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Abstract
Assist-as-needed control with a soft robotic hand glove for active rehabilitation is studied in this work. There are two resources
of the grasping force, the robotic glove and the subject. Compared with traditional passive rehabilitation where the grasping
force is merely provided by a robotic hand rehabilitation device (such as hand exoskeleton, robotic glove), assist-as-needed
control accounts for the user contribute to performing grasping tasks collaboratively. In this control method, the human
muscle strength for grasping is estimated through the myoelectrical signals of the human forearm collected by the MYO
armband. A neural network is used for the recognition of human-object contact estimation. The assist-as-needed control is
finally implemented to assist humans in grasping tasks. Experiment results on a soft robotic glove show the effectiveness of
the proposed assistive control method.

Keywords Assist-as-needed control · Soft robotic glove · Human-object contact estimation

Introduction

Robot-assisted training has received increasing attention in
the field of rehabilitation because of its ability to improve
or restore muscle weakness in patients suffering from neu-
rological injuries. Compared to human therapists, robots
can provide faster, easier-to-perform and adjustable repet-
itive training, which is essential for patients to regain muscle
function [5].Many robotic devices such as robotic hand pros-
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theses [1, 2], hand exoskeletons [3, 32], and robotic gloves [7,
25], have been developed and used for hand function reha-
bilitation/reconstruction of patients with hand disability or
weak grasping strength. Soft robotic gloves are more user-
friendly than rigid hand exoskeletons for advantages such
as simple mechanical design and light in weight, close and
safe physical human-robot interaction. Various mechanisms
and actuations of robotic gloves have been developed [6,
12, 23, 30, 38, 40]. In addition to the aforementioned mech-
anisms, numerous research efforts have been dedicated to
ensuring control system stability in complex nonlinear sys-
tems within the field of robotics, including a self-triggered
model predictive control [18], point-wise controller based
on point measurement [28], point-to-point iterative learning
control strategy [42] and so on.

Assistive control of robotic gloves based on surface Elec-
tromyography (sEMG) has been investigated in some works.
An assistive control method using EMG is developed to sup-
port activities of daily living (ADL) [26]. In particular, the
EMG flexor/extensor signals together with some rules are
used to control hand closing, hand opening, and hand ‘hold’
functions of the glove. A similar EMG control approach
can be found in [12, 24]. In [8], a proportional control was
proposed instead of on-off control for the grasping force.
Thus the grasping force is tuned smoothly during the grasp-
ing process, which is preferable for grasping objects with
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different stiffness. A method to combine EMG sensors and
force sensors to decode human intention and different grasp
types was reported in [13]. In [27], EMG is used to detect
hand closing/opening through pattern classification for assis-
tive control of a hand orthosis. In addition, two multimodal
control strategies are adopted where the bend sensors and
pressure sensors are also employed for control, in case EMG
signals cannot be continuously maintained for hand closing.
Moreover, human object contact estimation was estimated
by EMG signals in [11, 36]. The estimated grasping pressure
force was used for bilateral rehabilitation control of a hand
exoskeleton in [11].

Researchers utilized various methods to finish the task of
estimating human grasping force using EMG signals, which
include artificial neural network (ANN) [10, 15], radio-
frequency identification (RFID) [39], multi-modal infor-
mation [27], and contact-based approaches [23]. In recent
times, the application of deep learning-based techniques has
gained significant popularity in EMG recognition. Numerous
studies have implemented deep neural networks for EMG
processing. Phinyomark et al. [29] address the issue of EMG
processing in the context of the rapid growth of big data and
deep learning. Faust et al. [14] provides an overview of deep
learning in healthcare applications that involve biomedical
signals, such as EMG, EEG (Electroencephalogram), ECG
(electrocardiogram), and EOG (electrooculogram).Mahmud
et al. [19] summarize the use of deep learning techniques,
reinforcement learning methods, and deep reinforcement
learning in the biological field with biomedical signals,
including EEG, ECG, and EMG.

While EMG-based methods may function effectively for
robots with a limited number of degrees of freedom, inter-
preting these signals poses several challenges, making them
most efficient when utilized for preprogrammed motion trig-
gering [5]. Considering the non-invasiveness, ease of use,
and probability of EMG devices, this study estimates human
object contact through the detection of EMG signals.

