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Abstract
Deep learning demonstrates impressive performance in many medical image analysis tasks. However, its reliability builds
on the labeled medical datasets and the assumption of the same distributions between the training data (source domain)
and the test data (target domain). Therefore, some unsupervised medical domain adaptation networks transfer knowledge
from the source domain with rich labeled data to the target domain with only unlabeled data by learning domain-invariant
features. We observe that conventional adversarial-training-based methods focus on the global distributions alignment and
may overlook the class-level information, which will lead to negative transfer. In this paper, we attempt to learn the robust
features alignment for the cross-domain medical image analysis. Specifically, in addition to a discriminator for alleviating the
domain shift, we further introduce an auxiliary classifier to achieve robust features alignment with the class-level information.
We first detect the unreliable target samples, which are far from the source distribution via diverse training between two
classifiers. Next, a cross-classifier consistency regularization is proposed to align these unreliable samples and the negative
transfer can be avoided. In addition, for fully exploiting the knowledge of unlabeled target data, we further propose a within-
classifier consistency regularization to improve the robustness of the classifiers in the target domain, which enhances the
unreliable target samples detection as well. We demonstrate that our proposed dual-consistency regularizations achieve state-
of-the-art performance on multiple medical adaptation tasks in terms of both accuracy and Macro-F1-measure. Extensive
ablation studies and visualization results are also presented to verify the effectiveness of each proposed module. For the skin
adaptation results, our method outperforms the baseline and the second-best method by around 10 and 4 percentage points.
Similarly, for the COVID-19 adaptation task, our model achieves consistently the best performance in terms of both accuracy
(96.93%) and Macro-F1 (86.52%).

Keywords Adversarial training · Class-level information · Unsupervised domain adaptation · Medical adaptation task

Introduction

Medical image analysis is a crucial task on Computer-aided
diagnosis (CAD) systems [23], which aims to assist doc-
tors for detecting abnormal patterns within a medical image.
Therefore, an accurate and robust medical image analysis
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model can significantly decrease the misdiagnosis rate and
the diagnostic time, so that improve the entire medical treat-
ment. Recently, deep convolutional neural networks (CNNs)
achieve great success on the image classification task [17,
35], which inspires many works to adopt CNNs as the back-
bone for medical image analysis [20, 22]. For example,
Hryniewska et al. [18] presents various deep models for ana-
lyzing the COVID-19 (Coronavirus disease 2019) [51]. Dai
et al. [9] adopts a novel deep residual architecture to detect
different skin lesions.

Despite the impressive performance of the CNNs on the
medical image analysis task, the trained deep source models
still cannot generalizewell to theother domainswith different
data distributions, and the corresponding performancewill be
seriously degradedwhen the domain gap is large.Meanwhile,
the different domain distributions are easily resulted from
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Fig. 1 Cross-domain medical
image analysis tasks, source
domain samples (top left), target
domain samples (bottom left).
t-SNE visualization of two
domains (right side)

various data-collection devices, institutions, or new types of
diseases, which are wildly observed in medical fields. As
shown in Fig. 1, the skin lesion images collected by the der-
moscopy and the smartphone follow different distributions.
Similarly, bothCOVID-19 and typical pneumonia can lead to
abnormality on lungs, while different types of viruses result
in distribution discrepancy between the corresponding med-
ical images. All these scenarios can result in performance
drop. This is referred to as domain shift [2, 48], which is
one of the key factors that prevent the deep neural networks
from large-scale usages in the real-world applications, and
becomes a hot research topic in recent years.

An intuitive way to address the domain shift is to fine-
tune the source model with newly collected labeled target
dataset [30, 45]. However, manually annotating large amount
of medical data in the target domain requires the expertise of
the doctors and is very expensive, or even impossible for the
new diseases, i.e., COVID-19. Unsupervised domain adapta-
tion [4, 27] provides another alternative, which can transfer
knowledge from rich labeled source domain to the unlabeled
target domain, so that the adapted model can achieve reliable
performance in the target environment. Therefore, there is a
strong motivation to develop a robust medical image analy-
sis model that can generalize well to different domain with
few or no doctor annotations [15], especially with the rapid
development of health care system.

Most unsupervised domain adaptation methods focus on
learning domain-invariant features [11, 27, 37], where the
source features and the target features should be aligned or
follow the same distributions, thus the source classifier can be
directly applied for the target features. This is often realized
by minimizing a specific distribution distance between two
domains, such as maximum mean discrepancy (MMD) [13],
second-order statistics difference (CORAL) [37], and so on.
Meanwhile, inspired from generative adversarial networks
(GAN) [12], some recent works use a discriminator to deliver
more advanced results by adversarial training [11]. On one
hand, the discriminator aims to distinguish the source and the

target features; On the other hand, the features extractor is
trained to fool the discriminator, which makes the extracted
features indistinguishable so that the similar features distri-
butions can be achieved. However, these global alignment
methods do not consider the class-level information of the
features, and implicitly assume that the features belonging
to the same class will be related and aligned together. This
assumption may not be reasonable for the medical domain,
due to the various characteristics of the benign or malignant
data from different patients, and the target features can be
near the class boundary. Thus, forcing two domain features
matching via conventional adversarial training is likely to
deteriorate its discriminative information [25], so that the
features from different classes will be aligned and result in
negative transfer.

