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Abstract
Accurate identification of critical malicious drones is crucial for optimizing directed energy attacks and maximizing their
effectiveness. However, current studies on critical drone identification are still in the preliminary stage and almost rely on the
traditional centralitymethods that donot address the distributed features of drone swarms.This leads to inaccurate identification
of critical drones, resulting in the low efficiency of directed energy attacks. Therefore, this paper proposes a new critical
drone identification method based on the distributed features, communication intensity, and communication scale of drones.
Specifically, this paper first constructs a dynamic communication prediction network (DCPN) of drone swarms based on the 3D
position and interaction range, which predicts the dynamic communication between drones. Then, this paper proposes a new
method called dynamic giant connected component (GCC)-based scale-intensity centrality (DGSIC) that combines the local,
global, and community structure of DCPN to identify critical nodes with stronger communication capabilities. The dynamic
strategy involves the iterative identification of one critical node at each step, considering the evolving network configuration
and ensuring the identified node remains the most critical in the present network. Additionally, the prioritization strategy is
employed to identify the nodes within the GCC, which can significantly impact the network connectivity and communication.
DGSIC optimizes the attack sequence for directed energy attacks, facilitating the rapid dissolution of malicious drone swarms.
Extensive experiments in four simulated networks and eight real-world networks demonstrate the superior robustness and
cascading failure performance of DGSIC.
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Introduction

The rapid development of micro drone swarms has brought
convenience to areas such as urban planning and disaster
management [1].Meanwhile, it has also provided newmeans
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for terrorist andmilitary activities, including surveillance and
attacks [2]. These malicious incidents have demonstrated the
significant threat posed by drone swarms, which seriously
endanger the privacy, property, and even the safety of res-
idents, sounding the alarm for low-altitude defense. From
then on, research on anti-drone swarms has gradually gained
attention.

The anti-drone swarm system consists of two primary
components: drone detection and drone attack. Drone detec-
tion research has reached a relatively mature stage and can
achieve precise detection [3]. Research on drone attacks can
be categorized into three main types: non-kinetic energy
interference, intensive firepower attack, and directed energy
attack [4]. Among them, directed energy attacks are partic-
ularly well-suited for low-altitude battlefield defense due to
the advantages of precise targeting, low cost, quick response,
and minimal environmental interference [2]. Consequently,
they have become the mainstream equipment and key focus
of anti-drone swarm researches [5, 6]. However, the current
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research on directed energy attacks predominantly concen-
trates on optimizing the hit rate when targeting specific
drones [7–9], often overlooking the optimization of attack
sequences. Additionally, the adaptive cooperation of mali-
cious drone swarms following each directed energy attack
is underexplored [10, 11]. Therefore, capturing the dynamic
collaboration ofmalicious drones, achieving the precise iden-
tification of critical drones, and devising efficient sequences
for directed energy attacks are of utmost importance in sig-
nificantly countering malicious drone swarms.

Communication plays a vital role in facilitating informa-
tion exchange among drones, and it is influenced by factors
such as the interaction range and positional relationship [12].
Considering the high mobility of drones, it becomes nec-
essary to establish a dynamic communication model that
can capture the changing communication in drone swarms.
Traditional models such as agent-based models [13, 14],
Bayesian network-basedmodels [15, 16], and systemdynam-
ics [17, 18] have limitations in effectively representing the
dynamic communication of drone swarms [19]. However,
the development of complex network theory provides a new
perspective for complex system modeling, where drones can
be abstracted as nodes and communication between drones
can be represented as edges [20, 21]. The dynamic com-
munication prediction network (DCPN) model of a drone
swarm can be established by tracking the changes in edges.
Utilizing the DCPN, critical drones can be identified using
critical node identification algorithms. In this paper, critical
drones refer to nodes that are significant to the structure and
function of DCPN, and their failure can damage the connec-
tivity, communication intensity, and communication scale of
the network. However, few studies focus on critical node
identification in DCPN, and less attention has been simul-
taneously given to the distributed features, communication
intensity, and communication scale of drones. Consequently,
the accuracy of critical drone identification is limited.

To address the limitation, this paper focuses on distributed
and dynamic communication features and proposes a new
method for identifying critical drones. Specifically, this paper
first constructs a communication prediction network model
to capture the dynamic communication among drones. Then,
considering the distributed features, communication inten-
sity, and communication scale of drones, a new critical node
identification method incorporating the local, global, and
community structure is proposed to enhance the effective-
ness of directed energy attacks.

The main contributions are as follows:

1. A newly extended dynamic communication prediction
network (DCPN) model for drone swarms is proposed
based on the spatial position relationship, which captures
the dynamic changes in drones and their communica-
tion. The node features record the 3D positions of drones,

and the edge features characterize the dynamic commu-
nication between them. DCPN can effectively capture
the spatial position changes of drones, enabling dynamic
communication prediction and automatic updates of
malicious drone swarms.

2. A newly critical node identification method named
dynamic GCC-based scale-intensity centrality (DGSIC)
is further proposed, in combination with community
structure, communication scale, and communication
intensity. Additionally, dynamic and prioritization strate-
gies are incorporated. Specifically, the network structure
is dynamically updated after each directed energy attack,
and the nodes within GCC are given higher priority.
DGSIC optimizes the attack sequence for directed energy
attacks, facilitating the rapid dissolution of malicious
drone swarms.

The rest of this paper is as follows. “Related work”
overviews the existing work of malicious drone swarm
and critical node identification. “Proposed method” details
the proposed method. “Experiments” shows the experiment
results and analysis. Finally, the subsequent section shows
the conclusion and future work.

Related work

In recent years, the increasing occurrence of malicious drone
swarm attacks has posed a significant threat to the privacy,
property, and even the safety of individuals. Therefore, it is
imperative to propose amethod for identifying critical drones
to efficiently and accurately counter these attacks using
directed energy attacks. While previous research on anti-
drone metrics has mainly focused on areas such as malicious
drone detection [22–24], trajectory tracking [25–27], inter-
ference [28, 29], and swarm robustness analysis [30], less
attention is paid to the identification of critical drones [31].
Moreover, traditional models fail to effectively capture the
dynamic communication between drones [19], leading to a
scarcity of references for the identification of critical drones.

Fortunately, the complex network theory offers a new per-
spective for identifying critical drones [31], treating the drone
swarm as a network and the drones as nodes. Existing litera-
ture primarily introduce critical node identification methods
based on the complex network theory, which can be divided
into three main categories, i.e., local structure-based, global
structure-based, and community structure-based methods.

Local structure-based methods mainly focus on the local
information of the network. For instance, the degree cen-
trality (DC) [32], a classic method, measures the connection
strength between a node and its immediate neighbors, pro-
viding a simple and effectivemetric of node importance [33].
To broaden the scope of local information, Chen et al. pro-
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posed an extension of DC called local centrality (LC), which
takes into account the influence of third-order neighboring
nodes [34]. Tee et al. introduced a local metric called vertex
entropy (VE), which has demonstrated effectiveness in large
commercial networks [35]. Lei et al. approached critical node
identification from the perspective of Tsalli entropy and pre-
sented a new method called LSE, considering the influence
of first-order and second-order neighboring nodes [36]. The
results indicate that LSE exhibits improved information dis-
semination ability and robustness. Additionally, Wang et al.
proposed a method named ALSI based on the aggregated
local structure, which combines the degree and the number
of layers of a node [37]. Extensive results demonstrate the
superiority of ALSI in identifying critical nodes. However,
these algorithms only consider the influence of a node and
its neighbor nodes, without taking into account the impact of
distant nodes, thereby limiting the accuracy of critical node
identification.

