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Abstract
Task offloading solves the problem that the computing resources of terminal devices in hospitals are limited by offloading
massive radiomics-based medical image diagnosis model (RIDM) tasks to edge servers (ESs). However, sequential offloading
decision-making is NP-hard. Representing the dependencies of tasks and developing collaborative computing between ESs
have become challenges. In addition,model-free deep reinforcement learning (DRL) has poor sample efficiency and brittleness
to hyperparameters. To address these challenges, we propose a distributed collaborative dependent task offloading strategy
based on DRL (DCDO-DRL). The objective is to maximize the utility of RIDM tasks, which is a weighted sum of the delay
and energy consumption generated by execution. The dependencies of the RIDM task are modeled as a directed acyclic graph
(DAG). The sequence prediction of the S2S neural network is adopted to represent the offloading decision process within the
DAG. Next, a distributed collaborative processing algorithm is designed on the edge layer to further improve run efficiency.
Finally, the DCDO-DRL strategy follows the discrete soft actor-critic method to improve the robustness of the S2S neural
network. The numerical results prove the convergence and statistical superiority of the DCDO-DRL strategy. Compared with
other algorithms, the DCDO-DRL strategy improves the execution utility of the RIDM task by at least 23.07, 12.77, and
8.51% in the three scenarios.
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Introduction

Currently, the amount of image data, which exceeds 34 tril-
lion GB, imposes a heavy workload on doctors [1]. The
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radiomics-based image diagnosis model (RIDM) [2] is a
time-consuming and computation-intensive (CI)mature clin-
ical diagnostic method. As a commonly used solution for
hospitals to handle large-scale computing tasks, the medical
image cloud [3, 4] is far from the hospital TD, resulting in sig-
nificant transmission delay and energy consumption (DEC).

Task offloading (TO) [5] as a critical technology of edge
computing (EC) [6] offers a solution to the above dilemma
by offloading the CI task to a closer edge server (ES). This
can effectively decrease delay but also increase energy con-
sumption. Thus, choosing an appropriate offloading strategy
for the RIDM task to trade off DEC is a key problem [7].
In fact, the complexity of medical image data requires sig-
nificant computational resources to support the execution of
various phases in RIDM. In addition, the combination of
various methods during each radiomics phase results in dif-
ferentRIDMtasks.Hence,webelieve that a goodTOstrategy
should improve the RIDM run efficiency and adapt to differ-
ent RIDM environments. Nevertheless, to obtain such a TO
strategy, the following issues in the RIDM task should be
addressed.
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The run efficiency of the RIDM task is constrained as
existing TO solutions are divided into binary and partial solu-
tions based on task separability [8]. However, considering
the complexity of the radiomics workflow, this solution of
a simplistic partition task is proven unsuitable. Therefore,
it is crucial to correctly partition and handle subtasks with
multiple dependencies based on the internal logic of the
workflow for the successful execution of RIDM tasks [9].
On the other hand, due to limited resources in ES, executing
assigned subtasks independently results in slower speeds,
thereby impacting user experience [10]. Thus, developing
collaboration between ESs is necessary to speed up task pro-
cessing.

The TO problem mentioned above is NP-hard [11]. Many
solutions using heuristic [8] or approximation [12] (HA)
algorithms have been developed. Nevertheless, to adapt to
different RIDM environments, it is impractical to apply HA
algorithms that depend on expert knowledge and precise
mathematical models (EKM). Model-free deep reinforce-
ment learning (DRL) [13, 14] has received widespread
attention due to not relying on manual intervention or EKM.
However, DRL suffers from lower sampling efficiency and
brittleness to hyperparameters [15]. Hence, there is an urgent
need to choose a robust DRL algorithm for the RIDM-TO
problem to adapt to different RIDM environments.

Therefore, the following three challenges need to be
solved in RIDM task offloading. First, how can represent the
dependencies between modules (i.e., subtasks) in the RIDM
task? Second, how can collaborative computing between
ESs be explored to improve the efficiency of RIDM task
execution? How can the drawbacks of model-free DRL
be overcome to improve the robustness of the offloading
decision-making process?

Motivated by the above challenges, we propose a dis-
tributed collaboration-dependent task offloading strategy
based on DRL (DCDO-DRL). In particular, considering
the uniqueness of the radiomics workflow and the limited
resources of ESs, we combine reinforcement learning (RL)
[16], a sequence-to-sequence (S2S) neural network [17] and
EC to optimize the offloading decision-making process of
the RIDM task. Specifically, the main contributions of this
article are summarized as follows.

1. This article proposes a DCDO-DRL strategy that can
improve the RIDM execution efficiency and adapt to dif-
ferent RIDM environments. In DCDO-DRL, we use RL
to model the TO problem as a Markov decision process
(MDP). DCDO-DRL aims to maximize the RIDM task
utility, a weighted sum of DEC generated by execution.

2. In a radiomics workflow-based medical scenario, the
RIDM task consists of several dependent subtasks that
can be modeled as a directed acyclic graph (DAG).
The offloading decision process in the DAG is repre-

sented by the sequence prediction of the S2S neural
network. A multiple ESs distributed collaboration pro-
cessing (DCP) algorithm based on the network topology
and the resources is proposed for offloading subtasks to
the edge.

3. The DCDO-DRL strategy utilizes a discrete soft actor-
critic (SAC) method based on maximum entropy to learn
a robust DRL algorithm empowered by the S2S neural
network, enabling it to adapt to different RIDM environ-
ments. In particular, we modify the action space of the
SAC algorithm from continuous to discrete to adapt to
the offloading actions in the RIDM task.

4. We prove the convergence and statistical superiority of
the DCDO-DRL strategy. The numerical results reveal
that, compared with other algorithms, the DCDO-DRL
strategy improves the execution utility of the RIDM task
by at least 23.07, 12.77, and 8.51% in the three scenarios.

Related work

The massive amount of data poses challenges to traditional
medical image processing using MapReduce and Hadoop
[18–21]. Cloud Computing is a proven way to manage and
process big data [22, 23]. However, there are great distances
between CC and TDs in the medical imaging cloud. Trans-
ferring a large amount of image data will incur a significant
delay and energy consumption. Task offloading has attracted
wide attention as one of the most promising solutions to
the above issue [24]. Unfortunately, researchers have paid
less attention to improvingmedical image processing by task
offloading, mainly in fields such as the Internet of Vehicles
and unmanned aerial vehicles.

The existing task offloading strategies are divided into
two categories: HA-based TO and DRL-based TO. HA-
based TO strategies are achieved through expert knowledge
or precise mathematical models. For example, Li et al.
proposed a binary offloading policy based on an alternat-
ing direction method of a multiplier algorithm to achieve
power minimization [25]. To minimize system cost, Pan
et al. proposed a heuristic algorithm to solve the binary
computation offloading problem, which is formulated as a
mixed-integer non-linear programming problem [26]. Chen
andWang proposed a situation-aware binary offloading strat-
egy based on heuristic algorithms that maximize delay and
energy consumption by opportunistically adopting changing
resource availability conditions [8]. Zhang et al. To mini-
mize task latency and energy consumption, A proposes an
offloading scheme that adjusts the task priority in the sub-
task dependency graph [27]. Fu et al. aimed to minimize
energy consumption during task execution by an iterative
algorithm based on successive convex approximation [28].
Bi et al. incorporated PSO and Genetic Learning, designing
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a meta-heuristic algorithm to minimize the system energy
[29]. These above studies adopt HA algorithms endorsed by
expert knowledge, which are difficult to adjust dynamically
according to the different environments. In addition, when
the scale of the task offloading problem is large, the decision
generation time is very long and only an approximate optimal
solution can be obtained..

For DRL-based strategies, continuously optimize offload-
ing decisions through online learning and gradually get the
optimal offloading strategy. For example, Wang et al. incor-
porated Lyapunov Optimization, Multi-armed Bandit, and
Extreme Value Theory, proposing a learning-based energy-
aware task offloading policy [30]. Seid et al. formulated the
task offloading problem as a Markov decision process con-
sidering a stochastic game, to minimize energy consumption
and delay [31]. Similarly, Alam and Jamalipour modeled
the task offloading problem as a Stochastic Game optimiza-
tion problem and solved it with a multi-agent DRL-based
Hungarian algorithm [32]. Zhan et al. proposed a policy
gradient-based DRL approach to solving the task offload-
ing problem, which is formulated as a partially observable
Markov decision process [33]. Chen et al. considered the
task’s relevance and designed a distributed DRL algorithm
to solve the task offloading in industrial networks [34]. Some
researchers combine blockchain and DRL to solve the task
offloading problem. Wang et al. formulated the task offload-
ing problem as a Markov game and combined Blockchain,
DRL and Mean Field Theory to propose a secure learning-
based off-chain task offloading algorithm [35]. To guarantee
the security and reliability of task offloading, Shi et al. incor-
porated a DRL-based computational offloading scheme and
a consensus algorithm based on practical Byzantine fault tol-
erance (PBFT) in the smart contract of blockchain [36]. The
model-free DRL frameworks [37] used above, such as deep
Q-learning, PPO, and DDPG, have although self-learning
and adaptive characteristics, suffer from poor sample effi-
ciency and hyperparameter brittleness. There is an urgent
need to choose a robust DRL algorithm for the RIDM-TO
problem to adapt to different RIDM environments.

