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Abstract
This article presents model-free adaptive control based on an intuitionistic fuzzy neural network for nonlinear systems with
event-triggered output. Essentially, model-free adaptive control (MFAC) is constructed by establishing an online approximate
model of the controlled system using the pseudo-partial derivative (PPD) form. By the proposed scheme, first, an intuitionistic
fuzzy neural network (IFNN) is developed as an estimator for time-varying PPD in both compact-form dynamic linearization
(CFDL) and partial-form dynamic linearization (PFDL) for theMFAC technique. Second, two periodic event-triggered output
methods are integrated with the proposed IFNN-based MFAC in both forms to save communication resources and reduce
the computation burden and energy consumption. Based on the Lyapunov theory and BIBO stability approach, necessary
conditions are established to guarantee the convergence of the adaptive law of the IFNN controller and the boundary of the
tracking error of the closed loop system. Third, regarding the feasibility and the effectiveness of the developed control method,
two simulation examples including the continuous stirred-tank reactor (CSTR) system and the heat exchanger system are
given. Finally, the practical validation of the proposed data-driven control method is conducted via the speed control of a DC
motor.

Keywords Data-driven control · Model-free adaptive control (MFAC) · Intuitionistic fuzzy neural network (IFNN) · Discrete
event-triggered

Introduction

Nowadays, the network control system (NCS) has attracted
much interest because it is easy to install and has high flex-
ibility [1–3]. On the other hand, the bandwidth, and the
computing capabilities of NCS are limited. Hence, in order
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to reduce the computational burden and enhance the limited
communication resources, event-triggered control (ETC)
schemes have been widely concerned [4, 5]. Fundamentally,
the event-triggered control scheme samples the system’s out-
put and performs the control action whenever a specific
event exceeds a defined threshold. There are two types of
event-triggered control schemes: continuous event-triggered
control (CETC) scheme and periodic event-triggered control
(PETC) scheme.Based onCETC, dedicated analog hardware
is needed to continuously check the event condition, which is
difficult in digital implementations [6–11]. Hence, to make
be more suited for practical implementations, PETC only
checks the event condition periodically at explicit sampling
instances [12–14].

Recently, the ETC has been developed for nonlinear
model-based control systems to improve its ability to deal
with the limited resources of NCS. In this context, H∞ ETC
is introduced for vehicle active suspension systems under
linear fraction uncertainties [15]. In [12], a predictor-based
PETC is developed for nonlinear uncertain systems with
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input delay, adaptive PETC output-feedback control is used
to control switched nonlinear systems [13], and a nonlinear
NCSwith a PETC is developed in [14]. Amodified repetitive
PETC with equivalent input disturbance for linear systems
subject to unknowndisturbancewas proposed in [16]. In [17],
T-S fuzzy model is used to approximate the nonlinear system
with a repetitive control based on a PETC. The sliding-mode
control (SMC) approaches for nonlinear systems have been
developed using ETC schemes [18, 19]. It is noteworthy that
the common features in most of the above-mentioned results
are presented on the basis of the dynamic equations of the
system known in advance. However, the system dynamics in
real applications are complex and therefore it is difficult to
obtain the precise dynamic equations of the systems. There-
fore, several results of ETC approaches based on data-driven
control methods have been emergence.

Basically, the data-driven control (DDC) schemes are con-
structed directly using input–output (I/O) measured data
(online or offline) [20, 21]. Based on this concept, many
strategies have been presented, such as dynamic program-
ming [22], iterative feedback tuning [23, 24], iterative
learning control [6, 9], virtual reference feedback tuning [25],
and model free adaptive control (MFAC) [26–30]. Among
them, the MFAC scheme has attracted a lot of attention
in controlling nonlinear systems with unknown dynamics
[31]. This scheme replaces the global nonlinear model with
a sequence of dynamic equivalent linearized time-varying
data models which are constructed at each current operating
point using a time-varying term known as the pseudo-partial
derivative (PPD). The online dynamic linearization model
(DLM) can be accomplished in three different methods: full-
form dynamic linearization (FFDL), partial-form dynamic
linearization (PFDL), and compact-form dynamic lineariza-
tion (CFDL) [26, 31, 32]. Consequently, based on the MFAC
framework, the ETC approaches have been established
for nonlinear systems [33]. Regarding the effectiveness of
MFAC when working with unidentified systems, an ETC
technique uses the estimated weight of the neural network to
estimate the pseudo-gradient vector has been presented [34].
In [9], a low computation cost MFAC triggering approach is
proposed where the MFAC with adaptive iterative learning
control based on ETC is constructed for nonlinear systems.

Over the past decades, due to the capability of fuzzy rea-
soning and the learning abilities of neural networks, the fuzzy
neural network (FNN) has become an effective approach in
the modeling and control of nonlinear processes [35–39].
One of the developments of the fuzzy theory, the intuitionistic
fuzzy (IF) theory includes the membership function and non-
membership function in describing confusion [40]. Using
this concept would get more flexibility and then more realis-
tic results in several applications. Consequently, IF has been
used in medical applications [41], control, and synchroniza-
tion of chaotic systems [42, 43]. In [44] an adaptive IF neural

network (IFNN) has been proposed for the control and syn-
chronization of chaotic systems. Type-2 IFNN for regression
problems has been proposed in [45].

Based on the above discussion, in this paper, a discrete
event triggered MFAC using an IFNN for nonlinear sys-
tems is developed. In this proposed scheme, the IFNN is
developed as an approximation tool for the time-varying
PPD in the MFAC approach in both the partial and compact
forms. Based on the discrete event-triggering framework to
save system resources and reduce the computation time, the
proposed MFAC using the IFNN is developed. Here, two
PETC mechanisms are investigated; the first one tests the
event-triggered condition at the fixed sampling period of the
controlled systemswhereas the second one examines the con-
dition at certain instants dependingonapredeterminedperiod
to save system resources even more. Using the backpropaga-
tion algorithm, the updating of the parameters of the IFNN
is provided when the event-triggered condition is satisfied.
On the basis of the Lyapunov theory and the BIBO method,
sufficient conditions for the convergence and the stability of
the proposed scheme are derived. In order to investigate the
effectiveness of the proposed MFAC-PETC, two simulation
examples including the CSTR system and heat exchanger
system are given. Moreover, the proposed controllers are
validated practically in a real-time application via the speed
control for a shunt direct current (DC) motor. In the end, we
can summarize the contribution of this article as follows:

(i) Developing the IFNN as an approximator tool in the
MFAC approach for nonlinear systems using the PFDL
and the CFDL.

(ii) Combining two PETC methods with the proposed
MFAC based on the IF approximator to save system
resources and reduce the computation time.

(iii) Extracting the conditions that guarantee the conver-
gence of the training process of the IFNN approximator
and the stability of the proposed data-driven control
system.

(iv) The practical validation of the proposed scheme by
means of the speed control of a DC motor.

