Complex & Intelligent Systems (2024) 10:1953-1969
https://doi.org/10.1007/s40747-023-01250-w

ORIGINAL ARTICLE ")

Check for
updates

Multi-view dual-channel graph convolutional networks with multi-task
learning

Yuting Ling" - Yuan Li' - Xiyu Liu' - Jianhua Qu'’

Received: 31 October 2022 / Accepted: 18 September 2023 / Published online: 16 October 2023
© The Author(s) 2023

Abstract

Network embedding has been extensively used in several practical applications and achieved great success. However, existing
studies mainly focus on single task or single view and cannot obtain deeper relevant information for accomplishing tasks.
In this paper, a novel approach is proposed to address the problem of insufficient information consideration in network
embedding, which is termed multi-task-oriented adaptive dual-channel graph convolutional network (TAD-GCN). We firstly
use kNN graph construction method to generate three views for each network dataset. Then, the proposed TAD-GCN contains
dual-channel GCN which can extract the specific and shared embeddings from multiple views simultaneously, and attention
mechanism is adopted to fuse them adaptively. In addition, we design similarity constraint and difference constraint to
further enhance their semantic similarity and ensure that they capture the different information. Lastly, a multi-task learning
module is introduced to solve multiple tasks simultaneously and optimize the model with its losses. The experimental results
demonstrate that our model TAD-GCN not only completes multiple downstream tasks at the same time, but also achieves
excellent performance compared with eight state-of-the-art methods.

Keywords Multi-view network - Network embedding - Multi-task learning - Dual-channel graph convolutional networks

Introduction

Recently, people focus on solving these two problems: net-
work embedding and graph convolutional network. Network
embedding [1] is in an effort to learn the low-dimensional
representation of network nodes. Because network embed-
ding methods [2-7] generally are able to preserve the
integrality of structure and characteristics, which of great sig-
nificance of the network, they have a huge appositeness for
downstream tasks. GCN, which is a semi-supervised method,
combines structural and content information and performs
convolution operations in the spectral domain. On this basis,
a convolution operation widely applied in the spatial domain
was proposed by Kipf et al. [8], which have a significant
influence in a variety of downstream tasks.

Most of the known algorithms for attribute network
embedding are based on two-stage or non-task-oriented

B Jianhua Qu
qjh@sdnu.edu.cn

School of Business, Academy of Management Science,
Shandong Normal University, Jinan 250014, China

frameworks, and such learning models contain little task-
related information. Some methods based on graph convolu-
tions are used for end-to-end frameworks for semi-supervised
node classification or link prediction, but only the informa-
tion related to one task has been considered instead of a
sufficiently general framework. Although the known meth-
ods have a great achievement, they mainly have the following
shortcomings.

(1) So far, a lot of work on attribute network embedding
[9—-13] has been done. However, most of them are not
task-oriented models. In addition, the existing models
for solving multiple tasks are also two-stage models.
That is, these models need to learn network embed-
ding first and then apply it to the downstream tasks that
need to be solved. These frameworks contain almost no
task-related information. Some methods based on graph
convolution are used in the end-to-end framework of
semi-supervised tasks [8, 14]. But they only consider
content relevant to a task instead of forming a gen-
eral enough framework. Therefore, most frameworks
can only solve each task individually, duplicating a lot
of work and ignoring the wealth of related information

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01250-w&domain=pdf

1954

Complex & Intelligent Systems (2024) 10:1953-1969

between tasks. In general, training for multiple tasks at
the same time has much more advantages than train-
ing for a single task. For example, the link prediction
task (one at the edge layer) and the node classification
task (the other at the node layer) are both classification
problems in a sense, so the model can consider these
two tasks at the same time during optimization. Next,
multiple tasks based on the same network are related in
many cases. Multitask learning can potentially improve
performance, so an effective multitask-oriented model
is urgently needed in the field of network representation
learning.

(2) Typical GCN [8] and its variants [15, 16] usually follow
the way of message transmission. Feature aggregation
is a key step, that is, the feature information from the
topological domain is aggregated through each convo-
lution layer. The great success of GCN is partly due to
the fact that GCN learning node embedding strategy can
simultaneously fuse topological structure and node fea-
tures, and the process is completed by the end-to-end
framework. However, some recently works show that
GCN actually performs Laplacian smoothing on node
features, so as to gradually converge nodes of the entire
network [17]. In addition, [18, 19] proved that when
information is transmitted through network topology,
topology can achieve the effect of low-pass filtering on
node features. The above research indicates that GCN
may not have the ability to optimize automatically to
learn the relevant information between two important
parts of network, topology structure and node features.

Aiming at limitations above, this paper proposes a multi-
task-oriented adaptive dual-channel graph convolutional net-
work model (TAD-GCN) to solve the problem of insufficient
information consideration in network embedding. The core
idea is that the similarity between node attributes and the
similarity inferred from the topology are complementary,
and the framework can adaptively fuse the embedded repre-
sentations generated by dual-channel GCN to obtain deeper
relevant information for accomplishing multiple tasks. And
multi-task learning can share effective information among
multiple tasks. It should be noted that before proceeding,
multiple graph structures need to be given in advance. Here,
for the network topology and attribute matrix, we choose the
kNN graph construction method to generate three views for
each dataset.

Specifically, in our framework, two specific convolu-
tion modules are firstly used to extract specific embedded
representations from topological space and attribute space
simultaneously, and a shared convolution model with shared
parameters is designed to extract common embedded repre-
sentations from their combinations. Accordingly, similarity

@ Springer

and difference constraints are designed for the two graph con-
volution models. Finally, the attention mechanism is used to
learn the weights of embedding learned above adaptively and
then fuse them and get the final representation. In this way,
the model simultaneously solves multiple tasks, including
node classification, link prediction, node clustering, and view
reconstruction as auxiliary tasks, and these tasks participate
in and supervise the process of learning, adaptively adjusting
losses of each part to extract the most relevant information
between nodes.
Our main contributions are as follows:

e A novel adaptive dual-channel GCN framework for
attribute network representation learning is proposed,
namely TAD-GCN, to complete multiple tasks simulta-
neously by jointly optimizing multiple loss functions.

e Specifically, the TAD-GCN model deeply embeds the
multi-view information into node representations. Dual-
channel GCN is applied as the basic model to effectively
learn specific and shared embeddings from multi-view
network. Accordingly, the consistency and difference
constraints are designed for the two types of graph convo-
lution. This overcomes the problem of graph convolution
network in the fusion of node attributes and topology.

e The TAD-GCN model is based on multi-task learning,
which through joint optimization of multiple loss func-
tions to complete multiple tasks at the same time. It not
only makes full use of the information that may be depen-
dent between multiple tasks, but also effectively reduces
the overall time complexity of multiple tasks.

e Experimental results on several benchmark datasets
clearly show that TAD-GCN is effective and efficient over
state-of-the-art baseline approaches.

The rest of this paper is organized as follows. In
section "Related work", we review the related work. In
section "Preliminary", we introduce the notations and pre-
liminaries. Section "TAD-GCN framework" introduces the
framework and technical details of our proposed model.
Section "Experiments" presents the experimental results.
Finally, we conclude our work in section "Conclusion".

