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Abstract
Hand gesture segmentation is an essential step to recognize hand gestures for human–robot interaction. However, complex
backgrounds and the variety of gesture shapes cause low semantic segmentation accuracy in the existing lightweight methods
because of imprecise features and imbalance between branches. To remedy the above problems, we propose a new segmen-
tation structure for hand gestures. Based on the structure, a novel tri-branch lightweight segmentation network (BLSNet), is
proposed for gesture segmentation. Corresponding to the structure parts, three branches are employed to achieve local features,
boundaries and semantic hand features. In the boundary branch, to extract multiscale features of hand gesture contours, a novel
multi-scale depth-wise strip convolution (MDSC)module is proposed based on gesture boundaries for directionality. For hand
boundary details, we propose a new boundary weight (BW) module based on boundary attention. To identify hand location,
a semantic branch with continuous downsampling is used to address complex backgrounds. We use the Ghost bottleneck
as the building block for the entire BLSNet network. To verify the effectiveness of the proposed network, corresponding
experiments have been conducted based on OUHANDS and HGR1 datasets, and the experimental results demonstrate that
the proposed method is superior to contrast methods.

Keywords Gesture segmentation · Deep learning · Lightweight network · Feature extraction

Introduction

Gesture interaction is an intuitive and natural communication
method and can provide effective simple, intuitive, and con-
cise human–machine interaction [1, 2]. Thus, hand gesture
interaction [3, 4] achieves the attention of many researchers.
Generally, gesture interaction can be divided into wearable
device-based methods [5] and machine vision-based meth-
ods [6–8]. For convenience, machine vision-based methods
have become mainstream.

Machine vision-based gesture interaction usually involves
three steps: gesture segmentation, feature extraction, and ges-
ture recognition [9]. Since removing background in gesture
images, gesture segmentation is the prerequisite of the entire
gesture interaction system, and its result improves subse-
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quent feature extraction and recognition accuracy. However,
in practical applications, it is a challenging task because of
the small difference between foreground and background,
uneven lighting conditions, and various shapes of gestures.
Tominimize the interference of background noise and obtain
a complete hand posture for subsequent gesture recognition,
we focus on researching gesture segmentation.

For gesture segmentation, machine learning-based and
deep learning-based methods were proposed. In practi-
cal application, methods based on conventional machine
learningmethods cannot remedy the problems in gesture seg-
mentation. These methods [10, 11], always explore single
and predefined operators to obtain the features of gestures,
such as skin color [12, 13], gradient direction histogram [14],
Haar features [15], scale-invariant feature transform [16], and
motion of hand [17]. However, gesture images with complex
backgrounds and various shapes of hand gestures are hardly
segmented or detected using the single feature [9]. To fuse
multiple features of hand gestures, several ensemblemethods
[18, 19] were proposed for gesture segmentation. However,
the weights of weak classifiers seriously affect the results of
segmentation and detection for hand gestures. The training
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efficiency is one of the problems in ensemble methods for
hand gesture detection.

With the development and application of deep learning
in many areas, deep learning-based methods have become
mainstream hand gesture segmentation methods [20, 21].
Several networks based on deep learning were proposed for
hand segmentation. For instance, Al-Hammadi et al. [22] uti-
lized multiple deep learning architectures to segment hand
regions. Dadashzadeh et al. [9] increased gesture segmenta-
tion precision by leveraging residual network structures and
dilated spatial pyramid pooling. Wang et al. [23] used the
MSF module and LWMS module to enhance the network’s
multiscale feature extraction capability but ignored the size
of gesture segmentation network parameters.

Generally, hand gesture interaction is always employed
in edge devices, thus, the light and real-time networks are
important for this application. To obtain lightweight net-
works, several methods [24] were proposed. Dang et al. [25]
proposed gesture recognitionmethods based onDeeplabV3+
and U-net, which can reduce the overall parameter volume
by replacing the backbone network. However, because of the
imprecise feature representation for hand, the overall seg-
mentation accuracy is still low. To improve segmentation
accuracy, Dayananda [26] proposed a new hybrid approach
based on RGB-D gesture images. However, compared with
RGB images, it is limited to the image dataset. Similar to
U-net, Das et al. [27] used an encoder–decoder architec-
ture for real-time pixel-level semantic segmentation. ICNet
[28] uses image cascading to accelerate the algorithm, while
DFANet [29] uses an architecture based on depth separable
convolution to build a lightweight backbone. To remedy the
problems of computation formulti-scale and high-resolution,
ESPNet [30, 31]was proposedbasedon spatial pyramidpool-
ing modules. Despite being able to complete inference tasks
instantly, these methods only adopt a single feature process-
ing approach. Due to the lack of consideration for underlying
details, the accuracy of models is severely reduced.

