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Abstract
This article presents a detailed investigation into the Multi-Depot Half-Open Time-Dependent Electric Vehicle Routing
Problem (MDHOTDEVRP) within the domain of urban distribution, prompted by the growing urgency to mitigate the
environmental repercussions of logistics transportation. The study first surmounts the uncertainty in Electric Vehicle (EV)
range arising from the dynamic nature of urban traffic networks by establishing a flexible energy consumption estimation
strategy. Subsequently, a Mixed-Integer Programming (MIP) model is formulated, aiming to minimize the total distribution
costs associated with EV dispatch, vehicle travel, customer service, and charging operations. Given the unique attributes
intrinsic to the model, a Two-Stage Hybrid Ant Colony Algorithm (TSHACA) is developed as an effective solution approach.
The algorithm leverages enhanced K-means clustering to assign customers to EVs in the first stage and employs an Improved
Ant Colony Algorithm (IACA) for optimizing the distribution within each cluster in the second stage. Extensive simulations
conducted on various test scenarios corroborate the economic and environmental benefits derived from the MDHOTDEVRP
solution and demonstrate the superior performance of the proposed algorithm. The outcomes highlight TSHACA’s capability
to efficiently allocate EVs from different depots, optimize vehicle routes, reduce carbon emissions, and minimize urban
logistic expenditures. Consequently, this study contributes significantly to the advancement of sustainable urban logistics
transportation, offering valuable insights for practitioners and policy-makers.

Keywords Electric vehicle routing problem · Time-varying vehicle speed · K-means clustering · Improved ant colony
algorithm · Multi-depot half-open joint distribution

Introduction

The rapid progress of urban logistics has bestowed conve-
nience while simultaneously engendering a surge in Green-
house Gas (GHG) emissions, posing exigent challenges
for the sustainable advancement of urban distribution [1].
Presently, transport activities account for approximately 28%
and 26% of GHG emissions in the United States [2] and
Europe [3], respectively, necessitating the development of
distribution solutions that mitigate the environmental impact
of urban logistics. By ameliorating urban air quality [4],
alleviating noise pollution [5], and reducing reliance on
non-renewable fossil fuels [6], Electric Vehicle (EV) deliv-
ery fleets have emerged as a promising strategy to address
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the sustainable quandaries at hand [7]. Prominent logistics
enterprises worldwide, such as UPS and DHL, are actively
championing the electrification of their transport fleets [8].
Meanwhile, logistics companies must strive to curtail oper-
ating costs in today’s cutthroat market to gain a competitive
edge. Joint distribution, which involves utilizing multiple
depots of logistics companies, is an efficacious strategy to
achieve this goal [9]. The Multi-Depot Half-open Vehicle
Routing Problem (MDHOVRP) exemplifies the joint distri-
bution concept, which allows vehicles to select the nearest
depot for returning instead of retracing to their initial depar-
ture depots [10]. This approach circumvents superfluous
unloaded vehicle trips, slashes distribution costs, and facili-
tates resource sharing among depots. Integrating EVs into
multi-depot half-open vehicle distribution planning saves
energy costs, lowers carbon emissions, and supports social
development objectives [11]. Currently, limited studies on
theMulti-DepotHalf-openElectricVehicleRoutingProblem
(MDHOEVRP) indicate the need for further investigation.
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However, consideringMDHOEVRP in the realm of urban
distribution encounters numerous difficulties.One prominent
obstacle pertains to the dynamic nature of urban traffic sys-
tems and the judicious replenishment of EV power [12].
The intricate urban traffic network undergoes continual
fluctuations, occasionally leading to traffic congestion and
resultant variations in transport vehicle speeds that directly
impact battery power consumption and, consequently, vehi-
cle mileage [13]. Therefore, the real-time estimation of
remaining mileage for EVs becomes a complex task, ren-
dering distribution route planning arduous. Furthermore, the
charging operations of EVs necessitate substantially more
time than the refueling process of conventional Fuel Vehi-
cles (FV) [14]. Hence, it becomes imperative to prudently
strategize the selection of charging stations for transport
vehicles and align them with the corresponding charging
strategy during distribution [15]. In conclusion, exploring
the Multi-Depot Half-Open Time-Dependent Electric Vehi-
cle Routing Problem (MDHOTDEVRP) within the domain
of urban logistics aligns harmoniously with societal devel-
opment concerns and bears immense research significance.

The MDHOTDEVRP presents multifaceted optimization
challenges. First, the dynamic nature of time-dependent vehi-
cle routing, where travel time and EV energy consumption
are influenced by various temporal factors, adds complexity
to the problem. Second, selecting suitable charging stations
and implementing effective charging strategies are crucial,
as these factors mitigate the impact of switching from FVs
to EVs on transport efficiency. Lastly, the diverse array of
schemes imposed by multiple depots and half-open routes
further complicates the allocation of EVs, routing deci-
sions, and the design of efficient return strategies. Effectively
addressing the MDHOTDEVRP has significant implications
for urban logistics transportation. By developing efficient
algorithms and models tailored to this problem, it becomes
feasible to optimally allocate EVs from different depots, sys-
tematically planEVrouteswhile considering time-dependent
variables, curtail logistics distribution costs, and reduce EV
energy consumption. These improvements not only foster
the economic development of urban logistics but also aid in
assuaging environmental impacts.

In light of the challenges posed by the MDHOTDE-
VRP, the study aims to propose a novel approach to tackle
the problem and provide insights into its computational
aspects. The proposed Two-Stage Hybrid Ant Colony Algo-
rithm (TSHACA) integrates customer clustering using the
improved K-means algorithm and distribution optimization
within each cluster using the Improved Ant Colony Algo-
rithm (IACA). Through this approach, the paper seeks to
overcome the difficulties associated with EV urban distribu-
tion.

The main contributions of this study are summarized as
follows: (i) The study explores theMDHOTDEVRP, thereby

bridging a noteworthy research gap. (ii) A Mixed-Integer
Programming (MIP) model is developed for MDHOTDE-
VRP, incorporating dynamic urban traffic networks, Multi-
depot Half-open Joint Distribution Mode (MHJDM), and
optimized charging strategies. (iii) To solve the model, a
pragmatic TSHACA is designed with enhanced convergence
speed, improved exploration and exploitation capabilities,
and excellent robustness, enabling efficient EV allocation,
route planning, and costminimization for urban logistics. (iv)
The paper meticulously scrutinizes the performance of the
proposed model and algorithm through an exhaustive array
of numerical experiments, thereby unearthing the economic
and environmental merits inherent in the MDHOTDEVRP.
The experimental findings furnish invaluable insights and
recommendations to government policy-makers and logis-
tics enterprise managers from multifarious vantage points,
facilitating endeavors to champion energy conservation and
emissions reduction within the logistics industry.

The remaining sections of this article are organized as
follows. In the second part, a review of relevant literature is
provided, and the innovative aspects of this study are elab-
orated. The third part presents the theoretical methodology
for estimating EV power consumption and travel time in a
dynamic urban traffic network. The fourth part describes the
research question and develops a MIP model for the prob-
lem. The fifth part details the design of the TSHACA. In
the sixth part, a series of numerical experiments are carried
out to validate the efficacy and rationality of the proposed
algorithm, and practical suggestions are offered. Finally, the
seventh part presents the conclusion of this study.

Related literature review

As a renowned combinatorial optimization problem, the
Vehicle Routing Problem (VRP) seeks to ascertain the opti-
mal set of routes for delivering packages from the depot to
customers based onvarious objective functions [16]. The pro-
posed MDHOTDEVRP in this paper is a distinctive variant
of VRP, which encompasses the MHJDM, time-dependent
speed, and diverse charging strategies. This section provides
an overview of the literature related to the factors above and
artificial intelligence algorithms used to solve such problems.

Research on themulti-depot vehicle routing
problem (MDVRP)

MDVRP is a variation of VRP that emerged with the growth
of the transportation industry. It requires logistics enterprises
to use multiple depots in the region to deliver packages
to scattered customers and achieve more efficient trans-
portation. Initially, scholars primarily focused on the closed
MDVRP. Yesodha and Amudha [17] and Sadati et al. [18]
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developed MDVRP models with different objectives and
employed an improved firefly algorithm and a variable tabu
neighborhood search algorithm, respectively, to solve the
problem. Soeanu et al. [19] focused on different constraints
in MDVRP and proposed a risk-constrained MDVRP, devel-
oping a cost-effective learning-based heuristic technique to
solve the problem. Further research in the business and
academic communities has revealed that MDVRP under
MHJDMoffers advantages such as shorter distribution routes
and reduced costs, which allow for maximum resource shar-
ing. Subsequently, scholars began exploring theMDHOVRP,
where vehicles can return to any nearby depot upon comple-
tion of a transportation task instead of solely returning to the
original departure depot. Li et al. [20] comprehensively con-
sidered constraints, including time windows, route duration
of the vehicle, number of depots, and MHJDM, and estab-
lished an MDHOVRP model under shared resources. Wang
et al. [21], while solving the optimal distribution route under
MHJDM, reasonably allocated the generated profits based
on the minimum costs-remaining savings method. Liu et al.
[22] and Chen et al. [23] focused on MDHOVRP from the
perspectives of cold chain transportation and the contact-
less food distribution of closed epidemic areas, respectively.
The former used a Simulated Annealing Algorithm (SAA)
to solve the model, while the latter designed a hybrid meta-
heuristic. In light of the growing importance of sustainable
transportation, the MDHOEVRP is gaining attention. Lijun
et al. [11] studied the MDHOEVRP based on the hybrid
energy supplement strategies of charging and swapping,
and used the multi-objective SAA to solve the problem.
Since the price of electricity is lower than that of fuel and
EVs are more environmentally friendly, MDHOEVRP offers
advantages over MDHOVRP in terms of economic and envi-
ronmental costs. The aforementioned literature constitutes a
comprehensive theoretical framework for investigating the
MDHOEVRP.

