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Abstract

Neural architecture search (NAS) is an extremely complex optimization task. Recently, population-based optimization algo-
rithms, such as evolutionary algorithm, have been adopted as search strategies for designing neural networks automatically.
Various population-based NAS methods are promising in searching for high-performance neural architectures. The explosion
gravitation field algorithm (EGFA) inspired by the formation process of planets is a novel population-based optimization algo-
rithm with excellent global optimization capability and remarkable efficiency, compared with the classical population-based
algorithms, such as GA and PSO. Thus, this paper attempts to develop a more efficient NAS method, called EGFA-NAS, by
utilizing the work mechanisms of EGFA, which relaxes the search discrete space to a continuous one and then utilizes EGFA
and gradient descent to optimize the weights of the candidate architectures in conjunction. To reduce the computational cost, a
training strategy by utilizing the population mechanism of EGFA-NAS is proposed. In addition, a weight inheritance strategy
for the new generated dust individuals is proposed during the explosion operation to improve performance and efficiency. The
performance of EGFA-NAS is investigated in two typical micro search spaces: NAS-Bench-201 and DARTS, and compared
with various kinds of state-of-the-art NAS competitors. The experimental results demonstrate that EGFA-NAS is able to
match or outperform the state-of-the-art NAS methods on image classification tasks with remarkable efficiency improvement.

Keywords Neural architecture search - Explosion gravitation field algorithm - Complex optimization task - Deep neural
networks

Introduction

Deep neural networks (DNNs) have made significant
progress in various challenging tasks, including image clas-
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innovation of neural architectures. For example, VGGNet [1]
suggested the use of smaller convolutional filters and stacked
a series of convolution layers to achieve better performance.
ResNet [10] introduced the residual blocks to benefit the
training of deeper neural networks. DenseNet [11] designed
the densely connected blocks to stack features from differ-
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efficient neural network architecture requires a lot of expert
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Generally, a NAS task can be regarded as a complex opti-
mization problem. In machine learning and computational
intelligence, population-based intelligent optimization algo-
rithms, such as genetic algorithm (GA) and particle swarm
optimization (PSO), have been widely adopted as the concept
of neuroevolutionary, to optimize the topology structure and
hyperparameters of neural networks in the late 1990 [12—-14].
Recently, lots of NAS methods employing population-based
intelligent optimization algorithms as search strategies have
attracted increasing attention. Although intelligent optimiza-
tion algorithms, such as GA, have a competitive search
performance on various complex optimization tasks, they
still suffer from high computational costs. This shortcom-
ing is particularly true in NAS tasks since the NAS process
involves a large number of architecture evaluations. More
specifically, for the NAS task, each network architecture
evaluation involves the completed training of a deep neu-
ral network on a large amount of data from scratch. For
example, Hierarchical EA [15] consumes 300 GPU days,
and AmoebaNet-A [16] consumes 3150 GPU days to search
architectures on the CIFAR-10.

In addition, reinforcement learning (RL) is also adopted to
design neural architectures automatically, such as [7, 17, 18].
A significant limitation of RL-based NAS methods is also
computationally expensive despite their remarkable perfor-
mance. For example, it takes 2000 GPU days for the typical
RL-based method NASNet-A to obtain an optimized CNN
architecture on CIFAR-10. These methods require a large
number of computational resources, which is unaffordable
for most researchers and learners. To reduce the computa-
tional cost, ENAS [18] proposed a parameter-sharing strat-
egy, which shares weights among the architectures through
the use of superset and is adopted in various gradient descent
(GD) NAS methods, such as [19-21]. Compared with EA-
based and RL-based NAS methods, GD-based NAS methods
are usually more efficient, which apply gradient descent to
optimize the weights of candidate architectures. However,
GD-based NAS methods still have some limitations, such
as requiring excessive GPU memory during the search, and
resulting in premature convergence to the local optimum [22,
23].