The rest of this paper is organized as follows. In "MFAC
scheme", the MFAC based on both PFDL and CFDL is
explored. The proposed MFAC based on an IFNN includ-
ing the network structure and the adaptive update laws is
presented in "MFAC based on IFNN". In "Event-triggered
MFAC scheme", theMFACwith the periodic event-triggered
output scheme is described.The stability analysis is studied in
"Convergence and stability analysis". In "Simulation results",
simulation andpractical results are introduced to demonstrate
the performance of the proposed control scheme. Finally, the
conclusions are summarized in “Conclusion”.
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MFAC scheme

Consider a discrete-time nonlinear single-input single-output
(SISO) system given in the following general form:

y(k + 1) � f

(
y(k), y(k − 1), . . . , y

(
k − ny

)
,

u(k), u(k − 1) . . . , u(k − nu)

)
(1)

where, u(k)and y(k) ∈ R stand to the control input and the
system output at the time instant k, respectively. The two
unknown orders of the above nonlinear system are repre-
sented by two unknown positive integers ny , nu with an
unknown nonlinear function f (.). For system (1), the fol-
lowing assumptions are defined.

Assumption 1. The partial derivatives of nonlinear function
f (.) ∈ R related to all variables are continuous.

Assumption 2. System (1) satisfies the generalized Lips-
chitz condition which states that |�y(k + 1)| ≤ s‖�U (k)‖
and ‖�U (k)‖�� 0 for any k, where s is a positive
constant, �y(k + 1) � y(k + 1) − y(k), �U (k) �
[�u(k), �u(k − 1), . . . �u(k − L + 1)]T , �u(k − i) �
u(k − i) − u(k − i − 1) and i � 0, 1, . . . ., L − 1, where
L > 0 is called control input length constant of linearization.

Remark 1 It is worth noting that assumptions 1 and 2 are
acceptable and reasonable from the perspective of practical
applications. Assumption 1 is a standard constraint of con-
troller design for typical nonlinear systems and Assumption
2 is a linear-like constraint that guarantees that the rate of
change of the system output has an upper bound limitation
with bounded change in the control input. For example, the
output speed changes of a dcmotor cannot go to infinity if the
changes in the input voltage to its drive circuit are bounded.
Also, many practical systems such as pressure, refrigeration,
and temperature control can satisfy the above two assump-
tions [32].

Based on the assumptions mentioned above, system (1)
can be linearized into the following form [32].

ŷ(k + 1) � y(k) + �T (k)�U (k), (2)

where �(k) is the bounded pseudo-partial derivative (PPD)
function. PPD is a slowly changed time-varying parameter
that can be estimated at every sample to approximate the sys-
tem attitude in a linear dynamic form. This function can be
established using only the historical I/Omeasurement data of
the closed-loop system. Generally speaking, this lineariza-
tion form does not require any type of system parameter
identification or structural information of the controlled sys-
tem [34]. Based on the PPD approximation, different forms

for the dynamic linearized model given in (2) including the
CFDL and PFDL are defined. For the CFDL method, the
PPD�(k) is given as a scalar value φ1(k) and then model (2)
becomes:

ŷ(k + 1) � y(k) + φ1(k)�u(k). (3)

On the other side, the PPD value for the PFDL for model
(2) is given as a vector:

�(k) � [φ1(k), φ2(k), . . . φL(k)]T , ‖�(k)‖< s, (4)

where L could be chosen as an integer in the range L � 2 to
L � ny + nu [32]. It is noted that, the CFDL is simpler and
faster when compared with the PFDL but with some reduc-
tion in the accuracy of the dynamic linearization. Moreover,
the CFDL is a PFDL in case of L � 1.

Based on the linearized model (2), the control laws of the
MFAC based on both the CFLD and PFDL are defined as
below [32]:

u(k) � u(k − 1) +
p1φ1(k)(y∗(k + 1) − y(k))

λ + |φ1(k)|2
(5)

u (k) � u (k − 1)

+
p1φ1 (k)

(
y∗ (k+1)−y (k)

)−φ1 (k)
∑L

i�2 piφi (k)�u (k−i+1)

λ + |φ1 (k)|2
,

(6)

where p � [p1, . . . , pL ]T is a step-size vector, pi ε (0, 1],
y∗(k)is the desired output, λ > 0 is the weighting factor,
|φ1(k)| > ε at each sampling instant k, and ε is a positive
constant.

Actually, the control laws (5) and (6) cannot be imple-
mented because the elements of �(k) are unknown and
time-varying parameters. Thus, the IFNN has developed to
estimate the PPD function within the MFAC approach in the
next section.

MFAC based on IFNN

To solve the MFAC problem (6), each element of �(k) can
be approximated by the following form:

φ̂m(k) � Fm(z, W ) (7)

where z ∈ Rn is the input vector and W are the approxi-
mation weights. In this work, the nonlinear function Fm(.)

has been estimated using an intuitionistic fuzzy logic system
in the neural network structure as described in the follow-
ing sub-section followed by the adaptive law of the network
weights.
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Fig. 1 Layers structure of IFNN

Structure of IFNN

To approximate the nonlinear function (7), an IFNN with
two inputs and multi outputs has been developed as shown in
Fig. 1. This network consists of four layers and the function
of each layer is illustrated as follows.

Layer 1 (Input layer): this layer only accepts the input vector
of the network. Here, it consists of two nodes such that z �
[�y(k) �u(k)].

Layer 2 (Fuzzification layer): this layer includes two groups
of nodes. The first one represents the membership function
part and the output of each node in this group can be calcu-
lated as:

hi , j (z) � e

−0.5(z j−cmi , j )
2

dm2
i , j i � 1, . . . , N , j � 1, 2 (8)

where N stands to the number of membership functions
nodes for each input, cmi , j and dmi , j are the center and
the width of the membership function, respectively. Besides,
the second group represents the non-membership function
part, and the output for each node is defined as:

vi , j (z) � e

−0.5(z j−cni , j )
2

dn2i , j i � 1, . . . , N , j � 1, 2 (9)

For this layer, the necessary condition for the intuitionistic
fuzzy logic has been considered [42, 43]. This condition is
defined as:

0 ≤ hi , j (z) + vi , j (z) ≤ 1, hi , j (z),

vi , j (z) ∈ [0, 1], i � 1, .., N and j � 1, 2. (10)

Layer 3 (Rule layer): this layer is composed of two groups
and each group with N nodes. The output for each node for
the first group is the rule firing strength for the membership
function part which can be calculated using the product oper-
ation:

hri (k) �
2∏
j�1

hi , j (z) (11)

Similarly, the nodes in the second group represent the rule
firing strength for the non-membership function part and can
be expressed as:

vr i (k) �
2∏
j�1

vi , j (z) (12)

Layer 4 (Output layer): in this layer, the mth output of the
IFNN based on the center of area (COA) method is defined
as:

123



Complex & Intelligent Systems (2024) 10:2271–2297 2275

(13)

φ̂m (k) �
∑n

i�1

(
WM , (i ,m)hri (k) − WN , (i ,m)vri (k)