Global structure-based methods primarily aim to cap-
ture the overall network information and can be categorized
into two categories: iteration-based and path-based methods.
Iteration-based methods, such as HITs [38], PageRank [39]
and their variants [40, 41], consider the positional features
of nodes and iteratively obtain the global information of net-
works. These methods effectively characterize the critical
nodes with structural advantages. For instance, Jiang et al.
proposed BMRank, a new critical node identificationmethod
based on theHITs,which outperformsothermethods in terms
of network structure [40]. Li et al. designed APAMGM, an
improved centrality metric based on the PageRank, which
can effectively identify the critical nodes with high inter-
pretability [41]. However, these methods heavily rely on the
iterative process, resulting in unstable performance as they
often converge to the local optima. Path-basedmethods, such
as betweenness centrality (BC) [42] and closeness centrality
(CC) [43], effectively characterize the impact of distant nodes
based on the shortest path and performwell in characterizing
the information diffusion of nodes [44]. Besides, Zhao et al.
proposed GIN, a novel method that combines DC and the
shortest path algorithm to evaluate node importance [45].
Zareie et al. introduced ECRM, a method that utilizes DC
and the similarity between nodes and their neighbor nodes
to quantify node importance [46]. The results of GIN and
ECRM demonstrate that coupling metrics are more effective
than single metrics. Therefore, coupling metrics have gained
attention among researchers, providing a new perspective for
critical node identification.

In recent years, there has been increasing evidence link-
ing the function of networks to community structure [47,
48]. Consequently, researchers have focused on critical node
identification methods that leverage community structure to
improve the accuracy of identification [49–54]. For instance,
Tutu et al. designed CbM, a community-based metric that

considers the entropy of a random walk from a node to
each community. Simulation results have shown that nodes
identified by CbM accelerate the dissemination of infor-
mation [50]. Additionally, Liu et al. proposed GDF-ICN, a
group-driven framework that leverages community structure
to enhance the performance of critical node identification.
Comprehensive experiments have confirmed the effective-
ness of this approach [53]. Similarly, exploring community
structure can gain insights into the organization and interac-
tions of drone swarms, enabling the identification of critical
drones that play significant roles in network communication.

In summary, the complex network theory provides a new
perspective for identifying critical drones in drone swarms.
Building upon this theory, this paper proposes a new method
named DGSIC to accurately identify critical nodes with
stronger communication capabilities in DCPN.

Proposedmethod

The proposed method for identifying critical nodes consists
of two main parts, as depicted in Fig. 1. Initially, the drone
swarm dynamic communication prediction networkmodel is
introduced in “Drone swarm dynamic communication pre-
diction network model”. Then, the formulation of DGSIC is
introduced in “Formulation of the DGSIC ”.

Drone swarm dynamic communication prediction
networkmodel

Amidst limited information about drone communication
protocols, the accurate detection and acquisition of com-
munication between drones pose significant challenges
[55]. However, research has shown that the communication
between drones is influenced by their distance and interaction
range, and they cannot communicate beyond this range [56].
Additionally, considering the high mobility of drones, their
distances and communications undergo frequent changes
[10]. To address these challenges, this paper proposes a
dynamic communication prediction network (DCPN) model
based on distance. DCPNcan capture the evolving communi-
cation within the drone swarm and is designed to address the
communication challenges in drone swarms, particularly in
cases where the communication is based on technologies like
Flying Ad-Hoc Network (FANET) [57] instead of relying on
ground control stations.

DCPN: The communication between drones is consid-
ered to be bi-directional, and it dynamically changes with
the movement of drones. Therefore, DCPN is represented as
an undirected and node load graph G=< V , E, M >. V is a
set of nodes, where each node represents a drone, and N=|V |
represents the size of networks. E is a set of edges, which rep-
resents the communication between nodes. The construction
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Fig. 1 The framework of DGSIC. a Drone detection techniques.
DGSIC employs various drone detection methods to collect data from
malicious drone swarms. b Drone swarm data. The 3D position data
records the 3D positions of drones over n consecutive steps. c DCPN
construction. DGSIC constructs the DCPN, effectively capturing the
dynamic communication of malicious drone swarms. d Critical node

identification. Firstly, DGSIC identifies the GCC of DCPN. Then,
DGSIC prioritizes the most critical node within GCC based on the pro-
posed scale-intensity centrality (SIC). Finally, DGSIC attacks the node
and updates DCPN. This dynamic process continues until the DCPN is
completely disintegrated

Fig. 2 An example of the dynamic topology of DCPN. a–c show the topology at times t0, t1, and tn , respectively. The congregation area of drone
swarms is set as 1 × 1 × 1, the drone number N=7, and the interaction range D=0.6

of edges is based on the distance between drones and their
interaction range. If the Euclidean distance di, j between vi
and v j is less than the interaction range D, whose value is
variable and limited by the hardware, there is an edge ei, j ,
otherwise, there is no edge. Fig. 2 shows an example of the
topology of DCPN. As shown in Fig. 2(a), d2,3 is lower than
D at time t0, that is d2,3<0.6, so there exists e2,3. d2,5 is
higher than D, that is d2,5>0.6, so there is no e2,5. To facili-
tate the prediction of drone positions and communication, the

node feature set M is introduced. Each vi is associated with
a n × 3 dimensional matrix mi , which records the 3D posi-
tion of vi at n consecutive time steps. This information helps
in predicting the future positions and communication pat-
terns of drones. The network topology of DCPN is updated
based on the real-time positions of drones. As the positions
of drones change, the distances between them are updated,
and the edges in DCPN are dynamically added or removed.
As shown in Fig. 2(a), since d2,5 becomes lower than D at
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time t1, an edge e2,5 is added to represent the communication
between them.

Overall, DCPN provides a representation of the dynamic
communicationwithin a drone swarm by considering the dis-
tances between drones and their interaction range. It enables
the prediction and analysis of communication dynamics,
which is essential for identifying critical drones and optimiz-
ing the efficiency of directed energy attacks againstmalicious
drone swarms.

Formulation of the DGSIC

The new node importance metric named SIC is introduced
in “The proposed node importance metric”. The dynamic
and prioritization strategies are introduced in “The dynamic
strategy” and “The prioritization strategy”, respectively.

The proposed node importance metric

In a multi-task-oriented and distributed drone swarm, the
network community structure provides a valuable frame-
work for describing its distributed features.By identifying the
community structure ofDCPN, the collaborative relationship
among nodes can be captured, reflecting the distributed fea-
tures within malicious drone swarms. Nodes within the same
community engage in frequent communication to accomplish
shared tasks, while nodes bridging different communities
also communicate to exchange the task-related information
and expand the communication scale. Moreover, previous
studies have demonstrated that critical nodes identified based
on the community structure can significantly enhance infor-
mation dissemination within the network. Taking inspiration
from the distributed features, communication intensity, and
communication scale of drones, this paper first proposes a
new communication-based node importance metric called
scale-intensity centrality (SIC), whose time complexity is
O(N 3). This metric incorporates the community structure,
local information, and global information of DCPN to assess
the importance of nodes.