Recently, some population-based methods, such as the
various EA-based methods [15, 16, 24-28], have been uti-
lized for NAS tasks and have achieved some progress. The
explosion gravitation field algorithm (EGFA) [29] inspired
by the formation process of planets is a novel intelligent
optimization algorithm with excellent global optimization
capability and remarkable efficiency, compared with the
classical population-based optimization algorithms, such as
GA and PSO. Nowadays, computational time and resource
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limitations remain the major bottleneck in using and devel-
oping NAS methods. Thus, this paper attempts to develop
a more efficient NAS method, by utilizing the work mecha-
nisms of EGFA, to allow for discovering an optimal neural
architecture with competitive learning accuracy, but only
consuming a little computational time and resources. Specif-
ically, the proposed EGFA-NAS utilizes EGFA and gradient
descent to optimize the weights of the candidate architectures
in conjunction. To reduce the computational cost, EGFA-
NAS proposes a training strategy by utilizing the population
mechanism of EGFA-NAS. To improve the efficiency and
performance, EGFA-NAS proposes the weight inheritance
strategy for the new generated dust individuals during the
explosion operation. The main contributions of this paper
are summarized as follows.

1. A novel population-based NAS method is proposed,
called EGFA-NAS, which utilizes EGFA and gradient
descent to optimize the weights of candidate architecture
jointly, and is applicable to any universal micro search
space with a fixed number of edges and a determined
candidate operations set, such as NAS-Bench-201 and
DARTS search space.

2. A training strategy is proposed to reduce the compu-
tational cost by utilizing the population mechanism.
Specifically, all dust individuals cooperate to complete
the training of the dataset at each epoch. Although each
dust individual is only trained on part of batches at each
epoch, it will be trained on all batches over a large number
of epochs.

3. A weightinheritance is proposed to improve performance
and efficiency. Specifically, during the explosion opera-
tion, the weights w of each new generated dust individual
are inherited from the center dust. By utilizing this strat-
egy, the new generated can be evaluated directly at the
current epoch without retraining.

4. The experimental results show that the optimal neu-
ral network architectures searched by EGFA-NAS have
competitive learning accuracy and require the least
computational cost, compared with four kinds of state-
of-the-art NAS methods.

The remainder of the paper is organized as follows.
“Related work™ introduces the related work of the work.
“Proposed NAS method” describes the details of this pro-
posed NAS method. The experimental design and results
are presented in “Experimental design” and “Experimental
results”, respectively. The final part is the conclusion placed
in “Conclusion”.
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Related work
General formulation of NAS task

NAS is an extremely complex optimization task, the primary
objective of which is to transform the process of manu-
ally designing neural networks into automatically searching
for optimal architectures. The process of the NAS can be
depicted in Fig. 1. During the search, the search strategy sam-
ples a candidate architecture from the search space. Then we
train the architecture to converge and evaluate the architec-
ture’s performance. Next, the search strategy picks up another
candidate architecture for training and evaluation according
to the evaluation result of the last architecture.

In NAS tasks, denote a neural network architecture as A
and the weights of all functions of the neural network as wy4.
Then the goal of NAS is to find an architecture A, which can
achieve the minimum validation loss Ly after being trained
by minimizing the training loss LT, as shown in Eq. (1).

mAin Lv (w:'; . A)

ey

s.t.wj = argmin LT(wA, A),
w

where w’ is the best weight of A and achieves the minimum
loss of training dataset. Lt and Ly are the losses on train-
ing dataset and validation dataset, respectively. Both losses
are determined not only by the architecture A, but also the
weights w. This is a bi-level optimization problem [30] with
A as the upper-level variable and w as the lower-level vari-
able.

NAS methods

Search strategy determines how to sample the neural net-
work architectures. According to the different kinds of search
strategy, NAS methods can be roughly divided into three cat-
egories: EA-based NAS methods, RL-based NAS methods,
GD-based NAS methods.