To address the above issues, we propose dual-consistency
regularizations on the classifiers to achieve more robust fea-
tures alignment. First, an auxiliary classifier is introduced
in our medical adaptation framework, and we use diverse
training to detect the unreliable (less-aligned) target fea-
tures. Then, the cross-classifier consistency regularization
is proposed to minimize the discrepancy of the two classi-
fiers so that the unreliable target features will be aligned with
more attentions, and the reliable (already-aligned) target fea-
tures is less affected during alignment. With the class-level
information from the classifiers, the corresponding features
discriminative information can be preserved. Second, since
the unreliable target features detection is highly related to per-
formance of the corresponding classifiers, we further propose
a within-classifier consistency regularization to enforce the
classifier predictions invariant to the perturbations of the tar-
get data to increase its robustness. Specifically,we use several
data augmentations to perturb the target medical data, and
we demonstrate that the classifiers which are insensitive to
these perturbations can deliver more superior results in terms
of both accuracy and Macro-F1-measure during adaptation,
since they can in turn facilitate the distribution alignment
with more accurate class-level information.
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To evaluate the superiority of our method, we conduct
extensive experiments on multiple medical image adapta-
tion benchmarks, including the lungX-ray images adaptation
from the typical pneumonia to the COVID-19 and skin
lesion images adaptation from the dermoscopy device to the
smartphone device. We show that our proposed method can
significantly outperform previous state-of-the-art methods.
Furthermore, the ablation studies and several visualization
results are presented to verify the effectiveness of each pro-
posed module. In summary, the main contributions of this
paper are outlined as follows:

To summarize, the contributions of this paper are as fol-
lows:

1. We propose a new framework for cross-domain medical
image analysis, which avoids medical experts annotations
for various medical domains. This is beneficial for the the
real-world computer-aided diagnosis applications.

2. Compared with conventional global alignment methods,
we introduce an auxiliary classifier for achieving robust
features alignmentwith the class-level information,which
includes the cross-classifier and within-classifier consis-
tency regularizations.

3. We confirm the superiority of our proposed method
through extensive experiments on several medical bench-
marks with state-of-the-art performances.

The remainder of the paper is organized as follows. The
next section introduces related work about cross-domain
medical image analysis. The third section presents the details
of our proposed framework, followed by the extensive exper-
iment results in the fourth section. Finally, the conclusion is
drawn in the last section.

Related work

Medical image analysis In recent years, deep learning tech-
niques have received increasing attention in the field of
medical image analysis. Using computers to analyzemedical
images and perform assisted diagnosis of diseases, doctors
can improve the efficiency of diagnosis andmake early detec-
tion and treatment, thus avoid delaying the best treatment
time for the patients. For example, the identification of skin
lesions, especially for melanoma cases, plays an important
role in assisting clinical diagnosis. Since damaged skin has
various characteristics within the same diseases, which leads
to difficulties in distinguishing the lesion types [46]. Yu et al.
propose to use very deep residual networks [17] to distinguish
melanoma from non-melanoma, Liu et al. [26] proposes a
consistency-based semi-supervised method to diagnose skin
lesions, [14] introduces a two-step progressive transfer adver-
sarial learning technique to transfer from the source domain

to the target domain by discovering the invariant properties.
In addition, chest radiography (e.g., x-ray or CT) images
are often used to understand the abnormality on lungs, such
as the COVID-19 disease [34]. On one hand, deep CNN-
based approaches [38] are widely used to predict the novel
COVID-19 disease with the chest x-ray images. On the other
hand, Minaee et al. [31] adopts deep migration learning
for improved detection. However, all these methods require
labeled medical data for training which is not always feasi-
ble in the real-world applications, since medical annotations
are very expensive and need expertise of specific doctors. In
this work, we tend to use unsupervised domain adaptation
techniques to achieve model generalization on the unlabeled
target domain.

Domain adaptation To solve the problem of scarcity of
labeled data in the target domain, domain adaptation learn-
ing is used to migrate knowledge from different yet relevant
source domains to the target domain [6, 24]. There are
three types of existing deep domain adaptation methods.
The first category is the distance-minimization-based meth-
ods, which aim to reduce the distribution distance between
domains by minimizing a distance between two domains.
For example, maximum mean discrepancy (MMD) used in
DDC [42] inspires a series of MMD-based methods, such as
[39, 44]. DDDA [47] uses central alignment and correlation
alignment strategies to jointly generate domain-invariant and
discriminative features. The second category is adversarial-
training-based methods that learn domain-invariant features
to reduce the domain discrepancywith a discriminator. Zhang
et al. [50] use a dual features extractor and classifier to detect
the COVID-19 with the domain adversarial training. In addi-
tion to the conventional global alignment methods [11, 14],
some recent works also adopt class-level information [21,
33] during alignments, which adopts adversarial training
between features extractor and the classifiers. The third cate-
gory is based on reconstruction methods. For example, deep
separation networks (DSN) [5] adopt a reconstruction loss
to learn domain-specific features and domain-invariant fea-
tures for interpretability. We focus on unsupervised domain
adaptation problem, where there is only unlabeled data in
the target domain. Beyond global alignment, we consider to
achieve the robust features alignment with class-level infor-
mation and the dual-consistency regularizations, thus the
improved adaptation performance can be expected.