As shown in Fig. 1(d), the first step is to identify the
community structure of DCPN. More specifically, this paper
employs the Louvain algorithm [58], an effective community
detection method, to obtain a set of communities that capture
the distributed features of drone swarms.

C = {c1, c2, ..., cq} (1)

where cq represents the qth community. Each community
consists a group of nodes that exhibit strong internal con-
nections and weaker connections with nodes outside the
community. This community structure information serves as
a foundation for our subsequent analysis and identification
of critical nodes in DCPN.

The communication scale represents the capability of a
node to communicate with other nodes from different com-
munities, signifying its potential to expand communication
beyond its own community. To quantify the communication
scale of a node, this paper considers the connections with its
neighbor nodes in other communities The communication
scale of vi is defined as:

CS(i) =
∑

v j∈�(i)

δ(i, j) (2)

where �(i) represents the set of neighbor nodes of vi , and
δ(i, j) is an indicator function that returns 1 if v j and vi
belong to different communities, and 0 otherwise. A higher
value of CS(i) that vi has a larger influence on the overall
communication and connectivity of DCPN by establish-
ing connections with nodes from different communities.
By incorporating the communication scale, this paper cap-
tures the distributed features and communication abilities of
drones in DCPN.

The communication intensity refers to the capability of a
node to communicate with other nodes within the same com-
munity. The ratio of the shortest path reflects the efficiency
of node communication and information exchangewithin the
community. Therefore, this paper quantifies the communica-
tion intensity of a node by the proportion of shortest paths
that pass through the node within the community. The com-
munication intensity of vi is defined as:

C I (i) =
∑

s �=t
vs ,vt∈C(i)

nist
nst

(3)

where C(i) represents the community to which node vi
belongs, nist represents the number of shortest paths pass-
ing through vi between vs and vt . nst represents the total
number of shortest paths between vs and vt . A higher value
ofC I (i) indicates a stronger andmore direct communication
capability within the community. By incorporating the com-
munication intensity, this paper captures the communication
efficiency and effectiveness of drones within their respective
communities.

The communication capability of a drone is mainly deter-
mined by its communication scale, and the communication
intensity can promote information exchange between drones,
thereby improving communication capability. Based on the
above analysis, this paper takes into account the community
structure, communication scale, and communication inten-
sity of the network, and then proposes a new critical drone
metric called SIC based on the communication, which is
defined as Eq. (4).

SIC(i) = CS(i)1+C I (i) (4)
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The dynamic strategy

To achieve the precise identification of critical drones, the
dynamic strategy is incorporated into SIC, which addresses
the adaptive communicationofmalicious drones.Thedynamic
scale-intensity centrality (DSIC) allows for the adaptation of
the network topology in response to attacks, simulating the
changing communication and connectivity patterns within
the drone swarm.

Algorithm 1 DSIC
Input: Drone swarm dynamic communication prediction network

DCPN, Parameter H ;
Output: The directed energy attack sequence A;
1: Initial the A;
2: while N>H do
3: Detect the community structure C = {c1, c2, ..., cq } of DCPN

based on Louvain algorithm;
4: Initial the CS, C I , and SIC ;
5: for i=1 to N do
6: Calculate the CS(i) based on Eq. (2);
7: Calculate the C I (i) based on Eq. (3);
8: Calculate the SIC(i) based on Eq. (4);
9: end for
10: Rank the V based on the decreasing order of SIC ;
11: Add the top-1 node into A;
12: Update the DCPN, removing the top-1 node and its associated

edges;
13: end while
14: return A.

Theprocess ofDSIC to identify the critical nodes inDCPN
is shown in Algorithm 1, whose time complexity is O(N 4).
When vi is identified as the top-1 node, both vi and associated
edges Ei={ei, j |i �= j ∈ [1, N ]} are removed from DCPN,
representing the attack impact on the network topology. This
process simulates the updated DCPN after each attack and
is stopped when N ≤ H . In this paper, the value of H is
set as 0, thereby considering the complete disintegration of
networks. In practical scenarios, H can be adjusted to other
values based on the network disintegration extent. On this
basis, DSIC ensures the identified node is the most critical in
updated DCPN. This dynamic and iterative strategy captures
the evolving features of drone swarms, thereby optimizing
the attack sequence A.

Overall, DSIC empowers the identification of critical
drones within dynamic drone swarms, accounting for the
evolving network topology and adaptability of drone swarms.

The prioritization strategy

To further improve the efficiency and reduce the time over-
head of DSIC, the prioritization strategy is incorporated. By
prioritizing the identification and destruction of critical nodes
within GCC, dynamic GCC-based scale-intensity centrality

(DGSIC) focuses on the most influential and interconnected
part of networks, thereby improving the efficiency of critical
node identification.

As shown in Fig. 1(d), DGSIC solely computes the SIC
values for the node setwithinGCCVG={vi |vi ∈GCC},which
typically plays a crucial role in maintaining network connec-
tivity and facilitating information exchange. NG=|VG | is the
size of GCC. Firstly, DGSIC sorts the VG in decreasing order
based on their SIC values and forms the sorted list L . Then,
DGSIC selects the top-1 node from L and adds it to A. After
the top-1 node is added to A, DCPN is updated. This iterative
process continues until NG ≤ H .

Algorithm 2 DGSIC
Input: Drone swarm dynamic communication prediction network

DCPN, Parameter H ;
Output: The directed energy attack sequence A;
1: Initial the A
2: Identify the GCC of DCPN;
3: while NG>H do
4: Detect the community structureC ={c1, c2, ..., cq }ofGCCbased

on Louvain algorithm;
5: Initial the CS, C I , and SIC ;
6: for i=1 to NG do
7: Calculate the CS(i) based on Eq. (2);
8: Calculate the C I (i) based on Eq. (3);
9: Calculate the SIC(i) based on Eq. (4);
10: end for
11: Rank the VG based on the decreasing order of SIC ;
12: Add the top-1 node into A;
13: Update the DCPN, removing the top-1 node and its associated

edges;
14: Identify the GCC of updated DCPN;
15: end while
16: return A.

The process of DGSIC to identify the critical nodes in
DCPN is shown in Algorithm 2, whose time complexity is
O(N ·N 3

G). By further incorporating the prioritization strate-
gies into DSIC, the time overhead is significantly reduced.
Compared to DSIC, DGSIC only necessitates the compu-
tation of node importance within GCC rather than across
all nodes in the network, leading to a decrease in time over-
head.Moreover, as the network gets fragmented intomultiple
smaller connected components due to attacks, the advantages
of DGSIC become even more pronounced. Additionally,
attacking the critical nodes according to DGSIC can signif-
icantly disrupt the connectivity and communication of the
network. Fig. 3 provides a comparison of the top-3 and top-4
critical nodes identified using SIC and DGSIC. As shown in
Fig. 3(a), when attacking the top-3 critical nodes identified
by SIC and DGSIC, the damage to the network structure is
the same. However, when the network becomes disconnected
after attacks, the critical nodes identified by DGSIC demon-
strate superior performance in terms of network disruption.
In Fig. 3(b), when attacking the top-4 critical nodes identi-
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Fig. 3 The damage comparison of two methods. a and b show the
damage to DCPN when attacking the top-3 and top-4 critical nodes
identified by SIC and DGSIC. The upper two figures are the results
based on SIC, and the lower two figures are based on DGSIC. The red
circles represent the attacked nodes, and the dotted lines represent the
affected communication

fied by DGSIC, DPCN is completely destroyed. In contrast,
it would require attacking more nodes identified by SIC to
achieve the same level of damage. These results demonstrate
the effectiveness of the prioritization strategy in DGSIC, as
it allows for the identification and attack of critical nodes
that have a greater impact on network communication and
connectivity, leading to more significant network disruption
with fewer attacks.

