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Abstract
To address the challenges of traffic congestion and suboptimal operational efficiency in the context of large-scale applications
like production plants and warehouses that utilize multiple automatic guided vehicles (multi-AGVs), this article proposed
using an Improved Q-learning (IQL) algorithm and Macroscopic Fundamental Diagram (MFD) for the purposes of load
balancing and congestion discrimination on road networks. Traditional Q-learning converges slowly, which is why we have
proposed the use of an updated Q value of the previous iteration step as the maximum Q value of the next state to reduce
the number of Q value comparisons and improve the algorithm’s convergence speed. When calculating the cost of AGV
operation, the traditional Q-learning algorithm only considers the evaluation function of a single distance and introduces an
improved reward and punishment mechanism to combine the operating distance of AGV and the road network load, which
finally equalizes the road network load. MFD is the basic property of road networks and is based on MFD, which is combined
with theMarkov Chain (MC)model. Road network traffic congestion state discriminationmethodwas proposed to classify the
congestion state according to the detected number of vehicles on the road network. The MC model accurately discriminated
the range near the critical point. Finally, the scale of the road network and the load factor were changed for several simulations.
The findings indicated that the improved algorithm showed a notable ability to achieve equilibrium in the load distribution of
the road network. This led to a substantial enhancement in AGV operational efficiency.

Keywords Multi-AGVs · Improved Q-learning · Macroscopic fundamental diagram · Congestion state discrimination ·
Load balancing

Introduction

The expansion of logistics and warehousing, manufacturing,
and unmanned transportation has been characterized by its
rapid rise. There is a pressing need for the implementation of
intelligent warehouse and distribution systems [1]. Among
them, an automated guided vehicle (AGV) is one of the key
elements to realize an intelligent warehousing and distribu-
tion system [2]. In large-scale AGV distribution systems,
factors such as site constraints and path conflicts render AGV
distribution less efficient, and the resulting traffic congestion
problems are becoming more apparent [3]. Therefore, traffic
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congestion can be reduced by optimizing vehicles’ routes or
making connections between vehicles. This will make the
road network more efficient and load-balanced [4].

The algorithms used to solve AGV road network load-
ing are generally classified as classical, swarm intelligence,
and machine learning algorithms [5]. Traditional algorithms
such as the A* algorithm and the Dijkstra algorithm are
commonly utilized in path planning problems. Traditional
algorithms have a long running time and are rarely used
for road network loading problems [6]. Swarm intelligence
algorithms such as genetic algorithms and the Artificial Bee
Colony algorithm are often employed for path planning,
vehicle scheduling, and load balancing problems. The dis-
advantage of the algorithms is that they can only be used for
single AGV or small-scale AGV scheduling problems, take
a longer time, and operate less efficiently in solving load
balancing problems [7]. Machine learning algorithms can
be categorized into three distinct types, namely supervised
learning, unsupervised learning, and reinforcement learning
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tasks. Training data is essential for both supervised and unsu-
pervised machine learning approaches to simulate the job
[8]. Reinforcement learning tasks rely on real-time interac-
tion between the system and the environment, which has
tremendous advantages in handling path planning, cluster
scheduling, and road network load balancing for large-scale
AGVs [9].

As a type of classical reinforcement learning algorithm, as
shown inFig. 1,Q-learning algorithms have problems such as
high computational effort and slow convergence in discrete
states [10]. Devraj et al. proposed a matrix gain algorithm
designed to address the problem of slow convergence by con-
tinuously updating the equation through two-time scales of
the matrix gain sequence to optimize its asymptotic variance
[11]. Low et al. introduced a guided concept to Q-learning
that used a flower pollination algorithm (FPA) to enhance
the initialization of Q-learning, which used FPA to initial-
ize the Q value to accelerate the convergence of Q-Learning
that verified the effectiveness of the algorithm [12]. After
optimizing the Q-learning algorithm, many researchers have
applied the improved algorithm in path planning for AGVs,
while some have applied the improved algorithm in load bal-
ancing of road networks for AGVs [13]. Roh et al. proposed
Q-learning-based load balancing routing to estimate the net-
work by intermediate nodes in road networks obtained by
queue states from each ground vehicle node using low over-
head technique for load; they showed an improvement in
packet delivery ratio, network utilization, and delay [14].
Sethi et al. proposed an online Federated Deep Q-learning-
based Offloading technique for vehicular fog computing that
reduces load factor by finding the connection between the
unit and the server through global information. This pro-
vides an excellent concept for our project [15]. However,
when multiple vehicles pass through the road network, that
queue state can be complicated and difficult to obtain.

In addition to the traditional Q-learning algorithms, the
research of many cutting-edge algorithms also brings impor-
tant references to the research work in this paper [16].Xiao
et al. present a deep contrastive representation learning with
self-distillation (DCRLS) for the time series domain.DCRLS
gracefully combines data augmentation, deep contrastive
learning, and self-distillation [17]. Song et al. Evolutionary

Multi-Objective RL (EMORL) algorithm to solve trajec-
tory control and task offloading problems. They improve the
multi-task multi-objective proximal policy optimization of
the original EMORLby retaining all new learning tasks in the
offspring population, which can preserve promising learning
tasks [18].

Within a region characterized by an intricate road net-
work, there exists a functional relationship that establishes a
correlation between the quantities of vehicles present on the
road network. This relationship correlates with the overall
aggregate number of cars. The MFD is a key characteris-
tic of road networks that visually and accurately represents
dynamic traffic patterns [19]. This relationship serves as
a means to establish the MFD. Ambühl et al. proposed a
technically feasible traffic state-based upper bound smooth
approximation form of the MFD function, and the MFD
curve is estimated analytically by adjusting the function
parameters [20]. To address the multi-scale and uncertain
distribution of vehicles on the road, Shen et al. used the
K-means-GIoU algorithm to enhance the network’s focus
on the main regions, and experiments have shown that the
algorithm can detect vehicles quickly [21]. Geroliminis et al.
proposed a three-dimensional vehicle MFD model, which
clusters the network into a few regions with similar mode
composition, congestion levels, and integrated traffic strat-
egy for a bimodal multi-regional urban network that divides
the priority between multiple vehicles [22]. In urban road
networks, the interaction between different modes signifi-
cantly affects overall travel efficiency. MFDs can be fitted
when traffic data are complete, but updated functional forms
need to be designed to estimate MFDs when scanty or no
data is available [23]. Loder et al. introduced a novel func-
tional form for determining operational features of a given
topology by utilizing lower envelope parameters. The esti-
mation of smoothing parameters in this process is achieved
by utilizing traffic data, ensuring that the values consistently
maintain similarity. Approximation can also be achieved for
many networks [24]. Halakoo et al. analyzed the accuracy
of the proposed e-MFD for directed traffic demand using a
synthetic grid network and a real city-level network. The pro-
posed model can be employed for emission measurement in
large-scale networks and hierarchical traffic control systems
for more homogeneous congestion distribution and emission
control [25].