Consistency training utilizes unlabeled data for augmented
prediction and enforces consistent outputs under different
perturbations. Berthelot et al. [3] introduce distribution align-
ment and augmented anchoring to use the ensembled output
of the network as the consistency target. Pseudo-labeling
[16] can be regarded as a hard case of consistency learning.
FixMatch [36] combines pseudo-labeling and consistency
regularization to achieve great success in the semi-supervised
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Fig. 2 An unsupervised domain
adaptive scheme combining
domain adversarial training and
dual-consistency
regularizations. During training,
we optimize the network
parameters of F , D, C , and Caux
to take into account both global
feature alignment and reliable
class-level information. In the
test phase, the final predictions
are averaged with the outputs of
the two classifiers C and Caux

learning field. Conventional methods only enforce the con-
sistency of one classifier outputs for the single sample with
different perturbations, while Liu et al. [26] further consider
the relationship between samples and allows the classifier
outputs of the perturbed samples to maintain the original
relationships. We exploit consistency training within two
classifiers under unsupervised domain adaptation setting in
the medical field.

Methods

In this paper, we aim for unsupervised cross-domain adap-
tation for medical image analysis [1]. There are labeled
source domain Ds = {Xs,Ys} and unlabeled target domain
Dt = {Xt }, where the two domainsDs andDt follow related
but different data distributions, and their label space is the
same. The goal is to train a medical image analysis model
with Ds and Dt , which can achieve reliable performance
on the target domain. In this section, we first introduce the
widely-adopted adversarial training scheme for the global
feature alignment. Then, we present the details of the pro-
posed dual-consistency modules for robust alignment for
the medical analysis. Finally, the training procedures of our
entire adaptation framework will be given.

Adversarial training adaptation

Inspired by the generative adversarial networks (GAN) [12]
which can match any data distributions from noise, Ganin
et al. propose the Domain-Adversarial Neural Networks
(DANN) to align the distributions between the source images
and the target images, which include three components: a
feature extractor F to learn domain-invariant features, a clas-
sifier C to make the predictions and a discriminator D to
distinguish the extracted source and the target features. F is
trained to fool D by making the extracted features indistin-
guishable, so that the domain-invariant features are achieved
with the minmax game between F and D. F , C and D are
neural networks, which are parameterized by θ f , θc and θd ,
respectively. Thefinal predictionmodel is composed of F◦C ,

and the objectives of DANN can be explained as follows:

min
θ f ,θc

max
θd

�cls(F,C) + λd�adv(F, D), (1)

where

�cls = Exs ,ys∼Ds [−ys logC(F(xs))], (2)

�adv = Ext∼Dt [log D(F(xt ))]
+ Exs∼Ds [log(1 − D(F(xs)))], (3)

where �cls indicates the classification loss on the labeled
source data, �adv indicates the adversarial loss between the
global source and the target features, and λd is the hyperpa-
rameter that balances their effects.

Dual-consistency regularizations

Although the above adversarial training adaptation can alle-
viate the domain shift, it does not consider the class-level
information of the features and fully exploit the knowl-
edge within the unlabeled target data, which will lead to
sub-optimal adaptation performance. In addition, in themed-
ical field, falsely aligning the features with different classes
results in misdiagnosis, which is unacceptable. To address
these issues, we further introduce an auxiliary classifier
Caux and propose the dual-consistency regularizations (as
shown in Fig. 2) to enhance the robust distribution matching
with the class-level information. The dual-consistency reg-
ularizations include cross-classifier consistency and within-
classifier consistency, which are detailed in following.

Cross-classifier consistency

In order tomaintain the discriminative information and avoid
negative transfer, we attempt to make the best of information
of the classifiers during feature alignment via cross-classifier
consistency.

Specifically, conventional adversarial training treats each
target instances equally, which may hurt the features’ dis-
criminative information. We denote that the unreliable target
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instances are not aligned and have relatively large domain
gap with the source data. In this case, the feature extractor
tries hard to align those unreliable target instances, and will
imposes the same effects on the reliable instances, which
results in the original aligned features (denoted as reliable
instances) falsely mapped after alignment. Therefore, we
attempt to detect the unreliable target instances, so that we
can put more efforts to align these unreliable target instances
while leave the reliable target instances unchanged.

Considering the unreliable target instances which should
be far from the support of the source distribution, they are not
discriminative with respective to the source classifier so that
different source classifiers (i.e., trained with different seed)
have various behaviors on these target instances. Thus, it is
straightforward to further introduce an auxiliary classifier
to detect these unreliable target instances during alignment.
First, we use the diverse training to increase the diversity
between C and Caux for better detection of the unreliable
target instances. In this case, unreliable target instances have
large discrepancy between two classifiers and reliable target
instances have relative small discrepancy. Then, F is trained
to minimize their discrepancy via the cross-classifier consis-
tency for the unreliable feature alignment, and the reliable
target features are less affected. Thus, the features’ discrim-
inative information can be maintained. The corresponding
losses function can be formulated as follows:

min
θ f ,θc,θcaux

max
θd

�cls(F,C) + �auxCls(F,Caux )

+ λd�adv(F, D) − λreg1�crossReg(C,Caux ), (4)

min
θ f ,θc,θcaux

max
θd

�cls(F,C) + �auxCls(F,Caux )

+ λd�adv(F, D) + λreg1�crossReg(F), (5)

where

�auxCls = Exs ,ys∼Ds [−ys logCaux (F(xs))], (6)

�crossReg = Ext∼Dt |C(F(xt )) − Caux (F(xt ))|, (7)

where �auxCls indicates the cross-entropy loss with the
labeled source data forCaux and �crossreg indicates the cross-
consistency regularization between two classifiers C and
Caux for the same xt .