EA-based NAS methods

EA-based NAS methods use evolutionary algorithms (EAs)
to sample neural architectures. Early EA-based research for
the optimization of networks was proposed as the concept
of neuroevolutionary [12—-14], which not only optimizes the
network’s topology but also optimizes the hyperparameters
and connection weights associated with the network. Over the
past years, EA-based NAS methods have attracted increas-
ing attention. For example, Xie et al. published the first
EA-based NAS work GeNet [31] in 2017, which encodes
the candidate architectures using fixed-length binary strings.
Real et al. searched network architectures by EA, and started

searching from trivial initial conditions [27]. Subsequently,
Real et al. evolved an image classifier: AmoebaNet-A [16],
which modifies the tournament selection by introducing a
concept of age and surpasses hand designs for the first time.
Liu et al. proposed Hierarchical EA [15], which combines
a novel hierarchical genetic representation scheme that imi-
tates the modularized design pattern and expressive search
space. Elsken et al. proposed the LEMONADE [24], which
is an evolutionary algorithm for multi-objective architecture
search. Suganuma et al. constructed CNN architectures based
on Cartesian genetic programming (CGP) [25]. Sun et al.
proposed CNN-GA [26] and AE-CNN [32], which evolves
CNN architectures using GA, based on ResNet and DenseNet
blocks. To accelerate the fitness evaluation in evolutionary
deep learning, Sun and Wang et al. proposed an end-to-end
offline performance predictor based on the random forest
[33].

Although the neural network architectures searched by
above EA-based NAS methods have achieved competitive
performance compared with the state-of-the-art handle-
designed CNNs, however, as the population-based methods,
they still suffer from huge resource costs because of involv-
ing a large number of fitness evaluations. During the search
phase, each new generated candidate architecture needs to
be trained on a training dataset and evaluated on a val-
idation dataset. Then most EA-based NAS methods are
time-consuming. For example, to search architectures on the
CIFAR-10 dataset, Hierarchical EA [15] needs 300 GPU
days, AmoebaNet-A [16] needs 3150 GPU days, CNN-GA
[26] needs 35 GPU days, and AE-CNN [32] needs 27 GPU
days. Then it is essential to accelerate the evaluation process
for EA-based NAS methods, especially under the condition
of limited computational resources.

RL-based NAS methods

The agent, environment, and reward are the three factors of
reinforcement learning (RL). In the context of NAS, sampling
the network architectures from the search space by the con-
troller is defined as the action of the agent, the performance
of network is regarded as the reward, and the controller is
updated based on the reward in the next iteration. The ear-
liest RL-based NAS method was proposed by Zoph et al.
in 2017, which used RNNs as controllers to sample the net-
work architecture and generate actions via policy gradients
[7]. Subsequently, Zoph et al. used a proximal optimization
strategy to optimize the RNN controller [17]. Cai et al. pre-
sented a RL-based algorithm: ProxylessNAS [34], which is
an alternative strategy to handle hardware metrics. Block-
QNN [35] automatically builds high-performance networks
using the Q-Learning paradigm with epsilon-greedy explo-
ration strategy.

@ Springer
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Fig. 1 Process of neural
architecture search

Search Space

Earlier RL-based NAS methods are usually computa-
tionally expensive. To reduce the computational cost, work
[17] proposed the well-known NASNet search space, which
allows us to search the best cell on the CIFAR-10 dataset
and then apply this cell to the ImageNet dataset by stack-
ing together more copies of this cell. ENAS [18] proposed a
parameter-sharing strategy and the one-shot estimator (OSE),
which regards all candidate architectures as the subgraphs of
the super-network. Then all candidate architectures can share
the parameters.

GD-based NAS methods

Recently, there is an increasing interest in adopting gradient
descent (GD) methods for NAS tasks. A typical GD-based
NAS method is DARTS [19], which optimizes the network
architecture parameters by GD methods after converting the
discrete search space into a continuous search space through
a relaxation strategy. Subsequently, Dong et al. proposed the
GDAS [20], which develops a learnable differentiable sam-
pler to accelerate the search procedure. Xie et al. proposed
the SNAS [21], which trains neural operation parameters
and architecture distribution parameters by proposing a novel
search gradient. Above-mentioned ProxylessNAS [34] pro-
posed a gradient-based approach to handle non-differentiable
hardware objectives.

Compared with EA-based and RL-based NAS meth-
ods, GD-based NAS methods are every efficient, because
they represent the structures of the candidate networks as
directed acyclic diagrams (DAGs) and use the parameter-
sharing strategy. However, GD-based NAS methods have
some drawbacks. For example, references [22, 23] point
out that the DARTS tends to select skip-connection oper-
ations, which leads to performance degradation of searched
architectures. To overcome the shortcoming of DARTS [19],
several variants of DARTS methods have been proposed,
such as DARTS- [36], DARTS + [37], RC-DARTS [38], and
B-DARTS [39].

