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Abstract
Due to the high heterogeneity of cancers, it is rather essential to explore driver modules with the help of gene mutation data as
well as known interactions betweengenes/proteins.Unfortunately, latent false positive interactions are inevitable in theProtein-
Protein Interaction (PPI) network.Hence in the presentedmethod, a newweight evaluation index, based on the gene-microRNA
network as well as somatic mutation profile, is introduced for weighting the PPI network first. Subsequently, the vertices
in the weighted PPI network are hierarchically clustered by measuring the Mahalanobis distance of their feature vectors,
extracted with the graph embedding method Node2vec. Finally, a heuristic process with dropping and extracting is conducted
on the gene clusters to produce a group of gene modules. Numerous experiment results demonstrate that the proposed method
exhibits superior performance to four cutting-edge identificationmethods inmost cases regarding the capability of recognizing
the acknowledged cancer-related genes, generating modules having relatively high coverage and mutual exclusivity, and are
significantly enriched for specific types of cancers. The majority of the genes in the identified modules are involved in cancer-
related signaling pathways, or have been reported to be carcinogenic in the literature. Furthermore, many cancer related
genes detected by the proposed method are actually omitted by the four comparison methods, which has been verified in the
experiments.
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Introduction

cancers, complex diseases with high lethality rates and het-
erogeneity, are caused by the clonal proliferation of cells,
attributing to the selective growth advantage coming from
gene mutations [18, 19, 21]. Nevertheless, the majority of
mutations are passenger ones and are irrelevant to cancers,
they are biologically neutral and do not confer a growth
advantage on the cell where they occur. That is to say, only a
minority of the mutations, called driver mutations, have been
subject to the positive selection and are casually implicated
in the clonal proliferation of cells, contributing to the forma-
tion and progression of cancers [49]. It will shine a light on
cancer pathogenes to differentiate driver genes from passen-
ger ones [38, 40]. Furthermore, studies have demonstrated
that driver genes are generally engaged in some critical cel-
lular signaling or regulatory pathways of the human body
[24], any one aberrated driver gene is generally enough to
disturb the signaling pathway it involves in and leads to the
generation of cancer cells. This may illustrate why high het-
erogeneity exists in cancers. Consequently, it is significant
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for exploring the heterogeneity to investigate gene mutations
in terms of pathway-level instead of gene level [5, 16]. With
the rapid development of high-throughput sequencing tech-
nology, incredible amounts of cancer omics data have been
collected by such cancer genome sequencing projects as the
Cancer Genome Atlas (TCGA) [10], and the International
Cancer Genome Consortium (ICGC) [30]. It has become
realistic to economically detect driver pathways or driver
modules (a set of driver genes enriched in cancer-related bio-
logical pathways) by using computational methods [14, 25,
26, 64].

A number of studies have been conducted in the iden-
tification of driver pathways or driver modules. One kind
of approaches, namely de novo identification [52, 63, 65],
conduct detection from just genetic data by virtue of the fun-
damental features of driver pathways or driver modules. The
other kinds of ones, namely priori knowledge-based identi-
fication approach [1, 34, 42], exploit the known interactions
between genes/proteins in addition to genomic data. The
study focuses on the latter one.

Among the methods based on prior knowledge, most
ones apply the intrinsic topology of biological networks
to the identification. The HotNet2 method [42] performs
an insulated thermal diffusion process with gene mutation
frequencies as well as gene interactions, and constructs a
weighted graph for identifying driver modules. The Mutex
method [4] hunts for sets of mutually exclusively mutated
genes, sharing a common downstream target, from a great
gene network. Ahmed et al. [1] regarded that methods which
conducts identification employing only mutation frequency
may neglect some driver modules with low mutation. Differ-
ent from the HotNet2 method, their proposed MEXCOWalk
method [1] weights the protein-protein interaction (PPI) net-
work in terms of the mutual exclusivity among genes besides
the genemutation frequencies, and conducts an insulated heat
diffusion process based on the weights of both vertices and
edges. In 2021,Wu et al. [55] pointed out that the amounts of
noise contained in biological networks would have unavoid-
able negative impacts on the performance of identification,
and filtered it out by introducing subcellular localization
data. Additionally, they devised a parthenogenetic algorithm
to solve their proposed recognition model, constructed by
introducing hops between genes within a module besides
adopting coverage, mutual exclusivity, and network connec-
tivity. The next year, they claimed that attention should be
paid to the discrepancy of mutation frequency among dif-
ferent cancers [56]. The HMCEwalk method proposed by
them, identifying modules based on a random walk process
weights the integrated PPI network by using the harmonic
mean of scores concerning coverage as well as mutual exclu-
sivity. In the same year,Wu et al.[54] presented the ECSWalk
method based on the method MEXCOWalk, it weights gene
interactions in a complex biological network in terms of the

similarity of node topological structure besides coverage and
mutual exclusivity between mutation genes. There are also
some studies attempting to reconstruct or alter the topology
of biological networks. The MEMo method [12] builds a
graphwith edges indicating the functional similarity between
a pair of genes, and outputs cliques exhibiting patterns of
mutual exclusivity. The MEMCover method [35] uncovers
pan-cancer dysregulated pathways from an adjusted func-
tional interaction network in which the interactions fall into
the ACROSS\ME level.

Among the above-mentioned identificationmethods, none
of them except IDM-SPS, proposed by Wu et al. [55], has
focused on the latent noise such as false positive interactions
in biological networks, which may caused by a less precise
confidence interval for classification [31, 32]. In this paper,
studies are conducted on alleviating the negative effects of
noise in virtue of other omics data. We begin with construct-
ing aweighted protein-protein interaction (PPI) networkwith
the aid of the gene-microRNA network as well as the somatic
mutation profile, and generate gene feature vectors with the
graph embedding method Node2vec. Then a set of gene
clusters are producedwithDIvisiveANAlysis (DIANA)hier-
archical clustering algorithm [48]. Finally, the set of gene
clusters are processed based on gene influence to obtain the
final set of cancer driver modules. The major contributions
are as follows: (1) Introduce a new evaluation index toweight
the PPI network. (2) Present the vertices of a PPI network into
a low-dimensional vector space with graph embeddingmeth-
odsNode2vec. (3) Devise a heuristic dropping and extracting
process on a set of gene clusters, generated from clustering
the genes based on their low-dimensional feature vectors. (4)
Conduct extensive trials with real pan-cancer datasets, and
compare the identification performance with that the other
advanced methods Hotnet2, MEXCOwalk, ECSwalk, and
HMCEwalk.