The proposed MFD model in this study differs from
existing approaches by avoiding the use of approximation
techniques. Instead, it solves the critical point with a cubic
function derived from the fitting result. This method offers
improved accuracy in assessing the road network status. For
AGV load balancing, road network conflict or congestion is
resolved by optimization algorithms and verified with con-
structed maps through simulation experiments. When a road
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network congestion problem is solved, rarely is the evalu-
ation metric studied, the MFD [26]. In the study of MFD,
the functional relationship is often studied to fit or estimate
the MFD curve from acquired vehicle data, from which spe-
cific data are derived by simulation and the data are analyzed
[27]. There are few studies where multiple AGVs operate on
a road network to derive data and use one evaluation metric
to analyze the data accurately.

The improvement ofQ-learning algorithmby existing arti-
cles, although all of them finally converge, the problem of
too high computation is still not well solved. The reward and
punishment functions are also fixed surrogate value rewards
and do not optimize the road network as it changes in real
time. In the study of load balancing, the problem is solved
when the algorithm converges at the end of the simulation.
However, there is hardly any mention of the analysis of the
simulation data. This is, i.e., whether the state of the road
network at this time can be accurately determined according
to the number of AGVs.

Based on the above issues, we propose an Improved
Q-learning algorithm applied to the field of multi-AGV
load balancing for the problems of slow convergence of Q-
learning algorithm and AGV road network load congestion.
The research can bring inspiration and theoretical experience
to the construction of smart logistics factories. The improved
algorithm can improve transportation efficiency and equalize
road network load when multiple AGVs are actually operat-
ing.

The proposed method in this paper differs from other
methods by replacing the learning rate of the Q-learning
update criterion with a larger learning rate, so that the algo-
rithm’s convergence speed is improved. In action selection,
partial sampling in the space of optimal joint actions Q*(s,
a) can effectively reduce computation in the learning phase.
The length coefficient and load coefficient are innovatively
introduced to optimize road network load in real time. This is
done by combining AGV running distance and the regional
load on the road network. The MFD based on MC model is
also established to accurately identify the congestion state of
the road network. This lays a theoretical foundation for the
study of AGV road network load.

After obtaining data on the road network, curve fitting of
MFD based on MC model can accurately discern different
congestion states of roads according to the number of AGVs
on the road network, allowing technicians to grasp the field
state more intuitively, as shown in Fig. 2.

The IQL algorithm proposed in this paper has a poor strat-
egy for agents to update the Q value at the beginning of
training. The use of the current estimation function as the
historical estimation function will have a large error. This
will make the algorithm learn a poor lesson at the beginning
of training.

Im
proved algorithm

Q-Learning algorithm

Balanced load

Validation algorithm

MFD verification

Fitting curve

Fig. 2 General framework diagram

Therefore, this paper proposes to use the Q value updated
by the joint action after the agent’s previous iteration step as
the maximum Q value of the next state. This will reduce the
number ofQ value comparisons and improve the algorithm’s
convergence speed of the algorithm. Instead of exhaustively
exploring all possible joint action Q values, this improve-
ment uses a partial sampling approach to explore the space
of optimal joint actions Q*(s, a) and identify the greatest Q
value. This can effectively reduce computational effort in the
learning phase.

When multiple AGVs run on the road, the computation is
still large and convergence is slow.

The reward and punishment function in the Q-learning
algorithm is improved by replacing the purely numerical
reward value with the form of an algebraic function, so that
the AGV road network load decreases with the change of the
algebraic function. To avoid local excessive traffic flowwhen
multiple AGVs operate on a road network, the operating dis-
tance of AGVs and the area load on the road network are
combined. The length factor and load factor are introduced
to obtain the optimal coefficient value by experiment. MFD
is introduced to accurately discriminate the congestion of the
road network. It is combinedwithMCmodel andMFD curve
fitting using data obtained from AGV operation on the road
network. According to the different area divisions in MFD,
the road network stage was determined. For the critical point
attachment range, the MC model was used to make accurate
judgments.
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Fig. 3 Raster serial number map

Finally, the IQL algorithm was simulated and verified on
a constructed raster map and compared experimentally with
other optimization algorithms. AGV road network operation
data are used to fit MFD curves using simulation software
based on AGV road network operation data.

Environmental modeling

The map modeling of the AGV path planning environment
was modeled by the raster construction method [28]. In the
raster map, raster grids that are in the obstacle area are rep-
resented in black and are considered obstacle areas. Other
grids are represented in white and considered passable areas.
The coordinates of the first grid in the lower left corner of the
coordinate system are actually (1.5, 1.5), which after round-
ing are (1, 1), corresponding to the ordinal number 1 in the
raster map, the ordinal number of the grid with coordinates
(1, 2) is 2, and so on. The coordinates of the grid (x, y) and
the ordinal number i are one-to-one mapped to each other,
with the mapping formula shown in Eq. (1).

⎧
⎪⎨

⎪⎩

xi � l ∗ [mod(i , nx ) − l]

yi � l ∗
[

n − int

(
i

ny

)

+ l

]
, (1)

where nx is the mapped row, ny denotes the mapped col-
umn, mod and int are the remainders and integer operations,
respectively, i denotes the label of the grid, and l denotes the
side length of the grid square.

According to the above mapping rules, grid 5 corresponds
to the coordinates of (1, 5). The grid serial number corre-
sponds to Fig. 3.

Improvement of the Q-learning algorithm

Principle of Q-learning algorithm

TheQ-learning algorithm is amodel-free value function rein-
forcement learning algorithm [29]. The algorithm can be
described formally by the Markov Decision Process (MDP)
framework [30]. The MDP can be defined by a five-tuple
(A, S, P, R, γ ), where a ∈ A, s ∈ S, r ∈ R. A denotes the
action space, the set of all legal actions that can be taken.
S denotes the state space. P denotes the state transfer prob-
ability matrix, which defines the probability that the agent
generates state s‘ after interacting with the environment and
transfers to the new state s′ after acting a according to state.

R is the reward generated after the agent (in this paper,
the agent is AGV) interacts with the environment to produce
action a, the environment state changes from state s to the
new state s′. The evaluation of a strategy often relies on the
cumulative reward acquired by an agent through a series of
actions. A higher cumulative reward is indicative of a more
favorable strategy, with the sum of the cumulative reward
values of the states defined as presented in Eq. (2).

Rt � rt+1 + γ rt+2 + γ 2rt+3 + · · · �
∞∑

k�0

γ krt+k+1 (2)

Equation (2) represents the cumulative return, rt+1 was the
reward of environmental feedback after the agent selected
and makes an action at the moment t + 1. γ ∈ (0,1) was
the discount factor. When the value of γ was equal to 0, the
agent only considered the next step reward. As the value ofγ
tended to 1, more future rewards were considered. In some
situations, the present reward was more significant, while in
others, the future reward was more important. Depending on
what was needed, theγ value could be adjusted.

According to the current environment state, the agent gen-
erates the corresponding actions. The generated states and
actions are stored in aQ table. If the state–action pair receives
positive environmental rewards, its corresponding Q value
will keep increasing, while in a negative environment, it will
keep decreasing. After each training round,Q (s, a) gradually
approachesQ *(s, a). TheQ table formula updates with each
round based on the Bellman equation [31] (Eq. 3), as shown
in Fig. 4.

