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Abstract
Accurate and stable estimation of the state of health (SOH), which is one of the critical indicators to characterize the ability
of lithium-ion (Li-ion) batteries to store and release energy, is critical in the stable driving of electric vehicles. In this paper,
a novel SOH estimation method based on the aging factors of battery, which combines convolutional neural network (CNN),
wavelet neural network (WNN), and wavelet long short-term memory (WLSTM) named CNN–WNN–WLSTM, is designed.
The proposed CNN–WNN–WLSTM estimation scheme inherits both the fast convergence and robust stability of theWNN, as
well as the ability of long short-termmemory neural network (LSTM) to extract the time series features of the data; moreover,
using CNN can make the proposed algorithm extract the data features from the original battery data automatically, and the
WNN–WLSTM is then adopted to produce the final SOH estimation by exploiting the features from the CNN. To further
speed and achieve global optimization, the RMSprop optimizer, instead of the usually used Adagrad optimizer, is chosen
as the solver of the CNN–WNN–WLSTM network. Experimental results on data set from the NASA Ames Prognostics
Center of Excellence show that the proposed algorithm can be commendably used for Li-ion battery health management by
quantitative comparison with other commonly used machine learning methods, such as back-propagation neural network,
WNN, LSTM,WLSTM, convolutional neural network–long short-termmemory neural network (CNN–LSTM), andGaussian
process regression.

Keywords Lithium-ion batteries · State of health · Convolutional neural network · Wavelet neural network · Wavelet long
short-term memory

Introduction

Li-ion batteries are the primary energy sources for electric
vehicles because of their advantages of lightweight, long life,
high efficiency, and low cost [1–4]; thus, the performance
evaluations of lithium batteries are of great significance for
the practical use of electric vehicles. Typically, lithium bat-
teries are regulated and evaluated using battery management
system (BMS) [5–7]. The evaluation indexes of BMSmainly
consist of State of Charge (SOC), Remaining Useful Life
(RUL), and SOH [8–12]. Generally, SOH describes long-
term changes, so it is vital to obtain accurate SOHestimations
for the long-term safe and stable use of batteries.
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To date, numerous estimation methods have been pro-
posed, and they can be generally divided into three types:
direct calibration methods, model-based methods, and data-
driven approaches. A typical direct calibration is the accu-
mulating current integration [13–16]. However, in practice,
this method is easily affected by the sampling precision
of the current, and the results in the application cannot
work well. Electrochemical impedance spectroscopy (EIS)
is another direct method [17–19], which obtains the chemi-
cal states inside the battery by analyzing the ac impedance
spectrum of the battery at different frequencies. Then, the
exterior features of the battery are evaluated. However, the
collection of internal battery parameters requires special and
expensive equipment. The model-based method first uses
electrochemical model to model the battery, and then uses
model parameters to achieve the SOH estimation [20]. How-
ever, it is difficult to choose a suitable model to balance the
estimation accuracy and computational complexity. The last
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mainstream method is data-driven, which depicts the bat-
tery performance from the perspective of the experimental
data. It discovers the hidden information to estimate the SOH
through all kinds of data learning modes and does not need
the knowledge of the battery systems. Therefore, this method
can avert the difficult problem of model obtainment.