Definitions and notations

Given a set of cancer samples S={si |i=1, 2, …, m} as well
as a group of mutated genes G={g j | j=1, 2, …, n}, let Am×n

be a binary somatic mutation matrix recording whether gene
g j mutates in sample si or not, i.e., ai j=1 (i=1, 2, …, m,
j=1, 2, …, n) if gene g j mutates in sample si , and ai j=0
otherwise. Let PP=(V , E) represents a connected PPI net-
work, where the vertex set V records the proteins expressed
from the genes in G (n = |V |), and edge set E records the
undirected interactions between the proteins. For simplifying
the later description, the vertex in PP is represented with its
corresponding gene g j (g j ∈ G). Let PM=(V g , Vm , Egm ,
Wgm) denote a gene-microRNA network, where each ver-
tex v

g
j ∈ V g represents a gene (corresponding to the gene

g j ∈ V ), each vertex vmk ∈ Vm represents a microRNA,
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and each edge egm(vgj , vmk )∈ Egm has a weight wgm(vgj ,

vmk )∈ Wgm , measuring the relationship between gene v
g
j and

microRNA vmk . For each g j ∈ V , let S j record the samples
in which gene g j is mutated:

S j =
{

{si |ai j = 1}, if g j ∈ G

∅, otherwise.
(1)

Assume that M is a module composed of selected genes.
The mutual exclusivity MEX(M) as well as the coverage
COV (M) of M are defined in Formulas (2) and (3) [1]:

MEX(M) = | ⋃∀gi∈M Si |∑
∀gi∈M

|Si | , (2)

COV (M) = | ⋃∀gi∈M Si |
m

, (3)

where MEX(M)=1means that the genes within M are com-
pletely mutually exclusive, i.e., each sample carries at most
one mutation coming from the gene of M .COV (M)=1 indi-
cates that each sample carries at least one mutation coming
from the gene of M . Let P={M1, M2, …, Mr} be a group
of driver modules, where Mi , Mj ⊆ P , Mi �= Mj , i , j=1,2,
…, r , i �= j . The relative size of the module Mi , namely
RS(Mi ), is formulated as follows:

RS(Mi ) = |Mi |
| ⋃∀Mt∈P Mt | (4)

Then for the group of driver modules P={M1, M2, …,
Mr}, let MS(P) and CS(P) measure the mutual exclusiv-
ity score and the coverage one[1], respectively, defined as
follows:

MS(P) =
∑

∀Mi∈P

MEX(Mi ) × RS(Mi ) (5)

CS(P) =
⎧⎨
⎩

∑
∀Mi∈P

COV (Mi )×(1−RS(Mi ))∑
∀Mt∈P

1−RS(Mt )
, if |P| > 1

COV (M1), if |P| = 1.
(6)

According to the above definitions, an optimization prob-
lem for identifying cancer driver modules is depicted as
follows: Given a PPI network PP , somatic mutation matrix
A, gene-microRNA network PM , the total number of genes
Totalg, and the minimum size of a module Mins, identify a
group of non-overlapping modules P to maximize Driver
Module Set Score DMSS(P), as shown in Formulas (7)
to (10).

max DMSS(P) = MS(P) × CS(P), (7)

s.t . PP(Mi ) is connected,∀Mi ∈ P, (8)

|
⋃

∀Mi∈P

Mi | = Totalg, (9)

min∀Mi∈P
|Mi | = Mins. (10)

The ICDM-GEHCmethod

In this section, a method for Identifying Cancer Driver
Modules by Graph Embedding and Hierarchical Clustering
(ICDM-GEHC) is proposed. Themethod takesmatrix A, PPI
network PP , and gene-microRNA network PM as inputs,
and produces a set of driver modules P as output. As shown
in Fig1, the method has four main steps, namely assigning
weights, extracting features, clustering genes, and construct-
ing driver modules. Each step is depicted detailedly in the
four subsequent subsections.

Assigning weights

It has been reported that microRNAs (miRNAs) exert criti-
cal functions in the progression and development of human
cancers through regulating the expression of cancer-related
genes [33]. In this paper, the gene-microRNA interaction net-
work is introduced to weight the protein-protein interactions
of a PPI network. For the convenience of description, let PP
still represent the weighted PPI network, i.e., PP=(V ,E ,W ),
where w(v j , vk)∈ W denotes the weight of edge (v j , vk).

Given a pair of genes gi and g j (gi , g j ∈ V ), the confi-
dence between them CF is defined as Formula (11):

CF(gi , g j ) =

⎧⎪⎨
⎪⎩

∑
∀vmk ∈NMi j

[wgm (v
g
i ,vmk )+wgm (v

g
j ,v

m
k )]

2×|NMi j | , if |NMi j | > 0,

λμ, if |NMi j | = 0,

(11)

where NMi j records the microRNA neighbors common to
genes gi and g j .μ is the arithmetic mean of the edge weights
in PM (Formula (12)), and λ an adjustable parameter.

μ =
∑

e(vgj ,v
m
k )∈Egm wgm(v

g
j , v

m
k )

|Egm | . (12)

Let ME(gi , g j ) represent the mutual exclusivity between
genes gi and g j (gi , g j ∈ V ), as calculated in Formula (13):

ME(gi , g j ) = MEX(Ne(gi )) + MEX(Ne(g j ))

2
, (13)

where Ne(x) records gene x as well as its direct neighbour
genes:

Ne(x) = {y|e(x, y) ∈ E} ∪ {x}, (14)
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Fig. 1 The pipeline of method ICDM-GEHC

Then each edge of the PPI network PP is weighted as
Formula (15):

w(vi , v j ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ME(gi , g j )

×COV ({gi })
×COV ({g j })
×CF(gi , g j ), if ME(gi , g j ) ≥ θ,

0, otherwise,

(15)

where θ is the threshold of mutual exclusivity.