Related work
Network representation learning

Network representation learning method (NRL) was first
proposed in early 2000. After twenty years of continu-
ous development, the types and number of methods have
been increasing, so there are many different categorization
systems [20, 21]. The research of network representation

Complex & Intelligent Systems (2024) 10:1953-1969

1955

learning based on deep learning model has attracted exten-
sive attention in recent years. It mainly includes AE-based
NRL, GCN-based NRL and generative adversarial network
(GAN)-based NRL. Methods based on GCN can be divided
into two categories: spatial method based on node features
and spectral method based on node convolution. In the spa-
tial method, convolution acts directly on the input graph
data, processes the adjacent nodes in space for each node,
and represents the influence exerted by its neighbors on
the target node, for example the graph sampling aggre-
gation (GraphSAGE) model presented by Hamilton et al.
[22] and GAT model presented by Velickovic et al. [23].
Unlike spatial methods, spectral convolution is processed
on the spectral representation of the network, usually based
on eigendecomposition, where spectral analysis takes into
account the locality of graph convolution. Specifically, Bruna
et al. [24] proposed eigendecomposition based on graph
Laplacian matrix for the first time and defined a general
graph convolution framework. Later, ChebyNet et al. [8]
optimized this method. In order to realize eigenvalue decom-
position, Chebyshev polynomial approximation method was
adopted. Finally, Kipf et al. [25] proposed graph convolution
network (GCN) by using ChebyNet’s first-order approxima-
tion, which achieved a more efficient filtering operation than
spectral graph convolution. In terms of scalability, the space-
based approach is generally superior to the spectrum-based
approach.

Some improvements or variants are proposed based on
these methods. For instance, GASN [6] utilizes an initial
GCN or its variants to construct an autoencoder for the node
features and network structure, and MAGCN [12] presents a
novel model to combine multiple views of network topology
with attention mechanism. However, most GCN-based meth-
ods only use a single GCN to embed the network topology
and node attributes.

Multitask learning

Multitask learning (MTL) has many successful applications
in computer vision, natural language processing, bioinfor-
matics and other fields. However, there are only a few studies
that compare multitask learning with network learning, but
it has become a new research trend. TANE [26] takes into
account the information and multi view attributes related to
downstream tasks, but does not use multiple tasks to opti-
mize the model at the same time. MTGAE [27] designs an
autoencoder with shared parameters for two tasks, node clas-
sification and link prediction, and finally trains the model by
combining loss functions. JAME [28] proposes a framework
for encoding the shared representation of local network struc-
ture, node features and available node labels, called the joint
autoencoder framework for multi-task network embedding,
and defines an adaptive loss weight layer for each task loss

function. Recently, however, there has been a growing inter-
est in considering both multitask and multi-view learning.
Zhang et al. [29] introduced a multi-task multi-view clus-
tering framework (MTMVC), including clustering in-view,
learning multi-view relation and multi-task relation. Huang
etal. [30] designed a multi-view graph convolutional network
MT-MVGCN, which can perform link prediction and node
classification tasks simultaneously, and take view reconstruc-
tion as an auxiliary task. MT-MVGCN model can extract rich
information from multi-view of the network for multi-tasks
to share.

To sum up, the existing network representation learning
methods cannot utilize the relevant information in multiple
tasks in the meanwhile and explore correlation information
and difference information between multiple tasks, so as to
achieve better performance than single task.

Based on the above considerations, a multitask-oriented
attribute network representation learning model TAD-GCN
is proposed in the paper. The core idea of this model is
that the similarity between node attributes and the simi-
larity inferred from the topology are complementary, and
TAD-GCN adaptively fuses the embedding representations
generated by multiple channels GCN, thereby obtaining the
more in-depth information about the task. Extensive experi-
ments on four benchmark attribute networks display that the
model TAD-GCN has good performance on multiple task
learning (Fig. 1).

Preliminary

This part focuses on the general problem of network repre-
sentations learning of arbitrary undirected attribute network
G. Some definitions and symbols are introduced.

Definition 1 (Artribute Network). Given an attribute network
G = (V, E), where V = {vy, vy, ..., vy} denotes the set
of nodes, and N denotes the number of nodes. E denotes
the set of edges, while ¢;; =< v;, v; >€ E is the edge
between v; and v;. The topology of the G can be represented
as A € RV*N an adjacency matrix, where g; j denotes the
item in the i-th row and the j-th column of the matrix A. In
addition, if ¢;; € E, then a;;=1, otherwise a;;=0. The node
attribute matrix associated with the network is represented as
X € RV*F (F is the dimension of the feature), where x; €
RF denotes the node v; attribute vector, which corresponds
to the i-th row of X.

Definition 2 (Network Representation Learning). Given a
node attribute matrix X and a network topology matrix A,
network representation learning (NRL) aims at learning a
function f such that f(A, X) — Z, Z € RV*H. H is
the dimension of the learned low-dimensional representation

@ Springer

1956

Complex & Intelligent Systems (2024) 10:1953-1969

Specific
layers

@
]

L

F‘j

Task B

| — |

Shared

‘ layers ’

H F! I ‘ l(; ;)’1;21'ainted

T
[]

|

|

|

] - |

=

(a) Hard parameter sharing

Fig. 1 Multi-task deep learning Hard parameter sharing is widely used
in deep learning. It mainly acts on some hidden layers between all tasks
to encode task information as a shared layer and at last retains a spe-
cific output layer for each task. In this way, the risk of overfitting can
be reduced to the greatest extent. Soft parameter sharing is realized by

(H < F).z; € R denotes the low-dimensional represen-
tation of node v;, which is the i-th row of matrix Z.

Definition 3 (Multitask Learning) Given M related or par-
tially related tasks denoted as {7}, }m 1» the goal of multi-task
learning (MTL) aims to utilize relevant information of M
tasks and explore the association information and difference
information between tasks in meanwhile, so as to achieve
better performance than single task.

TAD-GCN framework

In the section, the multi-task-oriented attribute network rep-
resentation learning model TAD-GCN is constructed. The
model not only considers the fusion of node attributes and
network topology information, but also extracts node label-
related information in these two spaces. TAD-GCN first uses
two specific convolution modules to simultaneously extract
specific embedding representations from topological space
and attribute space and additionally designs a shared con-
volution module with shared parameters to extract common
embedding representations from their combination. Corre-
spondingly, two constraints of consistency and difference are
designed for the two graph convolution models. Finally, the
attention mechanism is used to adaptively learn the differ-
ent weights of embeddings obtained earlier, so as to fuse
them to obtain the final embedding representation. In this
way, the model solves multiple tasks simultaneously, includ-
ing node classification, clustering, link prediction and view
reconstruction as auxiliary tasks, and these tasks participate

@ Springer

[

o

(b) Soft parameter sharing

reserving a corresponding parametric model for each task, that is, each
task has its own backbone network. Meanwhile, soft constraints such
as sparsity, gradient similarity or L2 regularization are imposed on the
distance between model parameters to ensure that the parameters of
multiple models are as similar as possible [39]

in and supervise the learning process, adaptively adjusting
the loss of each part to extract the most relevant information
between nodes.

Figure 2 shows the overall framework of the TAD-
GCN model. The TAD-GCN model details are covered here
according to the GCN, the specific graph convolutional layer,
the shared graph convolutional layer, the attention mecha-
nism, and the optimization goal.

Graph convolutional neural networks

As an extension of convolutional neural network (CNN) in
the field of graph structure, graph convolutional neural net-
work (GCN) directly learns low-dimensional representations
on the graph structure. Given a network G = (A, X), a
single-layer GCN is defined as follows:

= f(Z', AW, (1)

where Z!, which is learned by the [th convolutional layer,
is the latent representation matrix (Z° = X) and W! is the
trainable weight matrix of the [th layer. Based on a single-
layer GCN, networks of arbitrary depth can be constructed.
However, after multiplying W' by A for each layer, the vector
size is unstable because A is not normalized. To solve this
problem, GCN adds a self-loop to each node to normalize A,
and then, the propagation rule of GCN at / th layer is

N\'—
o)

f(Z, A|W1)=a(f) D 5zlwl>,)

Complex & Intelligent Systems (2024) 10:1953-1969

1957

Fig.2 Overall framework of \

TAD-GCN "Viewl Asa —
Z
o Zs1_ ’
L= \ \ Link Prediction |Lzr)
-
View2 X — Fs = = Node Classification —*|Lczd
M (AW o
— | — =
L o Node Cluster F’*
- Za |- =
Ws L
View3 Ast B ILd| #Vlew Reconstruction
2 =

~ Wsa
1

Here, A=A+1 , where I is the identity matrix, D is
the diagonal matrix of A, and o (-) is the activation function,
such as the ReLU function or the tanh function.