On the other hand, from the view of assistive control
strategies, the whole rehabilitation process with assistive
technology can be generally divided by three stages: passive
rehabilitation, active rehabilitation, and resistive rehabilita-
tion [33]. The passive rehabilitation is mostly adopted in the
early stage of rehabilitation. For passive rehabilitation, the
human motion is mobilized by rehabilitation devices. As a
consequence, the patients are not actively involved in the
rehabilitation training. To help the patient retrieve muscle
strength and accelerate the rehabilitation process, the active
rehabilitation strategy is proposed that the patient is required
to produce some effort in the training.

The assist-as-needed (AAN) control is an assistive strat-
egy that covers both passive rehabilitation and active reha-
bilitation. AAN control approaches aim to minimize the
intervention of robotic devices in rehabilitation therapywhen

users are able to perform the task. The human effort for train-
ing tasks is measured or estimated by different sensors. If it is
detected that the human effort is not enough to drive a train-
ing task, an assistive robot will provide more assistance to
complete the training. Otherwise, if it is detected that human
effort is increasing, the assistive robot will reduce assistance.
Even if the human effort is less than a minimum threshold,
the assistive robot will take charge and help the patients to
finish the task. TheAAN control strategy has been adopted in
different rehabilitation robots such as upper-limb rehabilita-
tion robots [20, 35], lower-limb rehabilitation robots [4, 34],
and hand rehabilitation robots [31]. However, there is not any
AAN control based on human object contact estimation for
hand rehabilitation investigated yet.

In this paper, a new control method was developed to con-
trol a soft glove to provide assistance as needed in grasping.
The combination of human object contact estimation and
AAN control strategy for hand rehabilitation is investigated
in this work. Experiment results on the soft robotic glove are
provided to verify the effectiveness of the AAN strategy. In
contrast to previous research, this study’s contributions can
be summarized as follows:
1. The controller designed in this study for human object

contact estimation is unique in that it eliminates the need
for a fully drivable system or known robot dynamics,
distinguishing it from impedance and closed-loop con-
trollers [1–3], among others. This design feature greatly
simplifies the mechanical and controller design process.

2. The proposed schemes prioritize user autonomy in task
execution, intervening less when the user is capable. And
for users with insufficient strength or limited mobility,
these schemes minimize the potential risk of harm when
providing power assistance, thereby ensuring the safety
of this approach. The proposed schemes either do not
require a dynamicmodel of the systemor are less affected
by incomplete information regarding the dynamics.

The rest of this paper is organized as follows. The soft
robotic glove system is introduced in “System architecture”
section. The main algorithm including human object contact
estimation and AAN control is provided in “Main assistive
control algorithm” section. Experiment results are illustrated
in “Experiments” section. Finally, some conclusion remarks
and future research directions are given in “Conclusions”
section.

System architecture

Robotic glove system

An overview of the robotic glove system is shown in Fig. 1
and the algorithm structure is shown in Fig. 2. The whole
system is comprised of the following devices:
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1. Robotic glove

2. EMG armband

3. FSR sensors

4. Glove control box

5. Actuated cables

6. Serial communication
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2
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3

Fig. 1 Robotic glove system

1. A soft robotic glove (BIOSERVO) [9]. It has three fingers
with a force-sensitive resistor (FSR) attached to the pad
of each fingertip, and a control box. Each finger can be
controlled separately via cables connected to the control
box. Each finger is driven by cables passing through the
two lateral sides of each finger. The FSR sensors can be
used to detect the contact force with an object during
grasping tasks. The measuring range of an FSR sensor is
from0 to20N.The robotic glove control box is connected
to a computer via serial communication. The FSR data
can be sent from the glove control box to laptop at the
rate of 2 Hz.

Originally, the robotic glove was controlled proportion-
ally with the contact force acquired from the FSR sensors.
The FSR-based controller is very direct and simple in imple-
mentation. However, it relies on a good contact between the
FSR sensor and the object that it cannot be used for objects
with different dimensions.

