
lution is complete, the current network consists of n(%)
interconnected nodes. At time a, each node v; within the net-
work endeavors to form new connections, specifically with
other accessible neighbor nodes 7, utilizing a connection
rate denoted as r(a). Henceforth, we define the macrolevel
network dynamics at time a as the quantity of newly estab-
lished edges as follows:

1 (a) (a)
e ZEE;‘)GE(u)U< H”l u;

aE

, ®)

r(a) =

Anl® = 0D s r(a) * nge. )

The integration of network structure into learned embeddings
is crucial for capturing the inherent characteristics of a net-
work. In Eq. (8), the numerator represents the maximum link
rate of the network, which takes into account the temporal

decay of node embeddings. This motivates the combination
of network representation learning and the exploration of
macroscopic evolutionary patterns in dynamic networks.

Asthe dynamic network evolves, A= {nél) , néz) , , ne(T)

represents the number of edges in the dynamic network for T
time steps, where né“) is the total number of edges in the net-
work at time up to a. Then, the true number of edges changed
in the network at time a is

An{® = pl@th _ @, (10)

To capture the macrolevel evolution dynamics of the net-
work, we aim to construct a loss function for the embedding
process that preserves these dynamics. At time a, the loss
function is determined by minimizing the sum of squared
errors between the actual count of changed edges in the net-
work, denoted as Anéa), and the predicted count of changed
edges, denoted as Ané(a), which is based on the macroevo-
lution pattern. The formulation is as follows:

L@ = (An(“) _ An’(“))2. (11)

m € €
Microscopic and macroscopic representations of
dynamic evolution

This paper presents the Bi-DNE model, which integrates
micro- and macroevolution dynamics of dynamic networks
into DNE. Figure4 shows a dynamic network diagram that
reflects the model’s idea, described as follows:

e Microlevel: From time step a to a + 2, new edges gradu-
ally evolve due to the triadic closure effect of nodes that
are not connected but have common friends. Each change
is described in detail, reflecting the dynamic character-
istics of the network at the microlevel. For example, the
triadic closure process of these three adjacent time steps
generated a total of four new edges.

e Macrolevel: The number of edges does not change
randomly but rather exhibits significant distribution char-
acteristics. This macroevolution dynamic reveals the
potential evolution patterns of dynamic networks, which
can further constrain the learning of network node repre-
sentations at a higher level. That is, networks gradually
evolve through fine-grained changes and ultimately form
anetwork with a certain size. For example, from time step
atoa+1, the network generates three new edges through
microevolution, while from time step a + 1 to a + 2, the
network generates only one new edge through microevo-
lution. Observing the parabolic trend in the graph shows
that the network generates more edges in the early stages
through triadic closures, but the growth rate gradually
declines as time passes.
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Fig.4 An illustration of a

A
. . Number of edges
dynamic network exhibits both 8

micro- and macrolevel evolution @t |
patterns e
(a+1)
ne
@

o—Oo

>

e Micro- and macrolevels combined: The micro- and
macrolevels serve as guiding principles for the network
evolution and node embedding tasks. The triadic closure
process that occurs among the nodes at the microlevel
drives the continuous generation of edges. However, this
effect is limited by the distribution characteristics at
the macrolevel, which jointly determine how many new
edges are generated at each time step.

Preservation of dynamic embedding through
community structure

In dynamic networks, community structures are important
characteristics. Social network groups are represented as data
points in an embedding space. Even if they are not directly
connected, groups tend to be closer together than individu-
als from different groups. Measuring the distances between
communities helps keep the network structure intact.