Specific graph convolutional layers
The attributes-preserved graph convolutional layers

To capture the underlying information of node attributes, a
KNN graph G, = (Agq, X) of the node attribute matrix X is
constructed by the KNN method, where Ay, is the adjacency
matrix of the KNN graph. There are two steps to this process:

1. Calculate the cosine similarity of N nodes to obtain the
similarity matrix § € RV*N . The feature vectors of node
v; and node v; can be expressed as x; and x ;, and then,
the cosine similarity is calculated as

X;-X;
Sij = Ix,«||xjj|‘ 3)

2. According to the similarity matrix obtained in 1), for each
node, select the top K nodes with high similarity and set
the edges. The adjacency matrix Ay, of the KNN graph
can be obtained in the end.

Finally, using the KNN graph G5, = (A, X) con-
structed based on the node attribute matrix as the input, the
output le o of the [th layer GCN can be expressed as

S S |
z\, = U(Dm *Asu Dy 22@;1W§a>, 4)

where Wi, y is the weight matrix of the / th layer GCN of the
specific convolution module based on node attributes, and o
is the activation function (here is tanh function). Z = X,

K:l = Ay + 1, andﬁgis the diagonal matrix of ;1; In

addition, the final output of GCN is denoted as Zgr, which
is denoted as a specific node embedding learned in the node
attribute space of the network.

The topology-preserved graph convolutional layers

Similar to section "The attributes-preserved graph convo-
lutional layers", first, to learn the information of network
topological space, the K NN graph of the topology matrix
A is constructed using the KNN method Gy, = (Ag, X),
where the adjacency matrix of the K N N graph is denoted as
Ay . Then, Z IS , s calculated by a specific graph convolutional
layer based on topology:

——

—_—1 L
Zi[:&lﬂh(l)yt zAstDst 2Z{vt1Wét>’ (5)

the output of the last layer of GCN is denoted Z g7, which
is denoted as the specific node embedding learned in the
topological space of the network.

In the specific convolutional layer, the weight matrices
of Wé ¢ and W', are different, which is to project the node
attributes and topology into their specific semantic spaces
and capture the network in both node attributes and topology.
The specific information is then fused into the final low-
dimensional embedding.

Shared graph convolutional layers

For a network, its node attribute space and topology structure
space have both connections and differences. Therefore, for
fully capturing the information of the network, this paper also
designs a shared convolution layer, which is a convolution
layer shared by node attributes and topology structure.

The shared graph convolution layer learns node low-
dimensional representations Z, and Z! from graphs G, =

@ Springer

1958

Complex & Intelligent Systems (2024) 10:1953-1969

(Agq, X) and G; = (A, X), respectively:

~_ 1l —~ 1

zla=tanh<1)a 24D, 2Z£,—1W§>, (6)
e~~~ 1 -1

Zﬁ:tanh(D, YA, D, 2z~ Wé), @)

where Zi;l and Zi_l are the node embeddings output by the
(I — 1) layer GCN, Z% = X and Z? = X, and W' is the th
layer weight matrix of the shared graph convolutional layers.
According to different input graphs, the outputs of the last
layer of GCN are denoted as Z 4 and Z 7, which represent the
common node embeddings learned from the network-based
node attribute graph and topology graph, respectively.

Each layer of the shared convolutional layer shares the
weight matrix WIS; through this shared framework, the two
can interact and implicitly cooperate and project into the
same semantic space and make the model scalable, taking
up less memory. The next subsection will discuss the aggre-
gation function f which aggregates the node embeddings
generated in the above process.

Attention aggregation layer

The specific convolutional layer and shared convolutional
layer learn to obtain two specific embeddings Zgs4 and Zgr
and two shared embeddings Z 4 and Z7 based on the node
attribute graph and topology graph of the network, respec-
tively. To achieve the collaboration between the two-channel
graph convolutional layers, the above four node embeddings
need to be fused to get the final representation. To this end,
this paper uses an attention mechanism which could cap-
ture complex relationships between them instead of using
aggregation functions such as concatenation, pooling or sum-
mation. The attention mechanism learns adaptive importance
weights for different embeddings:

(asa, ast, @, or) = Attention(Zsa, Zst, Za, Z7),

®)

where a g4, as7, 0ta, a7 € RV*!, respectively, correspond
to the attention weights of N nodes embedded in Zs4, Zs7,
Zy, Z7.

For each node v;, transform zis 4 € R through non-
linear transformation, and then, the attention value of z’S 4 18

Bia:
i T i \T
Bl =T -tanh(W - (2,)" +5), ©)

where ¢ € R"*! denotes the learnable shared attention vec-
tor, W € R"*" denotes the weight matrix, and b € R"*!
denotes the partial set vector. In the same way, the attention

@ Springer

values ,3§T, ﬁgandﬁ§ of ziST, zi‘ and ziT can be obtained,
respectively:

Bir =T tanh(W - ()" +b), (10)
gl = el -tanh<W~(ziA)T+b), (11)
B = e -tanh(W - () +5). (12)

The softmax function to define the final importance weight
of node v; can be expressed as:

i exp(ﬂgA) 1
U5 = S (Ba e Bl rerp By o L) (13)

Similar to formula (13), och, oziCA and aéT can be calcu-
lated. The final node embedding Z can be defined as:

Z=osa -Lspa+ast -LZst+oap-Zao+ar-Zr. (14)

For different tasks such as node classification, node clus-
tering, and so on, the final node embeddings can then be
applied utilized for completing them.

Regularization term

Through backpropagation, the learnable parameters can be
automatically learned. The parameters are learned by mini-
mizing the objective function during backpropagation,

minLglobal = min Z L +§ - Q, (15)

tieT

where T is the training set, L denotes the multi-task-oriented
loss function, and & is the hyperparameter used to balance
the regularization term 2.

The regularization term €2 of TAD-GCN contains a total of
two constraints. The similarity constraint is two embeddings
Z 4 and Zr for the shared graph convolution output, which
further enhances their semantic similarity and improves gen-
erality. Differential constraints are two embeddings Z g4 and
Z 4 and Zgr and Z7 learned from the same graph for both
types of graph convolutions to ensure that they capture the
different information.

Similarity constraint

Although the shared weight parameter strategy of shared
graph convolution can project the outputs into the same
semantic space and extract consistent information, a sim-
ilarity constraint is designed to encourage the embedding
Z 4 to be similar to Z7. Using the inner product oper-
ation, the similarity of N nodes in the network can be

Complex & Intelligent Systems (2024) 10:1953-1969

1959

obtained S4 and S7, and then, a geometric relationship
similarity score can be calculated as Sim(Z 4,Zr), where
Sim(-), measuredbyEuclideandistance, cosinesimilarity,
andsoon, is a similarity function. Here, the simplest dif-
ference similarity function is taken for Sim(-). Then, the
similarity constraint L;,, can be expressed as

Lsim = 11Sa—S7!15. (16)

Difference constraint

To preserve unique information, TAD-GCN also introduces
differential loss to enhance the difference between shared
embeddings and specific embeddings. There is an essential
difference between consistent information and specific infor-
mation, and information redundancy should be avoided. That
is, shared embeddings and specific embeddings should be
guaranteed to capture the information of the network from
different perspectives. Therefore, the difference constraint
Lygiy is defined by the orthogonality constraint between the
shared embedding and the specific embedding in the node
attribute graph and the network topology graph:

Ly = 1ZAOZsallE (17)
Ly =1 ZrOZsrlIE (18)
Laif = Lgif' + Lgif‘ (19)

Multi-task learning module

The purpose of the multi-task-oriented module is to gather
task-related information and integrate it into the representa-
tion learning process and then directly output the results of
the specific task. In this paper, three important tasks are stud-
ied: node classification, link prediction and node clustering.
Since the loss function of the clustering task basically has no
adjustment effect on the optimization of TAD-GCN model,
node clustering loss part is not considered.