Besides the above three kinds of NAS methods, there are
also other NAS methods that are not mentioned or do not
fully fall into the above categories. For example, Liu et al.
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proposed the PNAS [40], which uses a sequential model-
based optimization (SMBO) strategy.

Explosion gravitation field algorithm

Explosion gravitation field algorithm (EGFA) [29] is a novel
optimization algorithm based on the original GFA [40-43],
which stimulates the formation process of planets based on
SNDM [44]. It was proposed by our research team in 2019
and has achieved good performance when solving optimiza-
tion problems and tasks, such as benchmark functions [29]
and feature selection tasks [45]. Compared with the classical
population-based intelligent algorithm, such as genetic algo-
rithm (GA) and particle swarm optimization (PSO), EGFA
has better global optimization capability and remarkable effi-
ciency. In addition, the fact that EGFA converges to the global
best solution with probability 1 under some conditions has
been proven [29].

In EGFA, all individuals can be mimicked as dust parti-
cles with mass, and each of them belong to a certain group.
In every group, the one with the maximum mass value is
regarded as the center dust and the others are surrounding
dust particles. Based on the idea of SNDM [44], each cen-
ter dust attracts its surrounding dust by the gravitation field,
and the gravitation field makes all surrounding dust particles
move toward their centers. In EGFA, each dust particle can
be represented by a four-tuple (location, mass, group, flag),
where flag is a Boolean value indicating whether it is a cen-
ter, location corresponds to a solution for the problem, group
indicates the group number, mass is the value of objective
function. When the value of mass is bigger, the solution is
better. There are six basic operations for EGFA as Fig. 2: (1)
dust sampling (DS), (2) initialize, (3) group, (4) move and
rotate, (5) absorb, and (6) explode. The detailed processes of
EGFA are summarized as follows:

Step 1: Subspace location by dust sampling (DS). The task
of DS is to efficiently locate a small enough search space
which more likely contains the optimal solution.

Step 2: Initialize the dust population randomly based on
the subspace located by Step 1.

Step 3: Divide the dust population into several subgroups
randomly, and calculate the mass value of all individuals. In
each group, set the dust particle with maximum mass value
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Fig.2 Flow chart of EGFA

as the center, and set its flag as 1; set the other individuals as
the surrounding dust particles, set their flag as 0.

Step 4: Check the stop condition. If the stop condition is
met, return the best solution and the algorithm terminates,
otherwise goes to Step 5.

Step 5: Perform the movement and rotation operation. In
each group, each center attracts its surrounding dust particles
by the gravitation field, and the gravitation field makes all
surrounding dust particles move toward their centers.

Step 6: Perform the absorbing operation. Some surround-
ing dust particles which are close to their centers enough are
absorbed by the centers. The size of the dust population will
decrease in this process.

Step 7: Perform the explosion operation, and some new
dust particles are generated around the centers. When explo-
sion operation is accomplished, algorithm goes to Step 4.

In addition, DS in Step 1 avoids a long iterative process
because the algorithm only searches in the subspace which
is small enough compared with the original search space.
The explosion operation maintains the size of the population
and can stop the algorithm from being in stagnation behavior
because of falling into local optima.

In this work, we proposed a NAS method based on explo-
sion gravitation field algorithm, EGFA-NAS for short. In
EGFA-NAS, an individual (a dust particle) represents a can-
didate network architecture. EGFA-NAS aims to discover
a network architecture with the best performance, such as
accuracy on the testing dataset. For the NAS task, the sub-
space small enough that contains the best architecture is hard

to locate and computationally intensive. Therefore, EGFA-
NAS abandons the first operation DS. As a population-based
method for the NAS task, there are several key issues to be
addressed. Namely, (1) which type of search space to search,
(2) how to represent and code a CNN network, (3) how to
accelerate the network architecture evaluation process, (4)
how to use heuristic information to guide the search process.