Let C@ = {Cf”), Céa), e C,(n“)} be the set of m com-
munity structures in dynamic network G at time step a. For
any vertex pair v\ € C\* and vj.”) € C (i # j), there
are four possible edge subsets based on whether nodes have
an edge ¢;; and whether they belong to the same community
p = q or different communities p # g [17]

o Sf”) = {(vi,vj) | eij € E¥ )\ p = q}: Linked vertex
pair in the same community. [17]

o Séa) = {(vi,vj) | eij € E A\ p # q}: Linked vertex
pair in different communities. [17]

o Si = {(i,v)) lej ¢ EON\p=q}:
tex pair in the same community. [17]

° Sfta) = {(vi.v)) | e ¢ EYD N\p# g}: Unlinked ver-
tex pair in different communities. [17]

Unlinked ver-
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>

Time step

a+l a+2

The proximity between vertex pairs is measured sepa-
rately for each of the four subsets. The loss function to
preserve community structure is formally defined as

LY = >

[él;jq) £ 8@ (i, v)) H 4@ — u®
i, /)es@

: ]
+y| .
2 +

12)

Let set @) = Sl(a) U Séa) U Séa) U Sf‘a) represent all ver-
tex pairs in network G at time a. The Euclidean distance
between embeddings of vertices v; and v; is denoted as
| —uj@
for a real number x. y € R™ is a margin hyperparameter.
£ij@ is defined in Eq.(2). The function 29D (v;, v;) indi-
cates whether vertices v; and v; are linked at time a

22. The notation [x]+ represents max (0, x)

I, if (v, v) € S u s

1
o (13)

g9, v)) = {

otherwise,
where it outputs 1 if v; and v; are linked, and -1 otherwise.

Conjunctive model

Dynamic evolution of networks occurs at both micro- and
macrolevels and plays a crucial role in their development.
We construct an overall objective function that incorporates
three loss functions: LE.“ ) (Eq. (12)) for community structure
preservation, Lfa) for microevolution preservation (Eq. (6)),
and Lﬁ,‘f ) for macroevolution preservation (Eq.(11)). Mini-
mizing these loss functions allows us to capture the intricate
dynamics of dynamic networks and obtain meaningful rep-
resentations for nodes in the network. The formulation is as
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follows:

Ligss = » L + BoLi” + B LY, (14)

aeT

where By € [0, 1] is the weight of the microlevel network
evolution pattern on the DNE constraint, and 81 € [0, 1] is
the weight of the macrolevel network evolution pattern on
the DNE constraint.

In this study, the entire training procedure of the Bi-DNE
approach discussed above is outlined as Algorithm 1.

Algorithm 1 Overall framework of Bi-DNE

Input: G = {G(l), G?, ..., G(D}: Sequence of dynamic network
snapshots. «, 17, y and d: all hyperparameter

Output: U = {U Oy, ..U (T)}: low-dimensional representa-
tions in a dynamic network.

1: Initialize model parameters W = {6‘ e R4 y e RIVIxd 0, w, 8}
randomly.

2: For each time step @ € T, count the number of nodes n(® and edges
ne@ in the network snapshot.

3: for each iteration do
4:  Sample Eé“) for preserving community structure.
5:  Compute the community influence Ei(;l) for each instance of E((,a).
6:  Sample E,(“) for preserving evolution pattern.
(a)
(a) (a) P
7:  Compute each C;; basedon C;;) =1— .
ijk ijk link*eCN,-(_"j) (I—P;J,.j)
8:  for each batch of training set do
9: Compute loss Ljss based on Eq. (14).
10: Compute gradients based on Vyy = ;é/(;:)) .
11: Update parameters by the gradient based on W' +D «— w®
12:  end for
13: end for
Experiment settings

All methods were implemented using Python 3! The hyper-
parameters involved in this experiment and their meanings
are enumerated in Table 5.

Dataset

In this study, the proposed model Bi-DNE is evaluated using
four real-world dynamic networks, which are described as
follows:

! The complete experiment data and codes are available at https://
github.com/gooSAMA/Bi-DNE, and the experiments were performed
on a Windows OS with Intel(R) Core(TM) i9-10900K CPU @
3.70 GHz. and the GPU is a Nvidia 2080ti 12 G. Details of our software
and hardware environments were as follows: Windows 11, Python ver.
3.6.6, NumPy ver. 1.19.2, NetworkX ver. 2.1, Gensim ver. 3.8.3, Pandas
ver. 0.24.2, Matplotlib ver. 2.2.3.

e The fb-messages network [45]: This dataset represents
an online community of 1,899 students from the Uni-
versity of California, Irvine. It includes 59,835 messages
sent between them from April to October 2004.