To fuse multi-feature for hand gesture segmentation, sev-
eral methods with dual-branch models were proposed. In
BiSeNet [32], the dual-branch network model is used for
detail analysis and context analysis. To strengthen features
from the context branch and detail branch, DDRNet [33]
adopts a bridging method to a dual-branch structure. How-
ever, these dual-branch methods ignore the diversity of
features and the gap between the context branch and detail
branch, which would lose many details at a lower resolution,
and lead to un-accurate segmentation results for gesture.

Gesture segmentation is a pixel-dense prediction task that
relies heavily on the local detail and texture of gestures.
However, traditional encoder–decoder networks and dual-
branch networks ignore the connection with gesture details,
shape and context information. To refine gesture features,
we propose a new structure that divides the extracted gesture

features into three types: boundary features, local features,
and semantic features. By categorizing gesture features into
different types, the proposed network can obtain more com-
prehensive and diverse features. It can flexibly adjust and
utilize these features to improve the accuracy and robustness
of gesture prediction. In addition, dividing the features can
reduce the difficulty of network feature extraction. Based on
this, we propose BLSNet for gesture segmentation, which
includes three branches: local feature branch, semantic fea-
ture branch and boundary branch. The local feature branch
has the characteristics of wide channels and shallow lev-
els, mainly used for extracting detailed gesture features. The
semantic feature branch involves narrow channels and deep
hierarchical structures, learning high-level semantic context
through a considerable degree of downsampling. And the
boundary branch focuses on extracting boundary information
of gestures. To construct a lightweight network architecture,
the Ghost bottleneck is used in our method as the backbone.

The main contributions are summarized as follows.

1. A multibranch segmentation structure is proposed in this
paper, proving that segmentation can be obtained bymul-
ticategory features from deep neural networks.

2. Based on this structure, a tri-branch lightweight network
named BLSNet is proposed for gesture segmentation.
BLSNet contains three branches for boundary, local and
semantic feature extraction to extract three different types
of gesture features.

3. To refine gesture features, we propose the BW module
andMDSCmodule for gesture boundary and texture fea-
tures and use the ASPP module for semantic features. To
fuse the three channels, the Bag module is employed to
promote network optimization.

The article is organized as follows. “BLSNet” section pro-
vides a detailed introduction to the proposed BLSNet. To
demonstrate the effectiveness of the proposed BLSNet, cor-
responding experiments are conducted, and the results are
presented in “Experiments” section. The conclusion is drawn
in “Conclusion” section.

BLSNet

In this section, we propose a lightweight network, named
BLSNet, based on three branches for hand segmentation. The
three branches are designed to obtain three different types of
gesture features.

Overview

Let x ∈ X , x is a given pixel in hand gesture images, and X
is the set of pixels. The predicted label of x is presented as
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l ′x , and l ′x ∈ {0, 1}. l ′x =1 predicts that x is the foreground of
the image, while l ′x =0 presents that x is the background of
the image. The probability structure for hand segmentation
can be presented as Eq. 1.

P
(
l ′x | x) =

n∑

i=1

P
(
l ′x | x, θi

)
P(θi ), (1)

where θi is the parameter of the i-th branch in the segmenta-
tion model and n is the number of branches. One of the key
conditions for Eq. 1 is that the features obtained using param-
eters θi are independent. However, it is difficult to determine
the parameters. To obtain the predicted label of x , we intro-
duce the slack parameters θ̃i , which are considered with the
parameters of branches θi . We can obtain the predicted struc-
ture

∑m
i=1 P(l ′′x | x, θ̃i )P(θ̃i ). l ′′x is the label of x detected by

the parameters of θ̃i . Because of the independence of fea-
tures, we can have Eq. 2.