Overall, the dynamic and prioritization strategies of
DGSIC provide an efficient and effective approach for iden-
tifying critical nodes in dynamic drone swarms.

Experiments

To verify the performance of DGSIC, it has been compared
with several existing methods that are based on the different
types of information and centrality metrics. The comparison
includes the classical local information-based methods such
as DC [32] and LC [34], global information-based methods
such as BC [42], couplingmetric-basedmethods such asGIN
[45] and ECRM [46], classical network dismantlingmethods
such as KS [59] and GND [60], as well as community-based
methods such as NEES [52].

The datasets are shown in “Datasets”, and evaluation
metrics are shown in “Evaluation metrics”. The results of
experiments along with analysis are discussed in “Results
and analysis”. The ablation experiments are introduced in
“Ablation experiments”. Finally, the time complexity of nine
critical node identification methods is discussed in “Time
over head analysis”.

Table 1 The details of simulated networks

Network N E D < k > < d > c

SimNet10 10 18 0.6 3.60 1.96 0.69

SimNet20 20 48 0.5 4.80 2.58 0.66

SimNet40 40 83 0.4 4.15 3.76 0.51

SimNet80 80 196 0.3 4.90 4.22 0.47

Datasets

Toaddress the lack of standard drone datasets, the researchers
utilized AirSim, a popular drone simulator, to simulate the
DCPN. Four simulated networks were created, each with a
different size. The map size for the simulations was set to
1×1×1 (km×km×km), and the specific parameter settings
are shown in Table 1. In addition, this paper not only used
simulated networks but also incorporated eight real-world
networks to further evaluate the performance of DGSIC.
These real-world networks encompass various domains and
types of social and infrastructure networks. Here are the spe-
cific networks used:

Raccoon-proximity: An animal social network repre-
senting the proximity relationships among a group of rac-
coons.

Aves-weaver-social:Another animal social networkdepict-
ing the social interactions among a group of weaver birds.

Karate: A human social network that captures the inter-
actions among members of a university karate club.

Rt-retweet: A human social network derived from Twit-
ter, focusing on retweet interactions among users.

Road-chesapeake: A road network representing the road
connections in Chesapeake, Virginia, USA.

Bcspwr: An electrical grid network modeling the power
transmission system of British Columbia, Canada.

Ca-sandi-auths:A collaboration network among authors
in the field of computer science, specifically in the area of
San Diego, California, USA.

Adjnoun: A keyword network extracted from the British
NationalCorpus,where nodes represent adjectives and nouns
that co-occur frequently.

These real-world networks, which span across various
domains, provide representative examples that facilitate a
comprehensive evaluation of DGSIC. Partial details of these
networks are presented in Table 2, and additional information
can be obtained from the network repository. 1

1 https://networkrepository.com/networks.php.
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Table 2 The details of real-world networks

Network N E 〈k〉 〈d〉 c

Raccoon-proximity 19 57 6.00 2.03 0.68

Karate 34 78 4.59 2.41 0.57

Road-Chesapeake 39 170 8.71 1.84 0.45

Bcspwr 49 59 2.41 4.59 0.05

Aves-weaver-social 64 177 5.53 3.04 0.60

Ca-sandi-auths 86 123 2.86 4.84 0.40

Rt-retweet 96 117 2.44 4.31 0.06

Adjnoun 112 425 7.59 2.54 0.17

Evaluationmetrics

Critical nodes are highly influential nodes formaintaining the
network structure and function. Evaluating diverse critical
node identification methods necessitates a thorough analysis
of both structural and communication metrics. Therefore,
robustness and cascading failure metrics are introduced in
“Roubustness” and “Cascading failure”, respectively.

Robustness

Robustness refers to the ability of the network to resist delib-
erate damage. The robustness of the network decreases as
the degree of the damage, and the importance of nodes is the
opposite. The relative size of the giant connected component
(S) and network efficiency (E) are two classical robustness
metrics used to quantify the impact of critical node failures
on network connectivity and efficiency, which are defined as
follows:

S = N
′

N
(5)

where N
′
represents the size of GCC after direct energy

attacks.

E = 1

N (N − 1)

N∑

i �= j

1

di j
(6)

where N is the size of the network, di j is the length of the
shortest path from vi to v j . If there is no path, 1/di j=0. By
comparing these metrics across different critical node iden-
tification methods, this paper can assess the effectiveness of
DGSIC in identifying critical nodes that significantly affect
the robustness of the network (Fig. 4).

Cascading failure

The state of each node is divided as either normal or failed.
The normal node will fail if it is directly attacked, or if most

(a) step t (b) step t+1

(c) step t+2 (d) step t+3
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5v 6v
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Fig. 4 An example of the cascading failure. The black circles and red
circles represent normal nodes and failed nodes, respectively. The adjec-
tive threshold θi of vi is consistently set as 0.3. a The initially failed
node is v4. b The effect of v4 on v5, v6, and v7 is bigger than θ5, θ6, and
θ7, respectively. Therefore, v5, v6 and v7 fail at step t + 1. c The effect
of v5 on v1 and v3 is respectively bigger than θ1 and θ3, thus they fail
at step t + 2. d Similarly, v1 and v3 make v2 failed at step t + 3. The
propagation terminates since all nodes fail at step t + 3

of its neighbor nodes fail. More specifically, when v j in �(i)
is attacked, the communication of vi will also be impacted. If
the communication loss of vi exceeds its adjustable threshold
θi , tasks cannot be carried out, and vi is considered failed.
Due to the tight connection between nodes, the failure of a
node will not only affect the communication of its neighbor
nodes but also has a cascading effect on information trans-
mission of the entire network.

To simulate these dynamic impacts, the Linear Threshold
model (LT) [61] is used, which is a classic cascading fail-
ure model. In this model, each normal node vi is assigned
a random θi . The effect of a failed node v j ∈ �(i) on vi is
determined by the parameter c ji=1/ki , where ki represents
the degree of node vi . If the sum of effects from all failed
nodes in �(i) exceeds θi at step t , vi will fail at step t + 1.
The cascading failures continue as long as there are no newly
failed nodes. To quantify the cascading communication loss
in the network, the cascading failure scale (F) is defined as
a metric, which is calculated as follows:

F = N f

N
(7)

where N f is the number of failed nodes in the network, and
the results are the average of 1000 experiments due to the
randomness of θi . By analyzing F , this paper can evaluate
the extent of cascading communication loss and assess the
effectiveness of different critical node identification methods
in terms of cascading failure.
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(a) SimNet10 (b) SimNet20 (c) SimNet40 (d) SimNet80

(e) SimNet10 (f) SimNet20 (g) SimNet40 (h) SimNet80

Fig. 5 The robustness experiment results in four simulated networks. a–d and e–h show the network efficiency E and the relative size of the giant
connected component S with the node attack ratio p in four simulated networks, respectively

Results and analysis

Extensive experiments validate the effectiveness of the pro-
posedmethod.The results of robustness and cascading failure
experiments are analyzed in “Robustness experiments” and
“Cascading failure experiments”, respectively.