)
∑n

i�1 (hri (k) − vri (k))
,

where m � {1, 2, . . . , L} ,

WM , WN are the membership output weights and non-
membership output weights, respectively. Thus, for L � 1,
the IFNN is an approximator for the PPD in the CFDL. Gen-
erally, the estimation of the output of DLM can be defined
as follows:

ŷ(k + 1) � y(k) + �̂T (k)�U (k), where

�̂(k) �
[
φ̂1(k), φ̂2(k), . . . φ̂L(k)

]T
. (14)

Updating laws

To derive the updating laws of the parameters of IFNN
approximator for the PPD vector, the following cost func-
tion is defined:

E(k) � 1

2
ep(k)

2 � 1

2
(y(k) − ŷ(k))2, (15)

where ep(k) is the modeling error between the actual out-
put y(k) and the DLM output ŷ(k) at the sampling instant
k. Hence, the free parameters of IFNN including the output
weights (i.e., WM , WN ), the membership function parame-
ters (i.e., cm, dm) and the non-membership function (i.e.,
cn, dn) can be updated according to the gradient of descent
method as below.

The updating law for the output weights can be given as:

(16)

�WM(i ,m) (k) � −η
∂E (k)

∂WM(i ,m) (k)

� −η
∂E (k)

∂ ŷ (k)

∂ ŷ (k)

∂φ̂m(k)

∂φ̂m(k)

∂WM(i ,m) (k)

(17)

�WN (i ,m) (k) � −η
∂E (k)

∂WN (i ,m) (k)

� −η
∂E (k)

∂ ŷ (k)

∂ ŷ (k)

∂φ̂m(k)

∂φ̂m(k)

∂WN (i ,m) (k)
.

From (13) to (15), we have:

�WM , (i ,m)(k) � −ηep(k)�u(k − m + 1)

× hri (k)∑N
i�1(hri (k) − vri (k))

(18)

�WN , (i ,m)(k) � −ηep(k)�u(k − m + 1)

× vri (k)∑N
i�1(hri (k) − vri (k))

(19)

whereη > 0, is the step size of the steepest descent algorithm.
For the membership function parameters, the updating laws
are:

(20)

�cmi , j (k)

� −η
∂E (k)

∂cmi , j (k)

� −η
∂E (k)

∂ ŷ (k)

∂ ŷ (k)

∂φ̂m (k)

∂φ̂m (k)

∂hri (k)

∂hri (k)

∂hi , j (z)

∂hi , j (z)

∂cmi , j (k)

(21)

�dmi , j (k)

� −η
∂E (k)

∂dmi , j (k)

� −η
∂E (k)

∂ ŷ (k)

∂ ŷ (k)

∂φ̂m (k)

∂φ̂m (k)

∂hri (k)

∂hri (k)

∂hi , j (z)

∂hi , j (z)

∂dmi , j (k)

From (8) to (15), the above laws can be calculated by:

�cmi , j (k) � −ηep(k)�u(k − m + 1)

× WM , (i ,m)(k)∑N
i�1(hri (k) − vri (k))

hri (k)

hi , j (z)

∂hi , j (z)

∂cmi , j (k)

(22)

�dmi , j (k) � −ηep(k)�u(k − m + 1)

× WM , (i ,m)(k)∑N
i�1(hri (k) − vri (k))

hri (k)

hi , j (z)

∂hi , j (z)

∂dmi , j (k)

(23)

Similarly, the updating laws for the non-membership func-
tion parameters can be given as:

�cni , j (k) � − ηep(k)�u(k − m + 1)

WN , (i ,m)(k)∑N
i�1(hri (k) − vri (k))

vri (k)

vi , j (z)

∂vi , j (z)

∂cni , j (k)
(24)

�dni , j (k) � −ηep(k)�u(k − m + 1)

× WN , (i ,m)(k)∑N
i�1(hri (k) − vri (k))

vri (k)

vi , j (z)

∂vi , j (z)

∂dni , j (k)

(25)

Event-triggeredMFAC scheme

In this section, a periodic event-triggering control mecha-
nism is established with the proposed MFAC based on the
IFNN. Figure 2 presents the proposed MFAC-IFNN-PETC,
where the IFNN is used to estimate the PPD of the MFAC
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Fig. 2 The block diagram of the proposed MFAC-IFNN-PETC. (where q−1 is the back shift operator)

which is combined with the PETC in the sensor-to-controller
transmission channel. In view of the PETC, the signal trans-
mission from the sensor to the controller is executed only
when the following condition is satisfied.

(26)

k j+1 � k j + min
{
k > k j |∣∣y (k j )− y (k)

∣∣ ≥ δ
}
,

j � 1, 2, 3, . . . ,

where k j is the transmission instant; and δ > 0 is the trigger-
ing parameter. The discrete event-triggering condition (26)
shows that the next triggering instant k j+1is influenced not
only by the variation of the system’s output, but also by the
given triggering parameter δ, so it reduces the number of
transmission instants.

According to (26), a discrete event function can be defined
as:

P
(
k j , k, δ

) � ∣∣y(k j )− y(k)
∣∣− δ (27)

For every given set of triggering parameters, the measure-
ment output will be sent to the controller only if P(k j , k,
δ) ≥ 0 is true. Otherwise, the controller will continue to use
themost recent incoming data due to the influence of the hold
block in Fig. 2.

Now, we can define:

y(k) � y
(
k j
)
, k j ≤ k ≤ k j+1 (28)

where y(k) is the most recent event-triggered data until the
next arrives.

Hence, the event-triggering error is given by:

e(k)ETC � y(k) − y(k) (29)

Accordingly, the event triggering condition can be formu-
lated as:

|e(k)ETC| ≥ δ (30)

Thus, based on the event triggeringmechanism, themodel
free control laws given in (5) and (6) can be modified as:

u(k) � u(k − 1) +
p1φ̂1(k)(y∗(k + 1) − y(k))

λ + |φ̂1(k)|2
(31)

u(k) � u(k − 1)

+
p1φ̂1(k)(y∗(k + 1) − y(k)) − φ̂1(k)

∑L
i�2 pi φ̂i (k)�u(k − i + 1)

λ + |φ̂1(k)|2
(32)

Moreover, the adaptation of the IFNN approximator given
in (16–25) will be only executed at the triggering instants.
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In summary, the steps of the proposed MFAC based on
IFNN in the event triggering form are given in Algorithm
(1).

Algorithm (1)

It was remarking that the triggering condition in Algo-
rithm (1) is measured at each sampling instant. Thus, to
make the proposed controller algorithm with a low compu-
tation burden, a modified triggering method is developed. In
this method, the event-triggered condition is tested after a
number Q of sampling moments have passed to save system
resources even more. The value of Q is selected as an integer
number such that the following inequality is held:

1 < Q <
nk
2
, (33)

where nk is the number of samples which is chosen within
the controlled system time constant. Here, the discrete event-
triggering condition (26) will be modified to
k j+1 � k j + min{k > k j |

∣∣y(k j )− y(kQ)
∣∣ ≥ δ} (34)

As a result, the steps of the proposedMFAC scheme based
on the modified triggering condition are described in Algo-
rithm (2).
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Algorithm (2)

Remark 2 For Algorithm 1, the initial weights of the IFNN
are chosen as small randomvalues, andλ is chosen according
to theorem 2 λ > λmin. The event condition threshold δ is
chosen as a small value greater than zero or as a percentage
of the error between the current value of the output and the
most recent incoming data, [46]. Moreover, the window of
samples Q is chosen according to (33).