All the above solutions assume that the task is dependent
and has no internal dependencies.However,most tasks in real
life are not like this, especially the RIDM task. If dependen-
cies are ignored when making offloading decisions, it will
reduce strategy performance. Furthermore, these solutions
also fail to consider the limited computing resources of edge
servers. This resource condition makes it difficult to under-
take computation-intensive tasks like RIDM. Therefore, for
the RIDM task offloading scenario, this article proposes a
DCDO-DRL strategy, which is designed to maximize the
execution utility of the RIDM task. We propose a DCP algo-
rithm to develop collaborative computing between ESs. We
adopt DAG to represent the dependencies of the RIDM task.
The offloading decision process in the DAG is represented by

Fig. 1 Three-layer hierarchical system framework

the sequence prediction of the S2S neural network. Finally, to
obtain a robust offloading strategy, the DCDO-DRL strategy
utilizes discrete SAC to train the S2S neural network.

Systemmodel and problem formulation

This section presents first a hierarchical system architec-
ture. Next, convert the radiomics workflow into a DAG to
demonstrate the dependencies of the RIDM task. Then, the
computation and transmission process is described in the
local and edge layers. Finally, a utility function is designed
to formalize the goal of this article.

Systemmodel

As illustrated in Fig. 1, we consider a three-layer hierarchical
system framework with terminal-edge-cloud collaboration
for RIDM task execution. This system comprises multiple
terminal devices, multiple edge servers, and a centralized
cloud. TDs are endowed with limited computation and stor-
age capabilities, typically for performing small-scale RIDM
tasks in hospital PCs. ESs are endowed with large compu-
tation and storage capabilities. The communication between
ESs and TDs within the communication range communicate,
between ESs and between CC and ESs is carried out via a
wireless link, fiber optic link and backbone link, respectively.
The CC has near-infinite resources to afford the computation
and storage capabilities to train a task offloading planner
(TOP) model. TD and ES execute tasks based on the task
positions assigned by the cloud-trainedTOPmodel. For read-
ability, Table 1 summarizes the notation used in this article.
To clearly explain the hierarchical framework for RIDM task
execution, it is formalized as follows:

Definition 1 RIDM task offloading system model is a 12-
tuple: RIDM-TO = (S, D,DCP,G, B, μ, φ, ζ, V l , V s,

T total , � total), which is described in Appendix.
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Fig. 2 An example of a radiomics-based prediction of diffuse glioma
grading model with DAG conversion

Conversion of radiomics workflow to DAG

The RIDM task is often treated holistically in studies,
neglecting the internal dependencies. It may lead to a nega-
tive impact on theDECof the task execution. Thus,we design
a more fine-grained division of the RIDM task according to
the radiomics workflow.

The radiomics workflow consists of multiple interdepen-
dent modules. A simple workflow has linear dependencies
between modules. However, complex workflow involves
more complicated internal dependencies between modules.
Each module can be seen as a medical subtask. We modeled
RIDMasdifferentDAGsbasedon the selection of themethod
in the actual radiomics workflow. To clearly explain the DAG
topology of the RIDM task, it is formalized as follows:

Definition 2 DAG topology of RIDM task model is 2-tuple:
gdi = (M, Z), where M = {

mdi ,v|v = 1, 2, . . . , V } is
the vertex finite set that represents medical subtasks. Z ={�z < mdi ,v,mdi ,w > |v,w ∈ T

}
is the directed edge finite

set that expresses the dependencies among medical subtask.
mdi ,v is the immediate predecessormedical subtask ofmdi ,w.

Figure2 shows the workflow and DAG of the diffuse
glioma grading (DGG) prediction model based on radiomics
in [38]. The radiomics workflow presented in Fig. 2a is
divided into five phases [39, 40], each with several meth-
ods. Specifically, (1) image pre-processing is a standardized
operation before using image data. It mainly includes 6meth-
ods, such as histogramequalization [41], image enhancement
[42], and image registration [43]. (2) Segmentation is the
extraction of regions of interest in images, which can be
divided into automatic, semi-automatic, and manual seg-
mentation methods, such as edge-based segmentation [44],
K-means clustering [45], and fuzzy C-means clustering [46].
(3) Feature extraction is performed on the original image
(OI) or nine derived images (DI) processed by the filter.
There are four types of features: first-order statistical fea-
tures (FSF) [47], shape-based features [48], texture-based
features (TF) [49], and wavelet features (WF) [50]. Note
that the FSF and WF are extracted on the OI and nine DIs.
WF is calculated on 8 sub-bands of OI for FSF and TF.

Thus, there are 10 + 1 + 10 + 16 = 37 methods. (4) Fea-
ture selection filters out redundant and unstable features.
It mainly contains 8 methods, such as LASSO regression
[51] and minimum redundancy maximum relevance [52].
(5) Model construction is the selection of a suitable model
based on various target problems, which mainly includes 4
methods, such as logistic regression [53] and support vector
machine (SVM) [54]. In Ref. [38], the DGG model first seg-
ments the three sequences and extracts features in ROI by
four methods. The features are then filtered by the LASSO
algorithm and modeled using SVM. Thus, the subtask set
after modeling the DGG model as the corresponding DAG
is M = {

md1,1,md1,2,md1,3,md1,4,md1,5,md1,6,md1,7,

md1,8
}
(Fig. 2b). Directed lines indicate data dependencies

between its subtasks. For example, md1,7 must run after the
processing of md1,3,md1,4,md1,5 and md1,6.

Local computing

As shown in Fig. 3a, we construct the DAG topology for the
RIDM task. In the local computing mode (LCM), the mdi ,v

in gdi is only performed locally on the terminal device, with
the offloading proportion μdi ,v = 0. To clearly explain the
parameters of LCM under gdi topology, it is formalized as
follows:

Definition 3 Local computing parameters model is 4-tuple:
V l = (

Fl , χ l , T l , El,c
)
, which is described in Appendix.

For terminal device di , the local computation delay τ
l,c
di ,v

[s]

of processing bldi ,v can be given by

τ
l,c
di ,v

=
(
bldi ,v · φ

)
/ f ldi (1)

The local actual execution start time stl,cdi ,v [s] of processing

bldi ,v on di can be given by

stl,cdi ,v = max
{
itl,cdi ,v, psc

l,c
di ,v

}
(2)

where itl,cdi ,v = max
{
itl,cdi ,v−1, ft

l,c
di ,v−1

}
denotes the idle

time of the CPU di when executing mdi ,v . pscl,cdi ,v =
maxg∈pred(v)

{
fts,de j ,di ,g

, ftl,cdi ,g

}
indicates the last predecessor

subtask of mdi ,v has been completed. pred (v) is the set of
predecessor subtasks of mdi ,v . ft

s,d
e j ,di ,g

see “ECCM work-
flow”. Therefore, the outer max block in (2) represents that
mdi ,v starts execution on di if and only if pred (v) has com-
pleted and CPU di is idle. Hence, the local actual execution
finish time ftl,cdi ,v [s] of processing b

l
di ,v

on di can be given by

ftl,cdi ,v = stl,cdi ,v + τ
l,c
di ,v

(3)
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Table 1 System notations description

Notation Description Notation Description Notation Description

e j j-th edge server di Device used by the i-th user gdi DAG topology of RIDM required
for di

bdi ,v Subtask data size of mdi ,v bldi ,v Data size for running locally budi ,v Data size of subtask sent to the edge
server

bcdi ,v Data size for computing on the edge
server

bddi ,v Data size of the result received μdi Finite set of subtask offloading
strategies for a gdi of di

V l Local computing parameters φ Task computational complexity ζ Mapping from TD to ES

μdi ,v μdi ,v ∈ {0, 1}, The offloading strat-
egy for the v-th subtask of di

τ totaldi
Total delay required by di to process
all bdi ,v of gdi given an offloading
strategy μdi

ψ total
di

Total energy consumption required
by di to process all bdi ,v of a gdi
given a μdi

V s Edge collaboration computing
parameters

mdi ,v v-th medical subtask of di in gdi �z Dependency between mdi ,v and
mdi ,w

f ldi Computational capability of di χ l
di

Consumed energy per CPU cycle of
di

ψ
l,c
di ,v

Computation energy consumption
required by di to process bldi ,v
locally

τ
l,c
di ,v

Computation delay required by di to
process bldi ,v locally

stl,cdi ,v Actual local execution start time for
bldi ,v processing on di

ftl,cdi ,v Actual local execution finish time
for bldi ,v processing on di

f se j Computational capability of e j χ s
e j Consumed energy per CPU cycle of

e j
�ms

e j Residual energy of e j

� f se j Residual computational capabilities
of e j

pse j ,di Transmission power between di and
e j

r se j ,di Transmission rate betweendi and e j

τ
s,u
e j ,di ,v

Transmission delay required by di
to send budi ,v to e j via the uplink
channel

sts,ue j ,di ,v
Actual execution start time on the
uplink channel when sending budi ,v

fts,ue j ,di ,v
Actual execution finish time on the
uplink channel when sending budi ,v

τ
s,c
e j ,di ,v

Computation delay required by di to
process bcdi ,v on e j

sts,ce j ,di ,v
Actual execution start time for bcdi ,v
processing on e j

fts,ce j ,di ,v
Actual execution finish time for
bcdi ,v processing on e j

τ
s,d
e j ,di ,v

Transmission delay required by di
to receive bddi ,v on e j via the uplink
channel

sts,de j ,di ,v
Actual execution start time to e j via
the downlink channel when receiv-
ing the result data bddi ,v

fts,de j ,di ,v
Actual execution finish time to e j
via the downlink channel when
receiving the result data bddi ,v

ψ
s,u
e j ,di ,v

Transmission energy consumption
to e j via the uplink channel when
sending budi ,v

ψ
s,c
e j ,di ,v

Computation energy consumption
required by di to process bcdi ,v on
e j

ψ
s,d
e j ,di ,v

Transmission energy consumption
to e j via the downlink channelwhen
receiving bddi ,v

Besides the required computation delay, processing each
subtask also generates some computation energy. The local
computation energy consumption ψ

l,c
di ,v

[J] required by di to

process bldi ,v can be given by

ψ
l,c
di ,v

= χ L
di

· bldi ,v · φ (4)

Figure3b illustrates the execution process of the subtask
locally at di . The factors that determine the local actual exe-
cution finish time of mdi ,v are the local actual start time and
the local computation delay. In addition, the local computa-
tion energy consumption during execution is also essential.