As a common data-driven algorithm, support vector
machine (SVM) estimates SOHbymapping non-linear prob-
lems in low-dimension space to linear problems in higher
dimension space [21, 22]. This method has low compu-
tational complexity and strong training ability for a small
amount of sample data. However, it is difficult to choose
the proper kernel function and is highly dependent on cross-
training and regularization methods. The relevance vector
machine (RVM) is roughly the same as that of SVM, but
the network weights are obtained using the sparse Bayesian
theoretical structure [23, 24], so the output is probability
density estimation rather than point estimation. However,
due to the sparse matrix of the RVM model, the demand
for training data is relatively high, and the stability of the
estimation results is poor. GPR is also an estimation method
for regression analysis of system behavior processes based
on the Bayesian framework and prior knowledge [25]. How-
ever, there are many hyper-parameters in this algorithm, so
the process of adjusting the hyper-parameters during train-
ing is cumbersome. As efficient data-drivingmethods, neural
network-based methods are becoming the mainstream meth-
ods in battery performance evaluations [26–35]. Among
them, the WNN combines the ability of self-learning and
non-linear function approximation, so it has the advantages
of high accuracy and the ability of detailed depiction, which
make WNN preponderance in the realm of SOH estima-
tion [36, 37]. Zhang et al. proposed a four-layer WNN,
which combines discrete wavelet multiresolution decompo-
sitionwithmulti-layer perceptron, and it has better predictive
performance compared with BPNN. However, this method
is restricted to multiresolution analysis, so its structure is
not flexible and its robustness is not strong [38]. Xia et al.
adjusted the network structure of WNN by introducing
the wavelet dilation parameter and the wavelet translation
parameter, which gives the network the advantage of strong
robustness [39]. However, it is only a three-layer neural net-
work, so its estimation accuracy is far less than that of deep
networks. Compared with BPNN, the recurrent neural net-
work (RNN) [40] has been used in estimating SOH, because
it can save the important information between the input data
and the SOH value. However, RNN cannot be used for long-
term estimation due to the problems of vanishing gradients
and explodinggradients. To address this issue,LSTMis intro-
duced [41–44]. The LSTM has the unit state that can save
the most important information between the input and out-
put. However, because of the characteristic of the LSTM cell,

its robustness is not strong when the correlation between the
testing data and the training data is not high.

The feature extraction of input data, which is based on
the aging factors of battery, is a commonly and important
problem for SOH estimation [45–49]. Yang et al. extracted
four data features from the constant current–constant voltage
(CC–CV) charging curve of battery [50]. However, some fea-
tures are difficult to extract, such as the slope of the curve
at the end of CC charging mode and the vertical slope at the
corner of the CC charging curve. Thus, extracting the data
features manually is inconvenient for the SOH estimation
in practice. CNN has the characteristics of shared-weight
architecture and translation invariance, which extracts the
hierarchical feature and edge information on the data matrix
automatically [51].

In summary, the SVMmethod has difficulty choosing the
proper kernel function. RVM has a high demand for training
data because of the sparse matrix. The process of adjusting
hyper-parameters during training is cumbersome, because
there are many hyper-parameters in GPR. The RNN method
cannot be used for long-term estimation due to the vanishing
gradients and exploding gradient problems. The robustness
of LSTM is not strong, and the estimation accuracy of WNN
is far less than that of deep networks. Extracting the data
features manually is inconvenient in practice. Therefore, to
address these problems and obtain a better prediction algo-
rithm in this paper, a CNN–WNN–WLSTM is designed for
SOH estimation. The proposed learning framework includes
CNN layer and WNN–WLSTM layer, the CNN layer is
used to extract the data features from the original battery
data, and the WNN–WLSTM is adopted to produce the final
SOH estimate by exploiting the features from the CNN. The
WNN–WLSTM layer is made up of a fully connected layer
and an LSTM layer whose activation function is replaced
by the Morlet wavelet function. Thus, this model has both
the advantages of WNN and LSTM, and it neither needs to
select a proper kernel function nor adjust too many hyper-
parameters. Finally, based on the battery data sets of NASA,
the experiments are implemented to prove the performance of
the suggested CNN–WNN–WLSTM algorithm. The experi-
ments demonstrate that the estimations are superior to other
existingGPR, BPNN,WNN, LSTM,WLSTM, and CNN–L-
STM methods.

The contributions of this paper are as follows:

1. Based on WNN and LSTM, the neural network of
WNN–WLSTMwhich just has two hidden layers is pro-
posed. Compared with RNN and LSTM, the accuracy
of the network estimation can be improved by adding
only one hidden layer, which just add a small amount of
complexity.

2. The method of CNN–WNN–WLSTM is developed to
estimate the SOH. CNN is used to extract the spatial
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Fig. 1 Schematic structure of the
CNN

features of battery rawdata, and the designedWNN–WL-
STM is then adopted to produce the final SOH estimation
by exploiting the features from the CNN. The proposed
method in this paper has higher estimation accuracy and
faster convergence speed.