Extracting features

Given an undirected weighted graph PP=(V , E , W ), the
node embedding algorithmNode2vec [22] is adopted to learn
continuous feature representations of the vertices. The fea-
ture extraction can be formulated into a maximum likelihood
optimization problem:

max
f

∑
vi∈V

[
− log

∑
v j∈V
vi �=v j

exp ( f (vi ) × f (v j ))

+
∑

vk∈Ns (vi )vi �=vk

f (vk) × f (vi )

]
, (16)

where f (vx ) denotes the d-dimensional feature vector rep-
resentation of vertex vx (vx ∈ V ) obtained from a process
of biased random walking, and Ns(vx ) records the network
neighbours of vertex vx generated with the neighbourhood
sampling strategy, i.e., the sequence of vertices in the walk-
ing path starting from vertex vx . Assume that vp, vc and vn
denote three successive vertices in a walking process, vertex

vn is chosen with a conditional probability of P(vn|vc):

P(vn|vc) =
{

αpq (vp,vn)×w(vc,vn)

Z , if e(vc, vn) ∈ E,

0, otherwise,
(17)

where Z is a normalization constant, and αpq is the bias
parameter, ascertained as Formula (18):

αpq =

⎧⎪⎨
⎪⎩

1
p , if vp = vn,

1, if e(vp, vn) ∈ E,
1
q , if e(vp, vn) /∈ E,

(18)

where parameters p andq indicatewhetherDeepFirst Search
(DFS) or Breath First Search (BFS) is adopted in the process
of random walking.

Clustering genes

In this section, the DIANA hierarchical clustering algorithm
[48] is implemented on the weighted PPI network PP to
generate a set of gene clusters. Suppose that F={ f (v1),
f (v2), …, f (vn)} records a set of n feature vectors of d-
size, where f (vi )∈ F represents the feature vector of vertex
vi ∈ PP . Given f (vi ), f (v j )∈ F , the Mahalanobis distance
[46] Dm(vi , v j ) is adopted to measure the similarity between
vertices vi and v j , as shown in Formula (19):

Dm(vi , v j ) =
√

( f (vi ) − f (v j ))T�−1( f (vi ) − f (v j )),

(19)

where � denotes the covariance matrix between vectors
f (vi ) and f (v j ). The DIANA-based clustering algorithm is
described in Algorithm 1.
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Algorithm 1 Hierarchical Clustering Algorithm.
Input: feature vector set F , clustering number K
Output: a set of gene clusters P={p1, p2, …, p|P|}
1: Initialise P={p1}, p1={vi |i=1, 2, …, n};
2: for (k = 2; k ≤ K ; k + +) do
3: l ← argmax

vi ,v j∈pl
l=1,2,...,|P|

Dm (vi , v j );

4: c ← argmax
vc∈pl

1
|pl |

∑
vi∈pl−{vc} Dm (vi , vc);

5: pk ={vc};
6: for (vi ∈ pl) do
7: if ( 1

|pl |
∑

v j∈pl
Dm(vi , v j ) > 1

|pk |
∑

v j∈pk
Dm(vi , v j )) then

8: pk = pk∪{vi};
9: pl = pl−{vi};
10: end if
11: P = P∪{pk};
12: end for
13: end for
14: return P;

Constructing driver modules

Based on the set of generated gene clusters P , a dropping
and extracting algorithm is designed to construct the driver
modules. Suppose that vi ∈ V is a vertex of PPI network
PP , let N I (vi ) measure the node influence of vertex vi , as
defined in Formula (20):

N I (vi ) =
∑

vk∈V w(vi , vk)

|Ne(vi )| − 1
× COV ({vi }). (20)

As depicted inAlgorithm2, the algorithm iteratively drops
the vertices with the lowest node influence, and extracts con-
nective components in each cluster of P . Specifically, the
iteration does not stop until the sum of genes in P is less
than or equal to Totalg (Step 2 to Step 23). Each iteration
begins with dropping the L vertices with the lowest N I (·)
scores from P and PP , and the edges related to them from
PP (Step 2 to Step 11). Then for each cluster pi in P , it
is substituted with a set of connective components, each of
which is extracted from pi andwith aminimum size ofMins
(Step 13 to Step 23). The concrete description is illustrated
in Algorithm 2.

Experiment results and analysis

To test the performance of method ICDM-GEHC, extensive
experiments were implemented on real cancer datasets. The
TCGA pan-cancer somatic aberration data were acquired
fromAhmed et al. [1], consisting of 3110 cancer samples and
11565 genes of 12 cancer types. A widely used H.Sapiens
PPI networkHINT+HI2012 [13, 42, 60]were adopted,which
contained 9859 vertices and 40705 edges. The genes co-
existing in somatic mutation data and PPI network were

Algorithm 2 Dropping and Extracting Algorithm.
Input: a set of gene clusters P={p1, p2, …, p|P|}, a weighted undi-

rected graph PP=(V ,E ,W ), integers Totalg, Mins and L
Output: a group of modules P
1: while (

∑
pi∈P

|pi | > Totalg) do

2: for ( j = 1; j ≤ L; j + +) do
3: k ← argmin

vk∈V
(N I (vk ));

4: for (i = 1; i ≤ |P|; i + +) do
5: if (vk ∈ pi ) then
6: pi ← pi -{vk};
7: break;
8: end if
9: end for
10: E ← E−{e(vi ,vk )|vi ∈ V };
11: V ← V−{vk};
12: end for
13: for (∀pi ∈ P) do
14: //function CC returns connective components in terms of the

genes in pi and their topology in PP;
15: C ← CC(pi , PP);
16: P=P−{pi};
17: for (∀c j ∈ C) do
18: if (|c j | ≥ Mins) then
19: P=P∪{c j};
20: else
21: for (∀vk ∈ c j ) do
22: E ← E−{e(vt ,vk )|vt ∈ V };
23: V ← V−{vk};
24: end for
25: end if
26: end for
27: end for
28: end while
29: return P;

retained, and the processed data are as follows: cancer sam-
ple number m=3110, gene number n=6930, edge number
|E |=25251. The gene-microRNA network, obtained through
feeding the mirDIP database [51] with the 6930 genes, was
consisted of 229,135 interactions between 6145 genes and
2734 microRNAs.