P
(
l ′x | x) ≤

m∑

i=1

P
(
l ′′x | x, θ̃i

)
P

(
θ̃i

)
(2)

We can obtain the same label using the two probabil-
ity structures of

∑n
i=1 P(l ′x | x, θi )P(θi ) and

∑m
i=1 P(l ′′x |

x, θ̃i )P(θ̃i ). Since we can obtain global minima using deep
neural networks [34], the label from our slack parameter θ̃i
is similar to the true label of the predicted pixel, as shown in
Eq. 3.

l = argmax
l ′x

P
(
l ′x | x) ≈ argmax

l ′′x

m∑

i=1

P
(
l ′′x | x, θ̃i

)
P

(
θ̃i

)
,

(3)

where l is the label predicted using our structure. Since of the
binary of label set and designed networks, the final structure
is represented in Eq. 4.

l = argmax
l ′′x

m∑

i=1

P
(
l ′′x | x, θ̃i

)
(4)

Based on our structure, to achieve independent features
for gesture segmentation, we propose a tri-branch network
based on local feature branch, boundary branch and seman-
tic branch in this paper. The network is named BLSNet. An
overview of the proposed method is shown in Fig. 1. Specifi-
cally, after simple feature extraction through a convolutional
layer and 2 Ghost bottlenecks [35], the input image’s resolu-
tion is reduced to 1/4 of its original size. Then, it is fed into
three branches for downsampling at different levels, which
are the local feature branch, boundary branch, and seman-
tic branch. In the three branches, different shapes of cubes

represent the height, width, and number of channels of fea-
ture maps. In addition, the number in the top right corner
of the cube indicates the relative size between the current
feature map and the original input image. The color of the
cube ismainly used to distinguish three branches. Finally, the
outputs of the three branches are fused using the Bag mod-
ule. In simple terms, the Bag (Boundary-attention-guided
fusion) module uses boundary feature maps to obtain a ges-
ture weight score map and then fuses it with local feature
maps and semantic feature maps based on this score. The
details will be explained in “Feature fusion” section. To con-
struct a lightweight network, we use the Ghost bottleneck
[35] as the building block, which can greatly reduce the com-
putation and parameters compared with other mainstream
backbones.

The boundary branch

We set up a boundary branch and use it as the main branch
to coordinate the feature extraction work of the local feature
branch and the semantic branch.

In addition, gestures come in various shapes, sizes, and
directions, and are easily influenced by cluttered back-
grounds. Using a multi-scale feature extraction method to
learn gesture features is more in line with the characteris-
tics of gesture segmentation tasks. Therefore, we design a
Multi-scale Depth-wise Strip Convolution (MDSC) module,
as shown in Fig. 2. The module has five depth-wise strip con-
volution branches and one 1×1 convolution branch, and the
feature learning results of the six branches are concatenated
to obtain the output feature map of the module. The module
can be represented as Eq. 5.

OutputMDSC = Conv1×1(F)

+
4∑

i=0

Scalei (DW_Conv(F)) , (5)

where F represents the input feature map, Conv1×1 rep-
resents 1 × 1 convolution, DW_Conv represents deep
convolution, Scalei , and i ∈ {0, 1, 2, 3, 4} represents the i th
branch in the Fig. 2. Each branch contains two deep strip con-
volutions, with respective convolution kernel sizes of 1 × n
and n × 1, which are used to simulate the standard 2D con-
volution with a kernel size of n × n. Here, n takes the values
of 3, 7, 11, 15, and 21.

The pseudocode for MDSC is shown below.
The reasons for choosing deep stripe convolution to

extract gesture boundary features are as follows. First, deep
strip convolution is a lightweight convolution method. Com-
pared with the model that does not use the MDSC, the
GFLOPs of the network model increases by only 0.26%,
and related discussions are conducted in the ablation exper-
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Fig. 1 An overview of the proposed network (BLSNet)

Fig. 2 Multi-scale depth-wise strip convolution (MDSC) Module

Algorithm 1 The MDSC module algorithm
1: Input: boundary feature map F
2: for i = {1, 2, 3, 4, 5, 6} do
3: if i = 1 then
4: Output = Conv1×1(F)

5: OutputMDSC+ = Output
6: else
7: for j = {3, 7, 11, 15, 21} do
8: Output = DW_Conv1× j (F) + DW_Conv j×1(F)

9: OutputMDSC+ = Output
10: end for
11: end if
12: end for
13: Output: Updated boundary feature map OutputMDSC

iment section. Second, the gesture boundary shape can be
a linear, nonlinear, or complex curve. Using strip convolu-
tion can accurately locate the gesture boundary and more
efficiently extract such band-shaped features. Finally, by
changing the size of the stripe convolution kernel, the net-
work model can adapt to different boundary shapes and
scales. Since strip convolution performs convolution in only
one direction, compared with standard 2D convolution, strip
convolution can extract longer sequence information at the
same computational complexity, which is crucial for mod-

Fig. 3 The illustration of the proposed local branch

eling long-distance dependence relationships and improving
boundary feature extraction robustness and accuracy.