As shown in Eq. (4), we will trainC andCaux to minimize
the source classification loss and to maximize �crossReg for
the diverse classifiers, which enables the two classifiers to
capture the class-level information from different perspec-
tives. Therefore, the two classifiers can be used to detect
the unreliable target instances via their disagreement on the
extracted target features F(xt ), the reliable target instances
which are close to the source domain will have relative simi-
lar outputs due to supervised training on source domain, and
unreliable target instances will deliver very different outputs.

On the contrary, inEq. (5), F will be updated to enforce the
extracted target features F(xt ) to yield similar outputs with
the diverse classifiers, which means the target features will
be pushed towards to source domain for feature distribution
matching. Compared with traditional adversarial training
adaptation, our cross-classifier consistency loss can leverage
the class-level information to learn domain-invariant features
adaptively, since the more unreliable target instances will
receive larger �crossReg , and the reliable target instances will
be less affected for robustness.

We will iteratively optimize Eqs. (4) and (5) until con-
vergence. We empirically demonstrate that the proposed
cross-consistency regularization can implicitly alleviate the
negative transfer caused by the feature deterioration with the
help of class-level information.

Within-classifier consistency

Although the above model can deliver improved results on
our medical image adaptation experiments, it still highly
relies on the robustness of the prediction model (F ◦ C or
F ◦Caux ) for the success of unreliable target instances detec-
tion. Without extra constraints, during the diverse training,
the two classifiers may overfit the source domain and try
hard to increase their discrepancy, which can hurt their gen-
eralization. Thus, the corresponding feature extractor F may
falsely generate target features with wrong classes due to the
weak prediction model on the target domain, especially on
the early adaptation stage. On the other hand, improving the
robustness of the prediction model can also enhance its gen-
eralization on the target domain, which brings about better
performance.

To address this issue, we propose a within-classifier con-
sistency regularization �wi thinReg to enforce the robustness
of the prediction model. We claim that a robust prediction
model should be invariant to the perturbation on the input.
Specifically, we augment the target data xt to derive x

aug
t . In

general, xt and x
aug
t should preserve the same class informa-

tion, thus, the within-classification consistency enforce the
prediction model to deliver the similar outputs. The corre-
sponding loss can be formulated as follows:

min
θc,θcaux ,θ f

�wi thinReg(F,C,Caug)

= Ext∼Dt

{
KL[C(F(xt ))||C(F(xaugt ))]

+ KL[Caux (F(xt ))||Caux (F(xaugt ))]} , (8)

As shown in Eq. (8), Caux . KL[·||·] denotes the Kullback–
Leibler (KL) divergence, we propose to minimize the KL
divergence between the original output and the augmented
output within both classifiers C and Caux . Therefore, the
whole prediction model will be more robust by avoiding fea-
tures overfitting and deterioration during features alignment,
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where the final adaptation performance can be significantly
improved on the medical image applications.

Training procedure

Algorithm 1 Pseudo-code of the proposed model
Input: Labeled source dataset {Xs , Ys}, unlabeled target dataset {Xt },

mini-batch size B, learning rates ζ ;
Output: θ f , θc and θcaux ;
1: for i = 1 to N do
2: for each mini-batch do
3: Update F , C , and Caux with Lpred for the main prediction

model:
θ f ← SGD(∇θ f (Lpred ), θ f , ζ );
θc ← SGD(∇θc (Lpred ), θc, ζ );
θcaux ← SGD(∇θcaux

(Lpred ), θcaux , ζ );
4: Update D with Ladv for adversarial alignment:

θd ← SGD(∇θd (−Ladv), θd , ζ );
5: Update C and Caux with Ldiv for diverse classifiers:

θc, θcaux ← SGD(∇θc,θcaux
(−Ldiv), θc, θcaux , ζ );

6: end for
7: end for

The overall objective functions for our medical adaptation
model can be summarized as follows:

min
θ f ,θc,θcaux

Lpred = �cls + �auxCls + λd�adv

+ λreg1�crossReg + λreg2�wi thinReg, (9)

max
θd

Ladv = �adv, (10)

max
θc,θcaux

Ldiv = �crossReg, (11)

where λd , λreg1 and λreg2 are hyper-parameters to balance
impacts of the related losses. We proceed with the training
by alternately optimizing the involved network parameters
with respect to their corresponding objective function shown
in Eqs. (9), (10) and (11), respectively. Our proposed model
is trained in the end-to-end manner, and the detailed opti-
mization procedure is summarized in Algorithm 1. Besides,
according to our experiments, the proposed dual-consistency
regularizations are helpful to stabilize adaptation training.
During test, we average the outputs of both classifiers C and
Caux for the final prediction.