We first tested the ICDM-GEHC method under different
parameter settings, then compared its performance with four
cutting-edge identification methods based on prior knowl-
edge, i.e., Hotnet2 [42], MEXCOwalk [1], HMCEwalk [56],
and ECSwalk [54]. All the experiments have been performed
on a Workstation with an Intel i7-7700 CPU, 24 GB RAM,
a Windows 10 system, and a Python 3.9.12 compiler.

Parameter settings

The settings of parameters adopted in the comparison meth-
ods were in consistent with the literatures [1, 42, 54, 56]: the
mutual exclusivity threshold θ=0.7, the probability β=0.4,
and the minimummodule size Mins=3. The total number of
genes Totalg was set to {100, 200, …, 2000} for methods
Hotnet2, MEXCOwalk and ECSWalk, and {100, 200, …,

123



Complex & Intelligent Systems

900} for method HMCEwalk. In the ICDM-GEHC method,
some parameters were set to the optimal values described in
related literatures, i.e., θ=0.7,Mins=3, node2vec parameters
(p, q)=(4, 1)[1, 22]. Besides, a number of pre-experiments
were performed to determine appropriate values for the other
parameters required by method ICDM-GEHC.

In the experiments of determining clustering number K ,
the candidate values of K are calculated as Formula (21):

K = PNum

(⌈
n

ms

⌉)
, (21)

where function PNum(x) returns the nearest prime number
of x , and ms ∈{10, 20, …, 90} denotes the presump-
tive size of a module. Therefore, the candidate values of
K ∈{701, 347, 233, 179, 139, 127, 101, 89, 79} correspond-
ing to n=6930. The other parameters are tested as follows:
λ ∈{0.25, 0.5, 0.75, 1}, d ∈{16, 32, 48, 64, 80, 96}, L ∈{1,
2, 3}, wl ∈{20, 40, 60, 80,100}, nw ∈{100, 200, 300, 400,
500}(wl and nw are two important parameters used in algo-
rithm Node2vec, where wl represents walk length, and nw

denotes the number of walks per node[22]). Figure2a–f dis-
play the DMSS scores under different parameter settings.
Based on the pre-experimental results,method ICDM-GEHC
has the following parameter settings: λ=0.25, d=48, wl=80,
nw=400, K=89, L=1.

Static evaluation

In this section, static evaluationswere conducted in terms of a
pair of reference gene sets, such as theCOSMICCancerGene
Census (CGC) database [17], and the Network of Cancer
Genes (NCG) [15]. As previous literature has performed,
both Receiver Operating Characteristic Curve (ROC) [7] and
Fold Enrichment analysis [2] were adopted to evaluate the
capability of detecting known cancer genes, i.e., conducting
a comparison between the union of genes in all recognized
modules and a cancer reference gene set.

(1) Receiver Operating Characteristic Curve (ROC)
The ROC curve is created by calculating and plotting

the True Positive Rate (T PR) against the False Positive
Rate (FPR) at various Totalg settings, i.e., each point
on the curve indicates a pair of T PR and FPR obtained
with a given Totalg. T PR (resp. FPR) is the ratio of the
number of identified reference (resp. un-reference) genes to
the total number of reference (resp. un-reference) genes, as
shown in Formula (22) (resp. Formula (23)). T PR and FPR
respectively indicate the sensitivity and the specificity of the
method, reflecting the robustness of it [6].

T PR = T P

T P + FN
, (22)

FPR = FP

FP + T N
, (23)

where T P (resp. FP) counts the number of reference genes
(resp. un-reference genes) identified as cancer-related genes,
and T N (resp. FN ) counts the number of un-reference genes
(resp. reference genes) that are not identified as cancer-
related genes.

(2) Fold Enrichment analysis
Fold Enrichment measures the ratio between the propor-

tion of identified reference genes and the proportion of the
identified genes, as calculated as Formula (24):

Fold enrichment = Recovered × All

Re f erence × Selected
, (24)

where Ref erence counts the number of genes in the refer-
ence gene set, Recovered measures how many genes in the
reference gene set are identified, All counts the number of
genes (vertices) in theHINT+HI2012 network, and Selected
denotes the sum of recognized genes. There were 616 and
591 genes contained in the CGC and the NCG databases,
respectively, of which 436 and 410 ones were included in
the somatic mutation data and the HINT+HI2012 network,
respectively. Therefore, Ref erence was set to 436 for the
CGC database, and 410 for the NCG one.

In Fig. 3, the ROC curves were compared among meth-
ods Hotnet2, MEXCOwalk, ECSWalk, HMCEwalk, and
ICDM-GEHC based on databases CGC and NCG, where
Totalg=100, 200,…, 2000. The vertical dotted lines indicate
the ROC values when Totalg=900 and 2000, respectively.
The bracketed data in the legends represents the area under
the ROC curve (the AUC value ), where A1 (resp. A2)
denotes theAUCvalue of Totalg between 100 and 900 (resp.
between 100 and 2000). From this figure, we can observe that
the ICDM-GEHC method achieves better identification per-
formance than the other four methods, for it has produced
the steepest curve among the five approaches. Take the CGC
database for an example, when Totalg ranges from 100 to
900, method ICDM-GEHC acquires the highest AUC value
among the five ones.When Totalg ranges from 100 to 2000,
the AUC value of method ICDM-GEHC is 0.073, which
is still higher than method Hotnet2 (0.055), MEXCOwalk
(0.069), and ECSWalk (0.061).

Tables 1 and 2 compare the fold enrichment analysis
results based ondatabasesCGCandNCG, respectively. It can
be seen from the two tables that the fold enrichment obtained
by the ICDM-GEHC Method is higher than or equal to that
acquired by the other four methods in most cases.