The local feature branch

One local feature branch is designed to maintain the fea-
ture map resolution and reduce the loss of refined features,
as shown in Fig. 3. Although this branch feature map has
a higher resolution, it has fewer channels, which to some
extent ensures the lightweight of the model. In addition, the
introduction of the detail branch ensures the sensitivity of the
gesture segmentation network to subtle features and provides
better detail discrimination ability. By working in synergy
with other branches such as the semantic branch and bound-
ary branch, more accurate and detailed gesture segmentation
can be achieved.

The semantic branch

To extract contextual semantic information fromgestures, we
adopt a continuous downsampling strategy in the semantic
branch and cooperate with the ASPP [36] context module to
rapidly expand the model’s receptive field in the final stage
and extract high-level semantic features of the gestures. As
shown in Fig. 4, the semantic branch has a narrow channel
and deep characteristics, and the deeper channel enables it to
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Fig. 4 The illustration of the proposed semantic branch

Fig. 5 Boundary weight (BW) module

store sufficient contextual information. Although the number
of channels in this branch is relatively large, the resolution
size limits parameter growth, conforming to our idea of sim-
plifying a unified segmentation task and ultimately designing
a lightweight network.

Feature fusion

This section primarily introduces the fusion between the
boundary branch and the local branch, the fusion between
the boundary branch and the semantic branch, as well as the
final fusion process of the three branches.

The fusion between the boundary branch and the local
branch

Since the local feature branch and boundary branch have
different feature learning tasks under different supervision,
certain information differences and complementarities exist
between them. The local feature branch focuses more on the
local detail features of the feature map, such as texture and
shape; the boundary branch focuses more on the decision
boundary between the gesture boundary and background.
The local feature branch can selectively learn gesture bound-
ary features, thereby optimizing the focus on each local detail
to achieve better segmentation results.

Therefore, we propose a new boundary weight (BW)
module, as shown in Fig. 5. First, the feature vector of the

Fig. 6 Boundary-attention-guided fusion (Bag) Module

boundary branch is subject to 1 × 1 convolution and batch
normalization. Then, the sigmoid is calculated to obtain the
attention-mapping image. The vector of the pixel position
(x, y) in the feature map provided by the boundary fea-

ture branch is defined as
⇀
v b (x, y), where 0 ≤ x < H ,

0 ≤ y < W , H and W are the length and width of the
boundary feature maps, respectively. The output of the sig-
moid function can be represented as Eq. 6.

σ = Sigmoid
(
f
(

⇀
v b

))
(6)

We multiply the vector
⇀
v d at the pixel position (x, y) in

the local featuremap by the corresponding pixel position σ in
the boundary featuremapweightmatrix after passing through
the sigmoid function. This process focuses more on gesture
boundaries in the local feature map. Then, we add the local
feature map with gesture boundary attention to the original
local feature map to obtain the output of the BW module.
The purpose of this addition is to prevent excessive boundary
weights fromcausing damage to details in the original feature
map. This process can be written as Eq. 7:

OutputBW = σ
⇀
v d + ⇀

v d . (7)

The fusion between the boundary branch and semantic
branch

We adopt a direct downsampling and addition method to
merge boundary features into semantic features, thereby
enhancing the semantic branch’s recognition capability for
gestures and backgrounds.

The final fusion process of the three branches

Since of the differences in feature representations from the
local feature branch, boundary branch, and semantic branch
for gesture features, it would lead to unbundling features
by directly fusing features from three branches. To balance
the weights of the three branches, as shown in Fig. 6, a
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Fig. 7 The construction of the S/B-Head

Boundary-attention-guided fusion (Bag) module [37] is uti-
lized to coordinate the fusion of the feature result maps of
the three branches.

Specifically, the outputs of the local feature branch,

boundary branch, and semantic branch are defined as
⇀
v d ,

⇀
v b, and

⇀
v s , respectively. The output of the sigmoid and Bag

can be expressed as Eqs. 8 and 9.