Q(s, a) ← Q(s, a) + α
[
rt + γ maxa Q(s′, a) − Q(s, a)

]
.

(3)

As in Eq. (3), α ∈ (0, 1) was the learning rate, rt was the
reward the agent received when choosing an action.
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Fig. 4 Q-learning flow chart
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The strategy π was the probability of the agent taking action
a at state s, which was defined by Eq. (4):

π(a|s) � P[A � a|S � s] (4)

From Eq. (4), it could be seen that π described the agent’s
action, which only related to the current state s’, independent
of the other states, from which π was independent of time.
Q*(s, a) denotes the value of Q corresponding to the opti-
mal joint action a* � (a1*, a2*,· · ·, an*) in state s. π*(a|s)
� (π1* (a|s), π2* (a|s),· · ·, πn* (a|s)) denotes the optimal
joint strategy corresponding to the optimal joint action in the
current state.

The AGV performs the selection of action a at state s. The
optimal joint strategy π*(a|s) was selected with probability
η, other actions were selected with probability 1 – η. At this
point, the AGV received a reward rt , Q*(s, a) synchronized
with theQ value update, where the AGV received the reward
as the global reward under the optimal joint action.

Based on Eq. (3), the updated formula of the Q-learning
algorithm can be rewritten as:

Q(s, a) ← (1 − α)Q(s, a) + α
[
rt + γ maxa Q(s′, a)

]
(5)

Let maxa′Q(s′, a′) be the maximum Q value of the next
state when the Q value of the state action (s, a) is updated in
the previous iteration step. Then the Q value update formula
of the algorithm at this point is:

Q(s, a) ← (1 − α)Q(s, a) + α
[
rt + γ max′

a Q(s′, a′)
]

+(1 − α)γ
[
maxa Q(s′, a) − max′

a Q(s′, a′)
] (6)

According to Eqs. (5) and (6), it can be seen that the main
difference between the two is that the learning rate before
[maxaQ(s′, a) – maxa′Q(s′, a)′] is different, and the learning
rate of the Improved Q-learning algorithm is (1 – α), which
improves the agent’s convergence speed.

When training the AGV, the algorithm did not iterate
through all joint action Q values after updating the Q val-
ues in the previous iteration step. Instead, a partial sample
was taken from the space of optimal joint actions Q*(s, a) to
find the maximumQ value. This could effectively reduce the
computational effort in the learning phase [32]. According to
the design requirements of this algorithm, the equivalence of
Eq. (6) was updated, so that the updated equation was shown
in Eq. (7).

Q(s, a) ← (1 − α)
[
Q(s, a) + γ maxa Q(s′, a)

]

+αrt+(2α − 1)γ max′
a Q(s′, a′)

(7)

To facilitate the algorithm description, Eq. (7) is equiva-
lently deformed, and to avoid the algorithm’s learning rate
being too adventurous, the learning rate for obtaining the
maximum Q value of the next state is improved from (2α –
1) to (3/2α – 1) to obtain Eq. (8):

Q(s, a) ←
(

1 − 1

2
α

)
[
Q(s, a) + γ maxa Q(s′, a)

]

+ αrt+

(
3

2
α − 1

)

γ max′
a Q(s′, a′) (8)

Let Qn(s, a) be the value of Q at the nth iteration,and
replace the learning rate αn with 1/n(s,a). The updated for-
mula is shown in Eq. (9):

Qn+1(s, a) ←
(

1 − 1

n(s, a)

)

Qn(s, a) +
1

n(s, a)

× [
rn + γ max′

n−1 Q(s′, a′)
]
+

(

1 − 1

n(s, a)

)

γ

× [
maxn Q(s′, a) − max′

n−1 Q(s′, a′)
]

(9)
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An equivalent update to the above equation:

Qn+1(s, a) ←
(

1 − 1

n (s, a)

)

×
n∑

i�1

[

ri + γ

(

1 − 1

n (s, a)

)

maxn Q(s′, a)
]

(10)

Proof: When n � 1, Q2 � r1 + γmax0Q(s′,a) � r1.

Assuming that Eq. (10) holds when n � k, we have:

Qk(s, a) ←
(

1

k(s, a) − 1

)

×
k−1∑

i�1

[

ri + γ

(

1 − 1

k(s, a) − 1

)

maxk−1 Q(s′, a)
]

(11)

When n � k + 1, then we have:

Qk+1(s, a) ←
(

1 − 1

k(s, a)

)

Qk(s, a) +
1

k(s, a)

× [
rk + γ maxk−1 Q(s′, a)

]
+

(

1 − 1

k(s, a)

)

γ

× [
maxk Q(s′, a) − max′

k−1 Q(s′, a′)
]

(12)

Organized and finally available:

Qk+1(s, a) ← 1

k(s, a)

k−1∑

i�1

ri +

[
1

k(s, a)
(k(s, a) − 1)

−
(

1 − 1

k(s, a)

)]

γ max′
k−1 Q(s′, a′)

+

(

1 − 1

k(s, a)

)

γ maxk Q(s′, a) (13)

The proof is complete.
It can be seen in Eq. (10) that by replacing the function of

historical Q estimation with the estimation function of cur-
rent Q, the agent continuously optimizes the strategy based
on learned experience. This improves the algorithm’s con-
vergence speed.

Improving the reward and punishment function

After improving the reward and punishment function, the
number of AGV runs is set to 100u (u ∈ N+) task times.
The path length of each AGV running on the road network is
recorded. In addition, the amount of roadnetwork load at each
point on the rastermap is extracted. The essence ofAGV load
balancing is based on the traditional Q-learning algorithm,
which takes load factor into account in the actual path cost

[33]. That is, the operating distance and the road network
load are combined. The setting of the reward and punishment
function will directly affect the operating efficiency of AGVs
on the road network.

Set the path planning reward and punishment function of
the traditional Q-learning algorithm as shown in Eq. (14).

rt �
{
100 target state
−1 other states

(14)

The Q-learning algorithmwas used to allow a single AGV
to perform path planning in a road network. According to
the design of the reward and punishment function, during
the interaction between the AGV and the environment, the
AGV received a reward of 100 when it reached the target
state and a penalty of − 1 when in other states. Finally, the
Q-matrix was judged to be convergent. The training ended if
it converged, otherwise it continued.

For multi-AGVs, the reward of only the target state and
other states is not enough to complete the training com-
plete.Node conflicts arise when multi-AGVs operate, so the
effectiveness of IQL algorithm is verified by adding trap
barriers to the road network. The multi-AGV reward and
punishment function is set as shown in Eq. (15).

rt �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

100 target state
−50 same position penalty
−90 trap punishment
−1 other states

(15)

The multi-AGV reward and punishment function was
enhanced by incorporating the same position penalty and
trap penalty. When two AGVs ran to the same node posi-
tion on the road network, a node conflict would occur.
A − 50 colocation penalty would be given to AGVs when
they fell into a trap. A trap penalty of − 90 was also given
when an AGV fell into a trap. Although the four-state reward
and punishment function improved the effectiveness of the
singleAGVoperation,multipleAGVswould continue to pro-
ceed to this location after the punishment. This was due to the
road network map limitation when they passed through the
same location, which was not a perfect condition restriction.