Convergence and stability analysis

In this section, the convergence of the updating laws of the
IFNN parameters and the closed loop stability of the pro-
posed algorithm are investigated.

Theorem 1. Assuming an IFNN with the structure given in
Fig. 1 to approximate the �(k) in the dynamic linearized
model given in (3). For any given input vector, the training
process of the IFNN is convergent if the learning rate η in the
updating laws (16–25) of the network satisfies the following
condition:

0 < η <
2

[ζ (k)]T ζ (k)
(35)

where:

ζ (k) �
[

∂eP (k)
∂WM (k)

∂eP (k)
∂WN (k)

∂eP (k)
∂cm(k)

∂eP (k)
∂cn(k)

∂eP (k)
∂dm(k)

∂eP (k)
∂dn(k)

]
.

(36)

Proof: Define the Lyapunov function with respect to DLM
output error as the cost function defined in (15). Hence, we
have:
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V (k) � E(k) � 0.5e2p(k) (37)

Then, the change of Lyapunov function can be computed
as:

�V (k + 1) � V (k + 1)− V (k) � 0.5e2p (k + 1)− 0.5e2p (k) .

(38)

By:

eP (k + 1) � eP (k) + �eP (k). (39)

So (38) can be given as:

�V (k + 1) � �eP (k)(eP (k) + 0.5�eP (k)) (40)

According to the first-order Taylor expansion, the change
of the training error can be expressed in term of the incre-
menting rate of IFNN weights as:

�eP (k) ∼�
[
∂eP (k)

∂ψ(k)

]T
�ψ(k) (41)

whereψ(k)�
[
WM (k) WN (k) cm(k) cn(k) dm(k) dn(k)

]T
and �ψ(k) is defined as:

�ψ(k) � −η
∂E(k)

∂ψ(k)
� −η

∂E(k)

∂eP (k)

∂eP (k)

∂ψ(k)
(42)

Hence, using (37), (42) can be rewritten as:

�ψ(k) � −ηeP (k)
∂eP (k)

∂ψ(k)
(43)

So, (41) can be rewritten as,

�eP (k) ∼� −ηeP (k)

[
∂eP (k)

∂ψ(k)

]T
∂eP (k)

∂ψ(k).
(44)

Then, the change of the Lyapunov function in (40) can be
reformulated as:

�V (k + 1) � − ηe2p(k)

[
∂eP (k)

∂ψ(k)

]T
∂eP (k)

∂ψ(k)(
1 − 0.5η

[
∂eP (k)

∂ψ(k)

]T
∂eP (k)

∂ψ(k)

)
(45)

By defining ζ (k) � ∂eP (k)
∂ψ(k) , we have:

�V (k + 1) � −ηe2p(k)[ζ (k)]T ζ (k)
(
1 − 0.5η[ζ (k)]T ζ (k)

)
(46)

Then, the condition of �V (k + 1) is negative when

η > 0 and
(
1 − 0.5η[ζ (k)]T ζ (k)

)
> 0 (47)

Finally, the convergence of the IFNN approximator in the
MFAC scheme is guaranteed if the range of the learning rate
η is

0 < η <
2

[ζ (k)]T ζ (k)
(48)

Remark 3. In condition (35), [ζ(k)]Tζ(k) can be considered
as ‖ζ(k)‖2, hence this condition can be rewritten as follows:
0 < η <

2

ζ(k)2

where ‖ζ(k)‖ is the Euclidean norm of ζ(k)2.Hence, to guar-
antee to select of the learning rate η satisfying the given
condition, the learning rate at any instant t can be set as fol-
lows:

η(t) � η(0)
2

Gmax(t).

where η(0) is a small positive number < 1, and Gmax(t) �
max

(‖ζ(k)‖2, Gmax(t − 1)
)
.

To study the tracking error convergence for the closed loop
system based on the proposed MFAC, the following theorem
is given.

Theorem 2. For a constant regulator y∗(k + 1), the MFAC
methods (31) and (32) regulate the nonlinear system (1) that
meets Assumptions 1, 2, and there is λ > λmin, the tracking
error e(k) is uniformly ultimately bounded, and the ultimate
bound is defined by the event-triggering error e(k)ETC.

Proof: Let’s start with theMFAC in the PFDL form given in
(32). According to the definition of the tracking error given
by:

e(k) � y∗(k + 1) − y(k) (49)

By subtracting the event triggering error defined in (29)
from (49), we have:

y∗(k + 1) − y(k) � e(k) − e(k)ETC. (50)

By using (50), the control law defined (32) can be refor-
mulated as:

u(k) � u(k − 1)

+
p1φ̂1(k)

(
e(k)−e(k)ETC

)−φ̂1(k)
∑L

i�2 pi φ̂i (k)�u(k−i+1)

λ + |φ̂1(k)|2
(51)
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From (51), we have:

�U (k) � u(k) − u(k − 1) � p1φ̂1(k)(e(k) − e(k)ETC ) − φ̂1(k)
∑L

i�2 pi φ̂i (k)�u(k − i + 1)

λ + |φ̂1(k)|2
(52)

By using the dynamic linearization form defined in (2)
and (52), �y(k + 1) can be given as:

�y(k + 1) � ‖�(k)‖p1φ̂1(k)(e(k) − e(k)ETC ) − ‖�(k)‖φ̂1(k)
∑L

i�2 pi φ̂i (k)�u(k − i + 1)

λ + |φ̂1(k)|2
(53)

For a constant y∗(k + 1) and by using the tracking error
defined in (49), we can write:

(54)

e (k + 1) − e (k) � y∗ (k + 2) − y (k + 1) − y∗ (k + 1) + y (k)

� −�y (k + 1)

Hence, we have

e(k + 1) � e(k) − �y(k + 1) (55)

By substituting from (52) in (55), we obtain:

e (k + 1) �
⎛
⎜⎝1 − ‖� (k)‖ p1φ̂1 (k)

λ +
∣∣∣φ̂1 (k)

∣∣∣2
⎞
⎟⎠ e (k)

+
� (k) p1φ̂1 (k) e (k)ETC

λ +
∣∣∣φ̂1 (k)

∣∣∣2
+

‖� (k)‖ φ̂1 (k)
∑L

i�2 pi φ̂i (k)�u (k − i + 1)

λ +
∣∣∣φ̂1 (k)

∣∣∣2 .