Research on the time-dependent vehicle routing
problem (TDVRP)

The urban transportation systemexhibits time-varying uncer-
tain natures [24], wherein vehicular velocities may fluctuate
across varying time periods. This variation significantly
affects the EV energy consumption and travel time cost
of urban logistics distribution. Scholars initially focused on
TDVRP, which involved studying the real-time speed impact
of different weather and congestion levels on vehicle rout-
ing [25], identifying ways to evade traffic congestion by
analyzing urban traffic’s time-varying characteristics [26],
and addressing the transport of valuable goods by propos-
ing a secure TDVRP with time windows including pickup
and delivery with uncertain demands [27]. Researchers then
discovered that time-varying vehicle speeds caused various

carbon emissions due to different fuel consumption, leading
to the development of the Time-Dependent Green Vehicle
Routing Problem (TDGVRP). Soysal et al. [28] and Çimen
et al. [29] established the TDGVRP model, which consid-
ered time-varying vehicle speeds, fuel consumption, and
carbon emissions. TDGVRP was later focused on cold chain
transportation by Guo et al. [30], who proposed a two-stage
algorithm that enabled vehicles to wait in place after service
to avoid harsh traffic conditions. In recent years, with the
popularity of EVfleets, the Time-Dependent Electric Vehicle
RoutingProblem (TDEVRP) is rising gradually. TDEVRP is,
in fact, a subset of TDGVRP, which considers time-varying
vehicle speeds’ impact on EVs’ energy consumption rather
than FVs’ fuel consumption. Lu et al. [31] considered the
impact of charging decisions and congestion conditions on
the overall delivery process based on traditional constraints in
TDEVRP. Bi and Tang [32] examined TDEVRP by incorpo-
rating time-varying random traffic conditions and employing
the analytical battery model to determine EVs’ charging and
discharging patterns. They aimed to minimize the overall
service time and developed a hybrid rollout algorithm to
tackle the problem. Zhang et al. [33] and Keskin et al. [34]
approached TDEVRP from different viewpoints. The for-
mer incorporated charging during congestion periods into the
objective function, while the latter considered the impact of
queuing time at charging stations on overall distribution. The
literature mentioned above offers both a theoretical frame-
work and a solution methodology for TDEVRP.

Research on charging strategies in EVRP

Due to deviations in the energy conversion efficiency of EV
batteries, the actual mileage is often lower than the displayed
mileage, coupled with the time-varying vehicle speed phe-
nomenon in urban distribution, leading to EV fleets having
“range anxiety.”Moreover, chargingEVs takes a longer time,
which has an impact on delivery efficiency. Therefore, the
formulation of a reasonable charging strategy is an impor-
tant factor that cannot be ignored in the study of EVRP. Full
charging, a charging strategy used in the study of Lin et al.
[35], Granada-Echeverri et al. [36], and Kucukoglu et al.
[37], fully charges the EV before leaving the charging sta-
tion, which can alleviate range anxiety very well. However,
this strategy has high charging cost and long charging time,
which may easily lead to a decrease in customer satisfac-
tion. The partial charging strategy considers charging costs
and service timeliness, and offers more flexibility in charg-
ing operations. Zhou et al. [38] and Cortés-Murcia et al. [39]
proposed partial charging strategies for EVs when design-
ing EVRP charging schemes. The former allows EVs to be
sent out for distribution tasks multiple times, while the lat-
ter makes the best use of partial charging time to deliver
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packages to some customers. In addition, there are differ-
ent charging technologies in the charging process. Schiffer
and Walther [40] and Dönmez et al. [41] proposed a lin-
ear charging function when designing the EVRP charging
scheme. The former considers a single fast-charging mode at
the charging station, while the latter considers a combination
of three charging speeds: ordinary charging, fast charging,
and super-fast charging. Karakatič [42] studied the nonlinear
relationship between charging time and charging capacity of
EVs in the EVRP. The above literature can provide theoret-
ical references and methodological support for the charging
strategy of EVs in distribution.

Research on artificial intelligence algorithms
of solvingVRP

Inspired by human intelligence, the social behavior of biolog-
ical populations, or natural phenomena, scholars have created
many intelligent optimization algorithms to solve large-scale
VRPs. These include genetic algorithms that mimic the
biological evolution mechanism of nature [43]; differential
evolution algorithms that optimize searches through cooper-
ation and competition among individualswithin a group [44];
immune algorithms that simulate the learning and cognitive
functions of the biological immune system [45]; Ant Colony
Algorithms (ACA) that simulate the collective pathfinding
behavior of ants [46]; particle swarmalgorithms that simulate
the collective behavior of bird flocks and fish schools [47];
firefly algorithms that simulate the flashing behavior of fire-
flies [48]; taboo search algorithms that simulate the human
intelligence memory process [49]; and neural network algo-
rithms that simulate the behavioral characteristics of animal
nervous systems [50]. These algorithms have one common-
ality—they are developed by simulating or revealing certain
natural phenomena and processes or the intelligent behavior
of biological populations, and they all embody the idea of
artificial intelligence.

Among these algorithms, the ACA, as a swarm intel-
ligence algorithm, has advantages such as strong positive
feedback, robustness, and distributed computing, and has
received extensive research attention in academia. Su and
Fan [51] aimed at theminimumpenalty cost in transportation,
and used ACA to solve the Green Vehicle Routing Problem
(GVRP) with constraints on fuel consumption, carbon emis-
sions, and customer satisfaction. Zhang et al. [52] also used
ACA to minimize energy consumption in EVRP. However,
ACA still has some shortcomings, so scholars have designed
various Improved Ant Colony Algorithms (IACA). Zhang
et al. [53] added three mutation operators to the traditional
ACA to enhance local search capabilities and allow random
global search to avoid getting stuck in local optima when
solving the multi-objective VRPwith flexible time windows.
Li et al. [54] improved the method of updating pheromone

information, while reducing the pheromone value of subopti-
mal solutions and increasing the pheromone value of optimal
solutions, to solve the multi-objective multi-depot GVRP.
Xiang et al. [55] designed a demand coverage diversity adap-
tation method based on the ACA to solve the dynamic VRP.
Jia et al. [56] designed a bi-level ACA to solve the EVRP
with capacity constraints, where the upper level does not
consider electricity constraints and uses the ACA to gener-
ate routes that meet customer demands, and the lower level
uses a new heuristic algorithm to determine the charging
plan and uses the solution obtained by the lower level to
update the pheromone of the upper level ACA. Mao et al.
[57] combined insertion heuristic and local search strategies
to design an IACA to solve the EVRP with time windows
and multiple recharging options. They improved the eli-
tist ant strategy by not only using the optimal solution to
update pheromones but also using acceptable solutions in
the ranked list. However, for some complex VRPs, a single
artificial intelligence algorithm and its improvements may
not be enough to find the satisfactory solution. Combin-
ing two or more algorithms effectively has become a new
research hotspot. Many researchers have combined differ-
ent artificial intelligence algorithms, complementing each
other’s strengths, and have developed many hybrid algo-
rithms suitable for solving complicated VRP. Xu et al. [58]
designed a hybrid algorithm combining ACA and K-means
clustering to solve the dynamic VRP that is closer to real-
world situations, and used the 2-opt and crossover operators
to further optimize the route. Pan et al. [59] also combined
the K-means clustering with ACA to solve the load varying
VRP with stochastic demands. Similarly, when solving the
periodic VRP with time window and service choice, Wang
et al. [60] employed the K-means clustering to ensure spatial
clustering of customers within the same planning period, and
further utilized ACA and SAA for optimization.

The research gaps

Previous studies have provided a strong foundation for inves-
tigating EVdistribution-charging route planning under urban
logistics. Through a review of the existing literature, several
gaps in research have been identified for further exploration.
(1) The MHJDM has gained attention from researchers due
to its practical significance in real-world applications, such as
urban logistics, last-mile delivery, and green transportation.
However, there is a scarcity of literature on EV distribution
route planning that comprehensively considers the time-
varying dynamic nature of urban traffic networks, MHJDM,
and partial charging strategies. The proposed MDHOTDE-
VRP not only advances the field of VRPs but also contributes
to the development of sustainable transportation systems. (2)
Despite many studies considering the time-varying dynamic
nature of urban transportation networks, few have integrated
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the time-varying vehicle speed into EV distribution route
planning. This issue requires consideration of the variable
travel times of EVs due to factors such as traffic conges-
tion and battery charging needs, making it more complex
than traditional TDVRP. Incorporating real-time traffic and
energy usage data, TDEVRP provides a more accurate and
reliable solution to EV routing, addressing the unique chal-
lenges faced by EVs in urban logistics. This innovation
has the potential to significantly improve the efficiency and
environmental sustainability of urban transportation sys-
tems. (3) The hybrid algorithm combining ACA with the
K-means clustering has been developed to solve complex
optimization problems, but few studies have applied this
hybrid algorithm to solve EVRP. Additionally, both ACA
and K-means clustering have the drawback of easily falling
into local optima. Therefore, how to balance the trade-off
between global exploration and local exploitation effectively
and fully leverage the strengths of the two algorithms isworth
exploring. This paper fills the above research gaps by inves-
tigatingMDHOTDEVRP, which comprehensively considers
customer coordinates, demand, time-varying EV speeds, EV
capacity, battery capacity, partial charging strategies, and
MHJDM. The optimization model is constructed with the
aim of minimizing the total distribution cost, and a TSHACA
is designed to solve this model. The results of this study
can provide decision-making references for companies and
governments interested in implementing sustainable urban
logistics.

Estimation of EV power consumption
and travel time in a dynamic transportation
network

The road network in urban areas is characterized by its
time-varying nature, meaning that the speed of vehicles may
fluctuate during various time periodswhen traveling on urban
roads. The time taken to traverse the road segment (i , j)
depends not only on the road distance but also on the EV’s
starting time, traveling speed, and real-time load. The vehi-
cle may require several time periods to travel from node i
to node j . Therefore, this study adopts the method proposed
by Liu et al. [26] to partition a day of 24 h into multiple
equal time periods. H represents the length of a time period,
and n represents the number of time periods in a day, i.e.,
n � 24/H . T represents the set of time periods in a day, i.e.,
T � {[0, T1], [T1, T2], ..., [Tn−1, Tn]}, where [0, T1] repre-
sents the first time period of a day, and [Tn−1, Tn] represents
the n - th time period. Additionally, [TR−1, TR] signifies the
R - th time period of a day, where R ∈ {1, 2, ..., n − 1, n},
and TR − TR−1 � H . The traveling speed of EV k on road
segment (i , j) during the R - th time period is denoted as
vR
i jk . By combining the EV energy consumption calculation

methods proposed by Goeke and Schneider [61] and Basso
et al. [12], the energy consumption eRi jk generated by EV k

when traveling at speed vR
i jk on road segment (i , j) during

the R - th time period can be calculated as follows:

eRi jk � φdϕd
(
[g sin θi j + Cr · g cos θi j ](L + ui jk)

3600

+
RAρ(vR

i jk)
2

76140

)
vR
i jk t

R
i jk , (1)

where φd denotes the output efficiency parameter of the driv-
ing motor, ϕd denotes the output efficiency parameter of the
battery. Other factors influencing EV energy consumption
include the rolling resistance coefficient (Cr ), air resistance
coefficient (R), air density (ρ), and the windward area of the
vehicle (A). θi j is the slope of road segment (i , j), and g is
the gravitational acceleration. L denotes the self-weight of
the EV, and ui jk denotes the real-time load of EV k traveling
on road (i , j). t Ri jk is the travel time of EV k on road section
(i , j) during the R - th time period.