e The ia-facebook network [45]: This dataset shows the
connections between 44,686 users over 24 months. A
total of 735,439 links that were recorded between 2007
and 2008. Earlier data were not included due to lack of
information.

e The ia-contacts-Dublin network [45]: This network
consists of daily dynamic contacts collected during the
Infectious Social Patterns event at the Science Gallery in
Dublin, Ireland, during the ArtScience Exhibition. The
data were collected at 20-s intervals. The network spans
ten time steps, with each time step representing a 3-week
period.

e The ia-retweet-pol network [45]: This dataset includes
470 Twitter users as vertices and 61,157 retweet relations
as edges. It spans six time steps, with each step represent-
ing a three-week period.

Figure5 presents more detailed statistics concerning the
experimental data.

Baseline

To evaluate the effectiveness of the suggested model, we have
chosen five baseline methods. These methods include three
SNE techniques (DeepWalk, Node2vec, and LINE) and two
DNE methods (TNE and DynamicTriad). To ensure fair com-
parisons in our experiments, we have carefully chosen the
best settings for each of the baseline algorithms by tuning
their parameters.

To evaluate the effectiveness of the suggested model,
we choose five baseline methods for comparison purposes.
These methods include three SNE techniques (DeepWalk,
Node2Vec, and LINE) and nine DNE methods (TNE,
DynamicTriad, AGA, GDM, TFIP, DGCN, DynamiSE,
ERM-ME, and DINE). To ensure fair comparisons in our
experiments, we carefully select the best settings for each of
the baseline algorithms by tuning their parameters.

e DeepWalk (2014) [20] is a widely used approach to
embed static networks. It leverages truncated random
walks to capture vertex structural information and gen-
erates low-dimensional vector representations for each
vertex. Close vertices in the random walk sequence are
assumed to be similar. Our DeepWalk experiments used
a step size of 8, a window size of 5, and 100 steps per
vertex.

e Node2vec (2016) [22] is a model that improves neighbor
selection during random walks by introducing hyperpa-
rameters p and g. This results in better node represen-

@ Springer


https://github.com/gooSAMA/Bi-DNE
https://github.com/gooSAMA/Bi-DNE

3776

Complex & Intelligent Systems (2024) 10:3763-3788

Table 5 List of hyperparameters

Parameter Description Parameter Description
a Weight parameter for community structure Bo, B1 Weights for micro and macro dynamics
d Dimension of embedding vectors y Margin hyperparameter
0 Model parameter
100000 1000000 735439 12
14686 415912
10
10
18470
10972 100000 59835 61157
10000 8
7
6 6
10000 6
1899
1000 4
1000
2
100 100 0
(a) User numbers (b) Relation numbers (c) Timestep numbers

Fig.5 The statistics of four datasets. From left to right are: fb-messages, ia-facebook, ia-contacts, and ia-retweet

tation. It also uses a skip-gram graph model and has
similar step and window size settings as DeepWalk. We
set p = 0.15 and ¢ = 4 in our experiments.

LINE (2015) [23] is a method that captures the first-order
similarity between directly connected nodes, preserv-
ing local information in the network. It also introduces
second-order similarity for nodes with familiar neigh-
bors, capturing global network information. By inte-
grating these two similarity measures, LINE models the
relationships between nodes and obtains node represen-
tations as embedding vectors.

TNE (2016) [12] is a matrix factorization algorithm for
DNE that captures temporal changes. We used its default
parameters in our experiments.

DynamicTriad (2018) [35] studies changing networks
by analyzing triads. The settings in our experiments are
the same as Yang et. al [17].

AGA (2021) [30] introduced a budget-constrained opti-
mization module, and achieved superior accuracy on
many paths. The hyperparameter f is set to 1.

GDM (2021) [31] is a static network embedding method
combined with a Gaussian propagation model. We used
its default parameters in our experiments.

TFIP (2022) [46] uses sentiment analyzing methods to
embedding static network. The active probability in TFIP
issetas0.1.