σ = Sigmoid
(

⇀
v b

)
, (8)

OutputBag = fBag
(
σ

⇀
v d +(1 − σ)

⇀
v s

)
(9)

As shown in Fig. 6, when σ is greater than 0.5, more
detailed features will be obtained using the local feature and
boundary feature; otherwise priority will be given to using
the semantic feature with boundary information.

In addition, multiple additional loss functions are
employed to help optimize the network model, as shown in
Fig. 1. The S/B-Head are placed before the loss functions.
Moreover, we provide the specific construction of the S-Head
(semantic head) and B-Head in Fig. 7. They are both com-
posed of convolutional layers, batch normalization layers,
activation functions, and an upsampling layer. We utilize this
structure to transform feature maps with a large number of
channels into feature maps with specified channel numbers,
adjust their resolution size, and then compare the transformed
feature maps with label values for loss calculation.

The total loss function of the network is the sum of each
loss function multiplied by their respective coefficients, and
the calculation process is shown in Eq. 10.

FLoss = λ0l0 + λ1l1 + λ2l2 + λ3l3, (10)

where the specific positions of l0, l1, l2 and l3 are shown in
Fig. 1. Specifically, l0, l2 and l3 all use the cross-entropy loss
function, which is widely applied in semantic segmentation
tasks. The specific definition can be seen in Eq. 11.

l j = −
H×W∑

i

Gi log
(
Pi
j

)
, (11)

where j = {0, 2, 3}, Gi denotes the i-th pixel value on the
real value, and Pi

j denotes the i-th pixel value on the predicted
output images of the loss function l j .

For edge supervision, following the MDSC, a boundary
head(B-Head) is employed, and to optimize the weight, the
Dice loss [38] function l1, is used in this paper. Compared
with conventional loss functions such as cross-entropy loss
function, the Dice loss function can deal with the problem
of imbalance between positive and negative samples. The l1
calculation process is given by Eq. 12.

l1 = 1 − 2 · ∑H×W
i

(
Pi
1 · Gi

1

) + ε
∑H×W

i Pi
1 + ∑H×W

i Gi
1 + ε

(12)

where Pi
1 denotes the i-th pixel value on the predicted edge

output images, Gi
1 denotes the i-th pixel value on the corre-

sponding edge target images and ε is set as 1.
The parameters in FLoss in this paper are empirically [33,

39] set to λ0 = 1, λ1 = 0.5, λ2 = 0.4 and λ3 = 0.4. In
Fig. 1, the dashed lines and related blocks are ignored during
inference.

Experiments

To test the BLSNet proposed in this paper, we compare it
with several segmentation methods on the two datasets of
OUHANDS and HGR1 with the criteria of PixAcc, mIOU,
GFLOPs, and the model parameters.

Datasets, computation platform and evaluation
criteria

The OUHANDS dataset [40] contains 10 different hand ges-
tures from 23 subjects, of which 2000 were selected for the
training set and the remaining 1000 for the test set. The
photos in this dataset exhibit complex background and light-
ing variations, the shapes and sizes of the subjects’ hands
vary, and their skin color varies as well. Additionally, the
images exhibit varying degrees of occlusion between hands
and faces.

The HGR1 dataset [41] contains a total of 899 RGB
images of 25 different hand gestures performed by 12 sub-
jects. Among them,we selected 630 images as the training set
and the remaining 269 images as the test set. The hand gesture
images in this dataset are greatly influenced by background
variations, but there is no occlusion between the hands and
faces.

Themodel was trained and tested on a platform composed
of a single NVIDIA RTX 3080, PyTorch 1.11, CUDA 11.3,
cuDNN 8.0, and Anaconda. To optimize the training process
of the OUHANDS dataset, the batch size was set to 4 and
the input image resolution was fixed to 320–320. We use
the Adam optimizer for weight optimization, initialize the
learning rate to 0.005, and set the weight decay to 0.0001.
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The total number of training epochs is 300. For the HGR1
dataset, the batch size was set to 16, the learning rate was
initialized to 0.001, the weight decay was set to 0.0001, and
all other settings were kept the same as for the OUHANDS
dataset.