Let di j denote the distance between node i and node j .
Let dR

i jk denote the remaining distance that EV k still needs
to travel on road segment (i , j) at the end of the R - th time
period. Under the time-varying urban road network, the fol-
lowing are procedures to calculate the power consumption
Ei jk and travel time Ti jk that EV k requires to traverse road
segment (i , j):

Procedure 1: The power consumption and travel time
generated by EV k during the R - th time period when it
leaves node i . Let ∂ R

ik denote the moment when EV k departs
from node i within the R - th time period, i.e., TR−1 ≤ ∂ R

ik ≤
TR . Therefore, the feasible travel time of EV k during the
R - th time period is TR − ∂ R

ik . Consequently, the distance
traveled by EV k on road segment (i , j) during the R - th
time period is FR

i jk � vR
i jk(TR − ∂ R

ik). If FR
i jk ≥ di j , it

implies that EV k has covered the distance between node
i and node j within the R - th time period, hence dR

i jk � 0,

Ti jk � t Ri jk � di j/vR
i jk , and Ei jk � eRi jk . The calculation pro-

cess is complete. If FR
i jk < di j , it signifies that EV k cannot

travel from node i to node j during the R - th time period.
Consequently, dR

i jk � di j − FR
i jk , and t

R
i jk � TR −∂ R

ik . There-
fore, the energy consumption of EV k during the R - th time
period is eRi jk . Proceed to Procedure 2.

Procedure 2:Computation of EV k’s power consumption
and travel time on road segment (i , j) after the R - th time
period. Step 1: Set ξ � 1. Step 2:Calculate the possible travel
distance FR+ξ

i jk ofEV k during the (R+ξ )th time period,where

FR+ξ
i jk � v

R+ξ
i jk · H . If FR+ξ

i jk < dR+ξ−1
i jk , it means that EV k

still cannot travel to node j in the (R + ξ )th time period.
Consequently, the travel time of EV k during the (R + ξ )th
time period is t R+ξ

i jk � H , and the remaining distance to node
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j is dR+ξ
i jk � dR+ξ−1

i jk −FR+ξ
i jk . The energy consumption of EV

k during this time period is eR+ξ
i jk . Let ξ � ξ + 1 and proceed

to Step 2. If FR+ξ
i jk ≥ dR+ξ−1

i jk , it means that EV k can travel to
node j during the (R + ξ )th time period, then the travel time
of EV k during this time period is t R+ξ

i jk � dR+ξ−1
i jk /v

R+ξ
i jk , and

the energy consumption of EV k during this time period is
eR+ξ
i jk . Proceed to Procedure 3.
Procedure 3: Computation of the total power consump-

tion and travel time for EV k traversing road segment (i ,
j). Ei jk � ∑R+ξ

x�R e
x
i jk , Ti jk � ∑R+ξ

x�R t
x
i jk . The calculation

process is complete.

Problem andmathematical model

In this section, the MDHOTDEVRP is formally defined,
accompanied by a presentation of the mathematical formu-
lation that captures the key objectives and constraints of the
problem. Factors such as time-dependent vehicle speed, real-
time load, MHJDM, charging strategies, fixed EV dispatch
costs, vehicle travel costs, customer service costs, and vehi-
cle charging costs are considered. The aim is to minimize the
aggregate of these costs by efficiently allocating EVs from
multiple depots and devising optimal vehicle routes.

Problem description

The proposed MDHOTDEVRP can be described as follows:
An urban logistics company operates multiple depots,

symbolized by set M , which dispatches a fleet of homo-
geneous EVs denoted as K � {1, 2, ..., k} to deliver
equivalent goods to customer set C in the area. The known
information for this problem includes the coordinates of
depots M , the capacity W and battery capacity Q of EV
k, and the coordinates, demand Di , and service time si of
each customer i .

The EV embarks on its journey from the depot carrying
a load of W kilograms, accompanied by a fully charged bat-
tery. During the distribution process, the instantaneous load
of EV k upon arrival at any point i is denoted by ϕik . If the
EV’s battery charge depletes to an insufficient level hinder-
ing the continuation of its task, it is obligated to recharge at
a designated charging station. The set of charging stations
is denoted by F . Once charging is complete, the EV shall
proceed with the delivery of the remaining parcels. Upon
finishing all distribution tasks, the EV possesses the freedom
to conclude its operations at any adjacent depot, absolving
the need to return to its initial departure depot.

Figure 1 depicts an exemplification of MDHOTDEVRP,
which is established on a complete directed graph G � (V ,

A). Here, V comprises M ∪ C ∪ F , signifying the set of
all points in the network, and A comprises all directed arcs.
When each depot dispatches an EV, a fixed dispatch cost
c1 is incurred, and the EV accrues a unit travel cost c2 per
minute during its journey. The instance of EV k arriving and
departing at point i is denoted, respectively, by t1ik and t2ik .
Meanwhile, S1ik represents the remaining battery level of EV
k upon arrival at point i , and S2ik signifies the remaining bat-
tery levelwhen it departs from i . As theEVserves a customer,
it incurs a unitary service cost of c3 per minute, and when
it visits a charging station for recharging, a unitary charging
cost of c4 per minute arises. The charging amount for EV k
at charging station i is designated as qik , and σik symbolizes
the corresponding charging time for EV k at charging station
i . Since the number of recharging times at charging stations
is not restricted in this study, the set Ck is defined as the
customers that EV k must still serve after recharging.

The ensuing assumptions are posited to streamline the
MIP model in this investigation: (1) Each EV is dispatched
only once, and the delivery volume of each customer falls
below the EV’s capacity, with each customer being served
exclusively once. (2) Due to the time-varying dynamic nature
of the urban transportation network, EVs travel at varying
velocities across different temporal intervals. (3) The fac-
tors influencing the power consumption of EVs encompass
the vehicle’s intrinsic weight, actual payload, travel veloc-
ity, and windward area. (4) Once within the confines of the
charging station, EVs are exempt from queuing and can be
directly charged, adopting a partial charging strategy. Each
charging station maintains a uniform and constant charging
rate. The charging efficiency of the EV is denoted by η, while
the power of the charging interface is represented by pe. (5)
The urban distribution costs encompass fixed dispatch costs,
travel costs, EV charging costs, and customer service costs.
The crux of the decision problem is to devise a set of optimal
EV distribution–charging routes that fulfill all customer req-
uisites while minimizing the total distribution costs incurred
by the logistics company.

MDHOTDEVRPmodel

To build MDHOTDEVRP model, the following binary deci-
sion variables are introduced:

xi jk is equal to 1 if EV k travels from node i to j , 0
otherwise.

yik is equal to 1 if EV k serves customer i , 0 otherwise.
zik is equal to 1 if EV k charges at charging station i , 0

otherwise.
Based on the above variables and problem description, the

MIP model is constructed as follows :
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Fig. 1 Schematic of the
MDHOTDEVRP

(2)

min c1
∑
i ∈M

∑
j ∈C

∑
k ∈K

xi jk + c2
∑
i ∈V

∑
j ∈V

∑
k ∈K

Ti jk xi jk

+ c3
∑
i ∈C

∑
k ∈K

si yik + c4
∑
i ∈F

∑
k ∈K

σik zik ,

subject to

∑
i∈M

∑
j∈C

xi jk ≤ 1, ∀k ∈ K , i �� j , (3)

∑
i∈M

∑
j∈M

xi jk � 0, ∀k ∈ K , i �� j , (4)

∑
k∈K

yik � 1, ∀i ∈ C , (5)

∑
i∈V

xi jk �
∑
l∈V

x jlk , ∀ j ∈ C ∪ F , ∀k ∈ K , i �� j , j �� l,

(6)
∑
i∈M

∑
j∈C

xi jk �
∑

l∈C∪F

∑
i∈M

xlik , ∀k ∈ K , (7)

∑
i∈C

Di yik ≤ W , ∀k ∈ K , (8)

ui jk � (ϕik − Di )xi jk , ∀i ∈ C , ∀ j ∈ V , ∀k ∈ K , i �� j ,
(9)

S2ik � Q, ∀i ∈ M , ∀k ∈ K , (10)

S1ik � S2ik , ∀i ∈ C , ∀k ∈ K , (11)

S1jk ≤
(
S2ik − Ei jk

)
xi jk + Q(1 − xi jk), ∀i , j ∈ V , ∀k ∈ K ,

(12)

S2ik ≥
{
Ei jk + E jlk , if i ∈ C ∪ M , j ∈ C , l ∈ F

Ei jk , if i ∈ C , j ∈ F ∪ M
, ∀k ∈ K , i �� j ,

(13)

S1ik ≥ 0, ∀i ∈ V , ∀k ∈ K , (14)

qik ≤ Q − S1ik , ∀i ∈ F , ∀k ∈ K , (15)

qik � min

⎛
⎝Q − S1ik , Ei jk xi jk +

∑
j∈Ck

∑
l∈Ck∪M

E jlk x jlk

⎞
⎠ ,

∀i ∈ F , ∀k ∈ K ,

(16)

σik � 60 · qik
η · pe , (17)

t2ik � t1ik + si yik , ∀i ∈ C , ∀k ∈ K , (18)

t2ik � t1ik + σik zik , ∀i ∈ F , ∀k ∈ K , (19)

t1jk ≤
(
t2ik + Ti jk

)
xi jk + (1 − xi jk )M , ∀i , j ∈ V , ∀k ∈ K , i �� j ,

(20)

xi jk , yik , zik ∈ {0, 1}. (21)

The objective function (2) minimizes the total distribution
cost of the logistics fleet. Constraint (3) stipulates that each
EV can only be dispatched once. Constraint (4) prohibits
EVs from traveling directly between depots. Constraint (5)
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specifies that a single customer can only be visited once.
Constraint (6) maintains flow balance between customer
locations and charging stations. Constraint (7) reflects the
half-open nature of the model. Constraint (8) limits the total
demand of customers served by an EV to its rated carrying
capacity. Constraint (9) is used to calculate the real-time load
of EV k when it travels on arc (i , j). Constraint (10) stipu-
lates that the battery of any EV departing from the depot is
fully charged. Constraint (11) specifies that an EV does not
consume energy when serving customers. Constraint (12)
indicates the change in battery level of EV k when it trav-
els from node i to node j . Constraint (13) is the remaining
energy requirement for the EV to choose the next node to
visit. If the next visited node j is a customer, the current
remaining battery level of the EV must be able to reach cus-
tomer j from the current node i and then travel to the nearest
charging station l. If the next visited node j is a charging
station or depot, the current remaining battery level of the
EV must be sufficient to reach node j from the current node
i . Constraint (14) guarantees that the remaining battery level
of an EV at any node is not negative. Constraints (15)–(17)
specify the charging amount and charging time of an EV at a
charging station, respectively. Constraint (18) specifies that
the departure time of EV k from customer node i equals the
arrival time at node i plus the service time. Constraint (19)
specifies that the departure time of EV k from charging sta-
tion i equals the arrival time at station i plus the charging
time. Constraint (20) indicates that the arrival time of EV
k at node j equals the departure time from node i plus the
travel time on arc (i , j). Finally, constraint (21) restricts the
values of decision variables.