(56)

From (56), we can write as:

|e (k + 1)|

�

∣∣∣∣∣∣∣1 − ‖� (k)‖ p1φ̂1 (k)

λ +
∣∣∣φ̂1 (k)

∣∣∣2
∣∣∣∣∣∣∣ |e (k)| +

∣∣∣∣∣∣∣
‖� (k)‖ p1φ̂1 (k)

λ +
∣∣∣φ̂1 (k)

∣∣∣2
∣∣∣∣∣∣∣ |δ|

+

∣∣∣∣∣∣∣
‖� (k)‖ φ̂1 (k)

λ +
∣∣∣φ̂1 (k)

∣∣∣2
∣∣∣∣∣∣∣
∣∣∣∣∣

L∑
i�2

pi φ̂i (k)�u (k − i + 1)

∣∣∣∣∣ .
(57)

By assumingλmin � s2
4 , where s is defined inAssumption

2, using the inequality defined in (58) for the denominator

of (57), the inequality defined in (59) is given for a bounded
value M1 > 0.

a2 + b2 ≥ 2ab (58)

0< M1 ≤
∣∣∣∣∣‖�(k)‖φ̂1(k)

λ +
∣∣φ̂1(k)

∣∣2
∣∣∣∣∣ ≤

∣∣∣∣ sφ̂1(k)

2
√

λφ̂1(k)

∣∣∣∣ < s

2
√

λmin
� 1

(59)

Then, there exists a constant β<1 such that∣∣∣∣1 − p1‖�(k)‖φ̂1(k)

λ+|φ̂1(k)|2
∣∣∣∣ ≤ 1 − p1M1 � β, so (57) can be

rewritten as:

(60)

|e(k + 1)| ≤ β |e (k)| + p1M1 |δ|

+ M1

∣∣∣∣∣
L∑

i�2

pi φ̂i (k)�u(k − i + 1)

∣∣∣∣∣
According to that PPDhas an upper limit�, and piε(0, 1],

the last term of (60) can be:

(61)

∣∣∣∣∣
L∑

i�2

pi φ̂i (k)�u (k − i + 1)

∣∣∣∣∣
≤ (max pi )iε{2, n}

∣∣∣∣∣
L∑

i�2

φ̂i (k)�u (k − i + 1)

∣∣∣∣∣
≤
(
max φ̂i

)
iε{2, n}

∣∣∣∣∣
L∑

i�2

�u (k − i + 1)

∣∣∣∣∣
≤ �

∣∣∣∣∣
L∑

i�2

�u (k − i + 1)

∣∣∣∣∣
When the control signal may flip fromUmax to −Umax, it

gives the maximum�u(k − i + 1). Hence, there is a bounded
value M2 where:

0 < M2 ≤
∣∣∣∣∣

L∑
i�2

pi φ̂i (k)�u(k − i + 1)

∣∣∣∣∣ ≤ 2�(L − 1)Umax.

(62)
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So (60) can be redefined as:

|e(k + 1)| ≤ β|e(k)| + M1(|δ| + M2) (63)

Based on (63), we have:

|e(k)| ≤ β|e(k − 1)| + M1(|δ| + M2)

|e(k − 1)| ≤ β|e(k − 2)| + M1(|δ| + M2)

...
...
...

|e(2)| ≤ β|e(1)| + M1(|δ| + M2).

(64)

As a result, we can write:

|e(k + 1)| ≤ β2|e(k − 1)| + βM1(|δ| + M2) + M1(|δ| + M2)

≤ β3|e(k − 2)| + β2M1(|δ| + M2)

+ βM1(|δ| + M2) + M1(|δ| + M2)

...
...
...

≤ βk |e(1)| + βk−1M1(|δ| + M2) + βk−2M1(|δ| + M2) . . .

+ βM1(|δ| + M2) + M1(|δ| + M2). (65)

Hence,

|e(k + 1)| ≤ βk |e(1)| + M1(|δ| + M2)

1 − β
(66)

Based on β<1, as k increases, the part βk → 0. Thus, it
yields:

|e(k + 1)|k→∞ ≤ M1(|δ| + M2)

1 − β
(67)

Accordingly, we can see that the tracking error is bound.
Finally, since both y∗(k) and e(k) are bounded, the system
output y(k) is bounded too.

In a similarmanner, for theMFAC in theCFDL formgiven
in (31), the above sequence can be used. Hence, (57) can be
rewritten as:

|e(k + 1)| �
∣∣∣∣∣1 − p1φ1(k)φ̂1(k)

λ +
∣∣φ̂1(k)

∣∣2
∣∣∣∣∣|e(k)| +

∣∣∣∣∣ p1φ1(k)φ̂1(k)

λ +
∣∣φ̂1(k)

∣∣2
∣∣∣∣∣|δ|
(68)

By using (59), (68) can be rewritten as:

|e(k + 1)| ≤ β|e(k)| + M1|δ| (69)

Then:

|e(k + 1)| ≤ βk |e(1)| + βk−1M1|δ| + . . . βM1|δ| + M1|δ|
(70)

|e(k + 1)| ≤ βk |e(1)| + M1|δ|
1 − β

(71)

|e(k + 1)|k→∞ � M1|δ|
1 − β

(72)

Finally, we can conclude that the BIBO stability of the
proposed algorithm is guaranteed, and theproof is completed.

It’s worth mentioning that when the MFAC algorithm has
no event-triggered transmission scheme δ � 0, the tracking
error (72) of the system is reduced to zero.

Simulation results

In this section, the proposed IFNN-MFAC technique is tested
using two simulation examples: the control problemofCSTR
and the regulation problem of a steam-water heat exchanger
system. The proposed MFAC is implemented in the com-
pact and the partial dynamic linearization forms (i.e., CFDL
and PDLF). Moreover, each form is established in the event
triggering mechanism according to Algorithm (1) and Algo-
rithm (2). Thus, four controllers are considered here. These
controllers are abbreviated as below:

• The CFDL-IFNN-MFAC-Event-1 denotes to the proposed
MFAC in the CFDL form based on the event-triggering
mechanism given in Algorithm (1).

• The CFDL-IFNN-MFAC-Event-2 denotes to the proposed
MFAC in the CFDL form based on the event-triggering
mechanism given in Algorithm (2).

• The PFDL-IFNN-MFAC-Event-1 denotes to the proposed
MFAC in the PFDL based on the event-triggering mecha-
nism given in Algorithm (1).

• The PFDL-IFNN-MFAC-Event-2 denotes to the proposed
MFAC in the PFDL based on the event-triggering mecha-
nism given in Algorithm (2).

Besides, the comparison between the developed con-
trollers is performed using the performance indices; the root
mean squared error (RMSE), integral of squared error (ISE),
and integral of absolute error (IAE) criteria for evaluating the
performance of the proposed techniques. These indices are
defined as:

RMSE �
√√√√ 1

Ns

Ns∑
k�1

(y∗(k) − y(k))2 (73)

ISE �
∫ ∞

0
[e(t)]2dt (74)

IAE �
∫ ∞

0
|e(t)|dt (75)
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where Ns is the number of the samples.

Example 1: CSTR system.