In addition, the performance of detecting lowmutation fre-
quency genes was also evaluated for the five methods, i.e.,
the above analysis was implemented again under the condi-
tion that the reference gene has a mutation rate lower than
1% or 2%. For the CGC database, there are 291 genes with
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Fig. 2 The Driver Module Set Score (DMSS) with different parameter settings for ICDM-GEHC
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Fig. 3 The comparison of ROC curve among different methods

Table 1 Fold enrichment analysis on the CGC dataset

Method Recovered Selected Fold enrichment

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Hotnet2 32 51 72 86 102 98 198 300 400 499 5.19 4.09 3.81 3.42 3.25

MEXCOwalk 48 80 99 116 130 100 200 300 398 500 7.63 6.36 5.25 4.63 4.13

ECSWalk 52 76 91 106 127 100 195 293 392 489 8.27 6.19 4.94 4.3 4.13

HMCEwalk 26 50 79 104 132 62 174 277 399 497 6.67 4.57 4.53 4.14 4.22

ICDM-GEHC 52 80 102 128 154 100 200 300 400 500 8.27 6.42 5.4 5.09 4.9

Best results are marked in bold

Table 2 Fold enrichment analysis on the NCG dataset

Method Recovered Selected Fold enrichment

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Hotnet2 27 48 66 80 94 98 198 300 400 499 4.66 4.1 3.72 3.38 3.18

MEXCOwalk 46 76 90 107 124 100 200 300 398 500 7.78 6.42 5.07 4.54 4.19

ECSWalk 52 74 88 99 121 100 195 293 392 489 8.79 6.41 5.08 4.27 4.18

HMCEwalk 26 48 80 104 129 62 174 277 399 497 7.09 4.66 4.88 4.41 4.39

ICDM-GEHC 50 78 100 127 151 100 200 300 400 500 8.45 6.66 5.63 5.37 5.1

Best results are marked in bold

mutation rates lower than 1%, and 374 genes with mutation
rates lower than 2%. For the NCG database, there are 266
and 352 genes accordingly.

Tables 3, 4, 5, 6 display the fold enrichments analysis
results of various approaches on the two database. From
these tables, we can discover that the ICDM-GEHC method
exhibit better performance in most cases for reference gene
frequency≤2%, while do not manifest significant advantage
when the reference gene frequency is less than or equal to
≤1%.

Table 7 compares the total execution time among the five
approaches under the condition that Totalg=100, 200, …,

900. The experiment results indicate that method ICDM-
GEHC takes the longest time among thesemethods, followed
by methods ECSWalk and HMCEwalk, and the least time-
consuming methods are Hotnet2 and MEXCOwalk.

Modular evaluation

As referred above, the static evaluation evaluates the per-
formance of identification methods in terms of the union of
genes within the detected modules. In this section, modu-
lar evaluations were further performed to assess the specific
identified modules and their interrelationships based on such
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Table 3 Fold enrichment analysis on the CGC dataset (reference gene frequency≤1%)

Method Recovered Selected Fold enrichment

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Hotnet2 6 10 20 26 33 98 198 300 400 499 1.46 1.2 1.59 1.55 1.57

MEXCOwalk 5 12 17 26 36 100 200 300 398 500 1.19 1.43 1.35 1.56 1.71

ECSWalk 7 15 17 26 36 100 195 293 392 489 1.67 1.83 1.63 1.82 1.95

HMCEwalk 7 18 25 33 47 62 174 277 399 497 2.69 2.46 2.15 1.97 2.25

ICDM-GEHC 3 11 23 38 55 100 200 300 400 500 0.71 1.32 1.83 2.26 2.62

Best results are marked in bold

Table 4 Fold enrichment analysis on the NCG dataset (reference gene frequency≤1%)

Method Recovered Selected Fold enrichment

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Hotnet2 4 10 20 26 30 98 198 300 400 499 1.06 1.32 1.74 1.69 1.57

MEXCOwalk 3 13 17 26 37 100 200 300 398 500 0.78 1.69 1.48 1.7 1.93

ECSWalk 7 18 23 30 40 100 195 293 392 489 1.82 2.4 2.05 1.99 2.13

HMCEwalk 6 15 24 34 46 62 174 277 399 497 2.52 2.25 2.26 2.22 2.41

ICDM-GEHC 2 10 20 37 53 100 200 300 400 500 0.52 1.32 1.74 2.41 2.76

Best results are marked in bold

Table 5 Fold enrichment analysis on the CGC dataset (reference gene frequency≤2%)

Method Recovered Selected Fold enrichment

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Hotnet2 16 30 45 55 64 98 198 300 400 499 3.03 2.81 2.78 2.55 2.38

MEXCOwalk 13 36 50 63 77 100 200 300 398 500 2.41 3.34 3.09 2.93 2.85

ECSWalk 19 38 49 61 78 100 195 293 392 489 3.52 3.61 3.1 2.88 2.96

HMCEwalk 12 26 42 59 84 62 174 277 399 497 3.59 2.77 2.81 2.74 3.13

ICDM-GEHC 19 39 54 76 100 100 200 300 400 500 3.52 3.65 3.34 3.52 3.71

Best results are marked in bold

two indexes as the Driver Module Set Score (DMSS) and the
Cancer Type Specificity Score (CTSS) [1].

The CTSS Score is adopted to estimate the cancer-type
specificity of a group of identified modules P={M1, M2, …,
Mr}. Given Mi ∈ P and cancer type t , let SMi represent the
set of samples that have at least one mutated genes belonging
tomoduleMi , i.e., SMi=

⋃
∀g j∈Mi

S j . Assume that St and StMi

denote the subset of samples in S and SMi diagnosed with
cancer type t , respectively. The probability pti is calculated
with a Fisher’s exact test from such four values as |StMi

|,
|St −StMi

|, |SMi −StMi
|, and |S-St |−|SMi −StMi

|. It estimates
whether a module Mi is specific to the cancer type t , and is
used to calculate the CTSS score of P , as follows:

Table 6 Fold enrichment analysis on the NCG dataset (reference gene frequency≤2%)

Method Recovered Selected Fold enrichment

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Hotnet2 11 27 40 50 57 98 198 300 400 499 2.21 2.68 2.62 2.46 2.25

MEXCOwalk 12 33 43 56 73 100 200 300 398 500 2.36 3.25 2.82 2.77 2.87

ECSWalk 20 37 48 56 74 100 195 293 392 489 3.94 3.74 3.23 2.81 2.98

HMCEwalk 13 25 44 61 83 62 174 277 399 497 4.13 2.83 3.13 3.01 3.29

ICDM-GEHC 17 38 54 78 100 100 200 300 400 500 3.35 3.78 3.54 3.84 3.94

Best results are marked in bold
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Table 7 The execution time under different Totalg (second)