For the classifier of the node classification task, this paper
selects multi-layer perceptron (MLP) which can predict the
labels of nodes through the final node embedding Z. The loss
function L., of the node classification task is as follows:

Lelass = —

> logP(yilzi), (20)

i eVy

where V7, is the label node and y; denotes the label of node
v;. P(yi|z;) is the probability of the node label output by the

softmax layer, which can be expressed as:

exp(Zi'W?"'bf)
Zyj E)'exp(zf : W(I+bll)

P(yilzi) = , 2

where y represents the set of possible true labels and W€ and
b°, in turn, are the weight matrix and bias in MLP.

It is a link prediction task to predict whether there is a
link between two nodes in a network. In the model, the link
prediction layer is trained based on the node embedding:

=

p(ZlZ) =

n
i=1j=

lp(ﬁijlzi, zj), (22)

p(Z,»,- =1z, zj) = sigmoid(zl.T, zj). (23)

For a link prediction layer, to form the positive set E.,
we select the exiting links of network as positive instances.
Meanwhile, for the negative set E_, we randomly sample an
equal number of inexistent node pairs as negative instances.
Then, the loss function of the link prediction task is as fol-
lows:

Llinkp = - Z

i,j:(vi,v_/-)eEJr

- > (U=ywlog(l -,
k,l:(vg,v)€EE (24)

yij log yij

where y;; and yy; indicate that the link between the node pair
(v, v;) and (vg, vy) actually exists. If there is a link between
the node pair, the value is set to 1; otherwise, it is 0. flj
is the cosine similarity of the final representations between
node v; and v}, and the same as Vi between node vg and v;.
Formula (24) is a cross-entropy loss that enforces higher and
lower link probabilities for positive and negative instances,
respectively.

In view reconstruction, the attribute matrix X and the adja-
cency matrix A can be reconstructed, but only the adjacency
matrix is reconstructed here, because such a model is also
suitable for networks without attribute information. In the
model, the adjacency matrix A is reconstructed using the
inner product against the node embeddings obtained:

A=o(zZ"). (26)

Then, the network is trained with the reconstruction loss
Lrec E

Lrec = Eqzix, sy [logP (A, Z)]. 27)

@ Springer

1960

Complex & Intelligent Systems (2024) 10:1953-1969

Optimization objective

As mentioned above, the model TAD-GCN includes two
types of losses, namely constraints and loss functions for
multiple tasks. To jointly train these losses, we get the final
overall objective function of TAD-GCN:

L =aLgim+ ﬂLdif + Letass + Liinkp + Lrecs (27)

L = oLy + ﬂLa'if + Llinkp + Lyec, (28)

where o and § are hyperparameters that control the impor-
tance of similarity loss and difference loss, respectively.
Formula (27) indicates that the TAD-GCN model simul-
taneously completes three tasks: node classification, link
prediction and view reconstruction. Formula (28) indicates
that the TAD-GCN model simultaneously completes three
tasks: node clustering, link prediction and view reconstruc-
tion. This paper uses gradient descent and backpropagation
algorithms to automatically optimize the parameters of the
model. Pseudo-code of TAD-GCN model is shown in Algo-
rithm 1.

Algorithm 1: The pseudo-code of TAD-GCN Model
Input: Network G=(V, X, A), a set of tasks{1,2,--*, T}
Output: The network representation Z for the network G
1: for each iteration i do

Compute Zi, Z%,, ZL-Fl Z%, by Equation (4) - (7)

2
3: Compute Qgp, Ast, Acr, ecr by Equation (8)
4: Compute Z by Equation (14);
5. Compute regularization loss Q = Lg;, + Lgis by Equation (16), (19);
6: Compute each task 108s Leiass, Liinkp, Lrec € RT by Equation (20), (24), (26);
7: Obtain the global loss L by Equation (27) or (28);
8: Updating model parameters by gradient descent;
end for
9: return the hidden representation Z;

Complexity analysis

The time complexity of the TAD-GCN model is has two
parts: (a) learning the latent representations of nodes and (b)
multi-task learning on the latent representations of nodes.
For the first part, learning the latent representation of nodes,
its complexity in one iteration is O(INIFD +|EID), where
IN| denotes the number of nodes, |El denotes the number
of edges, F is the number of node features, and D is the
maximum dimension of hidden layer. Regarding the second
part, since INI<IEI, the time complexity of node classifica-
tion task, link prediction task, and node clustering task in one
iteration is O(IN| +|El +IN1). In fact, |El, F, D are indepen-
dent of INI, so the complexity of TAD-GCN is O(INIFD +
|IEID), which is linear with INI.

@ Springer

Experiments

This section is validated on four public real datasets to prove
the effectiveness of the multi-task-oriented attribute network
representation learning method TAD-GCN proposed in this
paper. In these four datasets, we only treat the relationships
between nodes as undirected edges. This section introduces
the datasets, benchmark methods and evaluation metrics used
in the experiments, as well as the settings of the experimental
parameters.

During the experiment, the Python 3.7 version was used,
based on PyTorch 1.7.0, and it was run on the NVIDIA2080TT
graphics processing unit (GPU) platform with a memory of
64 GB.

Datasets

Four standard network datasets—Cora, ACM, CiteSeer and
PubMed—are utilized in our experiments (shown in Table 1).
They are two types of networks: citation network and social
network.

Cora

Cora [31] is a famous published article citation network,
including 2708 nodes, 5429 edges and 7 tags. In the network,
nodes represent published articles, edges represent citation
relationships between articles, and all articles are divided
into 7 different topics. The label is the topic of the paper, and
the node attribute consists of a word vector, which is used to
indicate whether the corresponding word exists.

ACM

The network comes from the ACM database [32], which
includes electronic versions of journals and conference pro-
ceedings published by ACM. It contains a total of 3025
papers, and the papers were divided into 3 categories:
database, wireless communication and data mining.

CiteSeer

This dataset [33] is a citation network on computer sci-
ence publications, containing of 3312 papers which can be
grouped into 6 different research categories: Agents, Al, DB,
IR, ML and HCI.

PubMed

This dataset [34] is a citation relationship network for arti-
cles in the medical and biological fields. There are 19,717
articles in the biomedical field, and the entire network has
44,338 citation relationships. According to the type of dis-
ease studied of the article, it can be divided into one of three
categories. Each article, i.e., each node in the network, has a
feature vector with dimension 500.

Complex & Intelligent Systems (2024) 10:1953-1969 1961
Table 1 Statistics for datasets

Dataset Nodes Edges Features Class Training Validation Test Hidden layer Output layer
Cora 2708 5429 1433 7 20/40/60 500 1000 512 32

ACM 3025 13,128 1870 3 20/40/60 500 1000 512 256

CiteSeer 3327 4732 3703 6 20/40/60 500 1000 512 128

PubMed 19,717 44,338 500 3 20/40/60 500 1000 512 128

Baseline DAEGC is a goal-oriented graph attention auto-encoding

To fully analyze the experiments, we compare TAD-GCN
with eight state-of-the-art methods. There are three types
of benchmark algorithms. One is algorithms based only
on network topology, such as DeepWalk, LINE. The other
is algorithms that fuse node attribute information and net-
work topology information, such as ChebyNet, GCN, GAT,
DAEGC and MAGCN. The third is algorithms based on
multi-task learning, such as JAME and MTGAE. A detailed
comparison of the baseline algorithms is shown below.