DGCN (2022) [41] is a dynamic network embedding
model applying GCN modules. The number of hidden
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layers is set to 2, the hidden layer size is set to 128, and
the number of convolutional layers is set to 2.

e DynamiSE (2023) [42] is a model that simultaneously
encodes the dynamics and symbolic semantics of the net-
work for link prediction. The search range is set to 0.001,
0.01, 0.1, 0, 1, 10, 100.

¢ ERM-ME (2022) [43] is a dynamic network embedding
method to capture the attributes and emotions of different
roles in social networks. The parameters that control the
iteration are the same as Du et al. [43].

e DINE (2023) [44] is a network node dynamic embedding
model for social recommendation. The batch size is set
as 512 and the dimension of embedding d is set as 24.
The learning rate and the regularization coefficient are
searched in [0.0001, 0.0005, 0.001, 0.0057] and [0.0001,
0.001, 0.01, 0.1], respectively.

Parameter setting

Prior to learning the network representation, a compre-
hensive examination of different parameter combinations
is conducted to identify the optimal control parameters.
The main parameters considered in this study are n €
{0.1,0.3,0.5,0.7,0.9}, « € {0.3,0.4,0.5,0.6,0.7, 0.8},
and y € {0, 1,2, 3,4}, which are tested with values from
predefined sets.

The Bi-DNE model and the baselines are used to obtain
embedding vectors for nodes via network representation
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learning. Subsequently, the positive and negative samples
acquired at various time steps are collected, and a logistic
regression model is utilized as the classifier. The collected
samples are subjected to fivefold cross-validation, and the
experiments are repeated ten times to assess the performance
of the tested methods. Experimental comparisons are then
conducted based on the averaged results.

To determine the most suitable dimension for the latent
vector space, different values of d = {24, 48, 72, 96, 120}
are tested. For performance comparison, we chose embed-
ding vector dimension d = 48 after weighing computational
complexity and performance.

Evaluate tasks and benchmarks

Bi-DNE learns low-dimensional vertex representations, which
are applied to graph-related tasks, including link recon-
struction, prediction, and modification. In this study, the
embedding vectors of vertices are used to create feature rep-
resentations for network edges. The feature representation
for each edge is formulated as e;; = |u; — uj|.

e Link prediction: The objective of link prediction in
dynamic networks is to predict the presence of future
edges within the network. In DNE, low-dimensional rep-

resentations ul@ and u j @ of vertices v; and vjattimea
are used to predict the existence of an edge eij between
them at time a + 1. Link prediction is done by using ver-
tex embeddings to estimate connection likelihoods. The
embedding vectors of nodes can express the likelihood
of connections between them.

e Link reconstruction: Link reconstruction is a method
for testing the effectiveness of NEs by analyzing the spa-
tial positions of the embedding vectors assigned to two
vertices and determining their presence or absence.

The relative positioning of two nodes in the embedding
space reflects whether they share a connection.

e Dynamic link prediction and reconstruction: This
work studies how dynamic networks predict and recon-
struct changes in their edges, which greatly affect their
overall development over time. By analyzing these
changes, we can better understand the network’s dynamic
qualities at different points in time. The network connec-
tions are assumed to be dynamic and evolving, with new
links forming based on mechanisms like triadic closure.

Link prediction and reconstruction are fundamental com-
ponents that assess if embeddings effectively encode the
presence or absence of edges. Dynamic link prediction and
reconstruction, on the other hand, specifically evaluate how
well embeddings handle network evolution over time. The
problem suite assesses whether Bi-DNE achieves this objec-

tive. To assess the Bi-DNE’s effectiveness, we consider
precision, recall, and F1-score as performance metrics.

Results

This section includes experiments conducted on four datasets
using our proposed model Bi-DNE and several baseline mod-
els. We evaluate the performance of the learned embedding
vectors through four downstream tasks: link reconstruction,
link prediction, and joint link reconstruction and prediction.
The statistical values obtained from these experiments are
recorded in Table 6 and Figs. 6, 7, 8, 9, with the best results
highlighted in bold.