Algorithm design

Large-scale VRP is a complex NP-hard problem, often mak-
ing it difficult to find an optimal solution. Previous studies
have shown that intelligent heuristic algorithms are more
practical for obtaining satisfactory solutions for large-scale
VRPs. ACA is an effective swarm intelligent algorithm with
advantages such as positive feedback, parallel distributed
computing, self-organization, and strong robustness. It has
been successfully applied to solve complex combinatorial
optimization problems, including the Job-Shop Scheduling
Problem, VRP, and Graph Coloring Problem [62]. Thus,
based on the characteristics of the MDHOTDEVRP model,
this paper proposes a TSHACA for its solution.

The processes for each stage are as follows: (1) First stage:
customer clustering. An improved K-means clustering algo-
rithm is developed to group customers into clusters based
on their spatial proximity, delivery volumes, and EV capac-
ity. This step aims to optimize the allocation of customers to

different EVs from multiple depots. (2) Second stage: distri-
bution route planning and optimal charging decision. Once
the customers are assigned to clusters, the second stage of
TSHACA focuses on optimizing the distribution within each
cluster. An IACA is utilized to address the specific routing
challenges within each cluster. The IACA considers the time-
dependent aspects of the problem, ensuring that the vehicle
routes are dynamically adjusted based onvarying energy con-
sumption and other temporal factors. The algorithm aims to
find near-optimal solutions while considering the half-open
nature of the routes.

Improvement strategies

Based on the above analysis, the specific improvement ideas
for the algorithm are as follows: (i) Traditional K-means
clustering algorithms typically initialize centroids randomly,
which may result in suboptimal solutions. The proposed
TSHACA incorporates intelligent initialization techniques
that facilitate the selection of better initial centroids, increas-
ing the chances of finding a global optimum. (ii) Designing
a probabilistic rule that combines deterministic and stochas-
tic selections to overcome the issue of slow convergence of
the ACA. At the same time, creating adaptive pheromone
heuristic and expectation heuristic parameters within the
probabilistic rule to expand the algorithm’s search space and
ensure global search in the early iteration and fast conver-
gence in the later iteration. (iii) Developing an improved
pheromone updating mechanism to balance the global and
local search capabilities of the algorithm, addressing the
problem of the ACA being easily trapped in local optima.

Algorithm procedures

The implementation process of the TSHACA is shown in
Fig. 2, and the specific procedures are as follows.

First stage: customer clustering

In the first stage of TSHACA, an improved K-means clus-
tering algorithm is designed that considers both distance and
EV payload factors to divide the customer set into multiple
clusters. The specific implementation process includes the
following steps: Step 1: Determine the number of clusters,
r , based on the ratio of the total demand of all customers to
EV capacity. Step 2: Randomly select the coordinates of r
customers as the initial cluster centers. Step 3: Set Cap to rep-
resent the capacity of each cluster, whereCap equals the EV
capacity. Then, add all unassigned customers to a set called
unallocate. Step 4: Select customer i with the largest demand
in the unallocate, calculate the distance between customer i
and the centers of all clusters, and then determine whether
the remaining capacity of the cluster j is greater than 0 after
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Fig. 2 Flow chart of TSHACA

assigning customer i to the cluster j with the shortest dis-
tance. If so, add customer i to cluster j , update the Cap of
cluster j and unallocate. Otherwise, assign customer i to the
second-closest cluster l. Repeat the above steps until cus-
tomer i has been assigned. Step 5: Repeat Step 4 until all
customers have been allocated to their corresponding clus-
ters. When set unallocate is empty, recalculate the centroids
of r clusters and update the coordinates of each cluster center.
Step 6: Determine whether the difference between the new
and original cluster center coordinates exceeds the threshold
value. If so, go to Step 2; otherwise, save the customer clus-
tering results, re-encode the customers within each cluster,
and end the algorithm.

Second stage: EV distribution route planning and optimal
charging decision

This paper designs an IACA to plan the initial EVdistribution
route in each cluster and use a greedy strategy to allocate
depots. The following are the detailed procedures:

Procedure 1: Variable initialization. Let N represent the
number of ants, maxIter represent the maximum number of
iterations, Iter represent the current iteration, OptimalCost
represent the lowest total distribution cost, andOptimalRoute

represent the optimal distribution route. Set N � 30,
maxIter � 200, I ter � 1, OptimalCost = + ∞.

Procedure 2: Initial route construction. The following are
the specific steps to plan the initial EVdistribution route. Step
1: Randomly assign N ants to customer nodes and set n � 1.
Step 2: Dispatch ant n and let unvisitn denote the set of cus-
tomer nodes that ant n has not yet visited. At this point, ant
n’s tabu table tabun only includes node i where ant n is cur-
rently located. Step 3: Calculate the transition probability for
ant n to select any next node from the current node i . Adopt a
probabilistic rule that combines deterministic and stochastic
selections to address the issue of slow convergence of the
ACA, as shown in formulas (22)–(23). Step 4: Use the rule
in Step 3 to select node j and update the sets of unvisitn and
tabun . Step 5: If unvisitn �� ∅, go to Step 4; otherwise, save
the initial EVdistribution route planning results InitialRouten
for ant n in each cluster, proceed to Procedure 3.

j �
{
arg max{[τis]μ1 [ϑis]μ2}, if rand ≤ rand0

Pn
i j , if rand > rand0,

(22)
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Pn
i j �

⎧⎨
⎩

[τi j ]μ1 [ϑi j ]μ2∑
s∈unvisi tn

([τis ]μ1 [ϑis ]μ2 )
, j ∈ unvisitn

0, j /∈ unvisitn ,
(23)

where τi j is the pheromone heuristic parameter, and ϑi j is
the expectation heuristic parameter, ϑi j � 1/di j . μ1 and
μ2 are the weights for pheromone and expectation heuristic
factors, respectively. In this study, the work of Du et al. [63]
is referenced, and adaptive heuristic factors μ1 and μ2 are
designed. rand is a random number such that 0 < rand < 1.
rand0 signifies a predefined control variable, which is set
rand0 � 0.3 in this study. Pn

i j is the transition probability for
ant n to travel from node i to node j .

Procedure 3:Depot allocation and charging station inser-
tion. The specific steps for depot allocation and charging
station insertion into the distribution routes generated by ant
n within each cluster are as follows: Step 1: Initialization.
Input InitialRouten and let FinalRouten represent the distri-
bution route after ant n adds depots and charging stations.
Step 2: Depot allocation. Adopting a greedy strategy, choose
depot Mi closest to the first customer on InitialRouten as the
departure depot for the EV, and select depot Mj closest to
the last customer on InitialRouten as the return depot for the
EV. Thus, FinalRouten � [Mi , InitialRouten , Mj ]. Step 3:
Charging station insertion. Check if the EVmeets the battery
limit condition (Constraint 13) from the current node i to the
next node j during the distribution process. If itmeets, theEV
travels to node j . Otherwise, the EVmust select the charging
station j closest to node i and insert it into FinalRouten . Step
4: Repeat Step 3 until all initial distribution routes generated
by ant n are inserted with depots and charging stations. Step
5: Let n � n + 1. If n ≤ N , go to Step 2 of Procedure 2;
otherwise, proceed to Procedure 4.

Procedure 4: Calculation of the total distribution cost
for each ant in the current iteration. Calculate each ant’s
total travel cost, fixed dispatch cost, customer service cost
and charging cost based on FinalRouten . Then, obtain
the set of total distribution cost TotalCostiter for all ant.
Determine the lowest distribution cost OptimalCostiter and
the optimal route OptimalCostiter in the current iteration. If
OptimalCostiter < OptimalCost, then updateOptimalCost �
OptimalCostiter and OptimalRoute � OptimalRouteiter;
otherwise, OptimalCostiter � OptimalCost and
Optimal Routeiter�Optimal Route.Proceed to Proce-
dure 5.

Procedure 5: Pheromone update. Adopt an improved
pheromone update strategy in this paper to balance the global
and local search capabilities of ACA, addressing the problem
of the ACA being easily trapped in local optima, as shown

in formulas (24)–(27).

τ newi j �τ oldi j (1 − rho) +
N∑

n�1

�τ ni j + ε · �τ
ψ
i j , (24)

�τ ni j�
{

f /Costn , if ant n traverses arc (i , j)
0, otherwise,

(25)

�τ
ψ
i j �

{
f /Costψ , if elite ant ψ traverses arc (i , j)

0, otherwise,
(26)

τmin ≤ τ newi j ≤ τmax, (27)

where rho is the pheromone evaporation ratewith 0 ≤ rho <

1. Set rho � 0.2. �τ ni j denotes the pheromone increment on
arc (i , j) for antn. The elite antψ is defined as the antwith the
optimal objective value in the current iteration, so ε and�τ

ψ
i j

denotes the pheromoneweight and the pheromone increment
on arc (i , j) for elite ant ψ , respectively. f is a constant that
represents the amount of pheromone secreted by an ant in
each travel. Set f � 10. Costn is the total distribution cost of
ant n, and Costψ is the total distribution cost of the elite ant
ψ . τmin represents theminimumvalue of pheromone allowed
for each arc (i , j) after the update, while τmax represents the
maximum value allowed. Set τmin � 0.05 and τmax � 2.

Procedure 6: Termination criteria for TSHACA. Let
Iter � Iter + 1. If Iter ≤ maxIter, go to Procedure 2. Other-
wise, terminate the TSHACA and output the final optimized
result.

Complexity analysis

The computational complexity of the original algorithm for
discovering a single ant solution (i.e., without employing the
node clustering principle) is described in Eq. (28), exhibiting
a quadratic relationship with the number of vertices, n. This
quadratic dependency arises due to the calculation of tran-
sition probabilities for all unvisited nodes during the vertex
insertion phase. The variable m signifies the selection of a
depot prior to the vertex transition.

O(n · (m + n)) � O(n2 + n · m). (28)

The incorporationof the node clusteringprinciple substan-
tially reduces the computational complexity of TSHACA, as
demonstrated in Eq. (29). The process of selecting a node
for insertion into the solution now unfolds in two distinct
phases: (a) the identification of a cluster (comprising nprim
primary clusters for consideration), and (b) the selection of a
vertex from within the chosen cluster (which contains nsize
vertices).

O(n · (m + nprim + nsize)). (29)
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The enhancement in optimization speed becomes evi-
dent due to the significant reduction in parameters nprim and
nsize compared to the total number of vertices (nprim � n,
nsize � n).Additionally, the node clustering principle retains
the essential characteristic of the original algorithm,whereby
nodes are consistently chosen from the extensive set of avail-
able nodes (nprim·nsize) through the application of pheromone
attraction principles, rather than being confined to a limited
set of nearest vertices.

Experiments and analysis

This section provides a detailed account of the test works per-
formedon the proposedmodel and algorithm. It encompasses
data preparation, experimental evaluations of the difficulties
inherent in MDHOTDEVRP, and a thorough analysis of the
computational experiences with the TSHACA.