Experiment

In this section, we extensively evaluate our proposed model
on the cross-domainmedical analysis adaptation tasks,which
include skin diseases classification adapted from smartphone
images to dermoscopy images, and the novel coronavirus
disease 2019 (COVID-19) detection adapted from typical

pneumonia to COVID-19. First, we introduce the experimen-
tal settings, which include the relevant datasets, evaluation
metrics and implementation details. Next, we introduce some
baselines and recent state-of-the-art methods for the compar-
ison. In addition, several visualization results and ablation
studies are presented to verify the effectiveness of our pro-
posed model.

Experiment settings

Skin diseases classification: we selected three skin datasets
for our experiments, namely the ISICdataset,1 theHAM10000
dataset [40] and the PAD-UFES-20 dataset [32]. The ISIC
and HAM10000 datasets are the most wildly-used der-
moscopy images for the skin diseases classification tasks.
PAD-UFES-20dataset is a newskin lesion benchmark,which
collects the clinical skin lesion images with the smartphone
devices. The dataset is involved with 1373 patients, 1641
skin lesions and contains 2298 images for six different diag-
noses, and 58.4% of the skin lesions are confirmed by the
biopsy. PAD-UFES-20 aims for supporting the skin diseases
detection with public clinical images rather than the profes-
sional dermoscopy images. In this medical analysis task, we
use ISIC and HAM10000 datasets as the source domain, and
PAD-UFES-20 dataset is used as the target domain, i.e.,

Dermoscopy→Smartphone. Both domains share six cat-
egories of skin diseases, which are actinic keratosis, basal
cell carcinoma, malignant melanoma, nevus, squamous
cell carcinoma and seborrheic keratosis. Benign lesions
include actinic keratosis, nevus and seborrheic keratosis, and
malignant lesions includes basal cell carcinoma, malignant
melanoma and squamous cell carcinoma. During the exper-
iments, we resize all images to 224 × 224, and the statistics
of the dataset are shown in Table 1.

COVID-19 classification: COVID-19 is the newviruswhich
results in related but different symptom to the typical
pneumonia. Therefore, we consider to classify COVID-19
samples adapted from the typical pneumonia domain. Fol-
lowing [49], we adopt three public datasets, which includes
the COVID-19 chest radiograph dataset,2 the COVID-19 X-
ray dataset [8] and the RSNA pneumonia challenge dataset3

in our experiments. There are four categories, which are
normal, COVID-19, bacterial pneumonia and viral pneumo-
nia, the bacterial pneumonia category and viral pneumonia
category are regarded as to the typical pneumonia cate-
gory. Following [50], some normal instances and all typical

1 https://www.kaggle.com/datasets/rajivaiml/isic-skin-cancer-
dataset.
2 https://www.kaggle.com/tawsifurrahman/covid19-radiography-
database.
3 https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/
data.
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Table 1 Statistics of the skin disease dataset

Set Domain Categories Total

NEV ACK SEK BCC MEL SCC

Training HAM10000/ISIC 4702 97 54 4149 4131 144 13,277

PAD-UFES-20 170 532 164 575 38 123 1602

Test PAD-UFES-20 43 75 33 132 2 31 316

NEV nevus, ACK actinic keratosis, SEK seborrheic keratosis, BCC basal cell carcinoma,MELmalignant melanoma, SCC squamous cell carcinoma

Table 2 Statistics of the data set used, where typical pneumonia is the source domain and COVID-19 is the target domain

Set Domain Categories Total

Normal Pneumonia COVID-19

Training Pneumonia 5613 2306 0 7919

COVID-19 2541 0 258 2799

Test COVID-19 885 0 60 945

pneumonia instances were selected to construct the source
domain, and the remaining normal instances and all COVID-
19 instances were used as the target domain, i.e., Typical
Pneumonia→COVID-19. During training, the number of
instances in the source domain is 7919 and the number of
instances in the target domain is 2799, then the test domain
contains 945 instances, and the total data number is 11,663.
The detailed statistics of the dataset are shown in Table 2.
Compared with skin diseases datasets, COVID-19 detection
task is lack of samples and more class-imbalanced, which
can further verify the effectiveness of our method during this
challenging setting.

EvaluationmetricsWeadoptAccuracy (%),Macro-Precision
(%), Macro-Recall (%), and Macro-F1-measure (%) as the
diagnostic metrics in our experiments. Specifically,

Accuracy = TP + TN

TP + FP + TN + FN

Precision = TP

TP + FP

Recall = TP

TP + FN

F1-measurei = 2 ∗ Precisioni ∗ Recalli
Precisioni + Recalli

Macro-F1-measure = 1

K

K∑

i

F1-measurei

(12)

where TP, FP, TN and FN represent numbers of true positive,
false positive, true negative and false negative predictions,
respectively. K indicates the number of categories

Implementation details: we implement our approach based
on PyTorch. For fair comparison, we follow similar settings

to the [50]. TheResNet-18 [17] pre-trained on ImageNet [10]
is used as the backbone for feature extractor F . The classi-
fier C and the discriminator D are fully connected networks
with dense layers. We used an SGD optimizer with a batch
size of 16 on a single GPU to train all the neural network
modules. The learning rate was set to 0.001. In addition,
We do not heavily tune the hyper-parameters due to the pro-
posed robust dual-consistency regularizations, and we select
all these hyper-parameters (λd , λreg1 , λreg2 ) from {10−3,
10−2, 10−1, 1}. For skin diseases adaptation experiments,
we found that setting λd = 0.01, λreg1 = 1, λreg2 = 0.01
obtains the best performance. While for the challenging
COVID-19 detection task, setting λd = 0.01, λreg1 = 0.01,
λreg2 = 0.1 obtains the best performance. Implemented
source code address: https://github.com/gitMrZheng/LRFA-
DA.