Our research shows that the Bi-DNE algorithm performs
better than the other baseline algorithms in most cases. The
comparison among the F1 scores achieved by Bi-DNE and
the other baselines across the four downstream tasks con-
ducted on the fb-messages, ia-facebook, ia-contacts, and
ia-retweet-pol datasets is shown in Figs.6, 7, 8, and 9. It
is noteworthy that Bi-DNE outperforms the other algorithms
by achieving the best statistical F1 scores in 12 out of 16 tests.
These results serve as compelling evidence for the effective-
ness and superiority of our algorithm.

The experimental results lead to several key conclusions
regarding the six network representation learning methods
used in this study, which are categorized into static and
dynamic models. The following findings are observed:

These findings demonstrate the superior performance
of Bi-DNE, which effectively combines both micro- and
macrolevel network characteristics. The model outperforms
other approaches in terms of various tasks and datasets, show-
casing its strength as a comprehensive and robust network
representation learning method.

(1) Our proposed models, Bi-DNE, DynamicTriad, and
TNE, along with other DNE methods, are found to out-
perform SNE methods such as DeepWalk, LINE, and
Node2Vec. This suggests that accounting for the dynamic
characteristics of a network along with its topological
structure properties during the embedding process can
yield an improved network representation learning effect.

(2) Out of the three methods for DNE, Bi-DNE and Dynam-
icTriad have shown to perform the best. These models are
able to capture the microlevel evolution trend and fine-
grained structural properties of the network by modeling
the triadic closure process. They also create represen-
tation vectors for each vertex step, which shows how
effective it is to incorporate the ternary closure princi-
ple in the DNE process. However, TNE has suboptimal
performance with sparse network adjacency matrices due
to imbalanced samples.
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Fig.6 Comparison of Fl-scores for all algorithms across fb-messages dataset and downstream tasks

= DeepWalk = Node2vec = LINE TNE = DynamicTriad
= AGA BGDM ETFIP & DGCN & DYnamiSE
= ERM-ME =DINE = Bi-DNE 0.998
1 0.969 0.953
— —
0.9
0.8
0.7
0.588
0.6 0.536 0.532 0.529 0.52
=
“ B
0, B
0.2
(a) Link reconstruction
= DeepWalk = Node2vec = LINE TNE = DynamicTriad
= AGA BGDM ETFIP & DGCN & DYnamiSE
= ERM-ME = DINE = Bi-DNE
1 0.97
0.9
0.8
0.7
0.61
0.6 0.546 0.548 0577 0.582 0.549
s B =
B
. E
0.2

(c¢) C.Link reconstruction

= DeepWalk = Node2vec = LINE TNE = DynamicTriad
= AGA BGDM ETFIP & DGCN & DYnamiSE
= ERM-ME = DINE = Bi-DNE
1
—
0.9 —
= 078
0.8 =
0.7
0.6 0.528
0.526 0.481 0.489 0.519
0.5 :
0.4
03
0.2
(b) Link prediction
= DeepWalk = Node2vec = LINE TNE = DynamicTriad
= AGA B GDM ETFIP ®DGCN & DYnamiSE
= ERM-ME =DINE = Bi-DNE 0.973
1 .
0.9
0.8 0.734
07 0616 0.607 0.609
0.573
0.6
0.5
0.4
0.3
0.2 = ==

(d) C.Link prediction

Fig.7 Comparison of F1-scores for all algorithms across ia-facebook dataset and downstream tasks

(3) Building upon the modeling of the dynamic network
evolution process at the microlevel, Bi-DNE further
incorporates the macrolevel evolution pattern to encode
high-level structures in the embedding space. This addi-
tional feature enhances the performance of the model,
making Bi-DNE stand out from the other approaches.
Our model achieves the best results in three tasks (all
except for link prediction) across various datasets.