Edge collaboration computing

Figure4b demonstrates the edge collaborative computing
mode (ECCM) network architecture. The architecture com-

Fig. 3 Local computing mode. The width and length of the rectangle
represent the energy consumption and delay generated during this stage

prises multiple heterogeneous ESs. Each ES has equal rights
to share computing and communication resources at the edge
of the network. Formally, we model the network architecture
as an undirected graph, Gs = {Ns,Cs}, where the ver-
tex set Ns = E is the ESs in the network and the edge
set Cs denotes the connections among ESs, respectively.
c jk = (

e j , ek
) ∈ Cs represents the connection between e j
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Fig. 4 Edge collaboration computing mode

and ek . Assuming that di falls within the communication
range of e j , as shown in Fig. 4. mdi ,v in gdi is offloaded and
runs in governed e j under the ζ function mapping, where
offloading proportion μdi ,v = 1. To clearly explain the
parameters of ECCM with gdi topology, it is formalized as
follows:

Definition 4 Edge collaboration computing parameters
model is 10-tuple: V s = (Fs, χ s,�Ms,�Fs, Ps, Rs, T u,

T c, T d , Es), which is described in Appendix.
ECCM is a three-step process that includes sending, pro-

cessing, and feedback. mdi ,v is first sent from di to e j .
Second, to enhance processing speed, e j adopts a DCP
algorithm to find suitable adjacent ESs at the edge layer.
Subsequently, e j executesmdi ,v in a distributed manner with
these adjacent ESs. Finally, the result of the processing is
feedback to di . The detailed workflow of ECCM is described
in “ECCM workflow”.

Problem formulation

The goal of the three-layer hierarchical system is to find an
effective offloading strategy to maximize the utility of gdi
after RIDM task execution. The total delay and total energy
consumption are affected by the resources of di and e j and
the execution location of subtasks. The total delay τ totaldi

[s]
required to process all data of a gdi can be given by

τ totaldi
= max

[
maxq∈EMT

(
fts,de j ,di ,q

, ftl,cdi ,q

)]
(5)

whereEMT is the set of exitmedical subtasks that arewithout
successor subtasks. The total energy consumption ψ total

di
[J]

required to process all data of a gdi can be given by

ψ total
di =

V∑

v=1

(
ψ

l,c
di ,v

· (
1 − μdi ,v

)
,

(
ψ

s,u
e j ,di ,v

+ ψ
s,c
e j ,di ,v

+ es,de j ,di ,v

)
· μdi ,v

)
(6)

where fts,de j ,di ,q
, ψ s,u

e j ,di ,v
, ψ s,c

e j ,di ,v
, es,de j ,di ,v

see “ECCM work-
flow”. The weighted sum of delay and energy consumption,
i.e., utility, is used as the performance metric in this article.
Let β t and βe be the weight indicators, where β t + βe = 1

and β t , βe ∈ [0, 1]. For the terminal device di , the utility of
a gdi given an offloading strategy μdi , O

C
μdi

is given by

OC
μdi

= β t · maxq∈EMTft
l,c
di ,q

− τ totaldi

maxq∈EMTft
l,c
di ,q

+βe ·
∑V

v=1 ψ
l,c
di ,v

− ψ total
di∑V

v=1 ψ
l,c
di ,v

(7)

where maxq∈EMTft
l,c
di ,q

and
∑V

v=1 ψ
l,c
di ,v

are the total delay
and total energy consumption of the local execution of the
RIDM task. Hence, the optimization problem with respect to
the utility is formulated as follows:

max OC
μdi

(8)

Intuitively, the optimization problem in (8) is an NP-hard
problem [55]. Finding the optimal offloading strategy can be
extremely challenging for high-dynamic DAG topology. To
tackle the challenges, this article proposes the DCDO-DRL
strategy in “DCDO-DRL design”.

ECCMworkflow

This subsection describes the three stages of ECCM, includ-
ing uploading subtasks, running subtasks on edge servers,
and receiving the result data from subtasks.

Uploading subtasks

In the ECCM, the subtask is first uploaded from TD to ES
and executed then on the edge server instead of locally. The
transmission delay τ

s,u
e j ,di ,v

[s] required by di to send budi ,v to
e j via the uplink channel can be given by

τ
s,u
e j ,di ,v

= budi ,v/r
s
e j ,di (9)

The actual execution start time sts,ue j ,di ,v
[s] of sending budi ,v

on the uplink channel can be given by

sts,ue j ,di ,v
= max

{
its,ue j ,di ,v

, pscs,ue j ,di ,v

}
(10)

where its,ue j ,di ,v
= max

{
its,ue j ,di ,v−1, ft

s,u
e j ,di ,v−1

}
is the idle

time on the uplink channel when sending mdi ,v . psc
s,u
e j ,di ,v

=
maxg∈pred(v)

{
fts,de j ,di ,g

, ftl,cdi ,g

}
represents all data needed by

mdi ,v has finished. Therefore, the outer max block in (10)
denotes that mdi ,v is allowed to send data to e j if and only
if the idle time of the uplink channel and pred (v) has com-
pleted.
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Fig. 5 The execution process of subtasks on the ECCM. Thewidth and length of the rectangle represent the energy consumption and delay generated
during this stage

The actual execution finish time fts,ue j ,di ,v
[s] of sending

budi ,v on the uplink channel can be given by

fts,ue j ,di ,v
= sts,ue j ,di ,v

+ τ
s,u
e j ,di ,v (11)

The transmission energy consumption ψ
s,u
e j ,di ,v

[J] on the
uplink channel when sending budi ,v can be given by

ψ
s,u
e j ,di ,v

= pse j ,di · τ
s,u
e j ,di ,v

=
(
pse j ,di · budi ,v

)
/rse j ,di (12)

Figure5a shows the sending phase in the ECCM, illustrat-
ing the process of mdi ,v is uploaded from di to affiliated e j .
At this phase, the factors that determine the actual execution
finish time of mdi ,v are the actual start time and transmis-
sion delay in the upload channel. In addition, there is the
transmission energy consumption.

Running on edge servers

Inspired by Ref. [8], we propose a DCP algorithm at the
edge layer to accelerate subtask processing by exploring
the collaborative computing capabilities between ESs. DCP
algorithm avoids the problem that a long processing time on
a single ES with limited computational resources.

To describe the DCP algorithm more clearly, the pseudo-
code and diagram are shown in Algorithm 1 and Fig. 6. The
DCP algorithm includes three parts: the first part is lines 1–
6, located in the adjacent ESs for e j . The adjacent ESs are
defined based on whether there is an edge between two ESs
in the edge layer network topology Gs = {Ns,Cs}. The
second part is lines 7–11, finding the suitable adjacent ESs
(SAESs). Filtering adjacent ES by determining if there is
enough remaining memory in the ES to execute subtasks.
The third part is lines 12–17, the subtask is further divided
into small subtasks according to the subtask allocationmatrix
U and the remaining computing capacity of ESs. SAESs
cooperatively process the assigned small subtask, calculate
computational delay and computational energy consumption,
and return results to e j .

Fig. 6 The execution process of subtasks on the ECCM

The total computational power available F for subtask
execution at the edge layer is

F = f se j + ∑

u jk=1

� f sek ∀k = 1, 2, ...m (13)

Note that fiber optic communication with a high transmis-
sion rate is used between edge servers. Thus, the transmission
delay is negligible when the adjacent ESs receive assigned
small subtasks and send processing results back to e j .

The computation delay τ
s,c
e j ,di ,v

[s] required bydi to process
bcdi ,v on the SAESs can be given by

τ
s,c
e j ,di ,v

=
(
bsdi ,v · φ

)
/F (14)

Similarly, the actual execution start time sts,ce j ,di ,v
[s] for

bcdi ,v processing on the SAESs can be given by

sts,ce j ,di ,v
= max

{
its,ce j ,di ,v

, pscs,ce j ,di ,v

}
(15)

where pcss,ce j ,di ,v
= max

{
maxg∈pred(v)ft

s,c
e j ,di ,g

, fts,ue j ,di ,v

}
indi-

cates that bcdi ,v has been uploaded to e j and all the pre-
decessor data needed by mdi ,v has finished. its,ce j ,di ,v

=
max

{
its,ce j ,di ,v−1, ft

s,c
e j ,di ,v−1

}
is the idle time that e j can han-

dle bcdi ,v . Notice that since we assign small subtasks to ES in
SAESs based on computational capacity, the execution time
of each small subtask is guaranteed to be the same. Thus,
it ensures the consistency of the idle time of e j and ES in
SAESs. Therefore, the outer max block in (15) indicates that
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Algorithm 1 DCP
Require: the size of offloaded, bcdi ,v ; ESs network topology, Gs =

{Ns ,Cs}; Properties of the ESs, V s

1: U ← 0 � Initialize subtask allocation matrix
2: for each ek ∈ Ne do
3: if c jk exist then

� Judge communication among ESs to find the adjacent ESs of
e j

4: u jk = 1 � Update subtask allocation matrix
5: end if
6: end for
7: for each u jk = 1 do
8: if bcdi ,v > �ms

ek exist then � Judge remaining memory of ek to
find SAESs

9: u jk = 0 � Update subtask allocation matrix
10: end if
11: end for
12: � SAESs and e j run subtask in a distributed manner
13: for each u jk = 1 do
14: Compute total computing power by (13)
15: Compute computation energy consumption by (17)
16: end for
17: Compute the computation delay by (14)
Ensure: computation delay and computation energy consumption

τ
s,c
e j ,di ,v

, ψ s,c
e j ,di ,v

the actual start time that mdi ,v only can be processed relies
on the idle time of e j and the actual execution finish time of
predecessor subtasks.