Experimental results and analysis

We mainly compare our proposed method with the unsu-
pervised domain adaptation methods, which include the
previous typical approaches, i.e., DDC [42], DANN [11],
ADDA [41], CDAN [28], MCD [33], JAN [29], and the
recent state-of-the-art domain adaptation methods, i.e., AFN
[43], MCC [19], BSP [7]. The detailed compared methods
are introduced as follows:

• DDC [42] uses max mean discrepancy (MMD) to mea-
sure the discrepancy between two domains.

• DANN [11] introduces a discriminator to achieve domain
distribution matching via adversarial training.

• ADDA [41] shares a similar idea with DANN, while use
two separated feature extractors.
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Table 3 Comparison of dermoscopy→smartphone for skin cancer diagnosis

Methods Accuracy (%) Macro-F1 (%) Macro-Precision (%) Macro-Recall (%)

DDC [42] 65.49 65.46 66.35 66.14

DANN [11] 68.67 68.37 68.77 68.37

ADDA [41] 66.67 66.65 66.81 66.90

CDAN [28] 71.52 71.32 71.56 71.29

MCD [33] 66.77 64.06 67.76 64.97

AFN [43] 66.37 66.35 66.49 66.58

MCC [19] 66.14 65.44 66.56 65.64

JAN [29] 69.62 68.23 71.84 68.83

BSP [7] 68.04 66.53 70.09 67.23

Source-Only 64.72 63.60 63.80 63.77

Our model 75.47 75.60 76.23 75.94

The best performances are indicated with bold

• CDAN [28] incorporates label information into DANN,
which aims for conditional domain adaptation.

• MCD [33] replaces the discriminator with the classifiers
to align the source and the target domain by maximizing
the classifiers’ discrepancy.

• AFN [43] tends to adaptively increase the feature norm
to increase the features’ transferability.

• MCC [19] minimizes the classifier’s confusion among
different classes to implicitly achieve domain alignment,
which can be used under versatile domain adaptation set-
tings.

• JAN [29] unites distributions and conditional distribu-
tions through the process of dimensionality reduction
and constructs new feature representations with the goal
of simultaneously minimizing the differences between
edge distributions and conditional distributions across
domains

• BSP [7] proposes Batch Spectral Penalization to increase
the optimization term and achieve the double improve-
ment of Transferability and Discriminability.

Experiment results on dermoscopy→smartphone

The performance of our model on the skin disease cross-
domain adaptation task are presented inTable 3, togetherwith
the results of the recent domain adaptation methods based on
the same protocol. Source-Only is only 64.72% Accuracy,
withMacro-F1-measure,Macro-Precision andMacro-Recall
all coming close at 63.60%, 63.80%and63.77% respectively.
From the experiments, it can be found that the performance
is significantly improved after introducing the domain adver-
sarial approach on the recognition and diagnosis of skin
lesion images, where the accuracy of DANN is 68.67%,
while the conditional adversarial domain adaptation (CDAN)
reaches 71.52%, then it is reasonable to believe that the adver-

sarial domain adaptation approach is effective on medical
images of unlabeled target domains.

In addition, MCD achieves limited improvements com-
pared with the baseline. We speculate that the less discrim-
inative classifiers without any constraints may lead to false
detection of the unreliable target samples. The DDC method
and the MCC method are not able to better handle medical
tasks with large cross-domain variations in dermatoscope-
to-smartphone adaptation. In contrary, our proposed dual-
consistency regularization model, which involves class-level
information with cross-classifier consistency, and robust
training with the within-classifier consistency during align-
ment. Therefore, unlike previous methods, the performance
in terms of allmetrics (Macro-F1-measure,Macro-Precision,
Macro-Recall, and Accuracy) are significantly improved
comparedwith the Source-Only baseline. The results demon-
strate the superiority of the proposed model on the medical
domain adaptation task.

Experiment results on typical pneumonia→COVID-19

Table 4 compares the performance of our method, recent
domain adaptation methods. First, for novel coronavirus
COVID-19 classification, the Source-Onlymodel has a lower
Macro-F1 and Macro-Precision of 62.86% and 60.35%,
respectively. Then the JAN and BSP models have better per-
formance compared to other unsupervisedmethods, and they
achieved 95.98% accuracy. Most previous domain adapta-
tion methods can improve the performance of Source-Only
model in terms of Macro-F1-measure, and their both Macro-
Precision and Macro-Recall are increased. However, the
Macro-F1 performance of ADDA [41] becomes worse to
some extent, which indicates separating feature extractor
may be harmful in the complex medical field. On typical
pneumonia toCOVID-19 adaptation,DANN,AFNandMCC
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Table 4 Comparison of typical pneumonia→COVID-19 for new virus diagnosis

Methods Accuracy (%) Macro-F1 (%) Macro-Precision (%) Macro-Recall (%)