In addition, the four downstream tasks can be classi-
fied into generic tasks and dynamic tasks. The comparisons
drawn from our analysis reveal the following key findings:
In tasks that require constant change, Bi-DNE has proven
to show a considerable improvement in performance. When
compared to the baseline model that obtained the highest
F1-score on the four datasets for the altered link reconstruc-
tion task, Bi-DNE has shown a significant gain of 51.2%,
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Fig.8 Comparison of Fl-scores for all algorithms across ia-contacts-Dublin dataset and downstream tasks
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Fig.9 Comparison of F1-scores for all algorithms across ia-retweet-pol dataset and downstream tasks

38.8%, 41.9%, and 32.8%, respectively. Similarly, the Bi-
DNE model outperformed the baseline in predicting changed
links, with F1 scores and improvements up to 55.8%. It
adapts to dynamic networks by capturing changing trends
at micro- and macrolevels, successfully preserving evolu-
tionary patterns. Our proposed model is a suitable solution
for addressing the needs of dynamic networks. Finally, we

@ Springer

analyzed the datasets of four real networks used in the exper-
iment, and the trend of edge changes is shown in Fig. 10:

By carefully observing the network dynamics over time,
several noteworthy insights can be gleaned:

e First, the fb-messages dataset exhibits a distinct down-
ward trend in edge changes, with the disappearance of
edges outweighing the generation of new edges. This pat-
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Fig. 10 The trend of edge
changes in the four datasets
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tern indicates a substantial loss of connections within the
network.

e Second, ia-facebook emerges as a prototypical social net-
work, characterized by a high frequency of evolutionary
trends commonly observed in real-life social networks.
This dataset, therefore, serves as a valuable reference for
experimental analysis, given its relevance to the dynam-
ics of social networks.

e Third, the ia-contacts dataset displays a relatively small
range of edge changes. This dataset represents a unique
scenario where the generation and disappearance of
edges resulting from triadic closure processes are roughly
balanced.

e Finally, in the ia-retweet-pol dataset, edges demonstrate
a gradual and steady growth rate during the initial two
moments, followed by a stable phase with minimal
changes. Leveraging the principles of ternary closure
theory and dense power law, our research successfully
captures the dynamic process of edge generation and
the overall network growth scale. Consequently, our
approach achieves optimal results in networks where
the rate of edge growth intensifies, such as ia-facebook,
which exemplifies the typical dynamics of social net-
works.

We performed ablation experiments on four datasets to
investigate the effect of various modules of this paper on
the model’s final performance. Table 7 and Fig. 11 present
the experimental results, which indicate varying degrees of
influence on Bi-DNE’s performance from the microlevel
structure, macrolevel structure, and community structure.
The research shows that embeddings with community struc-

t4 t5 16 7 18 19 110
Time step

ture combined with the removal of macrolevel dense power
laws have the greatest influence on Bi-DNE and can enhance
the quality of low-dimensional vectors. The modules that
combine both macro- and microlevels play a critical role
in this process. When comparing the ablation experiment
of micro- and macrostructure, we found that the perfor-
mance of microdense power law decreases more when the
macroternary closure rule is removed. This indicates that the
macrolevel is the most important in the module that com-
bines macro and micro. From another perspective, both the
microlevel and the community structure effectively improve
the performance of the triadic closure model. However, the
results obtained by only using community structure are not
satisfactory, indicating that relying solely on community
structure is insufficient for understanding the evolution of
social networks. In the experiments conducted on the four
data sets, the effect of the changing link task was better, indi-
cating that our method is better at dealing with dynamically
changing network characteristics compared to a static net-
work.

Conducting a sensitivity analysis on the utilized parame-
ters is a crucial aspect of research, as it aids in comprehending
the extent of influence that parameters have on study out-
comes and assessing the soundness of parameter selection.
The Bi-DNE algorithm encompasses five primary hyper-
parameters: (1) o, responsible for controlling community
influence, (2) y, determining the boundary value of the loss
function for community structure information, (3) d, repre-
senting the vector dimension, (4) By, denoting the weight of
microlevel network evolution pattern on DNE constraint, and
(5) B1, denoting the weight of macrolevel network evolution
pattern on DNE constraint. The range for the parameter «

@ Springer
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Fig. 11 Ablation experimental results of Bi-DNE on four datasets

was set to {0.3,0.4, 0.5, 0.6, 0.7, 0.8}. The parameter y was
tested with values {1, 2, 3, 4}. The parameter d with values
{24, 48, 72,96, 120}, Bo with {0.01, 0.1,0.2,0.3,0.4, 0.5},
B1 with {0.01,0.1,0.2,0.3,0.4,0.5}. These experiments
were conducted using the fb-message and ia-retweet-pol
datasets.