For a better solution to road network congestion, path
length and load are set in the reward andpunishment function.
It allows AGVs to effectively avoid local high load areas on
the road network. It also improves the operational efficiency
of the road network while avoiding conflicts between multi-
ple AGVs.
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The reward and punishment function based onmulti-AGV
load balancing is set as shown in Eq. (16).

rt �
{
100 target state
−δdt (x) − βLoad(x) other states

(16)

The δ ∈ (0, 1) in Eq. (8) is the path length coefficient, dt
(x) is the sum of the paths taken by the AGV, dt (x) � d1 +
d2 + · · · + dt , t ∈ (1, n), β ∈ (0, 1), is the load factor. Load (x)
is the number of vehicles passed by the current node on the
road network. When δ equals 0, the function only takes into
account the load factor as a penalty value. Whenβ equals
0, the function only considers the path length as a penalty
value. When both are 0, the function does not consider load
balancing. Setting the path length and load in the reward
and penalty function can make AGVs operating on the road
network choose the optimal path according to the size of the
load in the sub-region or the length of the travel length. This
approach allows AGVs to avoid areas with high local loads,
ultimately leading to road network optimization.

The Improved Q-learning algorithm can be summarized
as the following pseudocode:

Algorithm: Improved Q-learning algorithm

Input: episodes, α, γ, δ, β
Output: Q
Initialize: set Q(s, a) arbitrarily, for each s in S and a in 

A(s), set Q(terminal state, ) = 0

Repeat for each episode in episodes

Initialize: S ← first state of episode

Repeat for each step of episode

A = policy(Q, S) (e.g. ε-greedy policy)

R = -δdt(x)- βLoad(x), S' = perform_action(S, A)

Q(S, A) ← (1-1/2α) [Q(S, A)+γ maxa Q(S', A)]

+αR +(3/2α-1) γ maxa Q(S', A)

S ← S'
Until S is terminal state.

Until all episodes are visited.

Macroscopic fundamental diagram drawing

TheMFD is a graphical representation that depicts the corre-
lation between the cumulative quantities of cars present on a
road network. It also depicts the quantity of vehicles exiting
the road network. In a general sense, the horizontal axis is
utilized to denote the cumulative quantity of cars present on
the road network. The vertical axis denotes the quantity of
cars exiting the road network. After acquiring the operational
data of AGVs on the road network with the IQL algorithm,
it is necessary to preprocess the data to enhance the perfor-
mance of subsequent tests [34]. According to the congestion
status of vehicles on the road network, we divided the MFD
into four states in this paper [35].

Fig. 5 Macroscopic fundamental diagram

The graph depicted in Fig. 5 illustrates a notable and swift
increasing trajectory in correlation with the escalating influx
of automobiles into the road network. As the influx of auto-
mobiles into the road network persists, the volumeof vehicles
present on the road network will progressively grow. At this
time, the road network reaches its maximum critical point.
After reaching the critical point, there is a tendency for the
road network load to become saturated, resulting in a steady
decrease in the number of vehicles traveling inside the road
network. This decrease is seen by a noticeable curve decline.
The MFD of the whole road network can be plotted using
function fitting with AGV operational data [36].

Determination of the range near the critical point

How to quickly identify the graphical critical points of traffic
congestion after drafting the basic macroscopic map of the
road network is the key to solving the problem [20]. The col-
lected data are utilized to fit the MFD curve, resulting in the
equation y � f (x) for the curve. The first-order derivative y′
� f ′ (x) is found for the curve equation to analyze the curve
change trend and derive the curvature change turning point.
The curvature is expressed in c. To facilitate calculation,
MFD steady and unsteady flows are considered intermedi-
ate flows. The rising, middle, and falling segments of the
curve can be judged according to the curvature magnitude
[37].

The important values xl and xr in Fig. 5 can be obtained by
solving the equations. Since the vehicles change with time,
there will be small fluctuations near the critical point. Define
the fluctuation value as x′. The range near the critical point xl
is (xl– x′, xl + x′), the range near the critical point xr is (xr–
x′, xr + x′). MC models are used in this paper to accurately
discriminate road network status when road network vehi-
cles are near the critical point. When road network vehicles
are not in the range near the critical point, the road network
congestion status is directly judged.
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Table 1 Congestion state
discriminative method based on
MC model

State at time T Yt+1 Set state Ppq Final state discrimination

Free flow Yt+1 > c Free flow 1 Free flow

– c ≤ Yt+1 ≤ c Intermediate flow 0 Free flow

Yt+1 < –c Congestion flow 0 Intermediate flow

Intermediate flow Yt+1 > c Free flow 0 Intermediate flow

– c ≤ Yt+1 ≤ c Intermediate flow 1 Intermediate flow

Yt+1 < –c Congestion flow 0 Intermediate flow

Congestion flow Yt+1 > c Free flow 0 Intermediate flow

– c ≤ Yt+1 ≤ c Intermediate flow 0 Congestion flow

Yt+1 < –c Congestion flow 1 Congestion flow

Determination of congestion status
within the vicinity of the critical point

When the road network vehicles are in the range near the crit-
ical point, the MC model congestion discrimination method
is established. The critical point state is divided, as shown in
Eq. (17), as the equation for the rate of change in time is t +
1.

Yt+1 � ft+1(x) − ft (x)

xt+1 − xt
, (17)

where f t (x) is the number of vehicles leaving the road net-
work at time t, f t+1 (x) is the number of vehicles leaving
the road network at time t + 1. xt is the number of vehicles
on the road network at time t, and xt + 1 is the number of
vehicles on the road network at time t + 1. The MFD state
could be judged according to the magnitude of the rate of
change Y in Eq. (9). When the rate of change of Y was low,
it was close to the horizontal segment when the state of the
road network was an intermediate segment composed of sta-
ble and unstable flows. When the value of Y is too large or
too small, it corresponds to free flow and congested flow in
MFD, respectively.

The MC model depends only on its previous state on the
probability of state transfer at a givenmoment. Theutilization
ofMCmodels has been extensively employed in various time
series models [38]. The core of the MC model is the state
transfer matrix P � [Ppq]n×n, where Ppq is the probability
that the system is in state p at the moment t and in state q
at the moment t + 1. n is the number of all possible states
of the system [39]. The number of n is the number of all
possible states of the system, while the state transfer matrix
for determining the congestion state of the road network is
shown in Eq. (18).

P �
⎛

⎜
⎝

P11 P12 P13
P21 P22 P23
P31 P32 P33

⎞

⎟
⎠ �

⎛

⎜
⎝

1 0 0
0 1 0
0 0 1

⎞

⎟
⎠. (18)

The transfer probability was represented by 0 and 1
integers, with 0 representing that the p state could not be
transferred to the q state and 1 representing that the p state
can be transferred to the q state [40]. The state transfer matrix
could judge the traffic state near the critical point, with the
discrimination method shown in Table 1.

Judgment of congestion status outside the range near the
critical point.

When the vehicles on the road network are outside the
range and near the critical point, steady flow and unsteady
flow are first grouped into one category, i.e., intermediate
flow, for the convenience of calculation. The congestion state
is discriminated as shown in Eq. (19).