The remainder of this paper is organized as follows:
the section "Related works" puts forward the definition of
SOH, and the structure of CNN, LSTM, and WNN. In
the section "Proposed methods", the proposed model of
CNN–WNN–WLSTM is introduced. Then, the experiments
and analysis are described in the section "Experiments and
discussion". Finally, conclusions are given in the section
"Conclusion".

Related works

SOH of battery

A common definition of SOH on cycle i is expressed as

SOH(i) � Ci

C0
× 100% , (1)

where Ci denotes the measured capacity of cycle i and C0

denotes the original rated capacity.
In this paper, the SOH is computed by the capacity to

estimate the state of the battery.

Convolutional neural network

Figure 1 shows the schematic structure of the CNN that con-
tains an input layer, a convolutional layer, a pooling layer, and
a fully connected layer. The convolutional layer includes the
weight and bias. The convolution kernels calculate the out-
puts using the dot product in the convolutional layer, and
these outputs are called feature maps, which describe the
features of the input data and then calculate non-linear by
sigmoid activation function. The pooling layer is utilized to
highlight features and lessen dimension that can prevent over-
fitting.

Fig. 2 Schematic structure of the RNN

The input data are three-dimensional which includes
width, height, and depth. The kth feature map is calculated
by Eq. (2)

mk � σ(W · xk + bk), (2)

where W , b, and σ are the weight matrix, bias, and sigmoid
activation function, respectively.

Long short-termmemory neural network

Unlike BPNN, RNN is a sort of neural network with a short-
termmemory function. Figure 2 shows the structure diagram
of the RNN containing the hidden layer, h. This layer is
unfolded in time steps t , and the sequence information of
past steps propagating from ht−1 to ht is saved by the hid-
den state. The output of this layer is exported at every step.
However, because of the problems of vanishing gradients
and exploding gradients, RNN cannot be used for long-term
estimation.

To solve the above issues, LSTM is proposed, because
it has a memory state, which can save the most important
information. Figure 3 describes the structure of LSTM. It
trains the network with a forget gate, input gate, output gate,
and memory cells. This can be explained as follows:

ft � σ
(
W f · [

ht−1, xt ] + b f
)
, (3)

where xt and xt are the input status at the current time and
the output state of the last hidden layer, respectively;W f , b f ,
and ft denote the weight, bias, and output of the forget gate,
respectively; σ denotes the sigmoid activation function. The
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Fig. 3 Schematic structure of the LSTM cell

output it in Fig. 3 is shown in Eq. (4)

it � σ
(
Wi · [

ht−1, xt ] + bi
)
, (4)

where Wi , bi , and it are the weight, bias, and output of the
input gate, respectively. ot in Fig. 3 is

ot � σ
(
Wo · [

ht−1, xt ] + bo
)
, (5)

where the parametersWo, bo, and ot are the weight, bias, and
output of the output gate, respectively. The third value Ct

′ is
calculated by Eq. (6)

Ct
′ � tanh

(
Wc · [

ht−1, xt ] + bc
)
. (6)

The variablesWc, and bc are theweight and bias of the unit
state, respectively.Ct

′ and tanh are the state of the candidate
cell and the activation function, respectively. Moreover, ct
is conducted from Eq. (7)

ct � ft · ct−1 + it · Ct
′; (7)

ct−1, and ct are the states of the units at the previous and
current times. Finally, the output ht is obtained using Eq. (8)

ht � ot · tanh(ct ), (8)

where ht is the output of the hidden layer at the current time.

Wavelet neural network

TheWNN can adaptively produce the parameters of wavelet
templates [52]. Compared with normally used neural net-
works such as BPNN, the activation function is substituted
by a group of wavelet functions that are generated from the
Morlet wavelet generating function [39].