2. An EMG armband (MYO armband) [21]. There are 8
channels of surface EMG (sEMG) signals offered by the
EMG armband. With the armband, sEMG electrodes can
be easily attached to the forearm. In addition, another
advantage of the EMG armband is that it transmits data to
computer via wireless communication (Bluetooth) which
is preferable for a portable system. The sampling fre-

quency for EMG data collection is 200 Hz. Specifically,
the placement of the EMG armband on the human fore-
arm follows the rule provided in [22].

3. A laptop computer. A computer machine interface is
designed with MATLAB on the laptop. The high-level
grasping force estimation and AAN control are executed
by the laptop computer. It generates the desired assistive
force for each robotic glove finger to be sent to the glove
control box.

EMG signal processing

The raw EMG signals are very noisy that it cannot be directly
used.VariousEMGfeatures havebeendiscussed and selected
for myoelectric control so far, such as mean absolute value
(MAV), rootmean square (RMS), and frequency-domain fea-
tures. As shown in [17] that RMS performs better results of
classification of hand gestures compared with MAV. There-
fore, the RMS signals of EMG are generated, with the
window size selected as 100 samples. The processed EMG
signals are sent as input signals of a neural network to esti-
mate the human-object contact. An EMG data processing
result is shown in Fig. 3. It can be seen that the processed
EMG signal is much smoother than the original one.

Main assistive control algorithm

The control architecture of the soft glove is shown in Fig. 2.
The human-object contact is estimated by neural networks.
Assistive force of the robotic glove is computed using the
AAN control strategy. In the last step, the computed assistive
force is sent to the glove control box.

Human object contact estimation

Refer to Fig. 2, EMG signals are used as input of the neural
network. FSR sensors on the pad of the glove fingertips are
used to measure the grasping force directly. The collected
grasping force data is used as the reference output of the
neural network training.

In human-object contact estimation, an object is put on
the desk with a fixed location, and a human subject is asked
to wear the robotic glove and press (not lift) the object from
two opposite directions using different muscle strength, see
Fig. 4a for thewhole human object contact estimation system
and Fig. 4b for the object used for the estimation. Only the
thumb, the index finger, and the middle finger are allowed to
touch the object. The total human pressure force �FFSR can
be computed by:

�FFSR = �FFSR1 + �FFSR2 + �FFSR3 (1)
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Fig. 2 System control
architecture
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Fig. 3 EMG signal processing result

where �FFSR1, �FFSR2, and �FFSR3 are contact forces of the
thumb, the index finger, and the middle finger, respectively,
measured by FSRs. Here, as the human fingers touch the
steel cylinder from two opposite directions, in this situation
the magnitude of �FFSR can be approximately regarded as:

FFSR ≈ FFSR1 + FFSR2 + FFSR3 (2)

where FFSR1, FFSR2, and FFSR3 are the magnitude of
�FFSR1, �FFSR2, and �FFSR3, respectively.
In particular, it is known that machine learning is highly

dependent on the accuracy of the training data. To get precise
human-object contact data for the neural network training,we
use a steel cylinder (see Fig. 4a, b) as the object for the train-
ing of the neural network, due to its stable and rigid structure
and good contact with the human fingertips. This limitation
on the object is only required by the neural networking train-
ing, as the goal is to get accurate force data for training of the
neural network. Such a limitation does not exist in the AAN
control.

As the sampling rates of the EMG data and the FSR data
are different, to synchronize the data acquisition, the sam-
pling rate for the whole data collection system is selected as
2 Hz.

The human object contact estimation by the neural net-
work is shown in Fig. 5. The ANN has eight input nodes
corresponding to the eight-channel EMG signals, and one
output node representing the estimated force. The contribu-
tion and weight of each EMG channel to force estimation
are implicitly represented in the trained network weights of
the ANN, eliminating the need for a priori weight assign-
ment. There are two hidden layers and each hidden layer
contains twenty nodes. The back-propagation technique is
used. In addition, the ReLU function is adopted as the activa-
tion function to deal with the vanishing gradient problem for
the multi-layer neural network. Moreover, the output nodes
employ the softmax activation function.