Figure 12 illustrates the results obtained when analyzing
the o parameter. It is evident that the performance of Bi-DNE
improves across all four tasks as « increases up to a certain
threshold. Notably, when « is set to 0.5, our model fails to
differentiate whether network vertices belong to the same
community. However, as « continues to increase, specifi-
cally reaching 0.6, Bi-DNE takes the community structure
information into account. This consideration results in a sig-
nificant increase in the F1 value, indicating that incorporating
community structure information proves advantageous for

enhancing the performance of the network embedding pro-
cess.

The experimental findings depicted in Fig. 13 showcase
the varying performance of Bi-DNE across different values
of y. The outcomes illustrate a gradual enhancement in the
F1 score for all four tasks as y increases from O to 1. Never-
theless, as y continues to escalate, the model’s performance
stabilizes, suggesting its robustness to this parameter.

The experimental results captured in Fig. 14 portray the
evolving performance of Bi-DNE in terms of the F1 scores
with respect to the embedding dimension d. The findings
reveal a progressive enhancement in Bi-DNE’s performance
across the four tasks as d increases from 24 to 96. However,
the improvements become marginal upon further increase in
the d value, as a substantial portion of the essential informa-
tion has already been captured within the embedding vectors.
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Fig. 12 Statistical performance of Bi-DNE with different alpha value

1.000
0.975 4

0.950

0.925 1 /\‘\\

0.875 4 /\

F1 Score
o
o
o
o

0.850 +
—— Reconstruction:fb-messages
Reconstruction:ia-retweet-pol
0.825 1 .
—— Prediction:fb-messages
Prediction:ia-retweet-pol
0.800

T T T T T
0 1 2 3 4

(a) Variations of parameter gamma

Fig. 13 Statistical performance of Bi-DNE with different gamma value

To strike a balance between computational resources and
Bi-DNE’s performance, this study sets the number of dimen-
sions to 48.

The analysis conducted on the By parameter, with a fixed
value of 0.01, is depicted in Fig.15. Notably, the model’s
F1 index scores exhibit variations ranging from 0.003 to
0.009 for the fb-facebook dataset, and 0.002 to 0.013 for
the ia-retweet-pol dataset. In Fig. 16, the analysis focuses
on the B parameter, while maintaining a fixed value of
Bo=0.1. The model’s F1 index scores display variations rang-
ing from 0.012 to 0.029 for the fb-facebook dataset, and
0.024 to 0.088 for the ia-retweet-pol dataset. These findings
clearly indicate that the proposed model demonstrates con-
sistent performance even when the o and ) parameters are
adjusted. Hence, it can be concluded that the Bi-DNE model
exhibits robustness in relation to these two primary model
parameters.
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Complexity and overhead analysis

Based on the analysis of the Bi-DNE algorithm in the
section “Framework of Bi-DNE model”, we can conclude
that the algorithm automatically updates coupling coef-
ficients through multiple iterations to obtain part-whole
relationships. The algorithmic complexity of Bi-DNE can
be seen as the summation of embedding complexities from
the microlevel module, macrolevel module, and community
structure module. In this process, we assume the number of
nodes as n, the embedding dimension as d, and the num-
ber of edges as /. The required training time per round for
our proposed model is 740 seconds, while Deepwalk is 95
seconds and DynamicTraid is 702 seconds. We compared
Bi-DNE with DynamicTriad, another triadic closure-based
model, and classic representation learning algorithms Deep-
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Fig. 14 Statistical performance comparison of Bi-DNE with different values of d
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Walk and Node2 Vec. With a microlevel complexity of O (n3)
utilizing triadic closure, macrolevel complexity of O (nd),
and community structure complexity of O (nd), the overall
complexity of Bi-DNE is O (n® 4 2nd), which is still O (n>).
DynamicTriad performs well on link prediction tasks and has
an O (n’) worst-case complexity. DeepWalk and Node2 Vec
require additional consideration of walk times, thus having an
overall split complexity of O (nd + nl) for walks and embed-
ding. Finally, based on the dataset attributes in this paper,
the complexity of Bi-DNE and DynamicTriad is O (n°). At
the same time, the classic network embedding algorithms
like DeepWalk and Node2Vec have a complexity of O (n?).
The running time of the three algorithms is in line with the
complexity of their respective algorithms. While both Bi-
DNE and DynamicTraid have an O (n?) complexity, Bi-DNE
also takes into account the community structure and dense
power-law overhead, resulting in a slightly longer running
time compared to the DynamicTraid method.