The schematic structure of WNN, which includes three
layers, is shown in Fig. 4. It contains K nodes in the input
layer, L nodes in the hidden layer, and K nodes in the output

Fig. 4 Schematic structure of the WNN

layer. The parameters in the hidden layer, which are continu-
ally regulated during the learning process, are made up of the
weights wil , wlo, the wavelet dilation parameter a, and the
wavelet translation parameter b. The yi of the output layer is
related to the input data xi . It can be illustrated as follows:

netl � wil xi − bl
al

(l � 1, 2, ..., L) (9)

xl � ψal , bl (netl) (l � 1, 2, . . . , L) (10)

yi �
l�L∑

l�1

wloxl (i � 1, 2, . . . k). (11)

ψ(x) is the generating function, which is defined as theMor-
let wavelet function, and is widely used as an activation
function in neural networks

ψ(x) � cos(1.75x) exp
(
−0.5x2

)
. (12)

Proposedmethods

WNN–WLSTM structure

To further perfect the estimation accuracy of the network,
this paper proposes the two hidden layer WNN–WLSTM,
which is based on the LSTM and WNN neural networks.
This model has the advantages of both rapid convergence of
the WNN and saving the vital data information of LSTM.
The structure of the WNN–WLSTM is shown in Fig. 5.

Compared with the WNN structure shown in Fig. 4, the
WNN–WLSTM adds another hidden layer of the WLSTM
after theWNNunites.As Fig. 5 shows, there are four layers in
the new structure: input layer, hidden layer one, i.e., theWNN
layer, hidden layer two, i.e., the WLSTM layer, and output
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Fig. 5 Schematic structure of the WNN–WLSTM

layer. The output of hidden layer one is labeled xl , which is
related to the input data xi . They have been explained in Eqs.
(9) and (10).

Compared with the normal fully connected layer, xl is the
hypothetical input data of hidden layer two, which is approx-
imated by linear superposition of wavelet basis functions by
the fully connected hidden layer one.

Hidden layer two is the WLSTM layer, and the activa-
tion functions in LSTM are replaced by the Morlet wavelet
function; thus, Eqs. (3–6) and (8) are reformulated as

ft � M
(
W f · [

ht−1, xt ] + b f
)

(13)

it � M
(
Wi · [

ht−1, xt ] + bi
)

(14)

ot � M
(
Wo · [

ht−1, xt ] + bo
)

(15)

Ct
′ � M

(
Wc · [

ht−1, xt ] + bc
)

(16)

ht � ot · M(ct ). (17)

M in Eqs. (13–17) is denoted as the Morlet wavelet func-
tion. For Eq. (7), because there is no activation function, the
WLSTM still adopts the original formula.

The adjustedWLSTMlayer can also extract the time series
features of battery data. Experimental results demonstrate
that the modified LSTM has a more accurate estimation per-
formance.

Fig. 6 Structure of SOHestimationmethod based onCNN–WNN–WL-
STM

CNN–WNN–WLSTM structure

To extract the data features more easily, CNN is designed
before WNN–WLSTM. Compared with manually extrac-
tion for input data features [50], this CNN structure can
extract the data features automatically. The detailed struc-
ture of CNN–WNN–WLSTM is shown in Fig. 6.

The loss function quantifying the discrepancy between the
model’s predicted and measured numerical values is formu-
lated by Eq. (18)

L � 1

K

K∑

i�1

(
yt − y∗

t

)2; (18)

herein, K , yt , and y∗
t are the total data cycles, the actual SOH,

and predicted SOH in the step of t , respectively.
The minimized loss function is determined by the opti-

mizer. This paper chooses RMSprop as the optimizer, which
can speed up the network training speed and further achieve
global optimization.

CNN–WNN–WLSTM-based SOH estimation algorithm

In this section, the framework of SOH estimation method
based on CNN–WNN–WLSTM is demonstrated in Fig. 7,
this model includes CNN layer, WNN layer and WLSTM
layer, and they are connected by the fully connected
layer. “Cov2D” and ReLU denote the two-dimensional
convolution and ReLU activation function. The presented
CNN–WNN–WLSTM-based SOH estimation is described
in Algorithm 1.
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Algorithm 1 CNN–WNN–WLSTM-based SOH estimation

The specifications of the CNN–WNN–WLSTM architec-
ture is shown in Table 1. For the numbers of input and output
data in Algorithm 1, N equals 336 and K equals 168 in the
section "Estimation and comparison I", while in the section

"Estimation and comparison II", N equals 436 and K equals
68. The network parameters of the wavelet dilation parame-
ter a, the wavelet translation parameter b, the biases, and the
weights of all layers to layers in CNN–WNN–WLSTM are
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Fig. 7 The framework of SOH estimation method based on CNN–WNN–WLSTM