The dynamics of the consideredCSTRsystem is described
by the following equations [34]:

x1(k + 1) � x1(k) +
[
−x1(k) + D1(1 − x1(k))e

A(k)
]

× 0.05

x2(k + 1) � x2(k) +
[
−x2(k) + B2D1(1 − x1(k))e

A(k)

−D2(x2(k) − u(k))] × 0.05 + d(k)

y(k) � x1(k), (76)

x1(k), x2(k) are the system states; y(k) is the output of the
system; D1 � 0.036, D2 � 25.2, B1 � 28.5, B2 � 21.5
are scalar parameters of the system; A(k) � B1x2(k)

B1+x2(k)
and

d(k) � 0.01cos(0.05k)cos(x1(k)) are time varying parame-
ters of the system. It should be noted that the proposed control
schemes do not use any system information, such as linear
or nonlinear features, system order, and so on. The system
model (73) is solely used to generate the necessary I/O data
and is not used in the controller design process. The proposed
controllers are performed by using IFNN has the follow-
ing hyperparameter N � 5, cm � [0.20 0.40 0.06 0.81]T ,
cn � [1.4 1.6 − 0.6 − 0.4 − 0.2]T , dm � 20, and dn � 1.
The CFDL-IFNN-MFAC law (31) is implementedwith p1 �
1, and λ � 0.06, on the other side; the PFDL-IFNN-MFAC
(32) is implemented with L � 3, p1 � p2 � p3 � 1,
and λ � 0.04. For the event-triggering Algorithm (2), the
parameter Q is set to 8. Two simulation cases are performed
to demonstrate the performance of the proposed control
schemes with the CSTR system.

Case 1: Tracking response for a square wave reference. In
this task, the developed controllers are applied to the chem-
ical reactors such that, the desired system output is given
by:

y∗(k + 1) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.6, k < 500
0.2, 500 ≤ k < 1000
0.6, 1000 ≤ k < 1500
0.2, k ≥ 300

(77)

CFDL results: Figure 3 shows the tracking performances of
the output using CFDL-IFNN-MFAC-Event-1 and CFDL-
IFNN-MFAC-Event-2 and Fig. 4 depicted the obtained
control signals for the two controllers. The inter-event inter-
vals can be seen in Figs. 5, 6. It is clear that the system
response under the CFDL-IFNN-MFAC-Event-1 is faster
and smoother than CFDL-IFNN-MFAC-Event-2.

PFDL results: Figure 7 shows the tracking performances
of the output using both PFDL-IFNN-MFAC-Event-1 and
PFDL-IFNN-MFAC-Event-2 and Fig. 8 shows the control

signals for the two controllers. The inter-event intervals can
be seen in Figs. 9, 10. The system response under the PFDL-
IFNN-MFAC-Event-1 has smaller overshoots and is faster
than PFDL-IFNN-MFAC-Event-2.

In this case, it is shown clearly in Figs. 3 and 7 that
the response of CSTR under the CFDL/PFDL-IFNN-MFAC-
Event-1 is faster with smaller overshoots than CFDL/PFDL-
IFNN-MFAC-Event-2. The inter-event intervals in Figs. 5, 6
and Figs. 9, 10 show that the second algorithm when com-
bined with the MFAC in the CFDL-IFNN-MFAC-Event-2
and PFDL-IFNN-MFAC-Event-2 lead to a noticeable reduc-
tion in the number of events and the minimum inter-event
interval is determined by the value of the parameter Q.

Case2:Tracking response under time-varying systemparam-
eters for a step reference. In this case, the proposed con-
trollers are tested with time-varying system parameters to
investigate the adaptation property of the proposed controller.
During this simulation case,d(k) at time instant k is given by:

d(k) �
{
0.01cos(0.05k)cos(x1(k)) 0 ≤ k < 1300
0.01cos(0.05k)cos(x1(k)) + 1 k ≥ 1300.

(78)

CFDL results The results of the second simulation case are
illustrated in Figs. 11 and the obtained control signals for
the two controllers are depicted in Fig. 12. The inter-event
intervals of the two control schemes are shown in Figs. 13,
14.

The control performance with time-varying parameters is
quite satisfactory and the system response under the CFDL-
IFNN-MFAC-Event-1 is faster and smoother than CFDL-
IFNN-MFAC-Event-2.

PFDL results: Figure 15 shows the tracking performances
of the output using both PFDL-IFNN-MFAC-Event-1 and
PFDL-IFNN-MFAC-Event-2 and Fig. 16 shows the control
signals for the two controllers. The inter-event intervals can
be seen in Figs. 17, 18.

In case 2, it is obvious that the CFDL/PFDL-IFNN-
MFAC-Event-1 controller can deal with the time-varying
system parameters and overcomes their effect in a shorter
time than theCFDL/PFDL-IFNN-MFAC-Event-2. The num-
ber of events is reduced when using the second algorithm and
the minimum inter-event interval is determined by the value
of the parameter Q.

The performance indices for the proposed controllers are
shown in Table 1 which shows that the tracking perfor-
mance of CFDL/PFDL-IFNN-MFAC-Event-1 and Event-2
methods are not as good as the traditional fixed periodic
sampling MFAC schemes where weights are updated peri-
odically. The CFDL/PFDL-IFNN-MFAC-Event-1 gives a
faster responsewith a smaller overshootwhen comparedwith
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Fig. 3 Tracking response of the CSTR system using CFDL-IFNN-MFAC-Event-1 and CFDL-IFNN-MFAC-Event-2 (case: 1)
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Fig. 4 Control signals for CFDL-IFNN-MFAC-Event-1 and CFDL-IFNN-MFAC-Event-2 with the CSTR system (case: 1)
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Fig. 5 Inter-event intervals for CFDL-IFNN-MFAC-Event-1 with the CSTR system (case: 1)
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Fig. 6 Inter-event intervals for CFDL-IFNN-MFAC-Event-2 with the CSTR system (case: 1)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ac

ki
ng

pe
rfo

rm
an

ce

Set Point
PFDL-IFNN-MFAC-Event-1
PFDL-IFNN-MFAC-Event-2

Fig. 7 Tracking response of the CSTR system using PFDL-IFNN-MFAC-Event-1 and PFDL-IFNN-MFAC-Event-2 (case: 1)

the CFDL/PFDL-IFNN-MFAC-Event-2 but the second algo-
rithmhas a significant reduction in the computational burden,
energy consumption, and communication resources.

Figure 19 shows that out of 2000 sample instants, the
first case had a total of 405/394 events in the case of
CFDL/PFDL-IFNN-MFAC-Event-1 and 125/122 when the
CFDL/PFDL-IFNN-MFAC-Event-2 are applied. In compar-
ison to a standard periodic sampled discrete-time control,
it exhibits the efficiency of these schemes in reducing the
number of transmissions I/O data over the network. When
compared to the controller in [34] in case (1), which uses
neural network ETC-MFAC and takes a total of 884 events,
it is clear that the proposed controllers provide better perfor-
mance in terms of system resource saving than the controller
presented in [34]. We must notice that case (2) is not valid in
[34].