DeepWalk [35]

This algorithm is a classical network embedding method that
learns embeddings using only network structure information.
It uses before and after random walk and skip-gram model.

LINE [2]

This algorithm is suitable for learning node representation
in large-scale networks. It is based on the neighborhood
assumption and preserves the first-order and second-order
network topology information by optimizing two objective
functions, respectively.

ChebyNet [8]

ChebyNet is a graph convolution model using higher-order
Chebysheyv filters, which utilizes a K-order convolution algo-
rithm to aggregate the feature information of node neighbors.

GCN [25]

This algorithm is a semi-supervised network embedding
model, which can use attribute information and structural
information simultaneously. GCN learns the node represen-
tation by aggregating the information of neighbor nodes.

GAT [23]

This algorithm combines the attention mechanism with GCN,
pays attention to its neighbors, assigns different weights to
different nodes in the neighborhood, and calculates the latent
representation of nodes in the network. It does not require
prior knowledge of network structure information.

DAEGC [36]

clustering framework, which is trained in a pre-training-fine-
tuning approach. The framework mainly has graph attention
auto-encoder and self-training clustering module.

MAGCN [37]

This algorithm designs two path encoders (one is for multi-
view, and the other is for consistency), which is a network
clustering model.

JAME [28]

JAME is a joint auto-encoder framework that can be used to
combine local network structure, node attributes and other
information to learn network embeddings for multiple tasks.

MTGAE [27]

A multi-task graph autoencoder structure is constructed,
capable of learning representations of node embeddings from
local topology and task (link prediction and node classifica-
tion) related node features.

Evaluation metrics
Node classification task

In this task, MLP is used as the classifier, and the trained
model is used for performance evaluation on the test set.
Three evaluation metrics are used: accuracy (ACC), macro-
F1 and micro-Fl1.

For a category x in the dataset, use 7 P(x), F P(x), FN(x)
to represent the number of times that the data of type x are
predicted to be the data of type x (the number of true posi-
tives), and the data of type x are predicted to be non-positive.
The number of times data of type x (number of false posi-
tives) and the number of times non — x type of data were
predicted to be of type x (number of true negatives). For a
dataset with C categories, the calculation process of micro-F1
and macro-F1 can be seen in the following formulas:

.. T P(x) T P(x)
precision = ———— — recall = —————,
TP(x)+ FP(x) TP(x)+ FN(x)

Fix) = 2. precision - recall Macro — Fy — Y vec Fix)

precision +recall ’ |C| ’

@ Springer

1962 Complex & Intelligent Systems (2024) 10:1953-1969
_ 2iec TP _ 2ec TPM) process is.
Y vec(TP(x)+ FP(x)) Y vec(TPX)+ FN(x))
2PR Niin
Micro— F1 = _ZZi,jNijln<N,-_§v_j)
P+R NMI(A, B) =

Micro-F1 assigns the same weight to each sample in the
dataset, and macro-F1 assigns the same weight to each of
the C classes. That is, macro-F1 is the average of C cate-
gories micro-F1. Therefore, macro-F1 will score lower than
micro-F1 when the sample size distribution of C categories
is uneven.

Link prediction task

In this task, widely used metrics are AUC and precision.
Among them, AUC refers to the area under the ROC curve,
which is the measurement index of the most commonly used
of link prediction performance.

Assuming that M, denotes the number of positive samples
in the test set, M_ denotes the number of negative samples,
and M, x M_ denotes the number of sample pairs. The cal-
culation method of AUC is as follows:

1, P, > P_
I(P;, P_ :
AUC = L, I(Py, P-)=105, P, = P_
M, x M_
0, P, < P_

Node cluster task

For node clustering, we use the k-means function as a
classifier and use three evaluation metrics: clustering accu-
racy (ACC), normalized mutual information (NMI), and
Adj_rand_score (ARI).

Unsupervised clustering accuracy (ACC) is defined as fol-
lows:

i 8(real;, map(predict;)
ACC = Zi= 2
n

when real; == map(predict;), 5§ = 1, otherwise § = 0.
Among them, real; represents the real label of node v;, and
predict; represents the predicted label. The map represents
the best match of the predicted label in the real label, and the
Munkres algorithm is generally used.

NMI originated from confidence theory and is a similarity
measure that can be used to measure the similarity between
the real division result A and the division result B obtained
by the algorithm. If the two division results are more similar,
the NMI value is closer to 1. Let N be the confusion matrix,
and the element N;; represents the same number between A
and B. The network has n nodes, and the NMI calculation

@ Springer

; N\’
5 Nidn() + 32 N (52

Parameter settings

In order to make a fair comparison, all the benchmark algo-
rithms are based on the open source codebase (OpenNE) of
the author of the relevant paper, and the relevant parameter
settings are based on the requirements of the original paper.
For DeepWalk algorithm, the random walk times s and length
t are set to 10 and 80, respectively, and the window size w
of skip-gram model is set to 10. The jump order of LINE
algorithm is set to 2, the learning rate is set to 0.025, and the
number of negative samples is set to 5.

For TAD-GCN, the final node embedding dimension d
is set as 128, initial learning rate values for 0.0001-0.005,
maximum iteration epoch is equal to 200, and k€{2, ...,10}.
For regularization coefficients o and f, they can be searched
from {0.01, 0.001, 0.0001} and {le — 10, 5¢ — 9, le —
9, 5e — 8, le — 8}], respectively. In particular, the model
simultaneously trains three GCNs with two layers, which
have the same dimension of hidden layer and output.

Experimental results and analysis

This section adopts the tasks commonly used in most
algorithms: node classification, link prediction and node clus-
tering to evaluate the node embedding quality obtained by
the algorithm model. This is done to evaluate the ability of
the node embedding obtained by the NRL algorithm to main-
tain characteristics of the original network topology and node
attributes. The goal of link prediction task is to assess the abil-
ity of node embedding to reconstruct network structure, while
the purpose of node classification task is to assess whether
the node embedding contains enough trainable downstream
task information. In addition, clustering task is able to assess
the discriminant performance of node embedding learned
by unsupervised algorithms to cluster structure. Based on
the above tasks, this section selects the existing classical
and latest network representation learning algorithm and the
TAD-GCN model designed in this paper to conduct a com-
parative experiment on algorithm performance.

Generally, most algorithms evaluate the quality of node
embedding through common network analysis tasks such as
node classification and link prediction, while some unsuper-
vised learning algorithms evaluate node embedding through
clustering tasks. The algorithm model in this paper is semi-
supervised, so the three evaluation tasks can be used to
analyze node embedding.

Complex & Intelligent Systems (2024) 10:1953-1969

1963

As the variance of graph data is large, here follows the
method of [30], repeats 10 times for each method, and reports
average index.

Node classification

In network analysis tasks, node classification, one of the
most common tasks, can be generalized into a variety of
practical applications. To accomplish the task, the network
representation learning method is generally applied first to
learn embedding of various network, and then, node rep-
resentation learned before is used to train the classifier. In
this paper, the labeled nodes with preset proportions are
randomly selected as training set and other as test set. The
support vector machine model is trained by node informa-
tion (node representation and label) in the training set, and
then, classifier predicts the category of the node according
to the embedding. The cross-validation is repeated for ten
times, and we take the mean value of the evaluation indexes
as the final result. The evaluation indicators are described in
Sect. Evaluation metrics.

Tables 2, 3 and 4 respectively show the node classification
effects of different algorithms in four datasets, and the best
results are represented by bold numbers. From these tables,
we can observe the following:

By comparing experimental results of TAD-GCN and
seven baseline models, we find that attribute information of
nodes can greatly affect classification effect of model, and the
topology information of network plays a supplementary role.
If the two are used together, the quality of node representa-
tion can be significantly improved, which also demonstrates
the effectiveness of TAD-GCN model proposed in this paper.