The actual execution finish time fts,ce j ,di ,v
[s] for bcdi ,v pro-

cessing on the SAESs can be given by

fts,ce j ,di ,v
= sts,ce j ,di ,v

+ τ
s,c
e j ,di ,v (16)

Meanwhile, computation energy consumption is also gen-
erated. The computation energy consumption ψ

s,c
e j ,di ,v

[J]
required by di to process bcdi ,v on the SAESs can be given by

ψ
s,c
e j ,di ,v

=
(

χ s
e j

· f se j
F + ∑

u jk=1

χ s
ek

· f sek
F

)

· bsdi ,v · φ

∀k = 1, 2, . . .m

(17)

The subtasks are executed in a distributed manner by ES
and the SAESs, as shown in Fig. 6. Figure5b illustrates, dur-
ing the processing phase, the actual execution finish time of
mdi ,v lies on the actual start execution time and computation
time on e j . In addition, there is the computational energy
consumption.

Receiving the result data

After the subtask is executed on ES, the results data will be
sent back to TD. The transmission delay τ

s,d
e j ,di ,v

[s] required

to receive the result data bddi ,v from e j to di via the downlink
channel can be given by

Fig. 7 The framework of DCDO-DRL. (1) TOP model training data
flow. The TOP model uses an S2S neural network to interact with
the environment and optimize the offloading strategy through RL. (2)
RIDM task offloading data flow. TD loads the trained TOP model from
the cloud to obtain subtask offloading locations and execute subtasks
accordingly

τ
s,d
e j ,di ,v

= bddi ,v/r
s
e j ,di (18)

Similarly, the actual execution start time sts,de j ,di ,v
[s] of

receiving bddi ,v on the downlink channel can be given by

sts,de j ,di ,v
= max

{
fts,ce j ,di ,v

, its,de j ,di ,v

}
(19)

where its,de j ,di ,v
= max

{
its,de j ,di ,v−1, ft

s,d
e j ,di ,v−1

}
is the idle time

on the downlink channel when receiving the result. There-
fore, the outer max block in (19) denoted that the actual start
time thatmdi ,v only can return result data to di depends on the
idle time of the downlink channel and the actual execution
finish time of mdi ,v in the processing phase.

The local actual execution finish time fts,de j ,di ,v
[s] of receiv-

ing bddi ,v on the downlink channel can be given by

fts,de j ,di ,v
= sts,de j ,di ,v

+ τ
s,d
e j ,di ,v (20)

The transmission energy consumptionψ
s,d
e j ,di ,v

[J] required

to receive the result data bddi ,v from ES to di via the downlink
channel can be given by

ψ
s,d
e j ,di ,v

= pse j ,di · τ
s,d
e j ,di ,v

=
(
pse j ,di · bddi ,v

)
/rse j ,di (21)

The execution of the results data is sent from the governed
ES to the terminal device as shown in Fig. 5c. Similarly, dur-
ing the feedback phase, the actual execution finish time of
mdi ,v depends on the actual execution start time and trans-
mission time on the download channel. In addition, there is
the transmission of energy consumption.

123



Complex & Intelligent Systems (2024) 10:3283–3304 3291

DCDO-DRL design

This section describes first the architecture of the DCDO-
DRL strategy. Next, the RIDM task offloading problem is
formulated as a Markov decision process (MDP). Then, A
S2S neural network is adopted to predict the offloading pro-
cess. Finally, we introduce the workflow mechanism of the
DCDO-DRL strategy.

DCDO-DRL

According to the challenges introduced in “Introduction”,
we optimized the system model in “System model and prob-
lem formulation” and constructed the DCDP-DRL strategy,
whose architecture is shown in Fig. 7. Each TD is equipped
with a TOP module derived from the cloud-trained model.
The edge collaborative processing module executes subtasks
assigned in a distributed manner. There are two components
in the could layer: (1) RIDM task DAG pool stores DAGs
from the different RIDM tasks of TDs. (2) TOP model train-
ing module outputs the offload location of the subtask via RL
and S2S neural networks.

The DCDO-DRL architecture includes two data flows. (1)
TOP model training data flow. The TD first embeds the data
information of the RIDM task into DAG; Next, the DAG
is uploaded to the RIDM task DAG pool; Finally, the S2S
neural network (agent) in the TOP model interacts with the
environment (network, DAG, aswell as the computing power
of TDs and ES) to iteratively learn and optimize the offload-
ing strategy. (2) RIDM task offloading data flow. The TD
first loads the TOP model trained in the cloud; then, the test
DAGon the TD is input to the TOPmodel to get the execution
location of subtasks, i.e., local processing or edge distributed
processing.

MDP formulation

To deal with the RIDM task offloading problem, we adopt a
DRL-based algorithm to get an offloading strategy to max-
imize the utility of the RIDM task execution. First, the
offloading problem is formulated as an MDP to implement
the DRL algorithm. In this article, the MDP is defined by
a tuple (S,A,R,P, γ ), where S is the environment states
space, A is the action space, R is reward function, P is the
state transition probability matrix and γ is the discount fac-
tor. The motivation of an agent is to find a strategy that can
maximize accumulated reward and select the best behavior.
Hence, the three key elements of MDP can be defined as
follows:

State: The DEC cost of performing mdi ,v is related to the
RIDM topologies gdi , the task size B, the task computational
complexity φ, local computing mode parameters V l , edge

Fig. 8 Subtask offloading process. TD inputs the subtask sequence
for DAG to the encoder in the S2S neural network with an attention
mechanism. The decoder then outputs offloading locations based on
this input, which are used to execute the subtasks accordingly

collaboration computing mode parameters V s , etc.. Thus,
the state space reflects the observations from the environment
when the RIDM task executes, which can be given by

S = {
sdi ,v|i = 1, 2, . . . , n; v = 1, 2, . . . , V

}
(22)

where sdi ,v = (
Em

(
gdi

)
, μdi ,1: v

)
denotes the state when

running mdi ,v . μdi ,1: v = {
μdi ,1, μdi ,2, ..., μdi ,v

}
is the par-

tial offloading decision for the subtasks from mdi ,1 to mdi ,v .
Em

(
gdi

)
is the encoded gdi with a sequence of subtask

embedding. Each subtask embedding is a three-vector. The
first vector is the indices of the immediate predecessor of
mdi ,v; the second vector contains the index ofmdi ,v and DEC
cost of mdi ,v; the last vector is the indices of the immediate
successor of mdi ,v .

Action: Based on the observed environment states, the agent
has two executions for each subtask, i.e., local execution or
offloading to the edge server, so the action space can be given
by A = {0, 1}, adi ,v = μdi ,v = 0 denotes local processing
and adi ,v = μdi ,v = 1 denotes edge collaboration process-
ing.

Reward: According to the environment state and action, the
agent calculates reward values. The objective is to maximize
utility by (8). Utility is the weighted sum of DECs generated
after the completion of multiple RIDM subtasks. The reward
should guide the agreement between the objective and learn-
ing. To achieve this objective, we define the reward function
as an increment of the DEC after making an offloading deci-
sion for a subtask. There are four reasons. First, we have to
consider the DEC to ensure maximum utility without sacri-
ficing one factor. Second, the weight can flexibly adjust the
proportion of DEC. Third, the function helps to prevent the
agent from getting stuck and adapting to changes in the envi-
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ronment. Finally, the increment measures the consequences
of offloading decisions, facilitating a balance between global
and local utility. Formally, the reward function can be given
by

rdi ,v = β t ·
(
maxq∈EMTft

l,c
di ,q

)
/V −

(
τ totaldi ,1:v − τ totaldi ,1:v−1

)

maxq∈EMTft
l,c
di ,q

+βe ·
(∑V

v=1 ψ
l,c
di ,v

)
/V −

(
ψ total
di ,1:v − ψ total

di ,1:v−1

)

∑V
v=1 ψ

l,c
di ,v

(23)

where maxq∈EMTft
l,c
di ,q

and
∑V

v=1 ψ
l,c
di ,v

are the delay and
energy consumption required to run all tasks in the DAG
locally. τ totaldi ,1:v−τ totaldi ,1:v−1 andψ total

di ,1:v−ψ total
di ,1:v−1 are the incre-

ment of the delay and energy consumption.