Example 2: A steam-water heat exchanger.

In this example, the PFDL-IFNN-MFAC and the CFDL-
IFNN-MFAC are used to control a steam-water heat
exchanger to validate the proposed MFAC-PETC methods.
A Hammerstein model may be used to express the heat

exchanger dynamics, which can be written as [34]:

GH (z) � y(z)

Nu(z)
� 1.2z − 0.1

z2 − 0.6z + 0.1
(79)

Nu � 1.5u − 1.5u2 + 0.5u.3 (80)

The proposed controllers are performed
by using IFNN has the following parameters
N � 5, cm � [0.20 0.40 0.06 0.81]T , cn �
[1.4 1.6 − 0.6 − 0.4 − 0.2]T , dm � 10, and dn � 2.5.
The CFDL-IFNN-MFAC law (31) is implemented with
p1 � 1, and λ � 0.6, on the other side; the PFDL-IFNN-
MFAC (32) is implemented with L � 3, p1 � p2 � p3 � 1,
and λ � 0.4. For the event-triggering Algorithm (2), the
parameter Q is set to 2. Two simulation cases are intro-
duced to demonstrate the performance of the proposed
control schemes. Due to there being no observed difference
between the response of the CFDL-IFNN-MFAC-Event-1
and the PFDL-IFNN-MFAC-Event-1 with the second exam-
ple, only the results of PFDL-IFNN-MFAC-Event-1 and
CFDL/PFDL-IFNN-MFAC-Event-2 are presented here.
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Fig. 8 Control signals for PFDL-IFNN-MFAC-Event-1 and PFDL-IFNN-MFAC-Event-2 with the CSTR system (case: 1)
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Fig. 9 Inter-event intervals for PFDL-IFNN-MFAC-Event-1 with the CSTR system (case: 1)
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Fig. 10 Inter-event intervals for PFDL-IFNN-MFAC-Event-2 with the CSTR system (case: 1)

Case 1: Tracking response for a set-point change. In this
case, the desired trajectory to be tracked is defined as:

y∗(k + 1) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, k < 100
2, 100 ≤ k < 200
3.5, 200 ≤ k < 300
1.5, k ≥ 300.

(81)

Figure 20 shows the tracking performances of the out-
put using PFDL-IFNN-MFAC-Event-1 and CFDL/ PFDL-
IFNN-MFAC-Event-2 andFig. 21 shows the obtained control
signals for the controllers. The inter-event intervals can be
seen in Figs. 22, 23. In this case, it is shown clearly that
the response under the PFDL -IFNN-MFAC-Event-1 and
Event-2 are faster but with greater overshoots than CFDL-
IFNN-MFAC-Event-2.
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Fig. 11 Tracking response of the CSTR system using CFDL-IFNN-MFAC-Event-1 and CFDL-IFNN-MFAC-Event-2 (case: 2)
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Fig. 12 Control signals for CFDL-IFNN-MFAC-Event-1 and CFDL-IFNN-MFAC-Event-2 with the CSTR system (case: 2)
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Fig. 13 Inter-event intervals for CFDL-IFNN-MFAC-Event-1 with the CSTR system (case: 2)

Case 2: Tracking response under external output disturbance
In this case, the proposed controllers are tested under 15%
external disturbance added to the system output at k � 150
as shown in Fig. 24, 25. The inter-event intervals are shown
in Figs. 26, 27.

In case 2, it is obvious that the PFDL-IFNN-MFAC-Event-
1 and Event-2 controllers can deal with the time-varying

system parameters and overcome their effect in a shorter time
than the CFDL-IFNN-MFAC-Event-2.

The simulation results show that PFDL-IFNN-MFAC-
Event-1 and Event-2 gives faster response with smaller
errors and lower number of events when compared with
the CFDL-IFNN-MFAC-Event-2 as shown in Table 2, so
the PFDL-IFNN-MFAC has a better performance when deal
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Fig. 14 Inter-event intervals for CFDL-IFNN-MFAC-Event-2 with the CSTR system (case: 2)
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Fig. 15 Tracking response of the CSTR system using PFDL-IFNN-MFAC-Event-1 and PFDL-IFNN-MFAC-Event-2 (case: 2)
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Fig. 16 Control signals for PFDL-IFNN-MFAC-Event-1 and PFDL-IFNN-MFAC-Event-2 with the CSTR system (case: 2)
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Fig. 17 Inter-event intervals for PFDL-IFNN-MFAC-Event-1 with the CSTR system (case: 2)
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Fig. 18 Inter-event intervals for PFDL-IFNN-MFAC-Event-2 with the CSTR system (case: 2)

Table 1 The RMSE, ISE and
IAE indices for CSTR using the
proposed controllers

Controller Simulation case (1) Simulation case (2)

RMSE ISE IAE RMSE ISE IAE

CFDL-IFNN-MFAC 0.0949 18.0056 52.4440 0.0650 8.4456 25.4420

CFDL-IFNN-MFAC-Event-1 0.0949 18.0097 52.9180 0.0650 8.4458 26.1326

CFDL-IFNN-MFAC-Event-2 0.0956 18.2911 58.3091 0.0653 8.5308 27.8109

PFDL-IFNN-MFAC 0.0910 16.5670 50.2626 0.0598 7.1485 21.9782

PFDL-IFNN-MFAC-Event-1 0.0910 16.5735 50.6773 0.0598 7.1492 22.6228

PFDL-IFNN-MFAC-Event-2 0.0912 16.6168 56.0452 0.0604 7.2898 26.6838

with nonlinear heat exchanger. As mentioned before the first
algorithm gives faster response with smaller overshot when
compared with the second algorithm but the second algo-
rithm have a significant reduction in the number of events as
shown in Fig. 28.

In Fig. 28, comparison between fixed periodic sampling
MFAC, and the proposed MFAC-PETC is shown, signif-
icance saving in the number of computational load and
transmission data over the network. Furthermore, the com-
parison with the controller in [34] which takes a total of 124

events in case 1, it is clear that the proposed controllers pro-
vide better performance in terms of system resources saving
than the controller presented in [34]. This will significantly
reduce the communication cost. We must notice that case (2)
is not valid in [34].