The ANN in this paper was designed based on the Radial
Basis Function Neural Network (RBFNN) to realise the esti-
mation process, because the RBFNN could approximate any
non-linear linear function in reasonable precision [37],and it
has been proved to be superior in approximating continuous
functions [16]. There is one hidden layer contains N nodes.
In each node, the Gaussian kernel function is used as the acti-
vation function. Considering the i th node in hidden layer, Pi
and δi are the parameters of this node, and the output of this
node ai is calculated by:

ai = e
−‖E−Pi‖2

δi
2

. (3)

A linear function was selected to generate outputs from
hidden layer to the final output FEMG as follows:

FEMG =
N∑

i=1

wi ai + b, (4)

where adaptive parameter wi and b represent the weight and
bias, which need to be determined with data training. The
back-propagation technique is used to train these parameters.
In the experiment, N = 60.

Assist-as-needed control

As shown in Fig. 3, apart from the estimated human-object
contact, the reference grasping force for grasping a specific
object should be known aswell. The reference grasping force
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Fig. 4 Different grasping
objects. (a) The whole system.
The steel cylinder (b) is used for
human object contact
estimation, the wood (c) and the
screwdriver (d) are used to
verify the AAN control strategy

(a) System view. (b) Steel cylinder.

(c) Wood block. (d) Screw driver.

Fig. 5 Neural network for
human object contact estimation

is defined as the grasping force which is required to success-
fully grasp a specific object. The acquisition of reference
grasping force can be done by a healthy subject before it is
applied for a patient, in case that the patient may not be able
to generate enoughmuscle strength to grasp the object which
results in failed acquisition of the reference grasping force.

It is noted that the reference grasping force can be either
measured by the FSR sensors directly, or by indirect estima-

tion via the EMG sensor in case that the contact between the
FSR sensor and the object is not perfect.

The assistive force can be readily computed by the fol-
lowing equation:

FAssitive = FRef − FEMG (5)
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(b) Estimation session 2.

Fig. 6 Online human-object contact estimation results of a healthy subject. In session 1, the contact object is a wood block (see Fig. 4c), and in
Session 2, the contact object is a screwdriver (see Fig. 4d)

Fig. 7 Objects for the
comparison experiment. 1 Soft
bottle, 2 thin book, 3 bottle and
4 thick box

Table 1 Object descriptions

Object No Descriptions Size(mm) Surface materials

1 Soft bottle φ59-φ87*207 PET

2 Thin book 152*212*34 Paper

3 Bottle 78*φ156 Tirtan

4 Thick box 82*124*65 PP

where FAssitive, FRef , and FEMG are the total assistive grasp-
ing force, the reference grasping force, and the estimated
human-object contact by EMG, respectively.

From the total assistive force FAssitive, the assistive force
for each robotic glove finger is further computed. Based on
the findings in [41] that force distribution among fingers
could be calculated by Eqs. (6) and (7).

If palmar grasp is implemented, then

FThumb = FAssitive/2
FIndex = FMiddle = FAssitive/4

(6)

If pincer grasp is implemented, then

FThumb = FIndex = FAssitive/2
FMiddle = 0

(7)

where FThumb, FIndex , and FMiddle are the computed assis-
tive force for the thumb, the index finger, and the middle
finger, respectively. Finally, these values are sent to the glove
control box to actuate the assistive force control of the robotic
glove. In this work, we only consider palmar grasp as it is
usually used for grasping heavy objects which need more
grasping force than light-weight objects.
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Fig. 8 Estimation results in comparison experiment

Table 2 MSE results in
grasping 4 different kinds of
objects with proposed RBF and
compared BD method

Object RBF BP

Soft bottle 1.1628 2.0669

Thin book 0.7776 1.8848

Bottle 2.8387 3.8784

Thick box 1.1364 1.4585

Experiments

Human-object contact estimation performance

Human-object contact estimation was implemented with a
neural network and tested using the steel cylinder as the

grasping object (see Fig. 4b). The data collection lasts
for 500s for each training of the neural network. 1000
input/output data are collected from a healthy subject during
the data collection. The number of data for neural network
training is 900. The additional 100 input/output data which
are from the same data collection session are only used for the
initial evaluation of regression, to check if the neural network
iswell trained. Finally, an inter-session verificationmethod is
adopted for further verification. With the previously trained
neural network, the performance of human-object contact
estimation can be verified online.