Robustness experiments

In the experiments conducted in this paper, the deliberate
attacks are performed on DCPN. Specifically, the process
begins with the detection of malicious drone swarms, fol-
lowed by the construction of DCPN. Subsequently, various
methods for critical node identification are employed to iden-
tify critical drones, resulting in different A based on the
node importance. Finally, the directed energy attacks are
performed against the identified critical drones to assess the
impact of their failures on the structure and functionality of
drone swarms. In the event of an attack on a drone, the cor-
responding node itself and its associated edges are removed
from DCPN. This removal simulates the damage incurred
by the attack, disrupting the communication and connectiv-
ity among nodes within DCPN. By analyzing the changes in
network structure and function after deliberate attacks, this
paper aims to evaluate the impact of critical node failures on
DCPN and assess the efficacy of various methods for identi-
fying critical nodes.

Fig. 5 shows the robustness results of DGSIC and other
eight critical node identification methods in four simulated
networks. The results demonstrate that DGSIC exhibits a

significant advantage in terms of network efficiency and con-
nectivity, particularly in the early stages. Regardless of the
node ratio p, DGSIC consistently achieves the best results
and causes substantial damage to network efficiency and
connectivity. For instance, in Fig. 5(b)–(d), DGSIC out-
performs the suboptimal method by 86.02%, 20.04%, and
45.91% in terms of damaging the E when p=10%. Similarly,
in Fig. 5(f)–(k), DGSIC surpasses the suboptimal method
by 450%, 33.33%, and 142.86% in terms of damaging S
when p=10%. Although DGSIC does not exhibit a signifi-
cant advantage in SimNet10, it consistently achieves the best
results across different values of p. Notably, KS performs
poorly in these experiments, indicating that coarse-grained
methods are not suitable for small and sparse networks.
Among the compared methods, LC expands on DC by con-
sidering the third-order neighbor nodes. ECRM and GIN
combine DC with other global indicators. However, the per-
formance of LC and ECRM is similar to or even worse than
DC. This suggests that the extension metric of LC and the
similarity metric of ECRM do not have a positive impact and
may even have an opposite effect in small networks. On the
other hand, GIN performs better than DC in the early stages,
indicating that the shortest path strategy employed by GIN
contributes to its performance improvement. GND focuses
on the partial dismantling of GCC. NEES is a machine
learning-based critical node identification method that takes
into account both neighbor nodes andmulti-scale community
structures. As shown in Fig. 5, the performance of NEES and
GNDhas been significantly improvedwhen p>10%, and the
performance is further improvedwith the increase of p. Addi-
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(a) Raccoon-proximity (b) Karate (c) Road-chesapeake (d) Bcspwr

(e) Raccoon-proximity (f) Karate (g) Road-chesapeake (h) Bcspwr

Fig. 6 The robustness experiment results in four smaller real-world networks. a–d and e–h show the network efficiency E and the relative size of
the giant connected component S with the node attack ratio p in four smaller real-world networks, respectively

(b) Ca-sandi-auths (c) Rt-retweet (d) Adjnoun

(f) Ca-sandi-auths (g) Rt-retweet (h) Adjnoun

(a) Aves-weaver-social

(e) Aves-weaver-social

Fig. 7 The robustness experiment results in four bigger real-world networks. a–d and e–h show the network efficiency E and the relative size of
the giant connected component S with the node attack ratio p in four bigger real-world networks, respectively

tionally, BC also shows superior performance, which is only
inferior to DGSIC.

However, none of the abovemethods can achieve the same
performance as DGSIC. This is attributed to the effective
integration of communication intensity and scale in DGSIC,
taking into account the distributed nature of drones. Further-
more, DGSIC incorporates the dynamic and prioritization
strategies to improve the accuracy of critical node identifica-
tion.

Figures 6 and 7 show the robustness results in eight
real-world networks, and the results are almost consis-
tent with those from the simulated networks. It can be
observed that DGSIC consistently achieves optimal results
across the majority of the networks, especially in Bcspwr.
Additionally, DGSIC also demonstrates good performance
in animal social networks such as Raccoon-proximity and
Aves-weaver-social. These networks exhibit clear commu-
nity structures and sparse connections between communities,

123



Complex & Intelligent Systems (2024) 10:3197–3211 3207

(a) SimNet40 (b) SimNet80

(c) Karate (d)  Aves-weaver-social

Fig. 8 The cascading failure experiment results. a–b and c–d show the
cascading failure scale F with the node attack ratio p in simulated and
real-world networks, respectively

which aligns well with the strengths of DGSIC. While the
advantage of DGSIC may not be particularly significant in
other networks, it still outperforms the compared methods,
showcasing its effectiveness in critical node identification.

Cascading failure experiments

Figure 8 shows the cascading failure scale F corresponding
to different node attack ratios p. From the results, we can
observe that as the p increases, the F shows an upward trend,
indicating a higher level of damage to the network. Among
the compared methods, DGSIC exhibits a more significant
increasing trend in F , indicating its superior performance in
causing cascading failures. Interestingly, GND achieves the
worst results in terms of cascading failure, suggesting that the
critical nodes identified byGNDdo not possess an advantage
in terms of cascading failure. This finding indirectly suggests
that the prioritization strategy of GND does not play a crucial
role in causing cascading failures.

The analysis reveals that when p<5%, the failure of
critical nodes has a relatively small impact on the net-
work. This suggests that the network possesses a certain
level of resilience against external damage. In addition, DC
exhibits better performance in the early stages, especially
in SimNet40. This suggests that in small networks with
higher clustering coefficients, attacking nodes with the high-
est degree will cause more significant damage to network
communication.

When p>5%, BC also shows excellent performance in
simulated networks. Moreover, ECRM demonstrates sig-

nificantly superior performance in real-world networks,
almost approaching DGSIC. This suggests that while ECRM
may not effectively identify nodes with high robustness, it
can identify nodes crucial for cascading failure. However,
DGSIC always achieves the maximum F across different
values of p, and the advantage becomes more pronounced
as p increases. This can be attributed to the dynamic strate-
gies incorporated in DGSIC, which ensure that the identified
critical node is the most crucial node in the current net-
work topology. By considering the dynamic feature of the
network and incorporating prioritization strategies, DGSIC
effectively identifies nodes that have the highest impact on
the network communication, leading to the highest cascad-
ing failure scale. For example, as shown in Fig. 8(a) and at
p=15%, the F of DGSIC increased by 14.43% and 18.79%
compared to DC and BC, respectively. Similarly in Fig. 8(d)
and at p=15%, the F of DGSIC increased by 5.58% and
3.62% compared to DC and ECRM, respectively. Moreover,
the F of NEES is significantly improved as p increases.
This suggests that the community structure plays a crucial
role in identifying critical nodes, particularly when the net-
work becomes sparse. For example, as shown in Fig. 8(b),
when p=10%, the F decreased by 14.59% compared to
DGSIC. When p=20%, the F decreased by 6.52% com-
pared to DGSIC. As shown in Fig. 8(c), when p=10%, the F
decreased by 27.12% compared to DGSIC. When p=20%,
the F decreased by 1.56%compared toDGSIC. These results
highlight the superiority of DGSIC in identifying critical
nodes and its ability tomaintain high cascading failure scales,
even as the node attack ratio p increases. The incorporation
of dynamic strategies in DGSIC contributes to its robust per-
formance in the face of deliberate attacks.