Table 1 Parameter settings of the
CNN–WNN–WLSTM
architecture

Layer Input shape Kernel size Kernel number Output shape Last/next layer

I0 784 × 4 N/A N/A 784 × 4 N/A/C1

C1 784 × 4 3 × 3 64 64 × 784 × 4 I0/P1

P1 64 × 784 × 4 2 × 2 N/A 64 × 783 × 3 C1/C2

C2 64 × 783 × 3 3 × 3 64 64 × 783 × 3 P1/P2

P2 64 × 783 × 3 2 × 2 N/A 64 × 782 × 2 C2/C3

C3 64 × 782 × 2 1 × 1 64 64 × 782 × 2 P2/P3

P3 64 × 782 × 2 2 × 2 N/A 64 × 391 × 1 C3/F1

F1 64 × 391 × 1 N/A N/A 1 × 25,024 P3/D1

D1 1 × 25,024 N/A 64 1 × 64 F1/WNN1

WNN1 1 × 64 N/A 60 1 × 60 D1/WLSTM1

WLSTM1 1 × 60 N/A 100 1 × 100 WNN1/O0

O0 1 × 100 N/A 1 1 WLSTM1/N/A

I input layer, C convolutional layer, P maxpooling layer, F flatten layer, D dense layer, WNN WNN layer,
WLSTM WLSTM layer, O output layer

randomly initialized by Python 3.8. The numbers of features
R in Step 2 equal 64, M in Step 3 equal 60, and L in Step 4
equal 100 in CNN–WNN–WLSTM.

Experiments and discussion

Experimental environment

Experimental hardware facilities use Inter(R) Core(TM)
i5-7200u CPU @ 2.50GHZ processor, Windows7 flagship
edition 64-bit operating system, and 8 GB running memory.
The programming software is Python 3.8, and the deep learn-
ing framework Keras is used to support the construction of
the CNN–WNN–WLSTMneural network simulationmodel,
which is based on TensorFlow.

Data sets

To comprehensively discuss the performance of the proposed
method, in this paper, the cyclic aging data of lithium-ion
batteries are chosen from the NASA Ames PCoE [53].

The data set of the NASA Ames PCoE includes 36 Li-ion
battery data: No. 5, No. 6, No. 7, No. 18, and No. 25–56.
Because these 36 batteries are different in the lengths of the
SOHs, the No. 5, No. 6, and No. 7 batteries are the most
widely utilized in related papers, because they are much
longer and have the same length [54].

In this paper, the data sets from these three batteries are
produced using Eq. (1) to carry out the experiments, which
consist of training and testing processes. The SOH attenua-
tion curve tracks of the three batteries are displayed in Fig. 8.
The total charge and discharge cycles of each battery are 168.
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It is noteworthy that the SOH does not appear to be the law
in a humdrum declining manner with the cycle number, but
an evident overall degradation trend and local regeneration
phenomenon.

Data explanation and preprocessing

Data explanation

The three subfigures in Fig. 9 are the charging curves of volt-
age, current, and temperature of the No. 5 battery at different
cycle numbers. With the increase in the cycle numbers, the
time cost of CC charging, and reaching the cut-off voltage of
the battery is shortened; moreover, the peak temperature of
charging curves is increasing, and the time of reaching the
peak temperature is advancing, which are the aging process
of batteries. In addition, the variation ranges of current, volt-
age, and temperature are 1500–4500 times, 0–3500 times,
and 2000–4500 times, respectively. To fully extract these
three aging characteristics, this paper chooses the data from
the entire CC charge and fragment CV charge, that is, the
first 5000 times [55]. Then, the fusion features composed of
aging factors, such as current, voltage, and temperature, are
extracted by CNN.

Data preprocessing

Based on the aging factors of battery, the input data are for-
mulated as follows:

x j �

∣∣∣∣
∣∣∣∣∣∣

V1 I1 T1 t1
V2 I2 T2 t2
...

...
...

...
Vi Ii Ti ti

∣∣∣∣
∣∣∣∣∣∣

; (19)

x j denotes the input of the jth cycle. Vi , Ii , Ti , and ti are
the charging voltage, current, temperature, and time in the
original battery data, respectively.