Mean intersection over union (mIOU) and pixel accuracy
(PixAcc) are used as evaluation metrics for BLSNet. PixAcc
is used to measure the pixel classification accuracy. It cal-
culates the ratio of correctly classified pixels to total pixels.
mIOU represents the mean value of pixel IOU (intersection
over union). This metric provides a comprehensive evalua-
tion of segmentation algorithms’ performance across various
categories and reflects their overall effectiveness. mIOU is
defined by Eq. 13.

mI OU = 1

C

C∑

i=1

T Pi
T Pi + FPi + FNi

, (13)

where T Pi , FPi and FNi represent the number of pixels
predicted as class i and correctly classified, the number of
pixels predicted as class i but misclassified, and the number
of pixels that should belong to class but are incorrectly clas-
sified as other categories, respectively. C is the number of
categories.

Overall, PixAcc is a simple and intuitive evaluationmetric,
while mIOU focuses more on the matching degree between
predicted results and ground truth. If the model has made
progress in improving the results of target boundary segmen-
tation, the corresponding mIOU will increase accordingly,
while pixel accuracy may only show a slight increase. Thus,
mIOU better reflects segmentation performance.

GFLOPs are commonly used to evaluate the computa-
tional complexity of convolutional neural networks. Param-
eters refer to the number of parameters in a neural network
model, including weights and biases.

Ablation experiments

A series of ablation experiments were conducted on the
OUHANDS dataset, including the loss function, BW mod-
ule, MDSC module, and Bag module.

Effectiveness of extra losses

To investigate the impact of additional training supervision
on network performance, we conduct ablation experiments
by combining l1, l2, and l3. The results are shown in Table 1.
We find that without adding extra semantic supervision, the
model’s mIOU is only 86.28%. After adding each loss func-
tion separately, the model accuracy improved, with the most
significant improvement (+ 2.53% mIOU) observed when
adding l1. This provides strong evidence for the importanceof

Table 1 Ablation study of extra losses

l1 l2 l3 PixAcc (%) mIOU (%)

96.85 86.28

� 97.52 88.81

� 97.16 87.52

� 97.40 88.39

� � 97.62 89.36

� � 97.58 89.05

� � 97.58 89.15

� � � 97.65 89.42

Bold values represent the maximum for PixAcc and mIOU

boundary loss functions and boundary branches. In the case
of adding only two loss functions, the model performance
further improves. It is worth noting that the experiments
of adding l1, l3 and adding l2, l3 yielded the same PixAcc
but different mIOU. This is normal because their calculation
processes are different. mIOU measures the average overlap
between predicted segmentation results and true labels, while
PixAccmeasures themodel’s ability to correctly classify pix-
els.mIOU ismore accurate in evaluating image segmentation
performance compared to PixAcc because it considers inter-
class relationships and spatially overlapping areas. When all
three auxiliary loss functions are added, the model achieves
its highest mIOU at 89.42%.

The effectiveness of BW, MDSC, and Bag, and the threefold
cross-validation

The BW,MDSC, and Bag modules were combined in differ-
ent ways to explore the impact of each module on the overall
network performance. As shown in Table 2, we find that
when none of the three modules participate in training, the
overall model accuracy is the lowest (97.16%), and mIOU
is only 87.61%. After adding the MDSC or Bag module,
the model’s mIOU increased by 0.59% or 0.75%, respec-
tively. When both MDSC and Bag modules are added, the
model’s mIOU reaches 89.16%, a relative improvement of
1.55% compared to the lowest accuracy. When only the BW
module is included in the model, the mIOU improves by
0.28%, but the effect of the BW module is not as significant
as that of the MDSC and Bag modules. The combination
of MDSC and Bag modules with the BW module improves
network performance, and the overall performance is high-
est when all three are added to the network, with PixAcc at
97.65% and mIOU at 89.42%.

From the results, our network model has a high PixAcc
without the BW, MDSC, and Bag modules. However, for
some data in the dataset, due to the lack of fine-grained
operations on features by these three modules, the model’s
segmentation results may have inaccurate segmentation or
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Table 2 BW, MDSC and Bag’s
ablation study and threefold
cross-validation

BW MDSC Bag PixAcc (%) mIOU (%) GFLOPs Parameters(M)

97.16 87.61 3.41 2.83

� 97.32 88.20 4.36 2.98

� 97.37 88.36 3.67 3.48

� 97.28 87.89 3.52 2.86

� � 97.61 89.16 4.62 3.63

� � 97.39 88.35 4.47 3.01

� � 97.42 88.49 3.78 3.51

� � � 97.65 89.42 4.73 3.66

Threefold cross-validation 98.11 91.24 4.73 3.66

Boldvalues represent themaximumforPixAcc andmIOU(excluding the results ofThreefold cross-validation),
or the minimum for GFLOPs and Parameters

Fig. 8 Comparison of visual results between BLSNet and BLSNet
without added modules

larger artifacts at gesture edges as shown in samples 1 and
2 in Fig. 8. This leads to a higher PixAcc but poorer results.
Therefore, on the overall dataset, incorporating these three
modules does not show significant improvement in PixAcc,
but it has more noticeable effects on result visualization and
mIOU.