From the above analysis, it can be concluded that DCPN
has a certain ability to resist external damage. In addition,
attacking the critical nodes identified by DGSIC cannot only
quickly disrupt the connectivity and efficiency, but also cause
the maximum dynamic cascading impact on DCPN.

Ablation experiments

To further validate the effectiveness of the dynamic and prior-
itization strategies, this paper conducts ablation experiments
comparing SIC, DSIC, and DGSIC in terms of robustness
and cascading failure, as introduced in “The comparison of
three methods in robustness” and “The comparison of three
methods incascading failure”, respectively.

The comparison of three methods in robustness

The comparison of their robustness performance is depicted
in Fig. 9 for simulated networks and in Fig. 10 for real-world
social networks. The experimental results demonstrate that
there is virtually no distinction in the robustness performance
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(a) SimNet40 (b) SimNet80

(c) SimNet40 (d) SimNet80

Fig. 9 The robustness experiment results in two simulated networks.
a–b and c–d show the network efficiency E and the relative size of
the giant connected component S with the node attack ratio p in two
simulated networks, respectively

among the threemethodswhen p<5%. This can be attributed
to the network’s capacity to maintain its connectivity when
only a marginal fraction of nodes are attacked. In such cir-
cumstances, the most critical nodes identified by the three
methods are almost the same. Furthermore, SIC consistently
exhibits the poorest performance when p>5%. The integra-
tion of the dynamic strategy has substantially enhanced the
performance of DSIC. For instance, as shown in Fig. 9(b)
and (d), when p=15%, DSIC outperforms SIC by 11.36%
and 54.86% in terms of damaging the E and S, respectively.
This trend is consistent across real-world networks, as evi-
dent in Fig. 10(b) and (d), where at the same p=15%, DSIC
continues to outperform SIC by 16.97% and 31.61% in terms
of damaging the E and S, respectively. This consistent trend
stems from the dynamic strategy’s integration in DSIC. Fol-
lowing each critical node identification, DSIC updates the
network topology, ensuring the perpetuation of the identified
node’s paramount significance within the network structure
at that precise moment.

By further incorporating theprioritization strategy,DGSIC
gives priority to critical nodes within GCC when the net-
work becomes disconnected. Furthermore, as p increases,
the advantages of DGSIC become even more pronounced.
As shown in Figs. 9(a) and (c), 10(a) and (c), when p=15%,
DGSIC and DSIC demonstrate nearly the same perfor-
mance. However, when p=30%, DGSIC outperforms DSIC
by 5.64% and 6.06% in terms of damaging the E and S
as shown in Fig. 9(a) and (c), respectively. Similarly in
Fig. 10(a) and (c), DGSIC outperforms DSIC by 4.76% and
10.71% in terms of damaging the E and S, respectively. This

(b) Aves-weaver-social(a) Karate

(d) Aves-weaver-social(c) Karate

Fig. 10 The robustness experiment results in two real-world networks.
a–b and c–d show the network efficiency E and the relative size of
the giant connected component S with the node attack ratio p in two
real-world networks, respectively

(a) SimNet40 (b) SimNet80

(c) Karate (d) Aves-weaver-social

Fig. 11 The cascading failure results in four networks. a, b and c,
d show the cascading failure scale F with the node attack ratio p in
simulated and real-world networks, respectively

is because as p increases, the network becomes more discon-
nected, resulting in more numerous connected components.
Among them, GCC assumes a greater portion of the commu-
nication load. Consequently, prioritizing the disruption of
GCC would lead to more significant communication losses
within the network.
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Table 3 The time complexity of methods

Methods DC LC BC KS ECRM GIN GND NEES SIC DSIC DGSIC

Complexity O(N ) O(N · 〈k〉2) O(N 3) O(N ) O(N ) O(N 3) O(N · logN ) O(N · N 2
G) O(N 3) O(N 4) O(N · N 3

G)

Among them, N and 〈k〉 are the size and the average degree of a network. NG is the size of GCC

The comparison of three methods in cascading failure

Figure 11 illustrates the results of cascading failure experi-
ments in two simulated networks. These results almost align
with the robustness experiments, affirming that DGSIC not
only has superior performance in robustness but also in cas-
cade failures. Particularly noteworthy is the sharp increase
in the value of F with the rise of p in the Karate network,
where the distinctions between the three algorithms are less
pronounced. This phenomenon is attributed to the small size
of the Karate network, where the failure of even a few nodes
will gradually impact thewhole network. As the network size
expands, DGSIC’s advantage becomes increasingly evident.

Hence, when countering malicious drone swarms, the
sequence of critical nodes provided by DGSIC can be uti-
lized to target these drones using directed energy attacks.
This directed attack strategy enables the systematic disrup-
tion of critical droneswith great communication significance,
thereby achieving an efficient neutralization of malicious
drone swarms.

Time overhead analysis

Table 3 shows the time complexity of different critical node
identification methods. Compared to SIC, DSIC increases
the time complexity from N 3 to N 4. It’s evident that the
dynamic strategy, while significantly enhancing DGSIC’s
performance, also introduces the substantial time overhead.
DGSIC addresses this challenge by prioritizing the nodes in
GCC rather than all nodes in DCPN. Additionally, as the net-
work is disintegrated into smaller connected components, the
advantages of DGSIC become more pronounced. However,
despite the introduction of prioritization strategies, reducing
the complexity to N · N 3

G , it remains higher than the com-
parison methods.

Currently, the size of malicious drone swarms is manage-
able, and the computational overhead introduced by DGSIC
remains reasonable. Nonetheless, as the size of drone swarms
grows to thousands or even more, the computational burden
of DGSIC escalates considerably. We hope future research
can address this challenge and provide efficient solutions for
handling larger-scale drone swarms.

Conclusion and future work

To enhance the efficiency of directed energy attacks on
malicious drone swarms, this paper proposes a new criti-
cal drone identification method named dynamic GCC-based
scale-intensity centrality (DGSIC). The method is based on
the communication analysis and aims to identify critical
drones for targeted attacks, thereby maximizing the dis-
ruption caused to the malicious swarm. More specifically,
an extended dynamic communication prediction network
(DCPN) model is first constructed to predict the dynamic
communication of drones. On this basis, DGSIC is fur-
ther proposed to identify critical drones for targeted attacks,
enhancing the efficiency of directed energy attacks and max-
imizing the disruption of malicious drone swarms. DGSIC
optimizes the drone attack sequence for directed energy
attacks, ensuring that each attack inflicts more damage to
the robustness and triggers larger-scale cascading failures of
malicious drone swarms. This improvement contributes to
the effectiveness of directed energy attacks, facilitating the
rapid dissolution of malicious drone swarms while minimiz-
ing cost. However, while DGSIC enhances the performance
of critical drone identification, it also introduces a signifi-
cant time overhead. This temporal cost becomes particularly
pronounced when dealing with large-scale swarms compris-
ing thousands of drones. We hope that these issues will be
addressed in future research.