Data description

At present, there is no standard test set available forMDHOT-
DEVRP, and the delivery customers of logistics companies
exhibit various types of geographic distributions. Conse-
quently, this study refines Solomon’s VRP test sets [64],
encompassing clustered distribution test sets (C-type), ran-
dom distribution test sets (R-type), and randomly clustered
distribution test sets (RC-type), utilizing these improved test
sets as the experimental dataset. Notably, numerous schol-
ars have generated new test instances based on Solomon’s
test sets. For example, Schneider et al. [65] employed the
Solomon test sets as a benchmark and incorporated 21 charg-
ing stations into each test instance to create the EVRP
experimental dataset they necessitated.

Building upon the test instances created by Schneider
et al., this study converts a portion of the charging station
nodes into depots to construct new test sets for MDHOTDE-
VRP. Each test instance comprises 100 customers, 11 depots,
and10 charging stations. Thedata in the test instances include
the coordinates of depots, charging stations, and customers,
as well as customer demand quantities and service durations.
To comply with the algorithm testing requirements of this
study, depots commence deliveries at 7 a.m., with conges-
tion periods occurring from 7:00 to 9:00 and 17:00 to 19:00.
During these congested periods, EVs travel at a speed of
v f � 30 km/h, while non-congested periods allow for a
speed of vc � 60 km/h. The parameters of the numerical
experiment in this paper are set as follows: φd � 1.184692,
ϕd � 1.112434, g � 9.8 m/s2, θi j � 0°, Cr � 0.012, L �
3000 kg, R � 0.7, A � 3.8 m2, ρ � 1.2041 kg/m3, W �
650 kg, Q � 40 kWh, η � 90%, pe � 60 kW, c1 � 0.5
yuan/min, c2 � 120 yuan/vehicle, c3 � 0.3 yuan/min, c4 �
0.6 yuan/min.

All the proposed procedures of the TSHACA were
coded in Matlab R2020b and executed on a microcomputer
equipped with a 2.40 GHz CPU and 16 GB of RAM.

Experimental evaluation of the challenges
in MDHOTDEVRP

This section offers a comprehensive overview of the experi-
mental evaluation conducted to tackle the various difficulties
encountered inMDHOTDEVRP. The experiments aremetic-
ulously designed to scrutinize the algorithm’s versatility
across test sets with varying geographical distributions,
appraise its proficiency in seamlessly integrating charging
stations into delivery routes, scrutinize the environmental
advantages of MDHOTDEVRP compared to conventional
fuel vehicles, showcase the supremacy ofMHJDM, and eval-
uate the algorithm’s efficacy in diverse traffic congestion
scenarios.

EV route planning for different test instances

This subsection uses a variety of experimental instances with
different customer distributions to test the feasibility of the
model and algorithm in the study. Table 1 shows the test
results. This testing helps determine whether the TSHACA
can effectively handle different spatial configurations, ensur-
ing its viability and practicality in real-world applications
across various regions and settings.

The test results presented in Table 1 reveal that: (1) The
fixed dispatch costs, travel costs, and customer service costs
of EVs account for an average of 33.20%, 34.61%, and
27.67% of the total distribution costs, respectively, totaling
95.48%. This finding suggests that vehicle fixed dispatch-
ing costs, travel costs, and customer service costs remain the
primary factors affecting distribution costs in logistics dis-
tribution. In practice, transport fleets should consider using
EVs with larger capacities to reduce the number of EVs dis-
patched. At the same time, to avoid increased travel costs due
to traffic congestion, transportation tasks should be carried
out considering the effect of time-varying vehicle speeds on
travel time. Furthermore, training logistics drivers to reduce
customer service time and improve service efficiency is rec-
ommended. These efforts can ultimately reduce the total
distribution cost of the transportation fleet and enhance its
overall competitiveness. (2) EV charging cost during dis-
tribution accounts for only 4.52% of the total distribution
cost, and most EVs on distribution routes require only one
charge to complete the transportation task. Thus, using EVs
for urban distribution has a negligible effect on distribution
efficiency and cost. Compared to traditional FVs, EVs have
advantages such as zero emissions, low noise, and low charg-
ing costs. Using EVs for urban distribution can help logistics
enterprises decrease distribution costs and increase economic
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Table 1 Test results for different test instances

TN TD TC EC VC SC CC EN CN RT

C101 546.14 1003.78 360.00 316.13 300.00 27.65 3 4 20.35

R101 685.98 1109.85 360.00 391.19 300.00 58.66 3 4 20.43

RC101 667.01 1105.83 360.00 393.24 300.00 52.59 3 3 20.27

C201 638.42 1070.47 360.00 362.97 300.00 47.50 3 3 20.97

R201 679.45 1113.54 360.00 398.36 300.00 55.18 3 4 20.91

RC201 665.34 1102.03 360.00 389.43 300.00 52.60 3 3 20.90

AVE 647.06 1084.25 360.00 375.22 300.00 49.03 3 3.50 20.64

TN test set name, TD total EV travel distance (in km), TC total distribution cost (in yuan), EC total EV fixed dispatch cost (in yuan), VC total
vehicle travel cost (in yuan), SC customer service cost (in yuan), CC EV charging cost (in yuan), EN number of EVs enabled for distribution, CN
total charging times of all EVs, RT running time of TSHACA (in second), AVE average value

benefits, while also considering the impact of logistics dis-
tribution on the environment, conserving energy, reducing
emissions, and promoting the green and harmonious devel-
opment of urban logistics distribution and environmental
protection. (3) The TSHACA’s running time ranged from a
minimumof 20.27 s to amaximumof 20.97 s,with an average
of 20.64 s. This result indicates that theTSHACAproposed in
this paper can provide high-quality EV distribution-charging
route planning solutions that meet decision objectives in an
extremely short period, demonstrating both high efficiency
and feasibility.

Figure 3 illustrates the EV distribution-charging route
planning solutions for theC102, C202, R102, andRC202 test
instances. The solutions for each test instance involving 100
customers are shown clearly and distinctly in the figure, with
few instances of route detours and intersections.Based on test
cases reflecting a realistic delivery scale, proposed algorithm
demonstrates its potential to consider various practical fac-
tors and offer valuable guidance for the transportation route
optimization of logistics fleets.

Comparative tests of MDHOTDEVRP andMDHOTDVRP

A comparative experiment between urban distribution by
EVs and FVs is conducted using different test sets, while
keeping the rest of the parameters unchanged. Although FVs
do not require recharging during distribution, they gener-
ate fuel consumption and carbon emissions. Following Liu
et al. [26] formula for calculating fuel consumption and car-
bon emissions of FVs in their VRP study and taking related
experimental parameters into account, the fuel consumption
cost and carbon emission cost are integrated into the distribu-
tion costs of the logistics fleet. Table 2 presents the results of
the comparative experiments between MDHOTDEVRP and
MDHOTDVRP.

The test results presented in Table 2 reveal that: (1) Using
EVs instead of FVs for urban distribution can result in signifi-
cant cost savings for logistics fleets. Specifically, substituting
EVs for FVs leads to an average reduction of 31.50% in dis-
tribution costs, with the logistics fleet’s energy consumption
cost dropping from an average of 35.32–4.62%. This finding
highlights the advantages of using EVs for urban distribu-
tion, including saved energy and reduced operating costs.
To improve competitiveness, logistics enterprises ought to
adopt EV fleets for distribution, which aligns with society’s
call for sustainable developmentwithin the logistics industry.
Government departments should promote EV distribution by
strengthening the construction andmanagement ofEVcharg-
ing facilities and enhancing the convenience and safety of
EV fleet use. (2) Using EVs for urban distribution results in
an average increase of only 4.78% in total distance traveled
compared to using FVs. Figure 4 depicts the transportation
route planning solutions of test set RC203 under different
vehicles, showing little difference between the transportation
solutions when using EVs instead of FVs. This finding can
be attributed to the well-developed charging infrastructure in
urban areas, which makes it easy for EVs to locate nearby
charging stations. Additionally, using FVs for urban distri-
bution results in an average carbon emission cost of 14.20
yuan, while EVs produce no carbon emissions, improving
urban air quality and promoting sustainable logistics trans-
portation. However, it is important to note that the carbon
emission cost of FV distribution accounts for only 0.89%
of the total distribution cost, which is less than 1% of the
proportion, indicating that logistics fleets do not prioritize
reducing emissions when using FVs for urban distribution.
This result suggests that China’s current carbon price is too
low to encourage logistics enterprises to reduce emissions
actively. Therefore, Chinese policy maker should develop
more reasonable carbon trading-related policies to promote
sustainable logistics transportation.
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Fig. 3 EV distribution-charging route planning solutions for different test instances

Table 2 Test results of EV urban
distribution and FV urban
distribution

TN HOMDTDEVRP HOMDTDVRP

TC TD CC TC TD FC CEC

C103 1013.80 559.74 30.67 1507.25 511.89 528.67 13.30

R103 1113.54 679.45 55.18 1649.78 653.68 599.41 15.08

RC103 1111.78 678.29 55.26 1620.36 659.55 569.30 14.32

C203 1081.80 644.20 48.52 1553.34 608.06 530.22 13.34

R203 1131.42 691.96 57.28 1636.13 654.02 589.08 14.82

RC203 1115.95 684.65 56.66 1621.28 662.74 569.68 14.33

AVE 1094.72 656.38 50.60 1598.02 624.99 564.39 14.20

FC fuel consumption costs (in yuan), CEC carbon emission costs incurred by FVs (in yuan). Other symbols
have the same meaning as those mentioned earlier
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Fig. 4 Urban distribution route planning of EVs and FVs

Comparative tests of the half-open joint distribution mode
and the closed independent distribution mode

A comparative experiment is conducted to compare the
distribution-charging route planning of EVs in Multi-depot
Half-open Joint Distribution Mode (MHJDM) and Multi-
depot Closed Independent Distribution Mode (MCIDM)
using multi-type test sets, while keeping the rest of the
parameters unchanged. Table 3 presents the experimental
results. The purpose of this comparative test is to evaluate and
demonstrate the advantages of the MHJDM. By comparing
the performance of these two distribution modes, the effec-
tiveness of theMHJDM in optimizing distribution routes and
resource allocation in the context of MDHOTDEVRP can be
assessed.

The test results presented in Table 3 reveal that: (1) EVs
in the MHJDM save an average of 5.14% and 5.83% in
total distribution cost and time, respectively, compared to the
MCIDM. This is because EVs based on the MHJDM do not

need to return to the original departure depot after completing
the distribution task. Instead, they can return to the nearest
depot, decreasing EV empty travel time and thereby reducing
the travel cost of logistics transportation. Therefore, logistics
companies should consider resource sharing between various
depots when building depots. (2) The EV travel distance in
theMHJDM is significantly shorter than that in theMCIDM,
with an average reduction of 8.88%. Figure 5 shows trans-
portation route planning schemes of test instance R104 in
the MHJDM and MCIDM, respectively. The figure clearly
shows that the distribution route of EVs in theMHJDMrarely
appears to be circuitous and intersecting, while the trans-
portation route of EVs in the MCIDM has many intersecting
routes. Therefore, the distribution-charging route planning
of EVs has greater optimization space after adopting the
MHJDM, which can effectively reduce the travel distance
of EVs and should be promoted in practical logistics distri-
bution.