Proposed NAS method

Micro search spaces, such as NASNet [17], DARTS [19], and
NAS-Bench-201 [23] search spaces, are popularly utilized
for NAS tasks recently, which search for the neural cells to
form the blocks and construct the macro skeleton of network
by stacking multiple blocks multiple times as [16-20, 23, 46].
In this work, we propose an efficient NAS method for micro
search space. To investigate the performance of our proposed
method sufficiently, we choose two classical micro search
spaces: i.e., NAS-Bench-201 and DARTS search space to
test.

Representation of search space

In this work, we search for a computation cell as the build-
ing block of the final architecture and represent a cell as a
directed acyclic diagram (DAG). Specifically, a node repre-
sents the information flow, e.g., a feature map in CNNs, and
an edge between two nodes donates the candidate operation,
which is known as successful modules designed by human
experts. We denoted O as the candidate operations set. To
process the intermediate nodes more efficiently in the for-
ward propagation, two kinds of cells need to be searched:
normal cell with stride of 1 and reduction cell (block) with
stride of 2. Once the two kinds of cells are identified, we
can stack multiple copies of the searched cell to make up a
whole neural network. In the rest of this section, we introduce
the two search spaces: NAS-Bench-201 and DARTS search
space, respectively.

NAS-Bench-201

NAS-Bench-201 was proposed by Dong et al. [23], which is
an algorithm-agnostic micro search space. Specifically, a cell
from NAS-Bench-201 includes one input node, three compu-
tational nodes, the last computational node is also the output
node for next cell. Every edge in a cell has five candidate
options. Then a cell in NAS-Bench-201 can be represented
as a DAG, the nodes of which are connected fully, and there
is 5C§ = 15, 625 cell candidates in total. In NAS-Bench-
201, the candidate operations set O contains the following
FIVE operations: (1) zeroize, (2) skip-connection, (3) 1 x 1

@ Springer
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convolution, (4) 3 x 3 convolution, and (5) 3 x 3 average
pooling.

As shown in Fig. 3, the macro skeleton of NAS-Bench-
201 is mainly stacked by three normal blocks and connected
by two reduction blocks. Each normal block consists of B
normal cells. The reduction block is the basic reduction block
[10], which serves to down-sample the spatial size and double
the channels of an input feature map. The skeleton is initiated
with one 3 x 3 convolution, and ends up with a global average
pooling layer to flatten the feature map into a feature vector.

Additionally, work [23] evaluates each candidate archi-
tecture for NAS-Bench-201 on three different datasets:
CIFAR-10, CIFAR-100 [47], and ImageNet-16-120 [48].
Then once the final architecture is found, the retraining pro-
cess is not essential, and we can directly obtain the network
final performance by the API provided by [23].

DARTS search space

DARTS [19] search space is a popular micro search space,
proposed by Liu et al. in 2019, which is similar to NASNet
[17] search space but removes some unused operations and
adds some powerful operations. Specifically, a cell from the
DARTS search space contains two input nodes, four compu-
tational nodes, and one output node. The output node is the
concatenation of four computational nodes. As the depiction
in Fig. 4, there are 14 edges in a cell for search, and each edge
has 8 options. Unlike the NAS-Bench-201, the nodes in a cell
are not connected fully during the search phase. Moreover,
during the evaluation phase, each node only connects with
two previous nodes. In DARTS search space, the candidate
operations set O contains the following eight operations: (1)
identify, (2) zeroize, (3) 3 x 3 depth-wise separate convo-
lution, (4) 3 x 3 dilated depth-wise separate convolution,
(5) 5 x 5 depth-wise separate convolution, (6) 5 x 5 dilated
depth-wise separate convolution, (7) 3 x 3 average pooling,
(8) 3 x 3 max pooling.

As shown in Fig. 4, B normal cells are stacked as one
normal block. For a given image, it forwards thought a 3 x 3
convolution and then forwards thought three normal blocks
with two reduction cells in between. In this paper, we follow
the work [19] to set up the overall network architecture of
DARTS search space.

Overall of search process

Figure 5 shows the overall of search process in EGFA-
NAS. (a) Operations on edges are initialized unknown. (b)
Continuous relaxation of search space and sampling the can-
didate operations for the edges with the mix probabilities.
(c) Optimize the mix probabilities and the weights of cells
simultaneously. (d). Inferring the final structure of cell from
the learned mixing probabilities

@ Springer

Representation and encoding of cell

As discussed in “Representation of search space”, the cells to
search in this work can be represented by the DAGs. Specif-
ically, each computational node represents one feature map,
which is transformed from the previous feature map. Each
edge in this DAG is associated with an operation transforming
the feature map from one node to another node. All possi-
ble operations are selected from a candidate operation set O.
Then the output of any node j can be formulated as Eq. (2).