Moreover, future research can integrate trajectory pre-
diction methods for the automatic predictions of DCPN.
Advancements in drone detection technology enable the
direct detection of communication protocols embedded in
malicious drone swarms, thereby enhancing the accuracy
of DCPN construction and further improving the accuracy
of DGSIC. These advancements would contribute to more
effective approaches for counteringmalicious drone swarms.

Acknowledgements This work was supported by the National Science
Fund for Distinguished Young Scholars (No. 62025602), the National
Natural Science Foundation of China (Nos. 61976181, 62261136549,
U22B2036, 11931015), Technology-Scientific andTechnological Inno-
vation Team of Shaanxi Province (No. 2020TD-013), Fok Ying-Tong
Education Foundation, China (No. 171105), and Tencent Foundation
and XPLORER PRIZE.

123



3210 Complex & Intelligent Systems (2024) 10:3197–3211

Data availability The real-world network datasets supporting this study
are openly available at https://networkrepository.com/networks.php.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Wu Y, Wu S, Hu X (2021) Multi-constrained cooperative path
planning of multiple drones for persistent surveillance in urban
environments. Comp Intell Syst 7:1633–1647

2. Yaacoub JP, Noura H, Salman O, Chehab A (2020) Security analy-
sis of drones systems: Attacks, limitations, and recommendations.
Internet Things 11:100218

3. Chamola V, Kotesh P, Agarwal A, Naren Gupta N, Guizani M
(2021) A comprehensive review of unmanned aerial vehicle attacks
and neutralization techniques. Ad hoc Netw 111:102324

4. Lyu C, Zhan R (2022) Global analysis of active defense technolo-
gies for unmanned aerial vehicle. IEEE Aerosp Electron Syst Mag
37(1):6–31

5. Lyu CY, Zhan RJ (2020) Research on the cutting-edge application
of high energy laser c-uas technology. International Conference on
Optoelectronic and Microelectronic Technology and Application
11617:291–304

6. Tianfeng F, Xiaojing M, Chi Z (2023) Development status of anti
uav swarm and analysis of new defense system. In: Proceedings of
the Journal of Physics: Conference Series, vol 2478, p 092011

7. Min SH, Jung H, Kwon O, Sattorov M, Kim S, Park SH, Hong D,
Kim S, Park C, Hong BH, Cho I, Ma S, Kim M, Yoo YJ, Park SY,
Park GS (2021) Analysis of electromagnetic pulse effects under
high-power microwave sources. IEEE Access 9:136775–136791

8. Billaud A, Le Guennic T, Allioux D, Jian P, Pinel O, Labroille
G (2020) Optimal coherent beam combining based on multi-
plane light conversion for laser directed energy weapons and
countermeasure. In: Proceedings of the Technologies for Optical
Countermeasures XVII; and High-Power Lasers: Technology and
Systems, Platforms, Effects IV, vol 11539, p 115390F

9. KracmanM (2023) Optimisation of directed energy systems’ posi-
tions subject to uncertainty in operations. Progress Electromagn
Res Lett 110:47–53

10. Wang J, Jiang C, Han Z, Ren Y, Maunder RG, Hanzo L (2017)
Taking drones to the next level: Cooperative distributed unmanned-
aerial-vehicular networks for small and mini drones. IEEE Veh
Technol Magaz 12(3):73–82

11. Wang F, Huang J, Low KH, Nie Z, Hu T (2023) AGDS: adaptive
goal-directed strategy for swarm drones flying through unknown
environments. Complex Intell Syst 9(2):2065–2080

12. Jin X, Wang Z, Zhao J, Yu D (2022) Swarm control for large-scale
omnidirectionalmobile robotswithin incremental behavior. Inform
Sci 614:35–50

13. Fan DD, Theodorou EA, Reeder J (2018) Model-based stochastic
search for large scale optimization of multi-agent uav swarms. In:
Proceedings of the 2018 IEEE Symposium Series on Computa-
tional Intelligence, pp 2216–2222

14. Li J, Rombaut E, Vanhaverbeke L (2021) A systematic review of
agent-basedmodels for autonomous vehicles in urbanmobility and
logistics: Possibilities for integrated simulation models. Comput
Environ Urban Syst 89:101686

15. Wang J, Wang X, Wang L (2017) Modeling of BN lifetime pre-
diction of a system based on integrated multi-level information.
Sensors 17(9):2123

16. Ren Z, Zhang D, Tang S, Xiong W, Yang Sh (2022) Cooperative
maneuver decision making for multi-UAV air combat based on
incomplete information dynamic game. Defence Technol. https://
doi.org/10.1016/j.dt.2022.10.008

17. Elsawah S, Pierce SA, Hamilton SH, Van Delden H, Haase D,
Elmahdi A, Jakeman AJ (2017) An overview of the system dynam-
ics process for integrated modelling of socio-ecological systems:
Lessons on goodmodelling practice fromfive case studies. Environ
Modell Softw 93:127–145

18. Yehui S, Guoru D, Jiachen S, Jinghua L, Yitao X (2022) Topol-
ogy tracking of dynamic UAV wireless networks. Chin J Aeronaut
35(11):322–335

19. XiaohongW, Zhang Y, Lizhi W, Dawei L, Guoqi Z (2020) Robust-
ness evaluation method for unmanned aerial vehicle swarms based
on complex network theory. Chin J Aeronaut 33(1):352–364

20. Yu D, Chen CLP, Ren CE, Sui S (2019) Swarm control for self-
organized system with fixed and switching topology. IEEE Trans
Cybern 50(10):4481–4494

21. Chen Y, Zhang H, Fu X, Xu J (2022) Robustness analysis and
modeling of UAV cluster system based on complex network. In:
Proceedings of the International Conference on Computer Science,
Electronic Information Engineering and Intelligent Control Tech-
nology, pp 743–748

22. Bisio I, Garibotto C, Haleem H, Lavagetto F, Sciarrone A (2021)
On the localization of wireless targets: A drone surveillance per-
spective. IEEE Netw 35(5):249–255

23. Li Y, Fu M, Sun H, Deng Z, Zhang Y (2022) Radar-based UAV
swarm surveillance based on a two-stage wave path difference esti-
mation method. IEEE Sensors J 22(5):4268–4280

24. Yan J, Xie H, Li J (2021) Modeling and optimization of deploying
anti-UAV swarm detection systems based on the mixed genetic and
monte carlo algorithm. In: Proceedings of the IEEE International
Conference on Unmanned Systems, pp 773–779

25. Zhao J, Zhang J, Li D, Wang D (2022) Vision-based anti-
UAV detection and tracking. IEEE Trans Intell Transp Syst
23(12):25323–25334

26. Cheng F, Liang Z, Peng G, Liu S, Li S, Ji M (2022) An anti-UAV
long-term tracking method with hybrid attention mechanism and
hierarchical discriminator. Sensors 22(10):3701