Subtask offloading process

According to (8) and MDP, the sequential decision-making
of the RIDM task offloading problem is switched to an S2S
prediction problem. The input of the S2S neural network is a
sequence of subtask embedding. the output is an offloading
strategy π

(
μdi |Em

(
gdi

))
. The strategy is the probability of

V subtasks selecting action given the encoded gdi , which can
be given by

π
(
μdi |Em

(
gdi

))

=
V∏

v=1

π
(
μdi ,v|Em

(
gdi

)
, μdi ,v−1

)

=
V∏

v=1

P
(
μdi ,v|Em

(
gdi

)
, μdi ,v−1

)
(24)

where P
(
μdi ,v|Em

(
gdi

)
, μdi ,v−1

)
is the probability of

selecting action μdi ,v for mdi ,v under the state sdi ,v . The
subtask offloading process includes three steps, as shown in
Fig. 8.

Step 1: Get the subtask sequence for gdi . We arrange all the
subtasks by (25). The central idea is to choose the maxi-
mum weight-sum of running delay and energy consumption
for each subtask under LCM and ECCM. The indexes of all
subtasks are then sorted in ascending order by sort value,
where succ(v) is the set of successor subtasks of mdi ,v .
Ol
di ,v

= τ
l,c
di ,v

+ ψ
l,c
di ,v

is the running delay and energy con-

sumption locally. τ se j ,di ,v = τ
s,u
e j ,di ,v

+ τ
s,c
e j ,di ,v

+ τ
s,d
e j ,di ,v

and

ψ s
e j ,di ,v

= ψ
s,u
e j ,di ,v

+ ψ
s,c
e j ,di ,v

+ es,de j ,di ,v
indicate the running

delay and energy consumption of mdi ,v during the upload,
processing, and feedback phases of ECCM.

sort
(
mdi ,v

) =

⎧
⎪⎪⎨

⎪⎪⎩

min
(
Ol
di ,v

, τ se j ,di ,v
+ ψ s

e j ,di ,v

)
, if v ∈ EMT

min
(
Ol
di ,v

, τ se j ,di ,v
+ ψ s

e j ,di ,v

+maxq∈succ(v)

(
sort

(
mdi ,q

))) , if v /∈ EMT

(25)

Step 2: Input the subtask sequence to the encoder of the S2S
neural network. Once the encoding is done, feed it to the
decoder and get the output.

The offloading strategy defined in (25) can be represented
by an S2S neural network. In this article, we adopt Bidi-
rectional Long Short-Term Memory (Bi-LSTM) [56] and
Long Short-Term Memory (LSTM) [57] as an encoder and
a decoder in a S2S neural network. The encoder of the S2S
neural network converts the input graph into a continuous
subtask sequenceM = {

mdi ,v| v = 1, 2, . . . , V }. A decoder
then uses this sequence to generate the offloading strategy
μdi = {

μdi ,v|v = 1, 2, . . . , V }. This combination can inte-
grate node features and relationships, capture global context
and handle long-term dependencies effectively. The details
are as follows: mdi ,v is first converted to an embedding vec-
tor mdi ,v before each encoding step, and then the Bi-LSTM
transforms the hidden state hendi ,v−1 at the previous step and
mdi ,v into the hidden state hendi ,v at the current step encoder,
which can be given by

hendi ,v = Bi-LSTM
(
hendi ,v−1,mdi ,v

)
(26)

After the embedding vectors of all subtasks are
encoded in sequence, the hidden layer state vector hendi ={
hendi ,v| v = 1, 2, . . . , V } of an encoder is got.

To improve the efficiency and accuracy of task processing,
we introduce an attention mechanism. The context vector
cdi ,d decoded in step d is the weighted average of all hidden
states hendi ,v of the encoder output, which can be given by

cdi ,d = ∑V
i=1

exp
(
score

(
hdedi ,d ,hendi ,v

))

∑V
k=1 exp

(
score

(
hdedi ,k ,h

en
di ,v

)) · hendi ,v (27)

where the weight adi ,d,v is a probability distribution at

v = 1, 2, . . . , V for a given d. score
(
hdedi ,d , h

en
di ,v

)
is a for-

ward feedback neural network,which computes an alignment
score from the hidden state hendi ,v of encoder at step v and

the hidden state hdedi ,d of decoder at step d. At each step of

decoding, LSTM takes as inputs the hidden state hdedi ,d−1 at
the previous step and the context vector cdi ,d at the current
step d, the hidden state hdedi ,d of the decoder output can be
given by

hdedi ,d = LSTM
(
hdedi ,d−1, cdi ,d

)
(28)
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Combine the current decoder hidden state hdedi ,d and con-

text vector cdi ,d , we get the attention hidden state h̃
de
di ,d , which

can be given by

h̃
de
di ,d = tanh

(
Wc

[
cdi ,d ; hdedi ,d

])
(29)

The predictive distribution is produced from the atten-

tional vector h̃
de
di ,d and softmax layer, which can be given

by

p(μdi ,d |μ<di ,d ,M) = softmax
(
Ws h̃

de
di ,d

)
(30)

Step 3: With the output of the decoder in the S2S neural net-
work, i.e., the offloading decisions μdi of a sequence that
contains all the subtasks, each of which is placed on the cor-
responding device. If μdi ,v = 0,mdi ,v is performed locally;
if μdi ,v = 1,mdi ,v is sent to the corresponding edge server
e j and processed in a distributed manner according to the
DCP algorithm.

Trainingmechanism

The SAC algorithm proposed by Haarnoja et al. [58] maxi-
mizes the entropy while the expected reward. Inspired by the
SAC, a training mechanism is designed for the DCDO-DRL
strategy to learn a robust DRL algorithm. The mechanism
follows the discrete SAC, which reconstructs the action
space of SAC to adapt to task offloading scenarios. Next,
we discuss the training mechanism. The objective function,
compared to the traditional RL, considers the entropy item
αH (

π
(·|sdi ,v

))
and concentrates on maximizing the accu-

mulated reward. The definition is as follows:

maxπ

V∑

v=1

E(
sdi ,v ,adi ,v

)∼τπ

[(
r
(
sdi ,v, adi ,v

)

+αH(
π

(
adi ,v|sdi ,v

)))
γ v−1

]

= maxπ

V∑

v=1

E(
sdi ,v,adi ,v

)∼τπ

[(
r
(
sdi ,v, adi ,v

)

−α log
(
π

(
adi ,v|sdi ,v

)))
γ v−1

]
(31)

where τπ is the state-action trajectory distribution
following the policy π ; γ ∈ [0, 1] is a discount factor
used to distinguish the importance between current and
future rewards; α is the temperature parameter that
controls the stochastic of the optimal policy;
H (

π
(·|sdi ,v

)) = −E(
sdi ,v,adi ,v

)∼τπ
log

(
π

(
adi ,v|sdi ,v

))
is

the entropy of the policy distribution, which permits the
exploration of additional solutions.

The optimal temperature α varies across tasks due to dif-
ferences in reward. In addition, the policy is continuously
updated during training, resulting in changes to the corre-
sponding Q value and further affecting the choice of α.
Therefore, to train the temperature α parameter dynamically,
we will rewrite (31) with the mean entropy as a constraint
and the transformed objective function as follows: [59]

maxπ

V∑

v=1

E(
sdi ,v,adi ,v

)∼τπ

[
r
(
sdi ,v, adi ,v

)
γ v−1

]

s.t.H (
π

(·|sdi ,v
)) ≥ Ĥ ∀v ∈ V (32)

where Ĥ is the minimum value of the average entropy over
the sample. The objective of our policy is transformed to
maximize the cumulative reward, provided the sample aver-
age entropy is no less than Ĥ. The optimal temperature α∗

v

can be given by

α∗
v = argminαdi ,v

Eadi ,v∼π∗
di ,v

[−αdi ,v
(
log

(
π∗
di ,v

(
adi ,v|sdi ,v;αdi ,v

)) Ĥ
)]

(33)

π∗
di ,v

(
adi ,v|sdi ,v;αdi ,v

)
denotes the temperature αdi ,v

when the action adi ,v is chosen according to the optimal pol-
icy π∗

di ,v
in state sdi ,v . Thus, the temperature objective of

solving the α∗
v , which can be given by

L (α) = Eadi ,v∼πdi ,v[
α

(
log

(
πdi ,v

(
adi ,v|sdi ,v

)) − Ĥ)
)]

(34)

It can be observed that optimal policy and optimal strate-
gies interact with each other and that both should be updated
iteratively. Based on Ref. [60], the (32) is solved using a soft
strategy iteration with policy evaluation and policy promo-
tion. In the policy evaluation phase, the DCDO-DRL strategy
constructs two functions by modifying Bellman backup: (1)
the soft action-value function Qπ (s, a) evaluates the Q-
value given state-action pair under the policy π ; (2) the soft
state-value function vπ (s) evaluates the value of a state under
the policy π with the entropy term. The two functions can be
given by

Qπ (s, a) = r (s, a) + γ
∑

s′∈S
P (

s′|s, a)
Vπ

(
s′)

(35)

Vπ (s) = Ea∼π [Qπ (s, a) − αlog(π (a|s))] (36)

Then, the mean squared error is the soft Bellman error
method. It updates the soft Q-network parameter ξ by mea-
suring the Q-network and target Q-network, which can be
given by
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Fig. 9 The training mechanism of the DCDO-DRL strategy. (1) Actor
network: maximizing expected returns. (2) Critical network: accurately
estimating the value of each state-action pair. (3) Target network: its

parameters gradually synchronize with the parameters of the main net-
work during the training process to stabilize the learning process

LQ (ξ) = E(
sdi ,v,adi ,v

)∼D
[
1

2

(
Qξ

(
sdi ,v, adi ,v

)

− Q́
(
sdi ,v, adi ,v

))2]

= E(
sdi ,v,adi ,v

)∼D
[
1

2

(
Qξ

(
sdi ,v, adi ,v

)

−
(
r
(
sdi ,v, adi ,v

) + γ Vξ̄

(
sdi ,v+1

)))2]
(37)

whereD is the replay buffer that stores a series of transitions(
sdi ,v, adi ,v, rdi ,v, sdi ,v+1

) · ξ̄ is the parameter for a target
Q-network and copied from ξ after a certain time.