DDC [42] 94.18 64.53 78.41 60.38

DANN [11] 93.97 75.59 74.68 76.58

ADDA [41] 86.24 60.86 58.88 67.02

CDAN [28] 94.50 77.56 76.76 78.42

MCD [33] 89.05 72.44 67.53 87.42

AFN [43] 93.02 69.69 70.35 69.08

MCC [19] 92.70 65.82 67.93 64.25

JAN [29] 95.98 82.83 83.36 82.32

BSP [7] 95.98 78.73 89.42 72.99

Source-Only 85.40 62.86 60.35 72.23

Our model 96.93 86.52 85.71 87.37

The best performances are indicated with bold

Table 5 Ablation study of the proposedmethod for investigating the effects of the dual-consistency regularizations on the skin diseases classification
task

�cls , �auxCls �adv �crossReg �wi thinReg Accuracy (%) Macro-F1 (%) Macro-Precision (%) Macro-Recall (%)

� 67.25 66.43 68.98 67.04

� � 68.51 69.27 69.81 69.59

� � 70.73 70.16 70.90 70.19

� � 68.51 68.91 68.92 68.90

� � � 72.47 71.44 72.22 71.46

� � � � 75.47 75.60 76.23 75.94

methods failed to better focus on the class information of the
target domain samples, and were more ineffective in diag-
nosing COVID-19 compared to other methods. However, our
proposed model further utilizes the within-consistency regu-
larization to enhance the robustness of both classifiers, thus,
obtains much advanced performance (96.93% accuracy and
86.52% Macro-F1), where the Marco F1 score outperforms
the second-best method by around 4 percentage points.

Ablation study

To further evaluate the effectiveness of our method, we con-
ducted an ablation study, as shown in Table 5. The feature
adversarial adaptation module, all the cross-classifier consis-
tency module, and the within-classifier consistency module
made important contributions. It is clear from the ablation
studies, classification loss alone does not yield good results,
indicating the existence of task differences and feature dis-
tribution differences. Adding within-classifier consistency,
or the cross-classifier consistency criterion or feature adver-
sarial adaptation alone, only yielded small improvements
as show in Table 5. While, combining both cross-classifier
consistency and feature adversarial adaptation can further
improve the diagnostic performance, which indicates using

class-level information during alignment is helpful. Finally,
adding the within-classifier consistency can significantly
improve the results, since the class-level information is more
accurate due to the robust classifiers.

Model analysis

To demonstrate more intuitively that our proposed method
is superior, we visualize the t-SNE embedding of feature
changes before and after to understand the domain adapta-
tion from the perspective of domains (Fig. 3) and categories
(Fig. 4), respectively. Specifically, it includes the results from
Source-Only, DANN,MCD and our model. The original fea-
ture distribution shows that the two domains are separated
(Fig. 3a). DANN and MCD (Fig. 3b, c) show that the fea-
ture distributions of the source and target domains are more
consistent after domain adaptation. Our model makes the
inter-domain distance smaller (Fig. 3d), which indicates that
two domains are aligned together. Some of the benign and
malignant skin diseases were difficult to tell apart for diagno-
sis (Fig. 4a).While DANN andMCD align the distribution of
features so that the performance are improved, they produced
fewer abnormal classes in clean categories (Fig. 4b, c). Our
model can further distinguish the degree of skin damage by
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Fig. 3 The visualization of the domain of t-SNE (a) without adaptation,
after adaptation in DANN (b), MCD (c) and our model (d). Green
indicates the source domain and red indicates the target domain

Fig. 4 The visualization of the categories of t-SNE (a) without adapta-
tion, after adaptation of DANN (b), MCD (c) and our model (d). Blue
color indicates benign skin disease and pink color indicates malignant
skin disease

within-classifier consistency regularization (Fig. 4d), where
benign and malignant samples are more separable.

We also interpret the results of the analytical study more
significantly by visualizing the confusionmatrix, as shown in
Fig. 5. Each row of the matrix represents the real class, while
each column represents the predicted class. In the experimen-
tal sample, 151 cases of benign skin lesions and 165 cases of
malignant skin lesions with our approach. Deviation in the
number of instances between the prediction results of differ-
ent methods for skin cancer and the true value. Our method
has lower instances of class I error (false positives) and class
II error (false negatives), then it is obvious that the predictive
diagnostic results of our method for skin cancer are balanced
and superior.

In order to understand the fluctuation of the training loss
curves of each model, Fig. 6a–f shows the comparison of the
training loss curves of DDC, AFN, DANN, MCC, CDAN
and our model, respectively, and it can be clearly seen that
our model converges faster and has less fluctuation of the
loss curves compared with the other models.

ROC curves were plotted to better understand the diag-
nostic performance of the model by its ability to diagnose
COVID-19 and skin diseases as a function of the discrimi-
nation threshold, as shown in Fig. 7. The ROC visualization
shows the superior performance of the proposed model with
higher true positive rate and lower false positive rate in the
threshold setting compared to the baseline approach. The
area under the ROC curve of our model for COVID-19 and
skin diseases is 0.890, indicating that positive cases are well
differentiated fromnegative controls. TheROCcurves partic-
ularly illustrate the benefits of our feature alignment approach
in improving sensitivity without sacrificing specificity. By
taking class-level information into account during domain
adaptation, the model is able to better distinguish diagnostic
categories.