27. Valianti P, Kolios P, Ellinas G (2022) Energy-aware tracking and
jamming rogue uavs using a swarm of pursuer UAV agents. IEEE
Syst J 17(1):1524–1535

28. He D, Yang G, Li H, Chan S, Cheng Y, Guizani N (2020) An
effective countermeasure against UAV swarm attack. IEEE Netw
35(1):380–385

29. Lee CH, Thiessen C, Van Bossuyt DL, Hale B (2022) A systems
analysis of energy usage and effectiveness of a counter-unmanned
aerial system using a cyber-attack approach. Drones 6(8):198

30. Wu H, Li W, Li W, Liu G (2020) A real-time robust approach for
tracking uavs in infrared videos. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Work-
shops, pp 1032–1033

123

https://networkrepository.com/networks.php
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.dt.2022.10.008
https://doi.org/10.1016/j.dt.2022.10.008


Complex & Intelligent Systems (2024) 10:3197–3211 3211

31. Chen W, Meng X, Liu J, Guo H, Mao B (2022) Countering large-
scale drone swarm attack by efficient splitting. IEEE Trans Veh
Technol 71(9):9967–9979

32. Freeman LC (2002) Centrality in social networks: Conceptual clar-
ification. Social network: critical concepts in sociology Londres:
Routledge 1:238–263

33. Gao C, Su Z, Liu J, Kurths J (2019) Even central users do not
always drive information diffusion. Commun ACM 62(2):61–67

34. Chen D, Lü L, Shang M, Zhang Y, Zhou T (2012) Identifying
influential nodes in complex networks. Phys A 391(4):1777–1787

35. Tee P, Parisis G, Wakeman I (2017) Vertex entropy as a critical
node measure in network monitoring. IEEE Trans Netw Service
Manage 14(3):646–660

36. Lei M, Cheong KH (2022) Node influence ranking in complex
networks: A local structure entropy approach. Chaos, Solitons &
Fractals 160:112136

37. Wang F, Sun Z, Gan Q, Fan A, Shi H, Hu H (2022) Influential node
identification by aggregating local structure information. Phys A
593:126885

38. Fang J, Partovi FY (2020)AHITS-basedmodel for facility location
decision. Expert Syst Appl 159:113616

39. Page L, Brin S, Motwani R, Winograd T (1999) The PageRank
citation ranking: Bringing order to the web. Tech. rep, Stanford
InfoLab

40. Jiang S, Luo Z, Yin Z, Wang Z, Wang S, Gao C (2021) Identifica-
tion of Critical Nodes in Urban Transportation Network Through
Network Topology and Server Routes. In: Proceedings of the
International Conference on Knowledge Science, Engineering and
Management, pp 395–407

41. Li Z, Tang J, Zhao C, Gao F (2023) Improved centrality measure
based on the adapted PageRank algorithm for urban transportation
multiplex networks. Chaos, Solitons & Fractals 167:112998

42. Freeman LC (1977) A set of measures of centrality based on
betweenness. Sociometry pp 35–41

43. Sabidussi G (1966) The centrality index of a graph. Psychometrika
31(4):581–603

44. Gao C, Liu J, Zhong N (2011) Network immunization and virus
propagation in email networks: experimental evaluation and anal-
ysis. Knowl Inform Syst 27:253–279

45. Zhao J, Wang Y, Deng Y (2020) Identifying influential nodes
in complex networks from global perspective. Chaos, Solitons &
Fractals 133:109637

46. Zareie A, Sheikhahmadi A, Jalili M, Fasaei MSK (2020) Finding
influential nodes in social networks based on neighborhood corre-
lation coefficient. Knowl Based Syst 194:105580

47. Zhang G, Bai J, Tebbe CC, Zhao Q, Jia J, Wang W, Wang X,
Yu L (2021) Salinity controls soil microbial community struc-
ture and function in coastal estuarine wetlands. Environ Microbiol
23(2):1020–1037

48. Gao C, Yin Z,Wang Z, Li X, Li X (2023) Multilayer network com-
munity detection: A novel multi-objective evolutionary algorithm
based on consensus prior information [feature]. IEEE Comput
Intell Mag 18(2):46–59

49. Wang Z, Wang C, Li X, Gao C, Li X, Zhu J (2020) Evolutionary
markov dynamics for network community detection. IEEE Trans
Knowl Data Eng 34(3):1206–1220

50. Tulu MM, Hou R, Younas T (2018) Identifying influential nodes
based on community structure to speed up the dissemination of
information in complex network. IEEE Access 6:7390–7401

51. Yu EY, Wang YP, Fu Y, Chen DB, Xie M (2020) Identifying criti-
cal nodes in complex networks via graph convolutional networks.
Knowl Based Syst 198:105893

52. Liu Q, Wang B (2022) Neural extraction of multiscale essential
structure for network dismantling. Neural Netw 154:99–108

53. Liu Y, Song A, Shan X, Xue Y, Jin J (2022) Identifying critical
nodes in power networks: A group-driven framework. Expert Syst
Appl 196:116557

54. Gao C, Zhu J, Zhang F, Wang Z, Li X (2023) A novel represen-
tation learning for dynamic graphs based on graph convolutional
networks. IEEE Trans Cybern 53(6):3599–3612

55. SharmaA,Vanjani P, PaliwalN,BasnayakaCMW, JayakodyDNK,
Wang HC, Muthuchidambaranathan P (2020) Communication and
networking technologies for UAVs: A survey. J NetwComput Appl
168:102739

56. Vásárhelyi G, Virágh C, Somorjai G, Nepusz T, Eiben AE, Vicsek
T (2018) Optimized flocking of autonomous drones in confined
environments. Sci Robot 3(20):3536

57. Colajanni G, Daniele P, Galluccio L, Grasso C, Schembra G (2022)
Service chain placement optimization in 5GFANET-based network
edge. IEEE Commun Magaz 60(11):60–65

58. Blondel VD, Guillaume JL, Lambiotte R (2008) Lefebvre E (2008)
Fast unfolding of communities in large networks. J Statis Mech
10:P10008

59. KitsakM, Gallos LK, Havlin S, Liljeros F,Muchnik L, Stanley HE,
MakseHA (2010) Identification of influential spreaders in complex
networks. Nat phys 6(11):888–893

60. Ren XL, Gleinig N, Helbing D, Antulov-Fantulin N (2019) Gen-
eralized network dismantling. Proc Natl Acad Sci 116(14):6554–
6559

61. ChenW, Yuan Y, Zhang L (2010) Scalable influence maximization
in social networks under the linear thresholdmodel. In: Proceedings
of the IEEE International Conference on Data Mining, pp 88–97

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	A communication-based identification of critical drones in malicious drone swarm networks
	Abstract
	Introduction
	Related work
	Proposed method
	Drone swarm dynamic communication prediction network model
	Formulation of the DGSIC
	The proposed node importance metric
	The dynamic strategy
	The prioritization strategy


	Experiments
	Datasets
	Evaluation metrics
	Robustness
	Cascading failure

	Results and analysis
	Robustness experiments
	Cascading failure experiments

	Ablation experiments
	The comparison of three methods in robustness
	The comparison of three methods in cascading failure

	Time overhead analysis

	Conclusion and future work
	Acknowledgements
	References