Since the action space in this article is discrete, the
expectation of Vξ̄

(
sdi ,v+1

)
can be solved by discrete action

probabilities with random variable states, which can be given
by

Vξ̄

(
sdi ,v+1

) =
∑

adi ,v+1∈A
π

(
adi ,v+1|sdi ,v+1

)

[
Q ξ̄

(
sdi ,v+1, adi ,v+1

) − αlog
(
π

(
adi ,v+1|sdi ,v+1

))]
(38)

The aim of the policy improvement phase is to update the
policy to maximize the reward. Based on Ref. [58], to make
sure the policy is processable, the Q-value obtained during
the policy evaluation phase is first indexed to update the pol-
icy. Then, it is converted to the acceptable policy set� via the
minimum Kullback–Leibler divergence. Thus, the update of
the policy is defined as follows (39). The loss function of the
policy network can be given by (40), in which the parameter
ϕ is updated using stochastic gradients.

πnew = argminπ∈�DKL(

π
(·|sdi ,v

) ||exp
( 1

α
Qπold

(
sdi ,v, ·

))

Zπold

(
sdi ,v

)

)

(39)

Lπ (ϕ) = Esdi ,v∈D
∑

adi ,v∈A
πϕ

(
adi ,v|sdi ,v

)

(
αlog

(
πϕ

(
adi ,v|sdi ,v

)) − Qξ

(
sdi ,v, adi ,v

))

(40)

Algorithm 2 and Fig. 9 illustrate the training mechanism
and pseudo-code of the DCDO-DRL strategy. Algorithm 2
comprises three parts. The first part (lines 1–6) defines ini-
tial parameters, including environment critic networks, actor
network, target networks, replay buffer, and gradient descent
step length. The second part (lines 7–13) interacts with the
environment to trigger the action and the next state following
the current policy. The transition then is stored in the replay
buffer. The third part (lines 14–21) updates the S2S neural
network using the stochastic gradients and transitions stored
in the replay buffer. The two critic networks, actor network,
temperature parameters and two target networks are updated
by lines 16–19. Off-policy learning is more effective, mainly
because of the ability to learn experience from policies other
than the target policy. The core idea of DCDO-DRL strategy
in two aspects: (1) the loss function (37) and (40) of the critic
and actor networks incorporate an entropy element. (2) The
twoQnetworks as the critic and target networks, respectively.
In addition, the loss function (37) and (40) adopt the mini-
mum value of the Qπ (s, a) function to improve the training
speed.
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Algorithm 2 DCDO-DRL
Require: all paraments of the RIDM-TO model
1: Qξi (i = 1, 2) � Initialize critic networks
2: πϕ � Initialize actor networks
3: Qξ i

← Qξi (i = 1, 2) � Initialize target networks
4: D ← ∅ � Initialize replay buffer
5: λQ , λπ , λα � Step length for gradient descent of the critic

network, actor network, temperature parameter
6: Ĥ � Initialize minimum value of the average entropy
7: for each iteration do
8: for each environment step do
9: adi ,v ∼ πϕ

(
adi ,v |sdi ,v

) � Execute action on current policy
10: sdi ,v+1 ∼ p

(
sdi ,v+1|sdi ,v, adi ,v

) � Transfer to the next state
11: rdi ,v ← r(sdi ,v, adi ,v) � Receive reward
12: D ← D ∪ {(

sdi ,v, adi ,v, rdi ,v, sdi ,v+1
)} � Store transition

into D
13: end for
14: for each gradient step do
15: Random sample some

(
sdi ,v, adi ,v, rdi ,v, sdi ,v+1

)
from D

16: Update two critic networks by ξi = ξi − λQ∇ξiL (ξi ) ∀i ∈
1, 2

17: Update actor network by ϕ = ϕ − λπ∇ϕL (ϕ)

18: Update temperature parameter by α = α − λα∇αL (α)

19: Update two target networks by ξ̄i = δξi + (1− δ)ξ̄i ∀i ∈ 1, 2
� δ is interpolation factor in polyak averaging

20: end for
21: end for
Ensure: optimal computation offloading strategy π∗

Complexity analysis

The time complexity of DCDO-DRL mainly involves two
parts: the S2S neural network and discrete SAC. The S2S
neural network includes an encoder (Bi-LSTM), a decoder
(LSTM), and an attention mechanism. The time complexity
is O(L × N × M2), O(L × N × M2), and O(L × N ×
M × H), where L is the sequence length, N is the batch
size, M is the number of hidden units, H is the number of
attention heads. In addition, the time complexity of discrete
SAC is O(B × P × K × T ), where B is the batch size, P
is the number of parameters in the neural network, K is the
number of training steps, andT is the number of computations
per step. Hence, the time complexity of DCDO-DRL is the
sum of two parts, O(L × N × (2M2 + M × H) + B ×
P × K × T ).

Numerical results

This section shows the experimental settings, algorithm
convergence, and the impact of attributes on algorithm
performance. Furthermore, we investigated the statistical
advantages of the DCDO-DRL strategy compared to seven
methods in three scenarios.

Simulation setup

To evaluate the performance of the DCDO-DRL strategy,
PyCharm is used as the development tool for Python IDE.
The S2S neural network is established via the TensorFlow
framework. We implement the DCDO-DRL strategy with
TensorFlow based on OpenAI Spring Up.

Inspired by Ref. [24], we set the system parameters and
initial hyperparameters for the S2S neural network after vis-
iting three centers.1 The systemparameters are given in Table
2, which involve hardware and communication conditions of
TD and ES, and RIDM task information. Specifically, the
transmission rate and power are set as 7 Mbps and 1.258 W
[61]. The CPU computational capacity of TD is 1G cycles/s,
while ES is 9G cycles/s.We also set the energy coefficients of
TD and ES are 1.25× 10−8 J/cycle and 1.25× 10−7 J/cycle
according to Ref. [61]. In our simulation experiment, it is
assumed that the subtasks in the RIDM task are offloaded to
ESorTD.Theworkflowof radiomics is complex and change-
able. Hence, we model different RIDM tasks as DAG with
different topologies, which elaborate dependencies among
modules. The RIDM task data size is set between 250 and
2500 KB and the subtask number V of DAG ranges from 10
to 30 according to the different requirements of radiomics.
The computational complexity of each subtask is 107 − 108

cycles/s. We select 100 DAGs for each subtask number as
the training set and another 20 DAGs as the test set. Then,
the S2S neural network is trained based on the information
of each subtask in the DAG as input. Finally, to obtain a
robust offloading strategy, the DCDO-DRL strategy utilizes
discrete SAC to train the S2S neural network.

The S2S neural network is set as a two-layer Bi-LSTM
encoder and a two-layer LSTM decoder, each with 256 hid-
den units and layer normalization [62]. During training, the
learning rate is 0.0003, the gradient descent step length is
0.00001, and the batch size is 100. These hyperparameters
significantly affect the training and convergence speed of the
DCDO-DRL strategy. After initialization and grid search, the
optimal hyperparameter settings are presented in Table 3.

Compare algorithms

To evaluate the performance of the DCDO-DRL strategy, we
conduct a comparison of the following seven algorithms: (1)
local computing (L. Comp.): all subtasks of DAG are exe-
cuted on the user terminal device without offloading. (2) Full
offloading (F. Offl.): all subtasks of DAG are executed on the
edge server. (3) Random offloading (R. Offl.): each subtask
of the DAG is randomly offloaded to the user terminal device
or edge server. (4) Greedy offloading (G. Offl.): find the best

1 https://www.hnsrmyy.net; https://www.ha.edu.cn; http://ih.ha.edu.
cn.
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Table 2 The value for system
parameters

Parameters Value Parameters Value Parameters Value

bdi ,v 250–2500 KB φ 107 − 108 cycles/bit β t 0.5

f ldi 1G cycles/s χ l
di

1.25×10−8 J/cycles βe 0.5

f sdi 9–13G cycles/s χ s
di

1.25×10−7 J/cycles � f se j 9–13G cycles/s

pse j ,di 1.258 W rse j ,di 7 Mbps

Table 3 The value for the S2S neural network and training hyperparameters

Hyperparameters Value Hyperparameters Value Hyperparameters Value Hyperparameters Value

Encoder layers 2 Encoder hidden units Bi-LSTM Encoder layer type 256 Encoder layer normal On

Decoder layers 2 Decoder hidden units LSTM Decoder layer type 256 Decoder layer normal On

Learning rate 0.0003 Activation function Tanh Optimization method Adam Batch size 100

Replay buffer 10,000 γ 0.99 δ 0.995 α Auto

λQ 0.00001 λπ 0.00001 λα 0.00001

offloading location for each subtask of the DAG by selecting
the current optimal solution each time. (5) Round-Robin-
based offloading (RR. Offl.): all subtasks of the DAG are
alternately performed on the TD and ES. (6) HEFT-based
offloading (HEFT. Offl.): HEFT. Offl. [27] adopt the Het-
erogeneous Earliest Finish Time algorithm to prioritize the
subtask of the DAG and run sorting tasks according to the
earliest estimated finish time. (7) DRL-based task offloading
(DRLTO): DRLTO [24] combined recurrent neural network
and DRL to deal with the task offloading scheme and adopt
Proximal Policy Optimization to improve the training effi-
ciency.