M �

⎧
⎪⎨

⎪⎩

0 ≤ nt < xl Free flow
xl ≤ nt < xr Intermediate flow
nt ≥ xr Congestion flow

, (19)

whereM denotes the congestion level of the road network
at time t, nt is the number of vehicles detected on the road
network at time t, as well as nt did not belong to the range
within the vicinity of the critical point.

Simulation experiments

To verify the effectiveness of the IQL algorithm, AGV road
network load balancing simulation experiments were con-
ducted in MATLAB 2022a. Based on the data obtained from
the experiments, theMFDcurve simulationwas performed in
PTVVissim 8. First, the convergence speed of IQL algorithm
was verified, comparing the Improved Artificial Bee Colony
(IABC) algorithm,Q-learning algorithm, and IQL algorithm.
Second, IQLalgorithmwas applied to load balance theAGVs
on the road network in raster maps of different sizes. Finally,
the gathered data were used to simulate the AGV road net-
work in the simulation software. The obtained data points
were used to fit the MFD curve to complete the evaluation
index of the road network. Table 2 shows experiment-related
parameters.
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Table 2 Related parameter settings

Parameters Value

α 0.2

γ 0.9

ε 0.8

δ 0.5

β 0.95

c 0.15

n 3

η 0.75

u 50

Fig. 6 Comparison of convergence speed

Comparison of convergence speed of improved
algorithms

The task volume was set to 100u times and u � 50, three
different algorithms were used to perform road network
simulation experiments for multi-AGVs, respectively. An
Improved Artificial Bee Colony (IABC), A*, Q-learning,
and IQL algorithms were compared in terms of convergence
speed to verify the effectiveness of the algorithms.

By comparing the four different algorithms, Fig. 6 shows
that the IQL algorithm reaches convergence first. However,
at the beginning of the algorithm, the IQL algorithm con-
verges poorly at the beginning of the iterations. This is due
to the fact that the IQL algorithm replaces the estimation of
the historical Q value with the estimation of the current Q
value. The number of AGVs in the road network is small,
and the reward and penalty functions are more complex than
the algebraic form. By partial sampling of the Q value to
select the maximum value, the reward and penalty functions

Table 3 Number of iterations for convergence of the algorithm

Algorithm Number of iterations

IABC 17,504

A* 16,226

Q-Learning 15,731

IQL 13,418

work together with the road network load, and the algorithm
rapidly converges.

The Q-learning algorithm uses a reward in the form of a
surrogate value for the simulation. At the beginning, there
is no “drag” between the reward and punishment functions,
so it converges faster than the IQL algorithm at the begin-
ning. As the number of AGVs in the road network increases,
the Q-learning algorithm decreases slowly when faced with
more and more data, especially when the traffic volume in
the road network increases, and the convergence speed of the
algorithm decreases rapidly.

A* algorithm belongs to one of the heuristic algorithms,
which obtains the optimal route by finding the shortest
path between the start point and the end point. IABC is an
Improved Artificial Bee Colony algorithm. It can converge
faster by introducing Euclidean distance to make the bee
colony find the honey source location more accurately. Both
algorithms have more iterations than reinforcement learning
algorithms and converge slower than the previous two. The
reason for this is that it does not allow road network load
optimization in real time like the IQL algorithm.

The number of iterations for each algorithm is shown in
Table 3. Through simulation and analysis, it is concluded that
the IQL algorithm has the fastest convergence, Q-learning is
the second fastest, and the A* and IABC algorithms have the
slowest convergence.

IQL algorithm-based road network load balancing

In the AGV load balancing experiment on the road network,
the starting and ending points of 5000 AGV tasks were kept
constant. The road network load before and after load bal-
ancing was compared. The δ and β values were tested several
times in the experiment to find the optimal value. When both
variables were equal to zero, as was the situation prior to load
balancing implementation.

Initially, let one of the AGVs ran on the road network,
which would then update the load data for this ran. The later
AGVs used the same method until all AGVs had updated the
road network situation. The AGVs ran on the road network
route so that the left and right sides could enter and exit at
the same time. The AGVs were in operation status as shown
in Fig. 7.
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Agvs exiting

the network

Agvs into the

road network

Fig. 7 AGV operation on the road network

Fig. 8 10 × 10 road network load when δ � β � 0

Road network simulation experiments were conducted on
10 × 10 road networks for AGVs before and after load
balancing, respectively. The situation before and after load
balancing is shown in Figs. 8 and 9.

The road network simulation experiments were conducted
on AGVs before and after load balancing in 20 × 20 road
networks. The situation before and after load balancing is
shown in Figs. 10 and 11.

It could be seen that after improving the reward and
punishment function, that IQL algorithm could effectively
balance the road network load. In addition, it could also test
the values of δ and β to find the optimal values.

In the 10 × 10 road network, the top area load reaches
1311. After lapping, the overall network load is around 700,
it could be seen that the total load increases proportionally
with the area load. In the 20 × 20 road network, the highest
area load reached 910; after load balancing, the overall road

Fig. 9 10 × 10 road network load when δ � 0.5, β � 0.95

Fig. 10 20 × 20 road network load when δ � β � 0

Fig. 11 20 × 20 road network load when δ � 0.5, β � 0.95
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Table 4 Standard deviation of road network load

Map size Pre-load
balancing

After load
balancing

Decrease/%

5 × 5 445.63 230.61 48.25

10 × 10 261.08 96.57 63.01

15 × 15 150.58 40.35 73.20

20 × 20 120.75 28.34 76.53

Table 5 Average load of the road network

Map size Pre-load
balancing

After load
balancing

Increase/%

5 × 5 1321.87 1329.31 0.56

10 × 10 708.64 710.18 0.22

15 × 15 435.39 450.73 3.5

20 × 20 350.76 375.92 7.1

network load was around 370. The ingress and egress load of
the road network was relatively stable. Because the ingress
and egress were determined by randomly generated tasks,
which had little or no change in the load with and without
considering load balancing.

With load balancing implemented,AGVshad the ability to
navigate strategically through the road network to avoid high
load areas. As a result, AGVs will choose paths with lower
load levels rather than strictly adhering to the shortest path. To
study the impact of the load reward and punishment function
on the overall road network, this paper conducted several
experiments on different size maps. Comparison of standard
deviation variations of various road networkmodels and their
relationship with the average load on the road network was
made. This is shown in Tables 4 and 5.

The analysis of Tables 4 and 5 reveals a noteworthy reduc-
tion in the standard deviation of the load following load
balancing implementation, facilitated by the introduction of
a reward and punishment system. However, it is worthwhile
to note that the average load of the road network experienced
only a marginal rise. So, the IQL algorithm could effectively
balance the load of the road network and improve the oper-
ation efficiency of the road network.