In the four datasets of different sizes, the experimental
results of TAD-GCN model are basically superior to the
other seven comparison models, showing good classification
performance. It shows that the model using GCN achieves
better classification effect, because it can effectively integrate
and utilize network structure information and node attribute
information.

The improvement of TAD-GCN model’s classification
effect is slightly different in different datasets, which is due
to the different number of categories and data size in different
datasets. For Cora datasets with a large number of categories,
TAD-GCN model has better generalization ability and can
significantly improve the classification effect. For example,
ACC and macro-F1 were 4.9% and 5.5% higher than GCN
model, respectively. However, for the ACM dataset with only
3 categories, the classification performance is only 3.2% and
3.06% higher than that of the best benchmark framework.

Based on the experimental results in Tables 2, 3 and 4
and the above analysis, it is shown that TAD-GCN has high
performance in node classification task and can accurately
predict the nodes with unknown labels in the network, which

further proves that TAD-GCN can extract and utilize more
effective information from the original network.

Link prediction

To evaluate the ability of node embedding representation
to reconstruct network original topology, which is mainly
recommended in practical applications, we conduct link
prediction task. In this section, 10% edges are randomly
removed from the network link set as positive examples, and
the same number of non-existent edges as positive exam-
ples is randomly generated as negative examples. These two
kinds of edges constitute the test set together, and the rest
of the links serve as the training set. In this section, AUC
value, a commonly used evaluation index, is used to eval-
uate the performance of the algorithm in link prediction
task. In Section "Evaluation metrics", the evaluation indi-
cators are displayed. Table 5 demonstrates the comparison
of TAD-GCN results with other benchmark algorithms in
link prediction tasks. Among them, TAD-GCN-1 and TAD-
GCN-2 represent the link prediction results obtained by using
formulas (27) and (28) for the total objective function, respec-
tively.

The link prediction results of TAD-GCN model on three
datasets are all higher than those of other reference meth-
ods. Among them, TAD-GCN is significantly better than
DeepWalk which only considers network topology. Second,
TAD-GCN is a significant improvement over GAE, which
considers both topology and node attributes. Finally, com-
pared with JAME, the AUC and AP ratios of TAD-GCN are
slightly 1-2% higher. An important reason is that the TAD-
GCN model not only takes advantage of the advantages of
multi-task learning, but also optimizes the model by consid-
ering two regularization terms, consistency constraint and
difference constraint, which further enhances the extraction
of structural information of the network by the model and
finally obtains higher quality node representation.

Based on Table 5 and the above analysis, TAD-GCN can
be used to predict missing or potential links in the network
more accurately. This shows that TAD-GCN node embedding
can more effectively retain the topological information of the
original network and has an advantage in link prediction task.

Node clustering

Node clustering aims to infer the cluster distribution of nodes
in the network based on the topology and node attribute infor-
mation. For example, community detection problem can be
converted into node clustering problem in network analysis.
The main steps are to first learn the low-dimensional node
embedding representation through the network representa-
tion algorithm and then use k-means to achieve the node
clustering task. This section uses three clustering evaluation

@ Springer

1964

Complex & Intelligent Systems (2024) 10:1953-1969

Table 2 Node classification

results of different methods (20) Dataset Cora CiteSeer ACM PubMed
Metrics ACC Ma-F1 ACC Ma-F1 ACC Ma-F1 ACC Ma-F1
DeepWalk 0.293 0.281 0.435 0.381 0.627 0.621 0.452 0.446
LINE 0.178 0.182 0.327 0.318 0.413 0.401 0.409 0.385
ChebyNet 0.534 0.476 0.698 0.659 0.752 0.749 0.693 0.662
GCN 0.567 0.525 0.703 0.675 0.878 0.878 0.739 0.701
GAT 0.584 0.544 0.725 0.681 0.874 0.874 0.745 0.719
JAME 0.589 0.548 0.722 0.671 0.869 0.862 0.767 0.743
MTGAE 0.552 0.536 0.713 0.699 0.895 0.894 0.790 0.783
TAD-GCN 0.599 0.563 0.735 0.695 0.910 0.908 0.836 0.828
The best performance is in bold

Table 3 Node classification

results of different methods (40) Dataset Cora CiteSeer ACM PubMed
Metrics ACC Ma-F1 ACC Ma-F1 ACC Ma-F1 ACC Ma-F1
DeepWalk 0.362 0.333 0.452 0.432 0.630 0.618 0.468 0.457
LINE 0.251 0.254 0.333 0.324 0.458 0.458 0.43 0.411
ChebyNet 0.582 0.535 0.716 0.683 0.816 0.813 0.755 0.724
GCN 0.606 0.556 0.731 0.697 0.891 0.890 0.796 0.758
GAT 0.629 0.583 0.730 0.696 0.886 0.886 0.792 0.746
JAME 0.631 0.614 0.747 0.715 0.89 0.889 0.832 0.818
MTGAE 0.590 0.572 0.739 0.725 0.904 0.903 0.821 0.8
TAD-GCN 0.649 0.605 0.762 0.708 0.917 0.916 0.847 0.839
The best performance is in bold

Table 4 Node classification

results of different methods (60) Dataset Cora CiteSeer ACM PubMed
Metrics ACC Ma-F1 ACC Ma-F1 ACC Ma-F1 ACC Ma-F1
DeepWalk 0.406 0.379 0.489 0.480 0.670 0.669 0.485 0.473
LINE 0.297 0.309 0.354 0.344 0.504 0.499 0.434 0.421
ChebyNet 0.598 0.542 0.733 0.703 0.854 0.853 0.803 0.774
GCN 0.620 0.562 0.745 0.712 0.905 0.905 0.811 0.787
GAT 0.644 0.596 0.748 0.716 0.904 0.903 0.835 0.812
JAME 0.663 0.630 0.755 0.724 0.913 0.912 0.838 0.826
MTGAE 0.607 0.586 0.734 0.703 0.911 0.910 0.829 0.807
TAD-GCN 0.669 0.627 0.768 0.735 0.924 0.924 0.858 0.842

The best performance is in bold

indexes, which have been explained in Section "Evaluation
metrics". The average value of evaluation indexes obtained
from ten experiments is taken as the final clustering effect.
Table 6 shows the experimental results of node clustering of
all algorithms on three datasets respectively.

TAD-GCN achieves the best performance which can
be seen from Table 6. In addition, methods (DAEGC and
NAGCN) considering both result information and attribute

@ Springer

information. TAD-GCN is better than DeepWalk, which is
based only on network structure information. It is remarkably
that the multi-task-oriented learning method (TAD-GCN),
which considers both result and attribute information simul-
taneously, performs better in the clustering experiment on
three datasets, which further verifies the validity of the model
proposed in this paper.