Convergence analysis

This subsection evaluates the convergence of the proposed
DCDO-DRL and DRLTO. The aim of this article is to
maximize the RIDM task execution utility. Thus, we set
β t = βe = 0.5 according to Ref. [24]. The subtask number
V of DAG for the RIDM task is 15. The transmission rate is 7
Mbps. The transmission power is 1.258W. The CPU compu-
tational capacity of the main ES and TD is 9G cycles/s and
1G cycles/s. Other parameters are detailed in Tables 2 and 3.
The DCDO-DRL strategy records the average and updates
the S2S neural network at each iteration.

The simulation results are shown in Fig. 10. The x-axis
denotes the number of iterations, and the y-axis represents
the average reward. It can be noticed that the average reward
converges more quickly when the number of iterations is
less than 100. As the number of iterations increases, the
value grows steadily with a smaller oscillation amplitude.
The result demonstrates that the average reward conver-
gence value of the DCDO-DRL strategy is 0.021 at around
200 iterations. Although DRLTO also has the same con-

Fig. 10 The average reward of the DCDO-DRL and DRLTO

vergence trend, its convergence speed is lower than the
proposed DCDO-DRL strategy in this article. DRLTO con-
verges quickly before 200 iterations and then becomes
slower. Finally, the average reward converges to 0.009 in
500 iterations. Therefore, compared to DRLTO, the DCDO-
DRL strategy improves training speed. The reason is that the
proposed DCDO-DRL strategy maximizes the entropy and
the expected reward at the same. This further results in a
stronger exploration capability of the DCDO-DRL strategy
in the training process.

Impact of subtask numbers

The subsection contrasts the performance of theDCDO-DRL
strategy with seven algorithms in terms of various subtask
numbers. In this scenario 1, the system is deployed as follows.
The subtask number V of DAG for the RIDM task is from 10
to 30. The transmission rate is 7 Mbps. The CPU computa-
tional capacity of the main ES and a TD is 9G cycles/s and
1G cycles/s. The rest parameter values as shown in Tables 2
and 3. The simulation results are shown in Fig. 11.
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By varying the subtask number, TheDCDO-DRL strategy
has higher utility on the RIDM task compared to the other
algorithms. As shown in Fig. 11, the DCDO-DRL strategy
has a lower average delay than most algorithms (Fig. 11a).
The average energy consumption and average utility are usu-
ally lower (Fig. 11b) and higher (Fig. 11c) than those of the
other algorithms. When the number of subtasks is small (i.e.,
N=10), the average delay, average energy consumption and
average utility of each algorithm is lower, but the DCDO-
DRL strategy still is optimal. As N further increases, all three
are increased. The main reason is that increasing the number
of subtasks results in a more complex DAG for the RIDM
task, which exacerbates the difficulty of task scheduling. In
addition, assigning more subtasks to ES reduces the compu-
tation time, but also increases the data transmission time, and
computation/transmission energy consumption. The compu-
tation energy consumption of ES is also higher than TD
at the same time. In summary, for the scenario of variable
subtask numbers, the DCDO-DRL strategy improved the
execution utility of RIDM tasks by 23.07% (computer by
( utilityDCDO-DRL−utilityDRLTO

utilityDRLTO
) compared to DRLTO.

In addition, we analyze the correlation between average
delay, average energy consumption, and average utility. The
joint distribution diagram is a visual representation to display
the interrelationship between the two variables. Figure12a
demonstrates the joint distribution between the average delay
and average utility under scenario 1. It can be seen from the
regression line that the two variables have a positive correla-
tion. As the average delay increases, the average utility shows
an increasing trend. Figure12b shows the joint distribution
between the average energy consumption and average utility
under scenario 1. The regression line also exhibits that there
is also a positive correlation.

Impact of transmission rate

The subsection contrasts the performance of theDCDO-DRL
strategy on various transmission rates with seven algorithms.
In this scenario 2, the system is deployed as follows. The
transmission rate ranges from 5 Mbps to 17 Mbps. The sub-
task number V of DAG for the RIDM task is 15. The CPU
computational capacity of the main ES and TD also is 9G
cycles/s and 1G cycles/s. The rest parameters as shown in
Tables 2 and 3. The simulation results are shown in Fig. 13.

By varying the transmission rate, the results show that the
DCDO-DRL strategy has better performance on the RIDM
task than other algorithms. As shown in Fig. 13, the average
delay and average energy consumption of L. Offl. are fixed.
When the transmission rate is small (i.e., rse j ,di = 5), trans-
mitting all data to ES incurs considerable delays (Fig. 13a).
When rse j ,di = 7, 9, L. Offl. has the lowest average energy
consumption and the highest average delay (Fig. 13b). As

rse j ,di further increases, the average delay and average energy
consumption of all algorithms decrease (except for L. Offl.).
The DCDO-DRL strategy has the lowest energy consump-
tion (Fig. 13a, b). This is because the higher transmission rate
is beneficial for offloading tasks to ES. Figure13c shows the
average utility of F. Offl. – DCDO-DRL gradually increases
as the transmission rate increases. This is because the reduc-
tion in transmission time drives the execution of subtasks
on ES. To sum up, the DCDO-DRL strategy improved the
execution utility of the RIDM task by 12.77% compared to
the suboptimal DRLTO, specifically in scenarios related to
transmission rates.

Similarly, the histogram on the upper and right sides of
Fig. 14a demonstrates the marginal distribution of average
delay and average utility under scenario 2, respectively. The
middle part shows the joint distribution between the two vari-
ables. The histogram on the upper of Fig. 14b displays the
marginal distribution of average energy consumption. The
two regression lines in Fig. 14 show a negative slope, imply-
ing a negative correlation between all average latency and
average energy consumption and average utility. The shaded
part shows the confidence interval of the regression lines.
As the increase of two variables, the average utility displays
a decreasing trend. However, it can be clearly seen that the
regression line in Fig. 14a is steeper compared to Fig. 14b.
Therefore, the average delay has a greater effect on the aver-
age utility.

Impact of CPU computational capacity

To further evaluate the DCDO-DRL strategy, this subsec-
tion compares the performance of the DCDO-DRL strategy
on various CPU computational capabilities with seven algo-
rithms. In this scenario 3, the system is deployed as follows.
The CPU computational capacity of themain ES ranges from
1G cycles/s to 8G cycles/s. The transmission rate is 7 Mbps.
The subtask number V of DAG for the RIDM task is 15. The
CPU computational capacity of TD is 1G cycles/s. The rest
parameter values as shown in Tables 2 and 3. The simulation
results are shown in Fig. 15.

By adjusting the computing power of ES, the DCDO-
DRL strategy performs better in the RIDM task. As shown in
Fig. 15, the average delay, average energy consumption and
average utility of L. Offl. are constant. The reason is that L.
Offl. is not affected by the computing power of ES. When
the computational power of ES is small (i.e., f se j = 1), it is
equivalent to that of TD. Running all data on ESwill generate
massive energy consumption. Thus, the energy consumption
of F. Offl. is huge in Fig. 15b. When f se j = 2, the average
energy consumption and the average utility of the F. Offl.
drops abruptly and increases steeply, respectively. As f se j is
further increased, there is little difference in the average delay
of the individual algorithms (Fig. 15a). The average energy
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Fig. 11 Illustration on the impact of subtask number

Fig. 12 Joint distribution
between average utility and
average delay or average energy
consumption under scenario 1

Fig. 13 Illustration on the impact of the transmission rate

consumption shows a steadily decreasing trend, while the
average utility increases slowly except for L. Offl. and F.
Offl. (Fig. 15b, c). The influence of ES’s computing capa-
bility gradually becoming smaller is the primary cause of
this. In conclusion, compared to the suboptimal DRLTO, the
DCDO-DRL strategy improves the execution efficiency of
RIDM tasks by 8.51% when faced with different CPU com-
puting power.

Likewise, Fig. 16 demonstrates the joint distribution
between the average delay, average energy consumption and
average utility under scenario 3. The result shows that both

regression lines show a negative correlation between the two
variables. However, compared to the regression line with
Fig. 16a, the one with Fig. 16b is steeper. This reflects the
fact that average energy consumption has a greater impact
on average utility.