Real-world feasibility analysis

The paper uses real-world datasets, which allows the pro-
posed model to demonstrate its excellent performance in
practical applications. Although Bi-DNE may be more com-
putationally complex than traditional static network embed-
ding models, it is still feasible with modern computing
resources. The advantage of Bi-DNE over traditional models
is its ability to effectively capture the evolutionary process
of a network over time, which is invaluable in many prac-
tical applications. As a dynamic network embedding model
with superior performance, Bi-DNE is suitable for real-time
or near-real-time analysis tasks, such as social media trend
analysis. To successfully implement the Bi-DNE model in
real-world scenarios, it is first necessary to collect high-
quality dynamic network datasets and perform necessary
preprocessing work, such as denoising and normalization,
to ensure the quality of the input data. Additionally, appro-
priate model parameters, such as the community influence
coefficient and learning rate, should be selected for per-
forming accurate tuning according to actual business needs.
Cloud computing platforms can also be used to deploy
model services to ensure high availability, low latency, and
service scalability. Finally, continuous model monitoring,
evaluation, and update mechanisms should be established to
ensure the stability and continuous improvement of the model
performance. After conducting pretraining with data from
different fields, our proposed method can also be applied to
user profiling and recommendation in social networks, abnor-
mal transaction detection in financial networks, and traffic
flow prediction.

@ Springer

Conclusion

In this paper, we analyze the evolution of networks on both
a micro- and macrolevel. At the microlevel, nodes in the
network dynamically form their structure based on the tri-
adic closure principle. Meanwhile, the number of edges in
the network on a macrolevel follows a power-law distribu-
tion that determines the scale of network evolution. Based on
these insights, we introduce the integration of triadic closure
and dense power-law concepts into network representation
learning. To address this important problem, a novel dynamic
network representation learning model called Bi-DNE is pro-
posed. The model captures the process of network structure
formation through a strengthened triadic closure mecha-
nism at the microlevel. Additionally, a dynamic equation
ensures that the network structure adheres to the dense power-
law evolution pattern at the macrolevel. To further enhance
the quality of network embedding, the model incorporates
community structure, enabling the extraction of richer infor-
mation from the network. To assess the effectiveness of the
proposed model, a comprehensive evaluation is conducted on
four real-world datasets, encompassing diverse tasks, such as
link prediction, link reconstruction, changed link prediction,
and reconstruction. The experimental findings consistently
demonstrate that the Bi-DNE framework adeptly captures the
dynamic evolution information, providing robust evidence of
its effectiveness and practical utility.

In this paper, we analyze the evolution processes of net-
works at both the micro- and macrolevels. At the microlevel,
the nodes in a network dynamically form their structure
based on the triadic closure principle. Furthermore, the num-
ber of edges in the network at the macrolevel follows a
power-law distribution that determines the scale of network
evolution. Based on these insights, we integrate the tri-
adic closure and dense power-law concepts into the network
representation learning process. To address this important
problem, a novel dynamic network representation learning
model called Bi-DNE is proposed. The model captures the
network structure formation process through a strengthened
triadic closure mechanism at the microlevel. Additionally, a
dynamic equation ensures that the network structure adheres
to the dense power-law evolution pattern at the macrolevel.
To further enhance the quality of network embeddings,
the model incorporates community structure information,
enabling the extraction of richer information from the net-
work. To assess the effectiveness of the proposed model, a
comprehensive evaluation is conducted on four real-world
datasets, encompassing diverse tasks, such as link prediction,
link reconstruction, changed link prediction, and reconstruc-
tion. The experimental findings consistently demonstrate that
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the Bi-DNE framework adeptly captures dynamic evolution
information, providing robust evidence of its effectiveness
and practical utility.
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