In the threefold cross-validation, we randomly and uni-
formly partitioned the dataset. The model performed well,
with an average PixAcc of 98.11% and an average mIOU of
91.24%.

In addition, we evaluated the GFLOPs and parameters of
the model after adding each module. The addition of the
BW module, MDSC module, and Bag module increased
the GFLOPs of the model by 0.11, 0.26, and 0.95, respec-
tively, while the parameters increased by 0.03 M, 0.65 M,
and 0.15 M, respectively. Although the MDSC module has
more parameters, it only slightly increases the computational
complexity of the model. Moreover, it significantly improves
the mIOU of the model (+ 0.75). This shows that with the
help of the MDSC module, gesture features extracted by the
boundarybranch aremore effective, alsomeeting the needs of
lightweight network models. When these three modules are
added pairwise to the model separately, there is an improve-
ment in both GFLOPs and parameters. However, when all
three modules are added to the model, it achieves optimal
performance with only a slight increase of 1.32 GFLOPs and

Fig. 9 Feature visualization of the MDSC module

0.83 M parameters compared to not adding any modules at
all.

We visualize the features of the MDSC module and Bag
module. Figure 9 shows the feature visualization of the
MDSCmodule. The top row from left to right shows the orig-
inal input image and the visualization results of three random
channels in the output featuremap of theMDSCmodule. The
bottom row from left to right shows the ground truth and the
random three-channel output results of branches without the
MDSC module. Obviously, after adding the MDSC module,
the boundary features of the hand are more prominent, and
the contour is more complete. The output of the boundary
branch without this module does not have a clear division in
the gesture boundary area.

Figure 10 shows the feature visualization of the Bag mod-
ule, with the same layout as Fig. 9. The rightmost three
images in the top row are the Bag module output, and the
rightmost three images in the bottom row are the output fea-
ture maps of some branches without the Bag module. When
not using the Bag module, we directly add the three branches
together. From Fig. 10, it can be seen that under the guidance
of the Bag module, the network model can clearly deter-
mine the hand position and gesture boundary, while the result
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Fig. 10 Feature visualization of the Bag module

of directly adding the feature maps of the three branches
together does not have smooth and complete gesture edges,
and the overall judgment of the foreground and background is
also fuzzy and confused. Obviously, boundary features in the
Bag module can guide the integration of local detail features
and semantic features correctly.

Comparison with other methods

To test our model, we propose experimental comparisons
between BLSNet and HGRNet, DDRNet series, SegFormer,
and PP-LiteSeg series in terms of PixAcc, mIOU, GFLOPs
and parameter evaluation metrics.

Table 3 shows the statistical results of several segmenta-
tionmethods onOUHANDS data with the criteria of PixAcc,
mIOU, GFLOPs and parameters. From Table 3, we can see
that our model achieves the highest accuracy compared to
other segmentation models. Specifically, despite our model
having a parameter size of 3.66 M, which is second only to
HGRNet’s 0.28 M, its mIOU is 12.21% higher than HGR-
Net. DDRNet-23-slim is the lightest and fastest model in
the DDRNet series. Despite having the lowest GFLOPs at
1.85, DDRNet-23-slim’s mIOU is only 80.14%. Meanwhile,
DDRNet-39, having a parameter size of 32.65 M, has an
mIOU of only 80.02%. SegFormer-0 is a lightweight model

in the SegFormer series that uses self-attention mechanisms
to coordinate contextual information. Its model parameter
size is 3.71 M, but its mIOU is only 80.77%, which is much
lower than our model’s mIOU. PP-LiteSeg has been used
frequently as a benchmark for lightweight semantic segmen-
tation models, with the highest mIOU reaching only 86.23%,
which is 3.19% lower than our model, and the difference
in parameter size is significant. Thus, our model achieves a
good balance between computational complexity and accu-
racy while having a lower number of parameters, indicating
that our method canmeet the edge device interaction require-
ments, such as human–robot interactions.