Method\Totalg 100 200 300 400 500 600 700 800 900

Hontnet2 1145.72 1145.65 1145.36 1145.00 1144.43 1143.91 1143.04 1142.01 1139.89

MEXCOwalk 515.13 515.01 514.53 513.90 512.89 511.93 510.32 508.31 504.21

ECSWalk 10501.17 10500.79 10487.31 10452.34 10401.84 10312.67 10238.28 10112.66 9852.65

HMCEwalk 1478.62 1478.60 1478.59 1478.59 1478.58 1478.58 1478.57 1478.56 1478.56

ICDM-GEHC 22534.32 22471.25 22402.84 22326.83 22249.74 22159.37 22054.30 21964.07 21838.35

Fig. 4 The comparison results of DMSS scores

CT SS(P) = −
∑

Mi∈P log(min∀t (pti ))
r

(25)

where pti is calculated as follows:

pti =

( |St |
|StMi

|
)( |S − St |

|SMi − StMi
|
)

( |S|
|SMi |

) (26)

In Fig. 4, the DMSS scores obtained by the five meth-
ods are illustrated. From this figure, we can observe that
the ICDM-GEHC method obtains the highest DMSS score
among the five recognition approaches under different
Totalg settings. This demonstrates that the modules iden-
tified by method ICDM-GEHC exhibit better coverage and
mutual exclusivity than those recognized by the other four
methods.

Figure 5 illustrates the comparisons of the CTSS score
obtained by the five approaches. As conducted by Ahmed et
al. [1], COLONandRECTAL tumorswere grouped together,
so that 11 cancer types instead of 12 ones were utilized. From
this figure, we can discover that the ICDM-GEHC method
still exhibits the best performance in terms of theCTSS score.
It can acquire a higher CTSS score than the other methods

Fig. 5 The comparison results of CTSS score

for each Totalg setting except Totalg=200, 300, 400, sug-
gesting that its output modules are significantly enriched for
specific cancer types.

Analysis of ICDM-GEHCmodules

Figure 6a illustrates the eight modules detected by method
ICDM-GEHC when Totalg=100. The module sizes range
between 3 and 25, and the coverage of the modules ranges
between 5.24% to 69.99%. Node sizes are proportional with
gene mutation frequencies, indicating each gene identified
by method ICDM-GEHC has a mutation frequency greater
than zero. An edge is colored black if it connects two genes
belonging to the samemodule, and grey otherwise. The thick-
ness of a line is in positive proportion to the edge weight.
Color of amodule represents the cancer type that has the high-
est enrichment for mutations in genes of that module. Each
module is named after the gene with the highest mutation
frequency in that module. Figure6b exhibits the cancer type
specificity, where the rows represent modules, the columns
represent cancer types, and the colors of entries indicate
the significance of enrichment for cancer types in terms of
Fisher’s exact test p-values.
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Fig. 6 a The modules produced by the ICDM-GEHC method when Totalg=100. The legend for the color codes is displayed on the right. b The
results of cancer type specificity

In Fig. 7, the heatmaps of genemutations in three different
sizes of modules are displayed. Each column represents a
cancer sample (the samples, that do not have mutations in
any genes of the three modules, are not exhibited), and each
row denotes a gene. The top-left scale indicates the quantity
of mutations in a sample. The bottom-left scale as well as the
right one denote the proportion and the quantity of samples
withmutations on a certain gene, respectively. Distinct colors
denote distinct kinds of cancer samples. They mean the same
thing in Fig. 8 (see Appendix A). As can be seen from this
figure, the quantity of samples covered by amodule increases
apparently with the increase of module size, i.e., 253 for
the CCNE1 module, 523 for the KAT6A module, and 1007
for the EGFR module. Although the three modules exhibit
satisfying mutual exclusivity, i.e., most samples mutate in
just one gene of the module, it gets worse with the increase in
module size. The proportion of samples havingmore than one
gene mutations are 9.52% for the CCNE1 module, 19.69%
for the KAT6A module, and 37.91% for the EGFR module.
Furthermore, it is discovered the central gene, which has the
highest coverage in a module, may not always be the one that
has the greatest degree.

As displayed in Fig. 6a, most of the detected modules, i.e.,
those centered at TP53, CCND1, MYC, PIK3CA, EGFR,
and KAT6A, are part of pathways known to be associated
with carcinogenesis. In the following analysis, the referred
biological pathways are acquired from the KEGG database
(https://www.genome.jp/kegg/).

The genes within module TP53 are primarily engaged in
such four cancer-related pathways as p53 signaling pathway
(PTEN, CDKN2A, TP53, CDK4), Neurotrophin signaling
pathway (BRAF, AKT1, TP53), Pathways in cancer (PTEN,
BRAF, CDKN2A, TP53, CDK4, AKT1), and PI3K-Akt sig-
naling pathway (PTEN, AKT1, CDK4, TP53). The module
involves in eleven cancer types with KIRC (Kidney Clear
Cell Carcinoma) being the most specific one, for it pos-
sesses the lowest Fisher’s exact test p-value 3.19e−80.As the
central gene of the TP53 module, TP53 exhibits high muta-
tion frequency (41.51%) across the entire samples, while
has a comparative low mutation rate (1.91%) in the KIRC
samples. This is consistent with the report that gene TP53
mutates at a relatively low frequency in KIRC [53]. In
this module, genes TP53 and PTEN share the highest edge
weight, and demonstrate moderate strong mutual exclusiv-
ity, i.e., they respectively mutate in 1259 and 317 samples,
and mutate in 95 ones simultaneously. In addition, several
cancer-related genes with low mutation frequencies (<1%),
connected directly with gene TP53 or gene PTEN, are recog-
nized in thismodule, such asWRN,WWOX,HIPK2, BMP1,
RNF20 and ZNF384. WRN takes part in the replication,
repair, and recombination of DNA, and the Loss-of-function
mutation in WRN results in genetic instability and cancer
[9]. WWOX has been suggested to be able to exert its tumor
suppressive activity, and the suppression of its expression can
make cancer cells resistant to death [50]. HIPK2 could repre-
sent a significant prognostic marker, and even a therapeutic
target [8]. Studies have identified that BMP1 is engaged in
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Fig. 7 The heat maps of gene
mutations on three different
sizes of modules