The range of each column in the input data is inconsistent,
which will lead to poor network training effect. Thus, the
input data are normalized firstly via Eq. (20)

xnorm � xi − xmin

xmax − xmin
, (20)

where xi , xmin, and xmax are the original value, andminimum
and maximum values of x.

Evaluationmetrics

To intuitively compare the performance of the estimation
methods, two evaluation metrics of root-mean-square error

Fig. 8 The SOH degradation curves of batteries No. 5, No. 6, and No.
7

(RMSE) and themean absolute percentage error (MAPE) are
presented in this paper, which are formulated as follows:

RMSE �
√∑m

i�1

(
yi − ŷi

)2

m
(21)

MAPE � 1

m

m∑

i�1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣, (22)

where m, yi , and ŷi are the estimation steps, the actual SOH,
and the predicted SOH, respectively.

Optimizer comparison

To verify that the RMSprop optimizer can speed up the net-
work training speed and further achieve global optimization,
the Adagrad optimizer is chosen as a control group. The
CNN–WNN–WLSTMmethod is used to perform this exper-
iment. Figure 10 and Table 2 are the estimation results of two
optimizers for battery No. 5. It can be seen that the line of
RMSprop is closer to the red line when using the RMSprop
optimizer. Figure 11 shows that RMSprop can achieve faster
convergence and further global optimization than Adagrad.

Estimation and comparison I

Data set organization

In this part, the data settings are shown inFig. 12. The training
data from any two of the batteries are utilized for training the
proposed CNN–WNN–WLSTM model, and the remaining
battery is used for estimation.
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Fig. 9 Three charging curves of the No. 5 battery at different cycle numbers

Fig. 10 Estimation results of the two optimizers for battery No. 5

Table 2 Estimation error comparison of the two optimizers for battery
No. 5

No. 5 Adagrad RMSprop

RMSE 0.014918 0.005744

MAPE 0.015840 0.006860

Estimation for the whole process

In this part, the proposed CNN–WNN–WLSTM model is
compared with the following methods:

BPNN [34]: The algorithm is momentum BP (MOBP)
and has three layers. While BPNN in this paper do not adopt
momentum, it is just a three-layer fully connected back-
propagation neural network.

WNN [39]: a three-layer fully connected neural network
in which the hidden layer is improved by the wavelet dilation
parameter and the wavelet translation parameter; its structure
is shown in Fig. 4.

Fig. 11 The test loss value change with the epochs under CNN–WN-
N–WLSTM

Fig. 12 Organization of the training and testing sets for three experi-
ments

LSTM [43]: a three-layer LSTM neural network. The
schematic structure of LSTM can be seen in Fig. 3.

WLSTM: a three-layer WLSTM neural network, and
the introduction of WLSTM can be seen in the section
"WNN–WLSTM structure".

CNN–LSTM [56]: a deep learning neural network com-
posed of CNN and LSTM.
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Fig. 13 Estimation results of the six models for battery No. 5

The input data of BPNN, WNN, LSTM, andWLSTM are
the time cost of CC charging.

The estimation results of six models, BPNN, WNN,
LSTM,WLSTM, CNN–LSTM, and CNN–WNN–WLSTM,
for the three batteries are shown in Figs. 13, 15 and 17,
respectively. As depicted in Fig. 13, the red line indicates
the measured SOH, and the other dotted lines refer to the
estimated SOH result. Taking Fig. 13 as an example, the esti-
mation result of the BPNN is not well. For the WNN model,
there is a significant distance between the estimated value
and the measured value in the period of 1 to 50 cycles, which
means that the WNNmethod is not suitable in predicting the
SOH of No. 5. LSTM is better than the method of WNN, but
it still does not perform well in the cycles from 1 to 25. The
WLSTM is slightly better than the LSTM model. Because
the input of CNN–LSTM is integrated into the three aging
characteristics of battery, so it is better than WLSTM. The
simulation of the experiment with the CNN–WNN–WLSTM
model is shown as the blue line. Compared to the other dot-
ted lines, it is clear that the blue line is the closest to the red
line, whichmeans that the proposedmethod has the strongest
predictive performance of the five methods.