MCmodel-basedMFD fitting

VISSIM simulation software was used to create the road
network map, as shown in Fig. 12. Set the road as a one-
way road, where AGVs enter and leave the road network in
both directions. Establish 5 × 5 10 × 10 15 × 15 and 20
× 20 road network models with vehicle detectors at road

Fig. 12 10 × 10 road network AGV simulation operation diagram

intersections and entrances and exits, respectively, record-
ing the number of AGVs driving into and out of the road
network at time t. The simulation time was set to 100 min,
with data being recorded at 1-min intervals, and many tri-
als were conducted. The scatter correspondence between the
AGVs driving out of the road network and the AGVs on the
road network in the two-dimensional coordinate system was
derived from the simulation data. The first-order function y′
� f ′ (x) was derived from the derivation of the equation,
while the MFD critical point was obtained from solving the
first-order function to complete the discrimination of the road
network congestion status.

After establishing the 5× 5 10× 10 15× 15 and 20× 20
road network models, the simulations were carried out with
VISSIM simulation software, respectively.

{
y � 7.226 × 10−7x3 − 2.329 × 10−3x2 + 1.873x − 98.36

R2 � 0.9145
(20)

{
y � 7.986 × 10−8x3 − 8.995 × 10−4x2 + 1.422x − 116

R2 � 0.9045
(21)

{
y � 1.141 × 10−7x3 − 9.911 × 10−4x2 + 1.706x − 129.4

R2 � 0.9697
(22)

{
y � −2.281 × 10−7x3 + 5.066 × 10−4x2 + 0.226x + 59.24

R2 � 0.9419
(23)

TheMFD is shown in Figs. 13, 14, 15, and 16: the horizon-
tal coordinates indicate vehicles on the road network and the
vertical coordinates indicate vehicles driving out of the road
network. The critical point was in the middle forward area
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Fig. 13 MFD fitting of 5 × 5 road networks

Fig. 14 MFD fitting of 10 × 10 road networks

Fig. 15 MFD fitting of 15 × 15 road networks

of the 5 × 5 MFD, since the small road network map causes
the AGV to reach the congestion very quickly after enter-
ing a part. 10 × 10 and 15 × 15 MFDs had critical points
located between the steady flow and unsteady flow. It was
shown that the vehicles of AGVs in the two road networks
were almost symmetrically distributed on both sides of the
critical point. In the 20 × 20 MFD, the critical point was
backward compared to the 10 × 10 road network, whereas
the left side of the critical point of the 20 × 20 MFD rose

Fig. 16 MFD fitting of 20 × 20 road networks

more slowly, indicating that the road network was in free and
steady flow most of the time. At the same time, the 20 × 20
road network could accommodate more vehicles and the crit-
ical point would be generated at a relatively later time. The
final simulation results of all four road networks successfully
fitted the MFD curves.

The fitted curve equation of MFD is shown in Eqs. 20,
21, 22, and 23: considering the complexity of calculating
higher order functions, after experimentally observing that
the higher order functions and cubic functions did not change
much in the adapted curve, this paper fitted the MFD curve
with cubic functions. R2 indicates the affect or bad degree of
the fitted result. The closerR2 was to 1, the better the adjusted
result. In the four road network map experiments, the 15 ×
15 road network was the most accurate fit. This indicates that
the AGVs entering and exiting the road network can reach
a balance when given the same number of AGVs. The 10 ×
10 road network was a poor fit compared to the first three
road networks. However, the fit was within the experimental
effect expectation.

The assessment of the road network congestion
situation is determined once the curve equation had been
fitted. The first-order derivative of the curve equation of the
two road networks was obtained, the first-order function y′
� f ′ (x) was obtained so that y′ � f ′ (x) � 0.15 and y′ � f ′
(x) � − 0.15, the critical points of each road network state
were identified as shown in Table 6.

Solving the first-order derivative function determined the
left and right critical points of the two road networks, while
the intermediate critical points were determined using the
third-order function to find the extreme. The critical points
in the 5 × 5 network were (xl1, xm, xr2) � (474, 535, 604).
The critical points in the 10 × 10 network were (xl1, xm,
xr2) � (790, 897, 1010). The critical points in the 15 × 15
network were (xl1, xm, xr2) � (936, 1051, 1175). The critical
points in the 20 × 20 network were (xl1, xm, xr2) � (1552,
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Table 6 MFD critical point division

Map size First derivative function
y′ � f ′ (x)

y′ � f ′ (x)
� 0.15
xl1

y′ � f ′ (x)
� 0.15
xr1

y′ � f ′ (x)
� − 0.15
xl2

y′ � f ′ (x)
� − 0.15
xr2

y′ � f ′ (x) � 0
Critical point xm

5 × 5 y′ � 2.1678 × 10−6x2 – 4.658 × 10−3x + 1.873 474 1673 1544 604 535

10 × 10 y′ � 2.3958 × 10−7x2 – 1.799 × 10−3x + 1.422 790 6718 6499 1010 897

15 × 15 y′ � 3.423 × 10−7x2 – 1.9822 × 10−3x + 1.706 936 4854 4616 1175 1051

20 × 20 y′ � 6.843 × 10−7x2 + 1.0132 × 10−3x + 0.226 1552 − 71 − 407 1787 1678

Table 7 Range around the critical point

Map size Nearby range xl
(xl − x′, xl + x′)

Nearby range xm
(xm − x′, xm +
x′)

Nearby
rangexr
(xr−x′, xr +
x′)

5 × 5 (455, 494) (516, 555) (585, 624)

10 × 10 (757, 823) (864, 930) (977, 1043)

15 × 15 (900, 972) (1015, 1087) (1139, 1211)

20 × 20 (1517, 1587) (1643, 1713) (1752, 1822)

1678, 1787). At this point, the three critical points divided the
MFD into four regions: free flow, steady flow, unsteady flow,
and congested flow. The nearby range of critical points could
be judged according to the curvature c. According to MFD
experience, the fluctuation value x′ � c (xr – xl). From this,
the range near the three critical points could be determined,
as shown in Table 7 for the range near the critical points.

The state of the road network could be discriminated by
the number of vehicles on the road network, by improving
Eq. (19) and extending the intermediate flows into stable and
unstable flows. The congestion level M of the 10 × 10 road
network and 20 × 20 road network at time t was judged as
shown in Eqs. 24, 25, 26, and 27, respectively.

M �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ≤ nt < 474 Free flow
474 ≤ nt < 535 Steady flow
535 ≤ nt < 604 Unstable flow
nt ≥ 604 Congestion flow

(24)

M �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ≤ nt < 790 Free flow
790 ≤ nt < 897 Steady flow
897 ≤ nt < 1010 Unstable flow
nt ≥ 1010 Congestion flow

(25)

M �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ≤ nt < 936 Free flow
936 ≤ nt < 1051 Steady flow
1051 ≤ nt < 1175 Unstable flow
nt ≥ 1175 Congestion flow

(26)

M �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ≤ nt < 1552 Free flow
1552 ≤ nt < 1678 Steady flow
1678 ≤ nt < 1787 Unstable flow
nt ≥ 1787 Congestion flow

(27)

When the vehicles on the road network were outside the
range near the critical point, the road network status was
directly assessed. Based on the MC model, the judgment
method was used when the vehicles were near the critical
point. After obtaining vehicle data on the road network, the
state of the road network in the current time period was
judged based on Eq. (19).