Statistical superiority analysis

Statistical test is a widely used method to evaluate the per-
formance of the algorithm in various fields. In the above
analysis, we compute the average utility performance of
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Fig. 14 Illustration on joint
distribution between average
utility and average delay or
average energy consumption
under scenario 2

Fig. 15 Illustration on the impact of CPU computational capacity

Fig. 16 Illustration on joint
distribution between average
utility and average delay or
average energy consumption
under scenario 3

seven algorithms across different subtask numbers, different
transmission rates, and different CPU computational capaci-
ties. To determine the superiority of theDCDO-DRL strategy
in three scenarios, we conduct pairwise comparisons. In this
article, we use the Wilcoxon rank sum test [60] as a non-
parametric statistical test. The test compares the significant
level differences between algorithms by P value. Note that
we consider the algorithm to be statistically different if and
only if the P value is less than 0.05. The P values calculated

under three scenarios are shown in Table 4. For the subtask
numbers, the P values are less than 0.05, indicating a statisti-
cally significant difference between theDCDO-DRLstrategy
and other algorithms. Similarly, there is a statistically signif-
icant difference in transmission rate, as the P values are all
less than 0.05. In terms of CPU computing power, although
not all P values are less than 0.05, 5 out of 7 also shows
statistically significant differences. To sum up, by counting
the P values of DCDO-DRL and seven algorithms, it can be
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found that only two of the 21 P values exceed 0.05, reflect-
ing the statistical superiority of the DCDO-DRL strategy in
maximizing the RIDM task execution utility. To sum up, by
counting the P values of DCDO-DRL against the seven algo-
rithms, it can be found that only twoof the 21 P values exceed
0.05, reflecting the statistical superiority of the DCDO-DRL
strategy in maximizing the RIDM task execution utility.

Conclusion

In this article, we propose a DCDO-DRL strategy, which
plays a significant role in improving the RIDM execution
efficiency and adapting to the different RIDM environments
in the medical image cloud. DCDO-DRL aims to maximize
the RIDM task utility, a weighted sum of DEC generated
by execution. Specifically, the internal dependencies of the
RIDM task based on radiomics are modeled by a DAG. The
offloading decision process in the DAG is represented by
the sequence prediction of the S2S neural network. Next, we
propose a DCP algorithm to accelerate subtask processing by
collaboratingwithmultiple ES resources. Finally, to improve
the robustness of the S2S neural network, the DCDO-DRL
strategy follows the discrete SAC. The results show the exe-
cution utility of the DCDO-DRL strategy in the RIDM task
by at least 23.07, 12.77, and 8.51% in three scenarios.

It is worth noting that content caching is also an effec-
tive way to decrease computational delay and energy con-
sumption. Therefore, our future research work focuses on
exploring the problemof combining content caching and task
offloading. One potential solution is to formulate the prob-
lem as a mixed-integer non-linear programming (MINLP)
problem. Then, the MINLP problem is then proved to be a
0–1 knapsack problem and solved by an efficient algorithm.
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Appendix

Definition 1 RIDM task offloading system model is a
12-tuple: RIDM-TO = (S, D,DCP,G, B, μ, φ, ζ, V l , V s,

T total , � total), where:

(1) E = {
e j | j = 1, 2, . . . ,m

}
is the finite set of edge

servers. m refers to the total number of edge servers,
m ∈ N

+.
(2) D = {di |i = 1, 2, . . . , n} is the finite set of terminal

devices, i.e., PC device used by the user. n refers to the
total number of users, n ∈ N

+.
(3) DCP is the distributed collaborative processing algo-

rithm on the edge layer.
(4) G = {

gdi |i = 1, 2, . . . , n
}
is the finite set of DAG

topologies modeled of RIDM. (See Def. 2).

(5) B=
{
bdi ,v =

(
bldi ,v, b

u
di ,v

, bcdi ,v, b
d
di ,v

)
|i = 1,2,. . . , n;

v = 1, 2, . . . , V } is the finite set of the RIDM task data
sizes.

(6) μ = {
μdi = {

μdi ,v
} |i = 1, 2, . . . , n; v = 1, 2, . . . , V

}

is the finite set of offloading strategies for terminal
devices. V is the number of subtasks.

(7) φ is task computational complexity, i.e., Required CPU
cycles for computingper bit ofbdi ,v . The computational
complexity of each subtask is the same.

(8) ζ : TD −→ ES is the mapping from TD to ES, mean-
ing the TD is covered by ES in the communications
area.

(9) V l is the local computing parameters (See Def. 3).
(10) V s is the edge collaboration computing parameters

(See Definition 4).

(11) T total =
{
τ totaldi

|i = 1, 2, . . . , n
}
is the finite set of the

total delays for DAGs of the terminal device.

(12) � total =
{
ψ total
di

|i = 1, 2, . . . , n
}
is the finite set of

the total energy consumptions forDAGs of the terminal
device.

Definition 3 Local computing parameters model is 4-tuple:
V l = (

Fl , χ l , T l , �l,c
)
, where:

(1) Fl =
{
f ldi |i = 1, 2, . . . , n

}
is the finite set of the com-

putational capabilities of terminal devices.

(2) χ l =
{
χ l
di

|i = 1, 2, . . . , n
}
is the finite set of the energy

coefficients of terminal devices.

(3) T l = (
T l,c,ml,c,FTl,c

)
is the finite set of local delay

parameters, where:

(a) T l,c = {
τ
l,c
di ,v

|i = 1, 2, . . . , n; v = 1, 2, . . . , V
}
is

the finite set of the computation delay locally.

(b) STl,c =
{
stl,cdi ,v|i = 1, 2, . . . , n; v = 1, 2, . . . , V

}
is

the finite set of the actual execution start time locally.

(c) FTl,c =
{
ftl,cdi ,v|i = 1, 2, . . . , n; v = 1, 2, . . . , V

}
is

the finite set of the actual execution finish time
locally.

(4) �l,c =
{
ψ

l,c
di ,v

|i = 1, 2, . . . , n; v = 1, 2, . . . , V
}
is the

finite set of the computation energy consumption locally.

Definition 4 Edge collaboration computing parameters
model is 10-tuple: V s = (Fs, χ s,�Ms,�Fs, Ps,

Rs, T u, T c, T d , Es), where:

(1) Fs =
{
f se j | j = 1, 2, . . . ,m

}
is the finite set of the com-

putational capabilities of edge servers.

(2) χ s =
{
χ s
e j | j = 1, 2, . . . ,m

}
is the finite set of the

energy coefficients of edge servers.

(3) �Ms =
{
�ms

e j | j = 1, 2, . . . ,m
}
is the finite set of the

residual memories of edge servers.

(4) �Fs =
{
� f se j | j = 1, 2, . . . ,m

}
is the finite set of the

residual computational capabilities of edge servers.

(5) Ps =
{
pse j ,di | j = 1, 2, . . . ,m; i = 1, 2, . . . , n

}
is the

finite set of transmission powers.

(6) Rs =
{
rse j ,di | j = 1, 2, . . . ,m; i = 1, 2, . . . , n

}
is the

finite set of the data transmission rates.
(7) T u = (T s,u,STs,u,FTs,u) is the finite set of delay

parameters on the uplink channel, where:

(a) T s,u =
{
τ
s,u
e j ,di ,v

|j =1, 2, . . . ,m; i =1, 2, . . . , n; v=
1, 2, . . . ,V } is the finite set of the transmission delay
via the uplink channel.

(b) STs,u =
{
sts,ue j ,di ,v

|j=1, 2, . . . ,m;i =1, 2, . . . , n;v =
1, 2, . . . ,V } is the finite set of the actual execution
start time to e j via the uplink channel.

(c) FTs,u =
{
fts,ue j ,di ,v

|j=1, 2, . . . ,m;i=1, 2, . . . , n;v =
1, 2, . . . , V } is the finite set of the actual execution
finish time to e j via the uplink channel.

(8) T c = (T s,c,STs,c,FTs,c) is the finite set of delay param-
eters on the edge server, where:

(a) T s,c =
{
τ
s,c
e j ,di ,v

|j =1, 2, . . . ,m; i =1, 2, . . . , n; v =
1, 2, . . . ,V } is the finite set of the computation delay
of executing subtask on e j .
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(b) STs,c =
{
sts,ce j ,di ,v

|j =1,2, . . . ,m;i =1, 2, . . . , n;v =
1, 2, . . . ,V } is the finite set of the actual execution
start time on e j .

(c) FTs,c=
{
fts,ce j ,di ,v

|j=1, 2, . . . ,m;i =1, 2, . . . , n;v =
1, 2, . . . , V } is the finite set of the actual execution
finish time on e j .

(9) T d = (
T s,d ,STs,d ,FTs,d

)
is the finite set of delay

parameters on the downlink channel, where:

(a) T s,d =
{
τ
s,d
e j ,di ,v

| j = 1, 2, . . . ,m;i = 1, 2, . . . , n;v =
1, 2, . . . , V } is the finite set of the transmission delay
to e j via the downlink channel.

(b) STs,d =
{
sts,de j ,di ,v

|j =1, 2, . . . ,m;i =1, 2, . . . , n;v =
1, 2, . . . , V } is the finite set of the actual execution
start time to e j via the downlink channel.

(c) FTs,d =
{
fts,de j ,di ,v

|j=1, 2, . . . ,m;i =1, 2, . . . , n;v =
1, 2, . . . , V } is the finite set of the actual execution
finish time to e j via the downlink channel.

(10) Es = (
�s,u, �s,c, �s,d

)
is the finite set of energy con-

sumption parameters on ECCM, where:

(a) �s,u =
{
ψ

s,u
e j ,di ,v

|j =1, 2, . . . ,m;i =1, 2, . . . , n;v =
1, 2, . . . , V } is the finite set of the transmission
energy consumption to e j via the uplink channel.

(b) �s,c =
{
ψ

s,c
e j ,di ,v

|j = 1, 2, . . . ,m;i = 1, 2, . . . , n;v =
1, 2, . . . , V } is the finite set of the computation
energy consumption on e j .

(c) �s,d =
{
ψ

s,d
e j ,di ,v

|j = 1, 2, . . . ,m;i = 1, 2, . . . , n;v =
1, 2, . . . , V } is the finite set of the transmission
energy consumption to e j via the downlink channel.
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