Figures 14 shows the estimation errors of six models
for battery No. 5; compared with other method, CNN–WN-
N–WLSTM has a smallest SOH error. The estimation error
comparison of the six models for battery No. 5 is shown in
Table 3, which shows that the prognostic RMSEs of BPNN,
WNN, LSTM, WLSTM, and CNN–LSTM are 2.4987%,
1.4761%, 1.1147%, 0.8608%, and0.7231%, respectively, but
the RMSE of the CNN–WNN–WLSTM is 0.5744%. Sim-
ilarly, the Mapes of BPNN, WNN, LSTM, WLSTM, and
CNN–LSTM are 2.6688%, 1.3443%, 1.3188%, 1.0060%,
and 0.8712%, respectively, while the MAPE of the proposed
method is 0.6860%. These values mean that the CNN–WN-
N–WLSTM model has a best predictive ability compared to
the BPNN, WNN, LSTM, WLSTM, and CNN–LSTM.

Fig. 14 Estimation errors of the six models for battery No. 5

Fig. 15 Estimation results of the six methods for battery No. 6

Fig. 16 Estimation errors of the six models for battery No. 6
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Fig. 17 Estimation results of the six methods for battery No. 7

The results of the estimation for the remaining two batter-
ies are similar to those of No. 5. The estimations of the six
neural network models for them are depicted in Figs. 15 and
17, and the SOH errors are shown in Figs. 16 and 18, and the
estimation error comparisons are shown in Tables 4 and 5.

By comparing Figs. 13, 14, 15, 16, 17 and 18 and Tables 3,
4 and 5, three conclusions can be obtained:

1. The error of LSTM is usually smaller than that of WNN
in predicting the SOH values of batteries No. 5 andNo. 7,
butWNN is better than LSTM in predicting the SOH val-
ues of battery No. 6. As shown in Fig. 8, the SOH curves
of No. 5 and No. 7 have the similar local regeneration
phenomenon changes; thus, the memory unit will learn
these changes and further obtainmore accurate SOHesti-
mation performance for No. 5 or No. 7 batteries during
LSTM training. However, the SOH curve of No.6 varies
greatly and is different from those of No. 5 and No. 7, so

Fig. 18 Estimation errors of the six models for battery No. 7

the estimation performance of the LSTM method is not
ideal. This phenomenon also occurs for WLSTM.

2. When the WNN method is used for predicting the SOH
values of three batteries, its results are more stable than
LSTM, and the range of RMSEs and Mapes of this
method is no more than 2%. This is because this network
has the ability to automatically adjust wavelet parame-
ters, so its robustness is better than LSTM.

3. Because the CNN–WNN–WLSTM method is combin-
ing the advantages of LSTM and WNN and using CNN
to process the three aging factors of battery, thus, the
RMSE and MAPE are smaller than WNN, WLSTM and
CNN–LSTM in predicting the SOH values of the No. 5,
No. 6, and No. 7 batteries.

Table 3 Estimation errors
comparison of the six models for
battery No. 5

No. 5 BPNN WNN LSTM WLSTM CNN–LSTM CNN–WNN–WLSTM

RMSE 0.024987 0.014761 0.011147 0.008608 0.007231 0.005744

MAPE 0.026688 0.013443 0.013188 0.010060 0.008712 0.006860

Table 4 Estimation errors’
comparison of the six models for
battery No. 6

No. 6 BPNN WNN LSTM WLSTM CNN–LSTM CNN–WNN–WLSTM

RMSE 0.028211 0.016632 0.022945 0.019838 0.010724 0.008006

MAPE 0.035583 0.019512 0.026720 0.021053 0.012890 0.009157

Table 5 Estimation errors’
comparison of the six models for
battery No. 7

No. 7 BPNN WNN LSTM WLSTM CNN–LSTM CNN–WNN–WLSTM

RMSE 0.029074 0.011439 0.009445 0.007588 0.006511 0.005173

MAPE 0.028644 0.011900 0.010898 0.008806 0.007486 0.005895
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Fig. 19 Epoch cost (numbers) of all neural networks for the three bat-
teries

Fig. 20 Organization of the training and testing sets for three experi-
ments

Epoch cost

To illustrate the advantage of the fast convergence of
CNN–WNN–WLSTM, the epoch costs of these six neural
networks when the accuracy of test loss reached 0.01 are
shown in Fig. 19.