the progression of renal cancer as an independent predictor of
prognosis in Clear cell renal cell carcinoma (ccRCC) patients
[57], and RNF20 overexpression inhibits ccRCC cell prolif-
eration through downregulation of SREBP1c [41]. ZNF384
participates in the genesis and development of tumors as a
significant signal molecule [27]. The CCND1module has the
same specific cancer type as the TP53 module. Three cancer
related pathways are engaged in as follows: p53 signaling
pathway (MDM2, MDM4, CCND1, CDK6), Pathways in
cancer (RB1, MDM2, E2F3, CCND1, CDK6), and PI3K-
Akt signaling pathway (MDM2, CCND1, CDK6). CTNNB1
shares relatively great edge weight with two cancer genes
RB1 and CDK6. The three genes exhibit extremely high
mutual exclusivity, they respectivelymutate in 89, 117 and 47
samples, while only 5 samples havemore than twomutations
of them.

Both MYC and SMAD4 module are specific for cancer
type CRC (Colorectal Cancer). Besides Colorectal cancer,
several genes (MYC, APC, CTNNB1, TCF7L2) in mod-
ule MYC are also engaged in the following cancer-related
pathways: Pathways in cancer, Hippo signaling pathway,
Wnt signaling pathway, and Endometrial cancer. In addi-
tion, the former three genes exhibit the top three coverage
in this module (as shown in Fig. 1d), and have satisfying
mutual exclusivity. They mutate in 283, 226 and 89 samples
respectively, while just 32 samples havemore than twomuta-
tions of them. Three genes in module MYC, i.e., NUP153,
FAM214A, and MYO6, demonstrate low frequency while

coveringmany kinds of cancers. For example,MYO6mutate
in ten kinds of cancers, while its mutation frequency is only
0.96%.MYO6 has been verified to be an important substance
linking miRNA, circRNA, and glucose metabolism in col-
orectal cancer [29, 44].

The PIK3CA module is most specific for cancer UCEC
(Uterine corpus endometrial carcinoma). Four pathways
are involved by genes (PIK3CA, PIK3R1, KIT, FGFR1,
ARHGEF11) of this module: Rap1 signaling pathway, PI3K-
Akt signaling pathway, Pathways in cancer, and Breast
cancer. The centering gene PIK3CA has a much coverage
in the UCEC samples than in the whole ones, i.e., it mutates
in UCEC samples with frequency 50%, while in the whole
sampleswith frequency 19%. It has been verified that the pro-
portion of patients with PIK3CA mutations is very high for
cancerUCEC [28]. Furthermore, as a pair of genes having the
highest coverage in the module, PIK3CA and PIK3R1 also
displays terrific mutual exclusivity. Although they mutate
in 596 and 152 samples respectively, the number of sam-
ples mutated on both of them is only 18. Genes FGFR1 and
ARHGEF11 cover many kinds of cancers while having low
mutation frequency, i.e., they mutates in six and eleven types
of cancers respectively with about 0.9% mutation frequency.

The EGFR module involves eleven cancer types with
GBM (Glioblastoma) being the most specific one, for it pos-
sesses the lowest Fisher’s exact test p-value 1.49e−31. The
module contains fourteen genes, eleven ofwhich are engaged
in the following seven pathways: FoxO signaling pathway
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(EGFR, SOS1, IGF1R, IRS1, INSR), MicroRNAs in cancer
(EGFR, ERBB2, SOS1, PDGFRB, PDGFRA, IRS1), Rap1
signaling pathway (EGFR, PDGFRB, PDGFRA, IGF1R,
INSR, CDH1, TLN1), MAPK signaling pathway (EGFR,
ERBB2,PDGFRB,PDGFRA, IGF1R, INSR,SOS1,ERBB4),
PI3K-Akt signaling pathway (EGFR, ERBB2, PDGFRB,
PDGFRA, IGF1R, INSR, SOS1, ERBB4, IRS1), Pathways
in cancer (EGFR, ERBB2, PDGFRB, PDGFRA, IGF1R,
SOS1, CDH1), and Prostate cancer (EGFR, ERBB2, SOS1,
PDGFRB, IGF1R, PDGFRA). Three of the these pathways
have been reported to be closely related to GBM. The
alterations in Rap1 signaling pathway are significant in the
progression of certain Glioblastoma [23]. MAPK pathway
plays an important role in the co-activation of cell prolifera-
tion and CREB, which is an essential regulator of cyclin-D1
expression cell in GBM cells [37]. PI3K/AKT signaling has
been regarded as one of the most periodically deregulated
pathways in glioblastoma, the suppression of it has been
acknowledged as a prospective therapeutic target for glioma
[43].

The genes in the KAT6Amodule are primarily engaged in
the following two cancer-related pathways: Pathways in can-
cer (EP300,CREBBP,NFE2L2,NCOA3,RUNX1,KEAP1),
Thyroid hormone signaling pathway (EP300, CREBBP,
NCOA3). The most specific cancer type of this module is
LUSC (Lung Squamous Cell Carcinoma). The centering
gene KAT6A exhibits a much higher mutation rate in LUSC
samples (about 10.6%) than in the whole samples (about
4.9%). It has been suggested that KAT6A plays an oncogenic
role in LUSC [47]. In addition, the EGR1 gene, with the low-
est mutation frequency in the module, has been confirmed to
play a tumor suppression role for this cancer [62].

The most specific cancer type of the CCNE1 module is
OV (Ovarian Cancer). The centering gene CCNE1 shares
the highest edge weight with gene FBXW7. They exhibit a
high degree of mutual exclusivity, mutating in 145 and 86
patients respectively, and mutating in just 5 patients simulta-
neously. The amplification of CCNE1 has been demonstrated
as a major oncogenic driver in a subset of high-grade serous
ovarian cancer [20]. FBXW7 has been identified to inhibit
angiogenesis, migration, and invasion of ovarian cancer
cells by inhibiting VEGF expression through inactivating β-
catenin signaling [39, 66].