As for the COVID-19 classification task, we used the
gradient-weighted class activation mapping Grad-CAM
method to visualize the location of the chest radiographic
region of interest for the diagnosis of neocoronary pneumo-
nia. The left image of Fig. 8 shows the original input image
of the COVID-19 patient, while the middle image shows the
Grad-CAM obtained on the Source-Only method, and the
right image shows the adaptive results of our model. It can
be observed that the Grad-CAM visualization of the patho-
logical region obtained from the proposed model lies on the
infection position, which is adapted and interpretable.

Parameter analysis

For the skin disease and COVID-19 detection experiments,
hyperparameter values {λd , λreg1 ,λreg2} were selected by
tuning over the following ranges from{10−3, 10−2, 10−1, 1}.
We further evaluated parameter sensitivity by assessing the
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Fig. 5 The visualization of the
confusion matrix was further
evaluated to analyze the
diagnostic results of skin cancer

Fig. 6 Understanding the dynamics of the model diagnosis COVID-19 disease training process and comparing the training loss curves of visualized
models
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Fig. 7 The left and right panels show the ROC curves for the diagnosis of skin diseases on COVID-19 on different models, respectively

Fig. 8 Visualization results of the Grad-CAMmethod on COVID-19 cases, with the shaded part of the image showing the lung region and the heat
map showing the activation weights of the model

COVID-19 detection performance while varying one param-
eter at a time. The additional results in Table 6 demonstrate
the robustness of the proposed method to hyperparameter
choices within the tuned ranges. Performance remains stable
across {10−3, 10−2, 10−1, 1}, and with optimal COVID-19
diagnosis achieved setting λd = 0.01, λreg1 = 0.01,λreg2 =
0.1. This analysis highlights the insensitivity of our approach

to minor parameter variations, as long as values are chosen
within reasonable bounds through tuning. Themethod is able
to maintain effectiveness without requiring precise, narrow
hyperparameter specifications.
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Table 6 Parameter analysis on COVID-19

Parameters Value Accuracy Macro-F1 Macro-
Precision

Macro-
Recall

λd 10−3 96.67 85.65 87.17 84.27

10−2 96.96 86.52 85.71 87.37

10−1 96.03 84.31 82.06 86.98

1 94.71 78.09 77.67 78.53

λreg1 10−3 96.19 83.87 86.32 81.77

10−2 96.96 86.52 85.71 87.37

10−1 96.46 86.72 85.42 88.15

1 96.93 85.88 89.70 82.82

λreg2 10−3 93.97 78.98 74.99 85.13

10−2 96.46 85.10 84.58 85.65

10−1 96.96 86.52 85.71 87.37

1 96.30 82.87 84.27 81.60

The best results are highlighted in bold

Fig. 9 Comparison of training time of different methods in the diag-
nostic process of skin diseases

Complexity analysis

To evaluate computational performance, we compared the
computation time of the proposed model against state-of-
the-art methods, as shown in Fig. 9. Experiments were
conducted using a desktop with an Intel Core i9-10900X
CPU, NVIDIA GeForce RTX 2080Super GPU, and 64 GB
RAM. As illustrated, the proposed model achieves compara-
ble computational efficiency to other benchmarkmodels. The
main computational burden of our method involves training
the feature extraction network and adversarial discrimina-
tor(s).

We also provided FLOPS, model size, trainable parame-
ters and FPS values to analyze the model complexity, which
is shown in Table 7. The first model (DDC) does not include
any additional modules, e.g., discriminator and classifier,

Table 7 The value of model complexity in our model versus competing
approaches

Methods FLOPS
(GFlops)

Model size (MB) Trainable
parame-
ters

FPS

DDC [42] 1.82 37.50 11,178,562 154.60

DANN [11] 1.82 45.18 12,888,385 119.68

ADDA [41] 1.82 45.18 12,758,597 135.48

CDAN [28] 1.82 45.18 12,757,571 128.57

MCD [33] 1.82 56.77 11,178,564 121.63

AFN [43] 1.82 46.65 12,210,516 126.27

MCC [19] 1.82 45.18 11,308,866 129.28

JAN [29] 1.82 45.18 11,177,538 127.79

BSP [7] 1.82 45.18 12,758,081 119.87

Our model 1.83 56.77 15,788,357 122.73

which has relatively less complexity but is not superior in the
medical adaptation tasks. Meanwhile, our method has very
similar model complexity to the other methods with only
one additional classifier, and the corresponding performance
is significantly improved with the proposed dual-consistency
constraints.

Conclusion

In this paper, we propose a novel unsupervised domain
adaptation method for cross-domainmedical image analysis.
Apart from conventional domain adversarial training which
may lead to sub-optimal performance in themedical field, we
further integrate dual-consistency regularizations for robust
features alignment. With a diverse auxiliary classifier, we
propose a cross-classifier consistency to focus on aligning
unreliable target features with the class-level information.
For obtaining robust class-level information and avoid source
domain overfitting, we propose a within-classifier con-
sistency regularization to enhance the robustness of both
classifiers during training. Extensive experiments on sev-
eral medical adaptation tasks verify the effectiveness of our
method,which is beneficial to variousmedical image applica-
tions. We conduct extensive experiments on several medical
adaptation tasks, which demonstrate the effectiveness of our
method and will be beneficial to various real-world medical
image analysis applications.
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