Table 3 Test results of MHJDM
and MCIDM TN MHJDM MCIDM TCSR TDSR

TC TT TD TC TT TD

C104 1004.63 1680.12 545.48 1083.71 1832.43 630.08 7.30% 13.43%

R104 1125.17 1911.10 694.48 1164.03 1986.01 736.84 3.34% 5.75%

RC104 1112.72 1886.69 682.19 1179.55 2016.19 747.97 5.67% 8.79%

C204 1084.68 1833.21 642.13 1156.25 1970.80 732.77 6.19% 12.37%

R204 1130.82 1921.69 700.44 1174.76 2006.99 748.21 3.74% 6.38%

RC204 1121.34 1902.93 696.48 1177.37 2012.35 751.25 4.76% 7.29%

AVE 1096.56 1855.96 660.20 1155.95 1970.80 724.52 5.17% 8.88%

TT total distribution time for all EVs (in min), TCSR the proportion of total distribution cost saved by using
MHJDM instead ofMCIDM(in%).TDSR the proportion of total distribution distance saved by usingMHJDM
instead of MCIDM (in %). The other symbols have the same meanings as mentioned earlier
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Fig. 5 The distribution route planning diagram of EVs in MHJDM and MCIDM

Sensitivity analysis of traffic conditions
in the MDHOTDEVRP

While keeping other experimental parameters constant, five
distinct combinations of traffic conditions (I, II, III, IV, and
V) are designed. These conditions are outlined in detail in
Table 4, where the values provided represent the average
speeds ofEVsunder the respective traffic scenarios (in km/h).
Employing the RC105 test set for experimentation, the test
results are presented in Table 5. This analysis provides valu-
able insights into the algorithm’s effectiveness and reliability
in real-world traffic environments, aiding decision-making in
logistics planning and resource allocation.

The test results presented in Table 5 reveal that: (1) The
enhancement of traffic conditions yields a gradual reduction
in the travel time of EVs during transit. Transitioning from
traffic scenario I to scenario V, the en route travel time of EVs
diminishes by 45.18%. This finding emphasizes the affir-
mative significance of ameliorated urban traffic on transport
efficiency. (2) While the amelioration of traffic conditions
boosts the transportation efficiency of EVs, it also leads to a

notable escalation in energy consumption. Shifting from traf-
fic scenario I to scenario V, the energy consumption of EVs
rises by 195.64%. Heightened energy consumption neces-
sitates more frequent charging requirements. Consequently,
EVs fail to achieve the lowest total distribution cost in traffic
transport scenario V, but instead achieve it in transportation
scenario III. This is attributed to the fact that the transition
from transportation scenario III to scenario V results in a
208.54% increase in charging costs, whereas the reduction
in travel costs amounts to only 17.93%.The rate of increase in
charging costs surpasses the decrease in travel costs. Thus,
it becomes apparent that when planning the transportation
route for the urban distribution fleet, fleet managers must
establish a reasonable travel speed range to strike the optimal
balance between efficiency and total cost. (3) In comparison
to traffic scenario III, which boasts the lowest total distribu-
tion cost, the average disparity between the total distribution
cost of other traffic scenarios and scenario III is 5.23%.
This minor gap in distribution costs showcases the adapt-
ability and route optimization capabilities of the TSHACA

Table 4 Average speeds of EVs
in different traffic conditions Traffic

scenarios
Different traffic conditions and their time distributions

STC TFS MTC TFS STC

[07:00–9:00] [09:00–12:00] [12:00–14:00] [14:00–17:00] [17:00–19:00]

I 20 35 30 35 20

II 25 45 40 45 25

III 30 55 50 55 30

IV 35 65 60 65 35

V 40 75 70 75 40

STC represents severe traffic congestion during the current time period,MTC representsmild traffic congestion
during the current time period, TFS indicates that the traffic flows smoothly during the current time period
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Table 5 Test results of the
MDHOTDEVRP in different
traffic scenarios

Traffic scenarios TC TT DT CC CN PU

I 1298.97 2277.95 1277.94 0.00 0.00 104.89

II 1207.33 2087.70 1052.88 20.89 2.00 140.77

III 1129.36 1924.55 853.66 42.53 3.00 179.50

IV 1133.09 1918.23 778.44 83.87 5.00 237.91

V 1141.53 1919.32 700.62 131.22 6.00 310.10

DT travel time on the routes (in min), PU total energy consumption of all transport EVs (in kWh). The other
symbols have the same meanings as mentioned earlier

based on real-time traffic conditions and time-dependent con-
straints. When traffic conditions deteriorate, the proposed
TSHACA prioritizes the delivery of customers in closest
proximity to minimize travel time. Conversely, when traf-
fic conditions improve, the TSHACA adeptly schedules the
insertion of charging stations, effectively striking a balance
between charging costs and congestion impacts.

Computational experiences

This section provides a comprehensive analysis of the
computational experiences of the proposed TSHACA in
addressing the MDHOTDEVRP. The primary focus lies
on the computational burden of TSHACA, encompassing
factors such as computational time, memory usage, and algo-
rithmic robustness. Additionally, a comparative experiment
is conducted, contrasting TSHACA against state-of-the-art
methodologies.

Computational time analysis

This subsection conducts the computational time analysis
of the algorithm. To gauge the computational efficiency of
the TSHACA, the study measures the time required to solve
instances of the MDHOTDEVRP using TSHACA, the orig-
inal ACA, and the Elite Ant System (EAS) [66]. Table 6

reports the test results. Through a meticulous comparison of
these three distinct ACAs, the aim is to convincingly demon-
strate that TSHACA outperforms its counterparts in terms of
computational time.

The test results presented in Table 6 demonstrate sig-
nificant advantages of TSHACA over ACA and EAS in
terms of computational efficiency for solving MDHOT-
DEVRP. TSHACA reduces the computational time by an
average of 90.14% and 89.47% compared to ACA and EAS,
respectively. Moreover, the quality of solutions obtained
by TSHACA surpasses those achieved by ACA and EAS.
TSHACA exhibits a 4.23% reduction in distribution costs
compared to ACA and a 2.70% reduction compared to EAS.
The superior computational solving time of TSHACA can
be attributed to several key factors. First, the TSHACA
incorporates intelligent clustering techniques, enabling it to
simplify large-scale problems and reduce the time required
for convergence. In contrast, the absence of intelligent clus-
tering in ACA and EAS can lead to a more extensive search
space and slower convergence. Second, TSHACA’s adap-
tive heuristic parameters and the improved probabilistic rule
augment its ability to explore the solution space efficiently,
while ACA and EAS may rely on fixed parameters or less
adaptive strategies, limiting their exploration and exploita-
tion capabilities. Additionally, the TSHACA benefits from
an enhanced pheromone updating mechanism, which helps

Table 6 Test results of the MDHOTDEVRP using different ACAs

TN TSHACA ACA EAS

TD TC RT TD TC RT TD TC RT

C106 544.87 1004.04 19.52 596.69 1050.95 179.97 592.23 1036.18 162.30

R106 681.33 1117.46 19.58 730.42 1175.15 219.71 719.93 1154.24 193.43

RC106 666.95 1105.79 19.43 724.03 1163.11 184.37 703.09 1135.18 189.43

C206 646.57 1075.95 19.17 713.18 1125.37 189.19 678.12 1110.34 176.22

R206 694.20 1126.86 19.19 736.78 1176.94 199.65 723.56 1156.30 187.85

RC206 679.36 1112.34 19.38 716.84 1140.21 206.47 711.38 1131.54 195.38

AVE 652.21 1090.41 19.38 702.99 1138.62 196.56 688.05 1120.63 184.10

All symbols have the same meanings as mentioned earlier
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Table 7 Comparisonof averagememory andCPUusage for threeACAs

TN Algorithm ACU AMU

C207 TSHACA 11.6 50.5

ACA 14.9 53.3

EAS 14.6 52.8

R207 TSHACA 12.3 50.7

ACA 14.8 53.1

EAS 14.2 51.9

RC207 TSHACA 12.8 51.3

ACA 15.1 53.4

EAS 14.5 52.6

ACU average CPU usage (in %). AMU average memory usage (in %).
The other symbols have the same meanings as mentioned earlier

balance global and local search capabilities, preventing it
from getting trapped in local optima. Conversely, the ACA
and EASmay use simpler or less effective pheromone updat-
ing rules, increasing the likelihood of getting stuck in local
optima. These advancements make TSHACA computation-
ally efficient, achieving faster solving than ACA and EAS.

Memory usage

This subsection offers an analysis of the algorithmicmemory
requirements to evaluate the performance of the TSHACA.
The memory usage of the TSHACA, original ACA, and EAS
is monitored and compared during their execution, with the
results presented in Table 7. The objective of this analy-
sis is to provide valuable insights into the scalability and
resource demands of the proposed algorithm. By examining
the memory usage situations, a deeper understanding of how
TSHACA utilizes system resources and its ability to handle
various problem instances is gained.

The test results presented in Table 7 demonstrate that
TSHACA exhibits the lowest average CPU and memory
usage compared to the original ACA and EAS across all
test instances. TSHACA achieves an average CPU usage
reduction of 18.09% and an average memory usage reduc-
tion of 4.57% compared to ACA, while compared to EAS,
it achieves an average CPU usage reduction of 15.22% and
an average memory usage reduction of 3.05%. This outcome
can be attributed to TSHACA’s two-stage approach, which
enables more efficient memory usage in contrast to ACA and
EAS. The clustering step reduces the size of the problem by
dividing it into smaller subproblems, decreasing the memory
requirements for storing and processing the solution informa-
tion. Additionally, the localized search behavior of the IACA
limits the amount of pheromone information that needs to
be stored, further diminishing the memory footprint. As a
result, TSHACA offers improved computational efficiency

Fig. 6 Memory usage comparison of three ACAs over time

andmemorymanagement compared to the original ACA and
EAS.