Conclusion

In this paper, the algorithm was further enhanced by improv-
ing the traditional Q-learning algorithm in terms of the num-
ber of iterations and the reward and punishment functions.
Load balancing experiments were conducted on different
road networks. It was proved that the IQL algorithm could
effectively balance road network load and improve AGV
operation efficiency. To judge the operation status of the road
network more accurately, MFD was used to judge the oper-
ation status of the road network.

The fitted MFD and curve equations were derived by fit-
ting the MFD curve based on the MC model. In addition,
we conducted experiments on different road networks. The
equations were derived to find the critical points of theMFD.
Three critical points were found to divide the MFD into four
regions. Using the established MC model, AGVs within the
critical points were discriminated, while those outside the
critical points were discriminated directly.

In summary, the IQL algorithm effectively equalizes the
road network load, as well as accurately determines the road
network operation status using MFD and curve equations,
which demonstrates the superiority of the improved method.

Author contributions We declare that this manuscript entitled “Load
Balancing ofMulti-AGVRoadNetworkBased on ImprovedQ-learning
Algorithm and Macroscopic Fundamental Diagram” is original, has
not been published before and is not currently being considered for

123



3038 Complex & Intelligent Systems (2024) 10:3025–3039

publication elsewhere.Weconfirm that themanuscript has been read and
approved by all named authors and that there are no other persons who
satisfied the criteria for authorship but are not listed.We further confirm
that the order of authors listed in the manuscript has been approved by
all of us.

Funding This studywas supported by JilinProvinceMajor Science and
Technology Special Project “Research on Repeat Positioning Accuracy
Technology of AGV”, 20210301028GX, Hui Li

Data availability The data that support the findings of this study are
available from the corresponding author upon reasonable request.

Declarations

Conflict of interest Wedeclare that we have no known competing finan-
cial interests or personal relationships or organizations that could have
appeared to influence the work reported in this paper.

Open Access This article is licensed under aCreativeCommonsAttri-
bution 4.0 International License,which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Tao H, Cheng L, Qiu J et al (2022) Few shot cross equipment
fault diagnosismethodbasedonparameter optimization and feature
metric. Meas Sci Technol 33(11):115005

2. Löffler M, Boysen N, Schneider M (2022) Picker routing
in AGV-assisted order picking systems. INFORMS J Comput
34(1):440–462. https://doi.org/10.1287/ijoc.2021.1060

3. Pan F, Sun Q (2019) A traffic control strategy of the heavy-duty
AGVS in a square topology. IEEE International Conference on
Mechatronics and Automation (ICMA). IEEE, pp 263–268

4. Chen Y, Jiang Z (2022) Multi-AGVs scheduling with vehicle con-
flict consideration in ship outfitting items warehouse. J Shanghai
Jiaotong Univ (Science). https://doi.org/10.1007/s12204-022-25
61-z

5. Moser BR (2022) Machine learning and digital twin-sed path
planning for AGVs at automated container terminals. Adv Trans-
disciplinary Eng. https://doi.org/10.3233/ATDE220672

6. Zheng T, Xu Y, Zheng D (2019) AGV path planning based
on improved A-star algorithm. IEEE 3rd Advanced Information
Management, Communicates, Electronic and Automation Control
Conference (IMCEC). IEEE, pp 1534–1538

7. Chen C, Tiong LK, Chen IM (2019) Using a genetic algo-
rithm to schedule the space-constrained AGV-based prefab-
ricated bathroom units manufacturing system. Int J Prod
Res 57(10):3003–3019. https://doi.org/10.1080/00207543.2018.
1521532

8. Chen C, Hu ZH,Wang L (2021) Scheduling of AGVs in automated
container terminal based on the deep deterministic policy gradient
(DDPG) using the convolutional neural network (CNN). J Marine
Sci Eng 9(12):1439. https://doi.org/10.3390/jmse9121439

9. Hu H, Jia X, He Q et al (2020) Deep reinforcement learning based
AGVs real-time scheduling with mixed rule for flexible shop floor
in industry 40. Comput Ind Eng 149:106749. https://doi.org/10.
1016/j.cie.2020.106749

10. Wei Q, Lewis FL, Sun Q et al (2016) Discrete-time deterministic
$ Q $-learning: a novel convergence analysis. IEEE Trans Cybern
47(5):1224–1237. https://doi.org/10.1109/TCYB.2016.2542923

11. Devraj AM, Meyn SP (2017) Fastest convergence for Q-learning.
arXiv preprint arXiv:1707.03770. https://doi.org/10.48550/arXiv.
1707.03770. Accessed 23 Mar 2018

12. Low ES, Ong P, Cheah KC (2019) Solving the optimal path plan-
ning of a mobile robot using improved Q-learning. Robot Auton
Syst 115:143–161. https://doi.org/10.1016/j.robot.2019.02.013

13. Yu N, Li T,Wang B (2021)Multi-load AGVs scheduling algorithm
in automated sorting warehouse. 14th International Symposium on
Computational Intelligence and Design (ISCID). IEEE. 126–129.
https://doi.org/10.1109/ISCID52796.2021.00037

14. Roh BS, Han MH, Ham JH et al (2020) Q-LBR: Q-learning
based load balancing routing for UAV-assisted VANET. Sensors
20(19):5685. https://doi.org/10.3390/s20195685

15. Sethi V, Pal S (2023) FedDOVe: a federated deep q-learning-based
offloading for vehicular fog computing. Futur Gener Comput Syst
141:96–105. https://doi.org/10.1016/j.future.2022.11.012

16. Chen J, Xing H, Xiao Z et al (2021) A DRL agent for jointly opti-
mizing computation offloading and resource allocation in MEC.
IEEE Internet Things J 8(24):17508–17524. https://doi.org/10.
1109/JIOT.2021.3081694

17. Xiao Z, et al. (2023) Deep Contrastive Representation Learning
With Self-Distillation. In: IEEE transactions on emerging topics
in computational intelligence. https://doi.org/10.1109/tetci.2023.
3304948

18. Song F, Xing H, Wang X, et al. (2022) Evolutionary multi-
objective reinforcement learning based trajectory control and task
offloading in UAV-assisted mobile edge computing. arXiv e-prints.
DOI:https://doi.org/10.48550/arXiv.2202.12028

19. Ji Y, Daamen W, Hoogendoorn S et al (2010) Investigating the
shape of the macroscopic fundamental diagram using simulation
data. Transp Res Rec 2161(1):40–48. https://doi.org/10.3141/21
61-05

20. Ambühl L, Loder A, Bliemer MCJ et al (2020) A functional form
with a physical meaning for the macroscopic fundamental dia-
gram. Transp Res Part B: Methodol 137:119–132. https://doi.org/
10.1016/j.trb.2018.10.013

21. Shen L, Tao H, Ni Y et al (2023) Improved YOLOv3 model with
feature map cropping for multi-scale road object detection. Meas
Sci Technol. https://doi.org/10.1088/1361-6501/acb075

22. Geroliminis N, Zheng N, Ampountolas K (2014) A three-
dimensional macroscopic fundamental diagram for mixed bi-
modal urban networks. Transp Res Part C Emerg Technol
42:168–181. https://doi.org/10.1016/j.trc.2014.03.004