The outputmodules ofmethod ICDM-GEHCwere further
compared with those produced by the other four methods,
where Totalg=100. It is discovered that all of the eight
modules produced by the ICDM-GEHC method comprise
oncogenes known in COSMIC, while the four comparison
approaches generate at least one module that dose not con-
tain any gene in the COSMIC database (8 out of 19 for
method Hotnet2, 1 out of 12 for method MEXCOwalk, 2
out of 16 for method ECSWalk, and 1 out of 10 for method
HMCEwalk). Methods Hotnet2, MEXCOwalk, ECSWalk,

HMCEwalk, and ICDM-GEHC have identified 32, 48, 52,
26, and 52 known oncogenes that were recorded in the
COSMIC database, respectively. Among the 100 genes rec-
ognized by method ICDM-GEHC, there are 18, 44, 40, and
16 genes that are also identified by methods Hotnet2, MEX-
COwalk, ECSWalk, HMCEwalk, respectively. Furthermore,
there are 40 genes identified by method ICDM-GEHC being
omitted by the other four methods, 14 of these genes have
been recorded in the COSMIC database, and 18 of them have
been confirmed to be concerned with the development and
progression of cancers, or to be engaged in cancer-related
pathways (the gene lists are given in Appendix B).

Conclusion

It is both challenging and significant to identify driver mod-
ules, for which will contribute to conducting research on
cancers. In this study, a novel method ICDM-GEHC was
devised. It begins with constructing a weighted PPI network
with the help of somatic mutation profiles as well as gene-
microRNA networks. The vertices are then manifested with
their extracted feature vectors, and are clustered into a set of
gene clusters. Eventually, a heuristic process is conducted
to produce a group of driver gene modules. Compari-
son experiments were performed among methods Hotnet2,
MEXCOwalk, ECSWalk, HMCEwalk, and ICDM-GEHC
by using real biological data. The ICDM-GEHC method
exhibits superior performance to the other ones in most cases
in terms of the capability of identifying cancer-related genes,
producing modules that have relatively high coverage as
well as mutual exclusivity, and are significantly involved
for specific cancer types. Most genes within the generated
modules are engaged in critical cancer-related pathways, or
have been verified to be oncogenes or tumor suppressors.
Simultaneously, the ICDM-GEHC method actually detected
many cancer-related genes that have been omitted by the four
comparison methods. The above points of view have been
confirmed through a quantity of experiments. Consequently,
the ICDM-GEHC method may be regarded as a helpful sup-
plemental tool for recognizing cancer driver modules.

Although the ICDM-GEHCmethod presents good identi-
fication performance by applying advancedmachine learning
techniques into multi-omics data, it does have some notable
limitations. In this method, only somatic mutation data
is adopted, other genetic aberrations such as epigenetic
changes, copy number variations, translocations, and fusions
can be considered in an extended version of the method. In
addition, since the PPI networks may vary across different
cell types, tissue types, environmental conditions, and time
points, the dynamic network should be adopted to replace
the static one, so as to increase the flexibility and reliabil-
ity of the method. In the course of experiments, it is also

123



Complex & Intelligent Systems

discovered that a high computational cost is incurred, future
efforts should be devoted to further enhance its efficiency
through optimizing parameters, simplifying the algorithm,
and improving the module refinement.
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Appendix A: The heat maps of gene muta-
tions on five different sizes of modules

See Fig. 8.

Appendix B: The genes identified by method
ICDM-GEHC

The 40 genes that are just detected by method ICDM-
GEHC [PDS5B, GTF3C1, FGFR1, MYH11, IQGAP2,
PIK3C2B, PDGFRB, TCF7L2, SPTBN2, KIT, ADAMTS2,
ARID4A, SMAD4, NAV2, PTPRB, MYH10, PDGFRA,
STX5, MYO6, NUP98, NUP153, INSR, E2F3, NAV1,

CDC27, PTPRM, KEAP1, SOS1, SMC3, ASAP1, EXPH5,
SPTBN1, ARHGEF11, FAM214A, BRD4, TRIM33,
ERRFI1, NFE2L2, TPR, DOCK3].

14 of these genes are in COSMIC, they are [KIT, FGFR1,
TCF7L2, TPR, NUP98, PDGFRB, NFE2L2, KEAP1,
TRIM33, SMAD4, PTPRB, PDGFRA, MYH11, BRD4].

18 of these genes have been verified to be carcinogenic,
they are [SOS1, INSR, E2F3, PDS5B, GTF3C1, IQGAP2,
SPTBN2, ADAMTS2, ARID4A, NAV2, MYH10, STX5,
NUP153,CDC27,PTPRM,ASAP1,SPTBN1,ARHGEF11].
Four of which (SOS1, INSR, E2F3, ARHGEF11) are
involved in four important pathways. Genes SOS1 and INSR
are enriched in PI3K-Akt signaling pathway, MAPK sig-
naling pathway, and Ras signaling pathway.Genes E2F3
and ARHGEF11 are involved in Pathways in cancer. Six
of which (ARID4A, NAV2, MYH10, CDC27, PTPRM,
ASAP1) have been recorded as being concernedwith cancers
in GeneCards (https://www.genecards.org/). Eight of which
(PDS5B, GTF3C1, IQGAP2, SPTBN2, ADAMTS2, STX5,
NUP153, SPTBN1) have been demonstrated to play signif-
icant roles in the onset and progression of various cancers.
PDS5B is dysregulated in human cancers and concernedwith
patient prognosis [45]. GTF3C1 belongs to GTF3 family
genes, whose expressions are associated with many types
of cancers [3]. Loss of IQGAP2 results in the tumorigenesis
of prostate tumorigenesis, gastric cancer, and hepatocellular
carcinoma [58]. SPTBN2 is concerned with some biological
process related to tumorigenesis, and has been demonstrated
to be increased in lung adenocarcinoma, colorectal can-
cer, and endometrial [59]. ADAMTS2 has been reported
to be significantly associated with tumor progression, vas-
cular invasion and distant liver metastasis [36]. STX5 can
reduce the adhesion between HCC cells and to the extracel-
lular matrix, so as to promote tumor metastasis [61]. The
reduction of Nup153 levels in cancer cells can affect their
directional migration, which is a elementary feature in the
spread of cancer [67]. SPTBN1 has been considered to affect
the occurrence, progression, and metastasis of many kinds of
cancers [11].
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Fig. 8 The heat maps of gene
mutations on five different sizes
of modules
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