Figure 11 presents several segmentations using compari-
son methods on typical images. We can see that our model
can still accurately distinguish the hand subject position
even under significant changes in background lighting, while
other models fail. In Sample 2, the hand position is clearly
overexposed, and other models mistakenly classify other
background positions as hands, but our model can still accu-
rately segment gestures. We speculate that this is largely due
to accurate boundary information extraction and guidance on
the local feature branch and semantical branch. Contextual
information is used to fill object areas outside the boundaries,
and detailed features complete gesture edges.

In this section, HGR1 is used to test the proposed
method. Table 4 shows the segmentation results on theHGR1
dataset. The BLSNet achieves the highest accuracy with
an mIOU of 96.83%. The mIOU of the proposed method
is 0.81% higher than that of PP-LiteSeg-B, obtaining the
second-highest accuracy among the comparison methods.
Furthermore, despite having a higher computational com-
plexity of 4.73 GFLOPs compared to other methods, such
as DDRNet-23-slim, SegFormer-b0, and HGRNet-seg, our
method far surpasses them in terms of accuracy. The param-
eters are an indicator of model size, and our model has a
parameter count of 3.66M, which is only slightly higher than
HGRNet-seg’s 0.28 M. The segmentation results for several
typical images in HGR1 are presented in Fig. 12, fromwhich
we can see that BLSNet performs significantly better than

Table 3 Performances of
different approaches on the
OUHANDS dataset

Method PixAcc (%) mIOU (%) GFLOPs Parameters (M)

HGRNet-seg [9] 94.64 77.21 3.07 0.28

DDRNet-23-slim [33] 95.25 80.14 1.85 5.73

DDRNet-23 [33] 95.32 80.95 7.26 20.29

DDRNet-39 [33] 95.10 80.02 14.25 32.65

SegFormer-b0 [42] 95.55 80.77 2.64 3.71

PP-LiteSeg-T [43] 96.60 85.66 7.15 13.52

PP-LiteSeg-B [43] 96.83 86.23 12.32 21.58

BLSNet 97.65 89.42 4.73 3.66

Bold values represent the maximum for PixAcc and mIOU, or the minimum for GFLOPs and Parameters
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Fig. 11 An illustration of the segmentation performance of different methods on the OUHANDS dataset

Table 4 Performances of
different approaches on the
HGR1 dataset

Method PixAcc (%) mIOU (%) GFLOPs Parameters (M)

HGRNet-seg [9] 97.55 92.97 3.07 0.28

DDRNet-23-slim [33] 97.88 93.95 1.85 5.73

DDRNet-23 [33] 97.96 94.14 7.26 20.29

DDRNet-39 [33] 98.25 94.98 14.25 32.65

SegFormer-b0 [42] 98.57 95.92 2.64 3.71

PP-LiteSeg-T [43] 98.59 95.94 7.15 13.52

PP-LiteSeg-B [43] 98.62 96.02 12.32 21.58

BLSNet 98.90 96.83 4.73 3.66

Bold values represent the maximum for PixAcc and mIOU, or the minimum for GFLOPs and Parameters

other methods in restoring finger details, obtaining overall
contours and removing the background.

Conclusion

Gesture segmentation in cluttered backgrounds poses a sig-
nificant challenge, and traditional encoder–decoder networks
are susceptible to information loss through repeated down-
sampling. The dual-branch architecture is inadequate in
fusing detailed and contextual information about the ges-

tures. Thus, based on the Bayesian framework, we propose
BLSNet to segment the hand gesture images, comprising
three branches devoted to extracting advanced boundaries,
local information, and semantic information of the ges-
tures. Extra semantic supervision is used to direct each
branch’s task. By establishing bridges between branches and
activating a BWmodule between them, the feature represen-
tation and learning ability of each branch can be enhanced.
We further exploit the MDSC module to improve the fea-
ture extraction ability of the boundary branch. Finally, the
Bag module blends the semantic and local characteristics
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Fig. 12 An illustration of the segmentation performance of different methods on the HGR1 dataset

governed by the boundary information, yielding accurate
gesture segmentation results. Experiments demonstrate that
our network delivers higher accuracy than other lightweight
networks while striking an optimal balance between compu-
tational complexity and accuracy.
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