Figure 6 depicts the temporal variation of memory usage
for the three algorithms—the TSHACA, original ACA, and
EAS—during the execution of the same test set, R208. The
results reveal that TSHACA exhibits a minor range of oscil-
lations in memory usage, hovering around 51% within the
initial 20 s of its operation. Subsequently, itmaintains a stable
memory usage level, indicating the completion of all com-
putation tasks. Conversely, both ACA and EAS have been
experiencing fluctuations in memory usage at around 52%
and 53%, surpassing the usage rate of TSHACA. Notably,
EAS demonstrates better overall memory usage compared
to ACA. These observations stem from divergent algorith-
mic designs and behaviors. TSHACA employs a two-stage
approach, in which the second stage incorporates the IACA
and conducts localized searches within each cluster. This
localized search behavior facilitates focused exploration and
exploitation of the search space, expediting convergence and
leading to stable memory usage in later stages. The sta-
bility in memory usage indicates that TSHACA maintains
a consistent amount of information and does not require
significant additional memory as the algorithm progresses.
In contrast, ACA and EAS typically entail frequent global
pheromone updates, necessitating storage and updates of
larger pheromone volumes. Consequently, over a span of
60 s, the memory usage of ACA and EAS fluctuates per-
sistently, whereas TSHACA’s localized search behavior and
clustering scheme promote efficient utilization of pheromone
information, resulting in fewermemoryfluctuations.Overall,
TSHACA’s relatively stable and low memory usage, com-
pared to the original ACA and EAS, contributes to better
memory management and more stable memory usage pat-
terns throughout the algorithm’s execution.

Robustness analysis

While the proposed TSHACA is tailored for the MDHOT-
DEVRP under consideration, its design and underlying
principles can be extended to more general situations. To
further substantiate the claims regarding the robustness of
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Table 8 Comparative results for
the robustness of TSHACA TN ND NC W TSHACA CoES

Best RT Best RT Gap

P04 8 100 100 1017.45 47.53 1007.40 189.70 0.99%

P08 14 249 500 4475.34 469.44 4450.37 803.40 0.56%

P15 5 160 60 2550.15 62.60 2526.06 107.00 0.94%

P20 5 240 60 4093.73 131.51 4058.07 190.20 0.87%

P23 5 360 60 6157.80 436.72 6129.99 529.30 0.45%

P29 6 288 175 2694.81 492.08 2674.53 724.40 0.75%

ND the number of depots, NC the number of customers,W vehicle capacity, Best the optimal results obtained
by each algorithm across different benchmarks, Gap the gap in the optimal results between the TSHACA and
CoES. The meanings of other symbols are the same as those mentioned earlier

the TSHACA, it is subjected to a series of examinations
on diverse problem instances investigated by other schol-
ars. Specifically, the chosen experimental setup is based on
the notable work of de Oliveira et al. [67], wherein the
optimal results achieved by executing TSHACA are com-
pared against their proposed CoES algorithm. TSHACA is
run 30 times under each instance to obtain optimal results.
These experiments are designed to evaluate the TSHACA’s
adaptability under different conditions and problem charac-
teristics. Test results are presented in Table 8.

The test results presented in Table 8 unveil the excel-
lent robustness of the TSHACA in tackling the challenges
posed by MDVRPs with varying problem features. Regard-
ing algorithm stability, the disparity between the optimal
results obtained by TSHACA and the established best results
achieved by CoES typically falls within a mere 1%. Mean-
while, in terms of algorithmic efficiency, TSHACAoutshines
CoES in all examined benchmarks, boasting an average
time-saving of 35.54%. These findings demonstrate that
TSHACA’s robustness enables it to capture the underly-
ing problem structure and exploit common patterns, making
it capable of delivering satisfactory results across various
instances.

Algorithm comparative test

In this subsection, the algorithm comparative test is con-
ducted to further validate the superior performance of the
proposed TSHACA. To achieve this, TSHACA is compared
with the widely acclaimed and state-of-the-art methodology,
theHybrid Particle SwarmOptimization (HPSO), introduced
by Islam et al. [68]. The choice of HPSO as the comparison
algorithm stems from its widespread popularity and effec-
tiveness in solving diverse optimization problems, as demon-
strated in extensive research and applications.By juxtaposing
TSHACA with HPSO, a comprehensive evaluation of their
performance and effectiveness can be obtained, shedding

light on their respective strengths and weaknesses. Impor-
tantly, HPSO and TSHACA operate on different underlying
principles and mechanisms. HPSO relies on particle move-
ment and velocity update rules, while TSHACA leverages
ant colony optimization techniques. This inherent contrast
enables a meaningful comparison, facilitating the identifi-
cation of unique advantages and limitations exhibited by
different swarm intelligent algorithms. The test results are
presented in Table 9, providing valuable insights into the rel-
ative performance and capabilities of TSHACA and HPSO
in addressing the optimization challenges at hand.

The test results presented in Table 9 reveal that: (1)
TSHACA has a significantly shorter running time than
HPSO across all benchmarks, with an average time-saving
of 88.98%. The superior solving speed of TSHACA can
be ascribed to its underlying principles and mechanisms.
TSHACA incorporates intelligent clustering techniques,
adaptive parameters, and an improved pheromone updating
mechanism, which collectively enhance its computational
efficiency and convergence speed. By simplifying large-scale
problems through clustering, TSHACA reduces the search
space and accelerates convergence. This result confirms the
effectiveness of the proposed TSHACA in the distribution-
charging route planning for MDHOTDEVRP. (2) Overall,
the transport solutions generated by TSHACA outperform
HPSO in terms of total distribution cost and distance, with
average savings of 0.07% and 0.69%, respectively. However,
it is noteworthy that TSHACA’s performance is compara-
tively weaker than HPSO under R-type test sets. The inferior
solution quality of TSHACA in scenarios with randomly
distributed customers may arise from the divergent solving
strategies employed by the two algorithms. HPSO com-
bines PSO and Variable Neighborhood Search (VNS), which
allows it to leverage the exploration capabilities of PSO and
the local search intensification of VNS. This hybridization
provides HPSO with the potential to effectively explore and
exploit the search space, resulting in better solutions for these
instances. In contrast, the intelligent clustering approach
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Table 9 The results of algorithm
comparative test TN TSHACA HPSO TCSR TDSR

TC TD RT TC TD RT

C109 1000.51 541.05 19.67 1009.80 549.42 149.21 0.92% 1.52%

R109 1129.19 691.01 19.64 1104.47 670.69 176.58 − 2.24% − 3.03%

RC109 1102.83 666.48 19.54 1112.51 682.61 202.46 0.87% 2.36%

C209 1066.83 627.34 19.45 1075.65 643.62 161.43 0.82% 2.53%

R209 1129.39 693.30 19.35 1124.92 690.45 189.49 − 0.40% − 0.41%

RC209 1110.43 675.51 19.41 1115.36 683.52 182.74 0.44% 1.17%

AVE 1089.86 649.12 19.51 1090.45 653.39 176.99 0.07% 0.69%

TCSR represents the proportion of objective function saved using TSHACA instead of HPSO (in %), TDSR
represents the proportion of total distribution distance saved using TSHACA instead of HPSO (in %). The
other symbols have the same meanings as mentioned earlier

employed in the first phase of TSHACA restricts the search
space. In scenarios where customers are widely dispersed,
the clustering approach may not yield optimal results. The
scattered nature of customers poses challenges in forming
meaningful clusters, leading to suboptimal solutions.

Nonetheless, the strengths of TSHACA lie in its ability to
efficiently explore and exploit the solution space due to adap-
tive parameters and improved pheromone updating. On the
other hand, HPSO may exhibit weaknesses stemming from
its sensitivity to parameter settings. The choice of parame-
ters, such as the inertia weight and acceleration coefficients,
can significantly affect its convergence behavior and solu-
tion quality. In conclusion, while TSHACA demonstrates
superior solving speed, its lower solution quality in certain
instances may be attributed to the trade-off between explo-
ration and exploitation. HPSO’s hybridization and potential
for intensification through VNS contribute to its ability to
find higher-quality solutions, but at the cost of slower conver-
gence. These contrasting influences and trade-offs highlight
the importance of carefully selecting the appropriate algo-
rithm based on the specific problem characteristics and
optimization objectives.

Conclusions

The paper delves into the MDHOTDEVRP. To this end, a
novel approach is devised to accurately estimate the energy
consumption of EVs traversing a time-varying urban road
network. Subsequently, a MIP model is formulated by the
unique characteristics of the problem. Building upon this
model, a TSHACA is developed to tackle the problem. Com-
prehensive numerical experiments are conducted to address
the various difficulties encountered in MDHOTDEVRP and
validate the performance of the TSHACA. The study con-
tributes to the existing body of knowledge in the field

of EVRP by providing valuable theoretical advancements,
which can be summarized as follows:

1. Problem formulation: developing an accurateMIPmodel
that considers the dynamic nature of time-dependent
vehicle routing, the complexities of MHJDM, and the
constraints imposed by different charging strategies. This
formulation offers a theoretical foundation for addressing
the specific challenges inherent in MDHOTDEVRP.

2. Algorithm design: proposing optimization tech-
niques—the TSHACA—specifically tailored to solve
the MDHOTDEVRP. The algorithm efficiently allocates
EVs from different depots, optimizes vehicle routes con-
sidering time-dependent factors, and minimizes logistics
distribution costs while saving energy consumption.

3. Performance evaluation: conducting extensive numerical
experiments to evaluate the performance of the proposed
algorithm. This includes analyzing the superiority of
the solutions obtained, comparing the algorithm with
existing approaches, and assessing the economic and
environmental benefits achieved through the application
of the MDHOTDEVRP solution.

4. Practical implications: providing insights and recom-
mendations for decision-makers in the logistics industry,
transportation planners, and policy-makers to facilitate
the adoption of EVs in urban logistics. This includes
identifying the potential economic and environmental
advantages of implementing the MDHOTDEVRP, such
as reduced operating costs, lower carbon emissions,
improved resource allocation, and sustainable urban
development.

In conclusion, the research aims to advance the under-
standing and knowledge of electric vehicle routing optimiza-
tion in urban logistics, propose practical solutions to tackle
the challenges posed by theMDHOTDEVRP, and contribute
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to the development of sustainable and efficient transportation
systems.

Author contributions LF: Conceptualization, Methodology, Software,
Writing—original draft, Writing—review and editing.

Data availability The data used to support the findings of this study are
available from the corresponding author upon request.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Human and animal rights This study does not involve human or animal
subjects.

Informed consent Not applicable.