As seen from the above three subfigures, CNN–WN-
N–WLSTM uses the most minor epochs when meeting the
given accuracy requirements, which means that the proposed
method can extract and store important information effec-
tively, it enables CNN–WNN–WLSTM tomeet the accuracy
requirements without more repeated training.

Estimation and comparison II

Data set organization

In this part, the data settings are shown in Fig. 20. The train-
ing data from any two of the batteries and the partial cycles
of the three batteries (the former 100 cycles) are used for
training the proposed CNN–WNN–WLSTM model, and the
remaining cycles of the three batteries (the latter 68 cycles)
are used for estimation.

Estimation for the partial process

To further demonstrate the predictive power of the pre-
sented method, a comparison experiment for partial battery
data with the GPR-based methods proposed by Zhou et al.
is implemented [57]. GPR is the basic Gaussian process
regression method, while the other three models with neural
network functions as kernels are shown as Model I, Model
II, and Model III: the neural network itself, the sum of the
neural network, and the Maternard covariance function and
the product of the neural network and the periodic covariance
function. These methods only predict the last 68 SOH values
for No. 5, No. 6, and No. 7. Figures 21, 22 and 23 show the
estimation results of CNN–WNN–WLSTM, and Tables 6, 7
and 8 show the estimation errors of basic GPR, three opti-
mized GPR, and CNN–WNN–WLSTM. The comparison
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(a) Basic GPR                           (b) Model I

(c) Model II (d) Model III

(e) CNN-WNN-WLSTM
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Fig. 21 Estimation results of four GPR models and CNN–WNN–WLSTM for battery No. 5
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(a) Basic GPR                         (b) Model I

(c) Model II (d) Model III

(e) CNN-WNN-WLSTM
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Fig. 22 Estimation results of four GPR models and CNN–WNN–WLSTM for battery No. 6
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(a) Basic GPR                         (b) Model I

(c) Model II (d) Model III

(e) CNN-WNN-WLSTM
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Fig. 23 Estimation results of four GPR models and CNN–WNN–WLSTM for battery No. 7
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Table 6 Estimation errors’
comparison of four GPR models
and CNN–WNN–WLSTM for
battery No. 5

No. 5 GPR Model I Model II Model III CNN–WNN–WLSTM

RMSE 0.1303 0.0074 0.0083 0.0083 0.0027

MAPE 0.1213 0.0080 0.0094 0.0091 0.0036

Table 7 Estimation errors’
comparison of four GPR models
and CNN–WNN–WLSTM for
battery No. 6

No. 6 GPR Model I Model II Model III CNN–WNN–WLSTM

RMSE 0.2251 0.0082 0.0081 0.0171 0.0039

MAPE 0.2699 0.0100 0.0099 0.0218 0.0053

Table 8 Estimation errors’
comparison of four GPR models
and CNN–WNN–WLSTM for
battery No. 7

No. 7 GPR Model I Model II Model III CNN–WNN–WLSTM

RMSE 0.2074 0.0066 0.0068 0.0099 0.0021

MAPE 0.1918 0.0074 0.0073 0.0112 0.0025

results indicate that CNN–WNN–WLSTM can obtain bet-
ter estimation accuracy. In particular, the proposed method
has better estimation performances for the local regeneration
phenomenon existing in the real SOH curves; however, the
GPR-based estimationmethods could not indicate these local
features.

Conclusion

In this paper, a novel estimation model of battery SOH
based on CNN, WNN, and WLSTM is presented. To fur-
ther improve the estimation accuracy, an improved network
structure named CNN–WNN–WLSTM is designed for bat-
tery health monitoring; both have the advantages of rapid
convergence and extracts the data features of the input data
automatically. Compared with other popular neural network
methods, the proposed method has a lowest estimation error.
Experimental results for the entire battery cycle and partial
battery cycle both confirm that this proposedmethod has high
estimation accuracy for lithium-ion batteries with even com-
plicated phenomena. Exploring SOH estimation methods,
especially for real-time estimation with better performance,
will be the future work.
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