The online grasping force estimation results are shown in
Fig. 6. Results from two experiment sessions are provided.

123



1924 Complex & Intelligent Systems (2024) 10:1917–1926

Fig. 9 AAN control
performance of a healthy subject
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(a) Grasping control result of the wood.
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(b) Grasping control result of the screw driver.

It can be seen that the estimated force by EMG is gener-
ally close to the measured pressure force by FSR sensors.
Although there are some errors, it does not affect the overall
performance of estimation by EMG. As a result, the human-
object contact estimation can be used for AAN control.

In addition, it should be noted that due to the low sam-
pling rate at 2 Hz, it takes a long time to collect enough data
for the training of the neural network and during which the
human subject is required to press the object using different
strengths. It is without doubt that more training data will lead
to better grasping force estimation performance.

Furthermore, a two-hidden-layer Back Propagation Neu-
ral Network (BPNN) was set to estimate the human contact
with eight-channel EMG signals as a comparison. The first
hidden layer has 50 nodes and the second one has 10 nodes,
then the output layer generate the one-dimensional output as
the value of the human contact estimation. Four objects were
adopted in this comparison experiment, as displayed in Fig. 7
and Table 1 lists the key properties of these selected objects.

Figure 8 presents the estimations results from EMG by
BPNN and RBFNN. It could seen from Fig. 8 that at most
time RBFNN is closer to the measured pressure force by
FSR sensors than BPNN. We calculate the estimation error
denoted as mean square error (MSE) of these two neural net-
works, and the results are presented in Table 2. It could be
seen from Table 2 that RBFNN is more precise than BPNN.
Therefore, this comparison experiment is able to validate the
effectiveness of the adopted ANN in this work. At the same
time, it reflects the superiority of our method in estimation
accuracy compared to existing BPNN, as well as the appli-
cability of our method on multiple objects.

Assist-as-needed control performance

Based on the human-object contact estimation, theAANcon-
trol was executed by applying the AAN control algorithm
in Eq. (5). Two objects are used in the experiments: a wood
block (see Fig. 4c), and a screwdriver (see Fig. 4d). By apply-
ing the method shown in “Main assistive control algorithm”
section, the reference force for grasping the wood and the
screw driver are measured as 14.18 N and 10.6 N, respec-
tively.

The experiment results of AAN are shown in Fig. 9. From
Fig. 9a, it is seen that the measured grasping force FFSR by
FSRs is close to the estimated grasping force FEMG by EMG
signals due to the good contact between the wood block and
the human fingertips. However, in Fig. 9b, it can be seen that
the measured force FFSR by FSRs is very small that, the
human-object contact acquisition is apparently unsuccessful
using the FSRs. The reason is that it is difficult to have a good
contact between the screwdriver and the human fingertips as
the former one is too small (see Fig. 4d). However, we can
still use the EMG signals to estimate human strength. As a
result, human strength estimation by EMG is more reliable
in this situation.

From Fig. 9, it can also be seen that when the estimated
human strength is not enough to hold an object, the robotic
glove will provide more assistive force. On the other hand,
when a human subject is willing to use more strength, the
intention will be detected by the EMG sensor. The robotic
glove will decrease accordingly the assistive force.
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Conclusions

In this work, we propose an AAN control strategy for a soft
robotic glove. The human-object contact is estimated by an
EMGsensor instead of anFSR sensor throughmachine learn-
ing with a neural network, which could estimate the contact
indirectly and accurately without a dynamic model of the
system. Based on the human object contact estimation, the
AAN control strategy is applied to provide assistance by the
soft robotic glove if it is detected that the human strength
is not strong enough due to muscle fatigue. Therefore, the
proposed system supports the patients to participate to the
rehabilitation exercise actively.

It should be noted that the glove closing/opening con-
trol is not considered in this work. As a result, the robotic
glove is always closed throughout the whole rehabilitation
exercise such that it cannot execute the typical training task
“grasp and place” without additional closing/opening con-
trol command. The integration of the human intention for
hand closing/opening and the recognition of palmar/pincer
grasp will be investigated in the future to complete this AAN
control strategy.
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