Open Access This article is licensed under aCreativeCommonsAttri-
bution 4.0 International License,which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. ZhangL,LongR,ChenH (2019)Carbon emission reduction poten-
tial of urban rail transit in China based on electricity consumption
structure. Resour Conserv Recycl 142:113–121. https://doi.org/10.
1016/j.resconrec.2018.11.019

2. USEPA (2021) United States environmental protection agency:
sources of greenhouse gas emissions. Retrieved from https://www.
epa.gov/ghgemissions/sources-greenhouse-gas-emissions

3. EEA (2022) European environment agency: annual European
union greenhouse gas inventory 1990–2020 and inventory report
2022. Retrieved from https://www.eea.europa.eu/publications/an
nual-european-union-greenhouse-gas-1

4. Nichols BG, Kockelman KM, Reiter M (2015) Air quality impacts
of electric vehicle adoption in Texas. Transp Res Part D: Transp
Environ 34:208–218. https://doi.org/10.1016/j.trd.2014.10.016

5. Steinbach L, Altinsoy ME (2019) Prediction of annoyance eval-
uations of electric vehicle noise by using artificial neural net-
works. Appl Acoust 145:149–158. https://doi.org/10.1016/j.apac
oust.2018.09.024

6. Xiao Y, Zhang Y, Kaku I, Kang R, Pan X (2021) Electric vehicle
routing problem: a systematic review and a new comprehen-
sive model with nonlinear energy recharging and consumption.
Renew Sustain Energy Rev 151:111567. https://doi.org/10.1016/j.
rser.2021.111567

7. Huang J, Liu Y, Liu M, Cao M, Yan Q (2019) Multi-objective
optimization control of distributed electric drive vehicles based on
optimal torque distribution. IEEE Access 7:16377–16394. https://
doi.org/10.1109/ACCESS.2019.2894259

8. Amiri A, Amin SH, Zolfagharinia H (2023) A bi-objective green
vehicle routing problem with a mixed fleet of conventional and
electric trucks: considering charging power and density of sta-
tions. Expert Syst Appl 213:119228. https://doi.org/10.1016/j.
eswa.2022.119228

9. Gansterer M, Hartl RF (2018) Collaborative vehicle routing: a sur-
vey. Eur J Oper Res 268(1):1–12. https://doi.org/10.1016/j.ejor.
2017.10.023

10. Zhou Z, Ha M, Hu H, Ma H (2021) Half open multi-depot
heterogeneous vehicle routing problem for hazardous materials
transportation. Sustainability 13(3):1262. https://doi.org/10.3390/
su13031262

11. Lijun F, Changshi L, Zhang W (2023) Half-open time-dependent
multi-depot electric vehicle routing problem considering battery
recharging and swapping. Int J Ind Eng Comput 14(1):129–146.
https://doi.org/10.5267/j.ijiec.2022.9.002

12. Basso R, Kulcsár B, Egardt B, Lindroth P, Sanchez-Diaz I (2019)
Energy consumption estimation integrated into the electric vehicle
routing problem. Transp Res Part D: Transp Environ 69:141–167.
https://doi.org/10.1016/j.trd.2019.01.006

13. WangL,GaoS,WangK, Li T, Li L, ChenZ (2020) Time-dependent
electric vehicle routing problem with time windows and path flex-
ibility. J Adv Transp 2020:1–19. https://doi.org/10.1155/2020/30
30197

14. KapustinNO,GrushevenkoDA (2020) Long-term electric vehicles
outlook and their potential impact on electric grid. Energy Policy
137:111103. https://doi.org/10.1016/j.enpol.2019.111103

15. Amin A, Tareen WUK, Usman M, Ali H, Bari I, Horan B, Mah-
mood A (2020) A review of optimal charging strategy for electric
vehicles under dynamic pricing schemes in the distribution charg-
ing network. Sustainability 12(23):10160. https://doi.org/10.3390/
su122310160

16. Konstantakopoulos GD, Gayialis SP, Kechagias EP (2020) Vehicle
routing problem and related algorithms for logistics distribution:
a literature review and classification. Oper Res. https://doi.org/10.
1007/s12351-020-00600-7

17. YesodhaR,AmudhaT (2022)Abio-inspired approach: firefly algo-
rithm for multi-depot vehicle routing problem with time windows.
Comput Commun 190:48–56. https://doi.org/10.1016/j.comcom.
2022.04.005

18. Sadati MEH, Çatay B, Aksen D (2021) An efficient variable neigh-
borhood search with tabu shaking for a class of multi-depot vehicle
routing problems. Comput Oper Res 133:105269. https://doi.org/
10.1016/j.cor.2021.105269

19. Soeanu A, Ray S, Berger J, Boukhtouta A, Debbabi M (2020)
Multi-depot vehicle routing problem with risk mitigation: model
and solution algorithm. Expert Syst Appl 145:113099. https://doi.
org/10.1016/j.eswa.2019.113099

20. Li J, LiY, Pardalos PM (2016)Multi-depot vehicle routing problem
with time windows under shared depot resources. J Comb Optim
31(2):515–532. https://doi.org/10.1007/s10878-014-9767-4

21. WangY,RanL,GuanX,Fan J, SunY,WangH (2022)Collaborative
multicenter vehicle routing problem with time windows and mixed
deliveries and pickups. Expert Syst Appl 197:116690. https://doi.
org/10.1016/j.eswa.2022.116690

22. Liu G, Hu J, Yang Y, Xia S, Lim MK (2020) Vehicle routing prob-
lem in cold Chain logistics: a joint distribution model with carbon
trading mechanisms. Resour Conserv Recycl 156:104715. https://
doi.org/10.1016/j.resconrec.2020.104715

23. Chen D, Pan S, Chen Q, Liu J (2020) Vehicle routing problem of
contactless joint distribution service during COVID-19 pandemic.
Transp Res Interdiscip Perspect 8:100233. https://doi.org/10.1016/
j.trip.2020.100233

24. Sun P, Song X, Song S, Stojanovic V (2023) Composite adap-
tive finite-time fuzzy control for switched nonlinear systems with

123

http://creativecomm\penalty -\@M ons.org/licenses/by/4.0/
https://doi.org/10.1016/j.resconrec.2018.11.019
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
https://www.eea.europa.eu/publications/annual-european-union-greenhouse-gas-1
https://doi.org/10.1016/j.trd.2014.10.016
https://doi.org/10.1016/j.apacoust.2018.09.024
https://doi.org/10.1016/j.rser.2021.111567
https://doi.org/10.1109/ACCESS.2019.2894259
https://doi.org/10.1016/j.eswa.2022.119228
https://doi.org/10.1016/j.ejor.2017.10.023
https://doi.org/10.3390/su13031262
https://doi.org/10.5267/j.ijiec.2022.9.002
https://doi.org/10.1016/j.trd.2019.01.006
https://doi.org/10.1155/2020/3030197
https://doi.org/10.1016/j.enpol.2019.111103
https://doi.org/10.3390/su122310160
https://doi.org/10.1007/s12351-020-00600-7
https://doi.org/10.1016/j.comcom.2022.04.005
https://doi.org/10.1016/j.cor.2021.105269
https://doi.org/10.1016/j.eswa.2019.113099
https://doi.org/10.1007/s10878-014-9767-4
https://doi.org/10.1016/j.eswa.2022.116690
https://doi.org/10.1016/j.resconrec.2020.104715
https://doi.org/10.1016/j.trip.2020.100233


Complex & Intelligent Systems (2024) 10:2107–2128 2127

preassigned performance. Int J Adapt Control Signal Process
37(3):771–789. https://doi.org/10.1002/acs.3546

25. Jie K-W, Liu S-Y, Sun X-J (2022) A hybrid algorithm for time-
dependent vehicle routing problem with soft time windows and
stochastic factors. Eng Appl Artif Intell 109:104606. https://doi.
org/10.1016/j.engappai.2021.104606

26. Liu C, Kou G, Zhou X, Peng Y, Sheng H, Alsaadi FE (2020)
Time-dependent vehicle routing problem with time windows of
city logistics with a congestion avoidance approach. Knowl Based
Syst 188:104813. https://doi.org/10.1016/j.knosys.2019.06.021

27. Allahyari S, Yaghoubi S, Van Woensel T (2021) The secure
time-dependent vehicle routing problem with uncertain demands.
Comput Oper Res 131:105253. https://doi.org/10.1016/j.cor.2021.
105253

28. Soysal M, ÇimenM (2017) A simulation based restricted dynamic
programming approach for the green time dependent vehicle rout-
ing problem. Comput Oper Res 88:297–305. https://doi.org/10.
1016/j.cor.2017.06.023

29. Çimen M, Soysal M (2017) Time-dependent green vehicle routing
problem with stochastic vehicle speeds: an approximate dynamic
programming algorithm. Transp Res Part D: Transp Environ
54:82–98. https://doi.org/10.1016/j.trd.2017.04.016

30. Guo X, ZhangW, Liu B (2022) Low-carbon routing for cold-chain
logistics considering the time-dependent effects of traffic conges-
tion. Transp Res Part D: Transp Environ 113:103502. https://doi.
org/10.1016/j.trd.2022.103502

31. Lu J, Chen Y, Hao J-K, He R (2020) The time-dependent electric
vehicle routing problem: model and solution. Expert Syst Appl
161:113593. https://doi.org/10.1016/j.eswa.2020.113593

32. Bi X, Tang WK (2018) Logistical planning for electric vehi-
cles under time-dependent stochastic traffic. IEEE Trans Intell
Transp Syst 20(10):3771–3781. https://doi.org/10.1109/TITS.
2018.2883791

33. Zhang R, Guo J, Wang J (2020) A time-dependent electric vehicle
routing problem with congestion tolls. IEEE Trans Eng Manage
69(4):861–873. https://doi.org/10.1109/TEM.2019.2959701

34. Keskin M, Laporte G, Çatay B (2019) Electric vehicle routing
problem with time-dependent waiting times at recharging stations.
Comput Oper Res 107:77–94. https://doi.org/10.1016/j.cor.2019.
02.014

35. Lin J, ZhouW,Wolfson O (2016) Electric vehicle routing problem.
Transp Res Proc 12:508–521. https://doi.org/10.1016/j.trpro.2016.
02.007

36. Granada-EcheverriM,CubidesL,Bustamante J (2020)The electric
vehicle routing problem with backhauls. Int J Ind Eng Comput
11(1):131–152. https://doi.org/10.5267/j.ijiec.2019.6.001

37. Kucukoglu I, Dewil R, Cattrysse D (2021) The electric vehicle
routing problem and its variations: a literature review. Comput Ind
Eng 161:107650. https://doi.org/10.1016/j.cie.2021.107650

38. ZhouY, Huang J, Shi J,WangR, HuangK (2021) The electric vehi-
cle routing problem with partial recharge and vehicle recycling.
Complex Intell Syst 7(3):1445–1458. https://doi.org/10.1007/s4
0747-021-00291-3

39. Cortés-Murcia DL, Prodhon C, Afsar HM (2019) The electric
vehicle routing problem with time windows, partial recharges
and satellite customers. Transp Res Part E Log Transp Rev
130:184–206. https://doi.org/10.1016/j.tre.2019.08.015

40. Schiffer M, Walther G (2017) The electric location routing prob-
lem with time windows and partial recharging. Eur J Oper Res
260(3):995–1013. https://doi.org/10.1016/j.ejor.2017.01.011

41. Dönmez S, Koç Ç, Altıparmak F (2022) The mixed fleet vehi-
cle routing problem with partial recharging by multiple chargers:
Mathematical model and adaptive large neighborhood search.
Transp Res Part E Log Transp Rev 167:102917. https://doi.org/
10.1016/j.tre.2022.102917
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