Practical results

In this subsection, the proposed controllers are applied on a
real system. The real system is a shunt-wound DC machine
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Fig. 19 Comparison of computational load between MFAC, MFAC-Event-1, and MFAC-Event-2 for CSTR
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Fig. 20 Tracking response of the heat exchanger using the proposed controllers (case: 1)
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Fig. 21 Control signals of the heat exchanger using the proposed controllers (case: 1)
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Fig. 22 Inter-event intervals for PFDL-IFNN-MFAC-Event-1 (case: 1)
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Fig. 23 Inter-event intervals for PFDL-IFNN-MFAC-Event-2 (case: 1)
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Fig. 24 Tracking response of the heat exchanger using the proposed controllers (case: 2)
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Fig. 25 Control signals of the heat exchanger using the proposed controllers (case: 2)
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Fig. 26 Inter-event intervals for PFDL-IFNN-MFAC-Event-1 (case: 2)
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Fig. 27 Inter-event intervals for PFDL-IFNN-MFAC-Event-2 (case: 2)
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Fig. 28 Comparison of computational load between MFAC, MFAC-Event-1, and MFAC-Event-2 for heat exchanger

Table 2 The RMSE, ISE, and
IAE for heat exchanger using the
proposed controllers

Controller Simulation Case (1) Simulation Case (2)

RMSE ISE IAE RMSE ISE IAE

PFDL-IFNN-MFAC 0.3073 37.7656 40.1799 0.1121 5.0303 10.5299

PFDL-IFNN-MFAC-Event-1 0.3088 38.1411 41.2978 0.1124 5.0567 11.2325

PFDL-IFNN-MFAC-Event-2 0.3272 42.8124 48.9480 0.1171 5.4878 13.8712

CFDL-IFNN-MFAC-Event-2 0.3839 58.9475 68.1530 0.1350 7.2909 19.3313

(0.1KW ). This machine contains two DC motors connected
to each other, one for controlling the rotation speed and
the other works as a DC generator. The speed of the first
motor is controlled by varying the armature voltage. A
tacho-generator with an output voltage of 1V /1000 r .p.m
is used for the speed measurement. A drive circuit with
input varies from 0 to 10 V is used as an actuator. The con-
troller is interfaced to the system through a Mega Arduino.
The experimental set-up for the real system application is
depicted in Fig. 29. In the following experiments, the pro-
posed CFDL/PFDL-IFNN-MFAC is tested via the speed
control of the DC machine.

To investigate the controller performance with a real-time
application, two experiments are considered. In the exper-
iments, the PFDL-IFNN-MFAC (32) is used with L � 3,
p1 � p2 � p3 � 1, λ � 0.15, and the PPD vec-
tor uses IFNN with cm � [0.20 0.40 0.06 0.81]T , cn �
[1.4 1.6 − 0.6 − 0.4 − 0.2]T , N � 5, dm � 1, dn � 1.5,
W (0) � 0.01rand× I3×10. The triggering parameter is cho-
sen δ � 0.06 and for the second algorithm Q � 10.

Experiment 1: Tracking response for set-point change. In
this experiment, the desired reference is step with differ-
ent levels 1V (i.e., 1000 r.p.m) during the first 500 samples,
then 1.5V (i.e.,1500 r.p.m) during the second 500 samples,
then 2V (i.e., 2000 r.p.m) during the third 500 samples,
and then 1.5V (i.e., 1500 r.p.m) within the last 500 sam-
ples. The tracking performance and control signal of the
DC machine based on the PFDL-IFNN-MFAC-Event-1, and
PFDL-IFNN-MFAC-Event-2 are shown in Figs. 30, 31. It
is clear that the system response under the PFDL-IFNN-
MFAC-Event-1 is faster than PFDL-IFNN-MFAC-Event-2.

Experiment 2: Tracking response under external output dis-
turbance. This experiment is performed to examine the
tracking performance of the proposed controller in the pres-
ence of load changes. This experiment is conducted using a
desired speed � 1000 r.p.m (i.e., 1V ). The load change is
applied at sampling instant k � 700. Figures 32 and 33 show
the speed response, and the control signal for this experiment,
respectively. It is clear that the two control algorithms can
control the speed of the real system with satisfactory perfor-
mance. PFDL-IFNN-MFAC-Event-2 gives slower response
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Fig. 29 Actual view of the practical system
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Fig. 30 The speed response using PFDL-IFNN-MFAC-Event-1 and PFDL-IFNN-MFAC-Event-2 (Experiment 1)

compared with the PFDL-IFNN-MFAC-Event-1 but with
significant reduction in the computation and communication
resources.

For comparison the CFDL-IFNN-MFAC (31) is used with
L � 1, p1 � 1, λ � 0.2, and the PPD uses IFNNwith cm �
[0.2 0.4 0.6 0.8 1]T , cn � [1.4 1.6 − 0.6 − 0.4 − 0.2]T ,
W (0) � 0.01rand × I1×10, N � 5, dm � 1, dn � 1.5.
The triggering parameter is chosen δ � 0.06 and for the
second algorithmQ � 10.

Table 3 and Fig. 34 show the results of both the
CFDL-IFNN-MFAC-Event-1 andEvent-2 and PFDL-IFNN-
MFAC-Event-1 and Event-2 for the two experiments. The

practical results show that the PFDL-IFNN-MFAC gives bet-
ter results when compared with the CFDL-IFNN-MFAC and
also shows the significance reduction in the computational
load and data transmission over the network when using
the second algorithm which supports the previous simula-
tion results.

Conclusion

This paper has developed anMFAC-PETCbasedon IFNNfor
controlling nonlinear systems. The proposed technique uses
the MFAC based on historical I/O data only to establish an
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Fig. 31 The control signal applied to the motor drive using the proposed controllers (Experiment 1)
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Fig. 32 The speed response using PFDL-IFNN-MFAC-Event-1 and PFDL-IFNN-MFAC-Event-2 (Experiment 2)
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Fig. 33 The control signal applied to the motor drive with the proposed controllers (Experiment 2)
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Fig. 34 Comparison of computational load between MFAC, MFAC-Event-1, and MFAC-Event-2 for the DC motor

Table 3 The RMSE, ISE, and
IAE for the DC motor using the
proposed controllers

Controller Experiment 1 Experiment 2

RMSE ISE IAE RMSE ISE IAE

CFDL-IFNN-MFAC 0.2062 85.0589 217.6686 0.1772 62.7796 163.5974

CFDL-IFNN-MFAC-Event-1 0.2091 87.4041 223.5337 0.1788 63.9571 168.5240

CFDL-IFNN-MFAC-Event-2 0.2130 90.7313 235.3822 0.1826 66.7132 173.7231

PFDL-IFNN-MFAC 0.1890 71.4577 201.1554 0.1656 54.8490 159.1659

PFDL-IFNN-MFAC-Event-1 0.1951 76.1570 208.9482 0.1727 59.6740 164.6372

PFDL-IFNN-MFAC-Event-2 0.1985 78.7939 219.7478 0.1762 62.1110 169.0670

approximatemodel of the nonlinear system,where theMFAC
creates a series of equivalent local dynamic linearization data
models at each operating point of the closed-loop system.
The equivalent dynamic-linearization model at each sample
is estimated using the IFNN based on the I/O measurement
data of the controlled plant. Two DLT methods; CFDL and
PFDL are used in this paper. Two periodic event-triggering
control mechanisms have been used to save communication
resources and reduce computational burden and energy con-
sumption. The BIBO and Lyapunov stability is studied to
prove that the stability of the whole closed-loop system is
guaranteed via the proposed controllers in the presence of
external disturbance and time-varying system parameters.

The simulation and the practical results reveal the effective-
ness and flexibility of the proposed technique.
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