Complex & Intelligent Systems (2024) 10:1953-1969 1965

Table 5 Link prediction results

of different methods Dataset Cora CiteSeer ACM PubMed
Metrics AUC AP AUC AP AUC AP AUC AP
DeepWalk 0.805 0.828 0.732 0.762 0.553 0.554 0.930 0.945
LINE 0.869 0.900 0.857 0.899 0.636 0.673 0.934 0.947
GAE 0.843 0.881 0.787 0.841 0.617 0.675 0.961 0.961
JAME 0.987 0.972 0.985 0.979 0.924 0.919 0.983 0.980
MTGAE 0.940 0.952 0.938 0.955 0.895 0.899 0.940 0.949
TAD-GCN-1 0.993 0.993 0.993 0.992 0.937 0.927 0.990 0.988
TAD-GCN-2 0.990 0.991 0.990 0.992 0.937 0.926 0.991 0.996
The best performance is in bold

Table 6 Node clustering results of different methods

Dataset Cora CiteSeer ACM PubMed

Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

DeepWalk 0.529 0.384 0.291 0.390 0.131 0.137 0.756 0.564 0.575 0.647 0.238 0.255

RWR-GAE 0.669 0.481 0.417 0.616 0.354 0.343 0.846 0.697 0.612 0.726 0.355 0.370

DAEGC 0.704 0.528 0.496 0.672 0.397 0.410 0.891 0.725 0.714 0.671 0.266 0.278

MAGCN 0.715 0.598 0.532 0.711 0.458 0.462 0913 0.726 0.749 0.691 0.331 0.321

TAD-GCN 0.746 0.612 0.584 0.759 0.479 0.483 0.928 0.743 0.798 0.717 0.362 0.381

The best performance is in bold

Visual analysis

In order to intuitively evaluate the node embedding learned
by model TAD-GCN in this paper more accurately, t-SNE
[38] visualization algorithm is used to reduce the dimen-
sion of node embedding representation to two-dimensional
space. Taking CiteSeer and ACM datasets as examples, repre-
sentative network embedding methods DeepWalk and GCN
and TAD-GCN model are visualized to represent dimen-
sionality reduction of learned nodes. Each point in the
two-dimensional plane corresponds to a node in the orig-
inal network, and different categories are distinguished by
different colors. The two-dimensional vector representation
of these points can retain the structure of the original net-
work, that is, the more concentrated the points with the same
color are, the more separated the points with different colors
are, which means the visualization effect is better. Figure 3
shows the node visualization results of CiteSeer and ACM
datasets.

Figures 3 (al) and (bl), respectively, show the visualiza-
tion results of node representation obtained by DeepWalk on
CiteSeer and ACM datasets. It can be seen that the nodes of
six labels in CiteSeer datasets are mixed together, and it is
difficult to distinguish and there is no obvious cluster bound-
ary. Most of the nodes of the three labels in the ACM dataset

are separated into three clusters, but the boundaries of nodes
of different labels are not clear.

Figures 3 (a2) and (b2), respectively, show the visual-
ization results of node representation obtained by GCN on
CiteSeer and ACM datasets. It can be seen that the visual-
ization results of node representation obtained by GCN are
better than DeepWalk, which can be slightly obvious that it is
divided into six clusters (CiteSeer) and three clusters (ACM).
However, there is no clearer boundary between clusters, and
the nodes in the cluster are more discrete.

Finally, Fig. 3 (a3) and (b3), respectively, show the visual-
ization results of TAD-GCN node representation on CiteSeer
and ACM datasets, from which it can be seen that TAD-GCN
has the best performance compared with the other two mod-
els. Although a small number of nodes with different labels
are not completely separated, the boundary between clusters
is very clear, and the nodes within clusters are more com-
pact. Six clusters (CiteSeer) and three clusters (ACM) can
be clearly observed.

Therefore, the TAD-GCN model has strong competitive-
ness in visualization tasks, which can obtain better node
embedding representation and effectively capture the topol-
ogy of the original network. This further proves that the node
representation obtained by TAD-GCN model is more con-
ducive to the completion of downstream tasks.

@ Springer

1966

Complex & Intelligent Systems (2024) 10:1953-1969

60

-80 -60 -40 =20 0 20 40

60

201

Y T
of R REo Rt
A . .Q.
_ o

-75 50 -25 0 25 50 75
(a3) TAD-GCN

Fig. 3 Visualization results of CiteSeer (left) and ACM (right) datasets

Ablative experiment

First, for reason of verifying the effectiveness of multitask,
this section compared the TAD-GCN model with its three
variants (TAD-GCN-cla, TAD-GCN-Ip and TAD-GCN-clu)
on CiteSeer and ACM datasets. TAD- GCN-cla, TAD- GCN-
Ip and TAD- GCN-clu indicate that the node classification

@ Springer

(b3) TAD-GCN

task, link prediction task and node clustering task are com-
pleted separately. The results which are shown in Fig. 4 (a)
and (b) represent the comparison of the results of TAD-GCN
model and its three variants on CiteSeer and ACM datasets,
respectively. ACC and macro-F1 were the evaluation indexes
of classification task results, ACC and NMI were the eval-
uation indexes of clustering task results, and AUC and AP
were the evaluation indexes of link prediction task results.

Complex & Intelligent Systems (2024) 10:1953-1969

1967

100
90
80
70
60
50 ’(’

%

Wz

ACC NMI

mTAD-GCN-single TAD-GCN
(a) CiteSeer Dataset

40

30

95

85

75

65

55

RN

m

45

ACC Ma-Fl1 ACC NMI

M TAD-GCN-single TAD-GCN
(b) ACM Dataset

Fig.4 Ablative experimental results of multi-task learning

As can be seen from Fig. 4, in ACM and CiteSeer
datasets, TAD-GCN model performed better than individual
tasks in classification and link prediction tasks. In addition,
TAD-GCN model performed better than TAD- GCN-cla in
clustering tasks. TAD- GCN-Ip and TAD- GCN-clu com-
pleted corresponding individual tasks, respectively. This
shows that the multi-task learning module used in the TD-
GCN model proposed in this paper is very effective, which
cannot only complete multiple tasks such as node classifica-
tion, clustering and link prediction at the same time, but also
achieve good performance in the completion effect.

Finally, in order to verify the validity of regulariza-
tion terms, this section compares the TD-GCN model with
its three variants (TD-GCN-Ndif, TD-GCN-Nsim and TD-
GCN-NN) on CiteSeer and ACM datasets (see Fig. 5). TAD-
GCN-Ndif, TAD- GCN-Nsim and TAD-GCN-NN represent
the removal of difference constraint, similarity constraint and
regularization term in TAD-GCN model, respectively. ACC
index results are used in classification task and clustering
task, and ROC index results are used in link prediction task.

Figure 5 shows that the completion effect of TAD-GCN
on all tasks is better than that of the other three regulariza-
tion item variants in the above four datasets, indicating that
considering the two constraints in the regularization item at
the same time is to the benefit of improving the model capac-
ity. In addition, in the clustering task, the variation without
regularization term is basically better than the variation with

I

TAD-GCN-Ndif TAD-GCN-Nsim TAD-GCN

mCiteSeer-Cla @CiteSeer-Clu # CiteSeer-Lp

(a) CiteSeer Dataset
95
94
93
92
91

90

89

TAD-GCN-Ndif =~ TAD-GCN-Nsim TAD-GCN-NN
mMACM-Cla OACM-Clu @ACM-Lp

(b) ACM Dataset

Fig.5 Ablative experimental results of regularization terms

only one regularization term, which means that only when
both regularization terms are considered in the model can
they play an important role, and the two regularization terms
constrain and promote each other.

Convergence analysis

For purpose of verifying the convergence of TAD-GCN
model, taking the model training on CiteSeer and ACM
datasets as an example, the loss value of TDA-GCN model
in the training process is shown in Fig. 6. From Fig. 6, the
loss value curves of the model are monotonically decreasing
and gradually converging.

Conclusion

In this paper, we propose an original multi-task network
embedding approach with dual-channel GCN, named TAD-
GCN. More specifically, TAD-GCN considers utilizing rel-
evant information of multi-view and multitasks through
dual-channel GCN and attention mechanism. Besides, we
enhance our model by introducing regularization term and
multitask-oriented module which can make the multi-view
and task-related information better captured. Therefore, our

@ Springer

1968

Complex & Intelligent Systems (2024) 10:1953-1969

Fig.6 Loss curve of the model

CiteSeer ACM
2.5
2
2 15

Q
— 1
0.5
0
S=aox TENSTRERxaS=anT
Epoch Epoch

model is able to effectively learning the multi-view net-
works and simultaneously solve multiple downtown tasks.
We manipulate four datasets to conduct extensive experi-
ments, and our model present significantly superior to the
excellent baselines by the empirical results. In the future, the
model will be considered for extension to more complicated
networks.