Ij ZZOi,j(Ii)v (2)

i<j

where I; and I represent the output of the node i and node j,
respectively. o; ; represents the operation transforming the
feature map from node i to node j, which is selected from
the candidate operation set O.

In NAS-Bench-201 [23], a normal cell contains four
nodes, i.e., {/;|0 <i < 3}. Iy is the output tensor of the pre-
vious layer, I, I, I3 are the output tensors of node 1, 2,
and 3, calculated by Eq. (2). According to work [23], a nor-
mal cell contains six edges and each edge has five candidate
operations.

In DARTS search space, a cell contains seven nodes, i.e.,
{I;]0 <i < 6}. Iy and I are the input tensors, I, I3, 14 and
I5 are the output tensor of node 2, 3, 4, and 5. I indicates
the output of this cell, which is the concatenation of the four
computational nodes, i.e., I¢ = b N I3 N 14 N Is.

Define e as the number of edges for a cell, | O| represents
the size of the candidate operations set O. According to the
above description of NAS-Bench-201 and DARTS search
space, a cell can be encoded as A with size of e x |O|. In
NAS-Bench-201, ¢ = 6, |O| = 5, A is a tensor with size
of 6 x 5. In DARTS search space, ¢ = 14, |0O| = 8, Ais a
tensor with size of 14 x 8. A general representation for a cell
is formulated as Eq. (3).

- > - r 0 1 q [0]-1 ]
agp dgy, Ag, 0, ao’ : > a()
> 0 1 q |0]-1
ay al’ al,...,al’...,al
A= =
P 0 1 o|-1 ’
dp aS, ay, -, ap, -, a)f!
de— 0 1 lo|-1
LGl L Ge_15> Qe—1> > aZ 17 ey

€)

where d, represents the probabilities of sampling the |O]
candidate operations for edge p, af, is the gth element of @,
and represents the probability of sampling the gth candidate
operation for edge p. In fact, the way of encoding for cell as
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Eq. (3) can be used for any micro search space, the searched
cell of which has a fixed number of edges ¢ and a defined
candidate operations set O.

Continuous relaxation of the search space

As described in “Representation of search space”, a neu-
ral network architecture consists of many copies of the
cell. These cells are sampled from the NAS-Bench-201 and
DARTS search space. Specifically, from node j to node i,
we sample the transformation function from the candidate
operation set O with a discrete probability o « ). During
the search, we calculated each node in a cell by Eq. (4).

i—1 10|

k k k
li= ) e jo (1,-, w(,-ej)),

j=0k=0

“

where |O| is the number of candidate operation of the set

o, a( i< j) Tepresents the probability for the edge; _ ;) (from

node j to node i) that selects the kth candidate operation as
the transformation function, o* represents the kth candidate
operation, /; is the output of node j, wé‘i <) is the weight for
the function of o on edge; ). To make the search space
continuous, we relax the probability of a particular operation

ot](‘l. <) to a softmax over all possible operations by Eq. (5).
k
exp((a(i(_ - ck) + f)
k J)
Xlij) = ®)

<0 x :
k=0 exp((a(ﬂ_j) +Ck/ +7T

where ¢; are i.i.d that samples from Gumble(0, 1), cx
—log(—log(u)) with u ~ Unif[0, 1]. T is a softmax temper-
ature; in this work, 7 is set 10 as same as study [23].