23. Gayah VV, Gao XS, Nagle AS (2014) On the impacts of
locally adaptive signal control on urban network stability and the
macroscopic fundamental diagram. Transp Res Part B Methodol
70:255–268. https://doi.org/10.1016/j.trb.2014.09.010

24. Loder A, Dakic I, Bressan L et al (2019) Capturing network prop-
erties with a functional form for the multi-modal macroscopic
fundamental diagram. Transp Res Part B Methodol 129:1–19.
https://doi.org/10.1016/j.trb.2019.09.004

25. Halakoo M, Yang H, Abdulsattar H (2023) Heterogeneity aware
emissionmacroscopic fundamental diagram (e-MFD). Sustainabil-
ity 15(2):1653. https://doi.org/10.3390/su15021653

26. He F, Yan X, Liu Y et al (2016) A traffic congestion assessment
method for urban road networks based on speed performance index.
Proc Eng 137:425–433. https://doi.org/10.1016/j.proeng.2016.01
.277

123

http://creativecomm\penalty -\@M ons.org/licenses/by/4.0/
https://doi.org/10.1287/ijoc.2021.1060
https://doi.org/10.1007/s12204-022-2561-z
https://doi.org/10.3233/ATDE220672
https://doi.org/10.1080/00207543.2018.1521532
https://doi.org/10.3390/jmse9121439
https://doi.org/10.1016/j.cie.2020.106749
https://doi.org/10.1109/TCYB.2016.2542923
http://arxiv.org/abs/1707.03770
https://doi.org/10.48550/arXiv.1707.03770
https://doi.org/10.1016/j.robot.2019.02.013
https://doi.org/10.1109/ISCID52796.2021.00037
https://doi.org/10.3390/s20195685
https://doi.org/10.1016/j.future.2022.11.012
https://doi.org/10.1109/JIOT.2021.3081694
https://doi.org/10.1109/tetci.2023.3304948
https://doi.org/10.48550/arXiv.2202.12028
https://doi.org/10.3141/2161-05
https://doi.org/10.1016/j.trb.2018.10.013
https://doi.org/10.1088/1361-6501/acb075
https://doi.org/10.1016/j.trc.2014.03.004
https://doi.org/10.1016/j.trb.2014.09.010
https://doi.org/10.1016/j.trb.2019.09.004
https://doi.org/10.3390/su15021653
https://doi.org/10.1016/j.proeng.2016.01.277


Complex & Intelligent Systems (2024) 10:3025–3039 3039

27. Ambühl L, Loder A, Menendez M, et al. (2017) Empirical macro-
scopic fundamental diagrams: new insights from loop detector
and floating car data. TRB 96th Annual Meeting Compendium
of Papers. Transportation Research Board, pp 17–03331

28. Zhao X, Liu Y, Wang Y (2016) Automatic extraction and con-
struction algorithm of overpass from raster maps. Pacific Rim
conference on multimedia. Springer, Cham, pp 479–489. https://
doi.org/10.1007/978-3-319-48896-7_47

29. Oh J, Hessel M, Czarnecki WM et al (2020) Discovering rein-
forcement learning algorithms. Adv Neural Inform Process Syst.
33:1060–1070. https://doi.org/10.48550/arXiv.2007.08794

30. Puterman ML (1990) Markov decision processes. Handbooks
Oper Res Manag Sci 2:331–434. https://doi.org/10.1002/978047
0316887

31. Liu J, Qi W, Lu X (2017) Multi-step reinforcement learning algo-
rithm ofmobile robot path planning based on virtual potential field.
International Conference of Pioneering Computer Scientists. Engi-
neers and Educators. Springer, Singapore, pp 528–538

32. Tao H, Qiu J, Chen Y et al (2023) Unsupervised cross-domain
rolling bearing fault diagnosis based on time-frequency informa-
tion fusion. J Franklin Inst 360(2):1454–1477. https://doi.org/10.
1016/j.jfranklin.2022.11.004

33. Shang Y, Liu F, Qin P et al (2023) Research on path planning
of autonomous vehicle based on RRT algorithm of Q-learning and
obstacle distribution. Eng Comput. https://doi.org/10.1108/EC-11-
2022-0672

34. Song X,Wu C, Stojanovic V et al (2023) 1 bit encoding–decoding-
based event-triggered fixed-time adaptive control for unmanned
surface vehicle with guaranteed tracking performance. Control
Eng Pract 135:105513. https://doi.org/10.1016/j.conengprac.2023.
105513

35. Hu G, Lu W, Whalin RW et al (2021) Analytical approximation
formacroscopic fundamental diagramof urban corridorwithmixed
human and connected and autonomous traffic [J]. IET Intel Trans-
port Syst 15(2):261–272. https://doi.org/10.1049/itr2.12020

36. Qu X, Wang S, Zhang J (2015) On the fundamental diagram for
freeway traffic: a novel calibration approach for single-regimemod-
els. Transp Res Part B Methodol 73:91–102. https://doi.org/10.
1016/j.trb.2015.01.001

37. Ji K, Tang J, Li M et al (2023) Distributed traffic control based on
road network partitioning using normalization algorithm. Sustain-
ability 15(14):11378. https://doi.org/10.3390/su151411378

38. ChingWK,NgMK (2006)Markov chains.Models, algorithms and
applications.KluwerAcademic Publishers, Boston. https://doi.org/
10.1007/0-387-29337-X

39. SunZ,WangG, Jin L et al (2022)Noise-suppressing zeroing neural
network for online solving time-varying matrix square roots prob-
lems: a control-theoretic approach. Expert Syst Appl 192:116272.
https://doi.org/10.1016/j.eswa.2021.116272

40. Bellec E, Doudard C, Facchinetti ML et al (2023) Loading classi-
fication proposal for fatigue design of automotive chassis-parts: a
relevant process for variable amplitude and multi-input load cases.
Int J Fatigue 166:107284. https://doi.org/10.1016/j.ijfatigue.2022.
107284

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-48896-7_47
https://doi.org/10.48550/arXiv.2007.08794
https://doi.org/10.1002/9780470316887
https://doi.org/10.1016/j.jfranklin.2022.11.004
https://doi.org/10.1108/EC-11-2022-0672
https://doi.org/10.1016/j.conengprac.2023.105513
https://doi.org/10.1049/itr2.12020
https://doi.org/10.1016/j.trb.2015.01.001
https://doi.org/10.3390/su151411378
https://doi.org/10.1007/0-387-29337-X
https://doi.org/10.1016/j.eswa.2021.116272
https://doi.org/10.1016/j.ijfatigue.2022.107284

	Load balancing of multi-AGV road network based on improved Q-learning algorithm and macroscopic fundamental diagram
	Abstract
	Introduction
	Environmental modeling
	Improvement of the Q-learning algorithm
	Principle of Q-learning algorithm

	Maximum Q update mechanism
	Improving the reward and punishment function
	Macroscopic fundamental diagram drawing
	Determination of the range near the critical point
	Determination of congestion status within the vicinity of the critical point
	Simulation experiments
	Comparison of convergence speed of improved algorithms
	IQL algorithm-based road network load balancing
	MC model-based MFD fitting

	Conclusion
	References