Funding This work was supported by National Natural Science Foun-
dation of China [grant numbers 61876101 and 61802234].

Data availability The data is publicly available.

Open Access Thisarticle is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Cui P, Wang X, Pei J, Zhu W (2019) A survey on network embed-
ding. IEEE Trans Knowl Data Eng 31(5):833-852

2. TangJ, QuM, Wang M, et al (2015) Line: large-scale information
network embedding. Proceedings of the 24th international confer-
ence on world wide web 1067-1077

3. Grover A, Leskovec J (2016) node2vec: scalable feature learning
for networks. Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp 855-864

4. Wang D, Cui P, Zhu W (2016) Structural deep network embedding.
Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pp 1225-1234

5. Ribeiro L, Saverese P, Figueiredo D (2017) struc2vec: learning
node representations from structural identity[C]. Proceedings of
the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pp 385-394

6. Wang J, Liang J, Yao K et al (2021) Graph convolutional autoen-
coders with co-learning of graph structure and node attributes.
Pattern Recognition 121:108215

7. Sc A, Wei S, Mz A (2022) Structure information learning for neu-
tral links in signed network embedding. Inform Process Manag
59(3):102917

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Defferrard M, Bresson X et al (2016) Convolutional neural net-
works on graphs with fast localized spectral filtering. Adv Neural
Inform Proces Syst 29:3844-3852

. Gao H, Huang H (2018) Deep attributed network embedding. Pro-

ceedings of the 27th International Joint Conference on Artificial

Intelligence (IJCAI)), pp 3364-3370

ChenJ,Zhong M, LiJ etal (2021) Effective deep attributed network

representation learning with topology adapted smoothing. IEEE

Transact Cybern 52(7):5935-5946

Huang J, Li Z, Zheng VW et al (2018) Unsupervised multi-view

nonlinear graph embedding. In: UAI pp 319-328

Yao K, Liang J, Liang J et al (2022) Multi-view graph convolutional

networks with attention mechanism. Artif Intell 307:103708

Zhang Z, Yang H, Bu J et al (2018) ANRL: attributed network

representation learning via deep neural networks. Proc IJCAI

18:3155-3161

Kipf TN, Welling M (2016) Variational graph auto-encoders. arXiv

preprint arXiv:1611.07308

Pedronette D, Latecki LJ (2021) Rank-based self-training for graph

convolutional networks. Inform Process Manag 58(2):102443

Zhu W, Liu S, Liu C (2021) Incorporating syntactic and phonetic

information into multimodal word embeddings using graph convo-

lutional networks. Inform Proces Manag 58(6):102709

Li Q, Han Z, Wu X M (2018) Deeper insights into graph convolu-

tional networks for semi-supervised learning. Proceedings of the

32nd AAAI conference on artificial intelligence, 538-3545

Nt H, Maehara T (2019) Revisiting graph neural networks: all we

have is low-pass filters. arXiv preprint arXiv. 1905.09550

Wu F, Souza A, Zhang T, et al (2019) Simplifying graph convolu-

tional networks. Int Conference on Machine Learning. PMLR, pp

6861-6871

Zhou J, Cui G, Hu S et al (2020) Graph neural networks: a review

of methods and applications. Al Open 1:57-81

Ding Y, Wei H, Pan Z et al (2020) Survey of network representation

learning. Comput Sci 47(09):52-59

Hamiltion W, Ying Z, Leskovec J (2017) Inductive representation

learning on large graphs. In: Advances in neural information pro-

cessing systems, p 30

Velickovi¢ P, Cucurull G, Casanova A, et al (2017) Graph attention

networks. arXiv preprint arXiv.: 1710.10903

Bruna J, Zaremba W, Szlam A, et al (2014) Spectral networks

and locally connected networks on graphs. Proceedings of the 2nd

international conference Learning Representation, pp 1-5

Thomas N. Kipf, Max Welling (2017) Semi-supervised classifica-

tion with graph convolutional networks. Proceedings of ICLR

Lai D, Wang S, Chong Z et al (2021) Task-oriented attributed net-

work embedding by multi-view features. Knowledge-Based Syst

232:107448

Tran PV (2018) Multi-task graph autoencoders. Adv Neural Inform

Process Syst 1811.02798

http://creativecomm\penalty -\@M ons.org/licenses/by/4.0/
http://arxiv.org/abs/1611.07308

Complex & Intelligent Systems (2024) 10:1953-1969

1969

28.

29.

30.

31.

32.

33.

34.

35.

Rizi FS, Granitzer M (2020) Multi-task network embedding with
adaptive loss weighting. Proceedings of 2020 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and
Mining (ASONAM). IEEE, 1-5

Zhang X, Zhang X, Liu H et al (2016) Multi-task multi-view clus-
tering. IEEE Trans Knowl Data Eng 28(12):3324-3338

Huang H, Song Y, Wu Y et al (2020) Multitask representation learn-
ing with multiview graph convolutional networks. IEEE Transact
Neural Netw Learn Syst 33(3):983-995

Meng Z, Liang S, Bao H, et al (2019) Co-embedding attributed net-
works. Proceedings of the twelfth ACM international conference
on web search and data mining, pp 393—401

Wang X, Ji H, Shi C, et al (2019) Heterogeneous graph attention
network. Proceedings of the WWW’19: The World Wide Web Con-
ference, pp 2022-2032

Yang H, Pan S, Zhang P, et al (2018) Binarized attributed network
embedding. 2018 IEEE International conference on data mining
(ICDM). IEEE, pp 1476-1481

Bojchevski A, G unnemann S (2018) Deep gaussian embedding of
graphs: unsupervised inductive learning via ranking. Proceedings
of International Conference on Learning Representations

Perozzi B, Rfou RA, Skiena S (2014) DeepWalk: online learning of
social representations. Proceedings of ACM SIGKDD international
conference on Knowledge discovery and data mining, pp 701-710

36.

37.

38.

39.

Wang C, Pan S, Hu R, et al (2019) Attributed graph cluster-
ing: a deep Attentional embedding approach. Proceedings of
the 28th International Joint Conference on Artificial Intelligence
(IICAT’19). AAAI Press, pp 3670-3676

Cheng J, Wang Q, Tao Z et al (2021) Multi-view attribute graph
convolution networks for clustering. Proceedings of the Twenty-
Ninth International Conference on International Joint Conferences
on Artificial Intelligence 2021:2973-2979

Maaten L, Hinton G (2008) Visualizing data using t-SNE. J] Mach
Learn Res 9(2605):2579-2605

Ruder S (2017) An overview of multi-task learning in deep neural
networks. http://arxiv.org/abs/1706.05098

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/1706.05098

	Multi-view dual-channel graph convolutional networks with multi-task learning
	Abstract
	Introduction
	Related work
	Network representation learning
	Multitask learning

	Preliminary
	TAD-GCN framework
	Graph convolutional neural networks
	Specific graph convolutional layers
	The attributes-preserved graph convolutional layers
	The topology-preserved graph convolutional layers

	Shared graph convolutional layers
	Attention aggregation layer
	Regularization term
	Similarity constraint
	Difference constraint

	Multi-task learning module
	Optimization objective
	Complexity analysis

	Experiments
	Datasets
	Baseline
	Evaluation metrics
	Node classification task
	Link prediction task
	Node cluster task
	Parameter settings
	Experimental results and analysis
	Node classification
	Link prediction
	Node clustering
	Visual analysis

	Ablative experiment
	Convergence analysis

	Conclusion
	References