Training strategy

In this work, we aim to reduce the computational cost by uti-
lizing the population mechanism of EGFA-NAS. The main
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Fig.6 Training strategy for
EGFA-NAS Training data
batch, batch, , batch, .,
k batch, batch, _, batch, .,
batch, batch,, batch,
y A
Population dust, dust, dust,

\

idea of the training strategy is illustrated as Fig. 6. Specif-
ically, define D7 as the training dataset, batch_num as the
number of batches of D, n as the population size. At each
epoch, each dust individual is training on k batches, where
k = [batch_num/n7. All dust individuals cooperate to com-
plete the training of the dataset at each epoch. This training
process repeats until the maximum number of epochs is
reached. Each dust individual (architecture network) will be
trained on many different batches since the number of batches
batch_num is usually larger than the population size n and
the training process is repeated for a large number of epochs.
In this work, set batch_num = 98, n = 20, k = 5 for the
CIFAR-10, and set the maximum number of epochs as 80 and
200 for NAS-Bench-201 and DARTS search space, respec-
tively. Although each dust individual (architecture network)
is trained only on a subset (1/n training data) at each epoch,
it will be trained on all training data over a large number of
epochs by this training strategy.

In addition, due to the facts that each dust individual
is responsible for part of the training work, and the com-
plete training of each epoch is done with the participation
of all individuals, therefore the efficiency of EGFA-NAS
is not sensitive to the setting of population size n, which
will be experimentally confirmed in “Parameter settings for
NAS-Bench-201".
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Explosion operation and weights inheritance

In the context of neural architectural search, a dust in
EGFA-NAS represents a candidate architecture and not
only maintains the original four attributes: location, mass,
group number, and a Boolean flag indicating whether
it is a center as description in 2.3, but also maintains
an attribute “w” to record the weights of functions in
cells. Each dust particle can be represented by a five-
tuple (location, w, mass, group, flag). In EGFA-NAS,
the location is denoted as the operations mixing probabil-
ity A, then a neural network architecture can be represented
as (A, w, mass, group, flag).

As a population-based NAS method, the main compu-
tational bottleneck of EGFA-NAS is involving a lot of
evaluation of architectures. In this work, we attempt to reduce
the computational cost by taking advantage of the working
mechanism of EGFA. At each epoch, additional computa-
tional cost is caused because a number of new generated dust
particles (architectures) need to be trained during the explo-
sion operation. On the other hand, the new dust particles are
generated based on the center dust, and there are close rela-
tionships between the new generated dust particles and their
center. Based on the above two observations, we proposed a
weight inheritance strategy during explosion operation. The
detail of explosion operation in EGFA-NAS is described in
Algorithm 1.



Complex & Intelligent Systems (2024) 10:1667-1687

1675

Algorithm 1 Explosion operation

Input: the size of dust population n, the absorptivity abs , the number of epochs epoch,

current epoch epoch

cur >

radius r

min 2

dust population Dust

absorb >

Output: the dust population Dust,

explode

and minimum

X

the maximum radius r,,

max >

the center dust center , new generated dust population Dust,,, <O .

L. r=r — (N — T )/ €poCh, . *epoch,,

max max

2. for each group do

3. for each new generated individual dust; do
4. dust,. A=center. A*(1-1)+ A iom T

S. dust,.w = center.w

6. Dust,,, = Dust,,, \Udust,

7. end for

8. For

9. for each individual dust; in Dust,, do

10.  Construct architecture based on parameters A,w of dust,

11.  Compute the loss L. and L,
12.  dust.mass=L’+L,*

13.  dust.w=dust,w—§V,,, L (dust,w,dust.A)

14. end for

15. Dust,, 4 = Dust,,,, W Dust,,,

16. for each group do

17. Set the dust with maximum mass value as the center

18. end for

19. Return Dust,

explode

As shown in Algorithm 1, the first part (lines 1-8) is the
process of generating new individuals based on the center
dust. The mix probabilities A of candidate operations of dust;
are computed as line 4, the weights w of functions in cells
are inherited from the center dust as line 5. The second part
(lines 9—14) calculates the mass value for new generated dust
particle, and update the parameter w. Line 15 combines the
dust population Dust,ps0rp(0utput of previous process) and
the new generated dust population Dusty,e,. The last part
(lines 16—18) updates the center dust for each group. By uti-
lizing the weight inheritance, the new generated dust can be
evaluated directly at the current epoch without retraining.

Figure 7 illustrates the process of generating new dust
particles by means of weight inheritance during the explosion
operation. a; represents the probabilities of sampling the |O|
candidate operations for edge i, w; records the weights of
functions for edge i. The right partition in Fig. 7 shows the

new generated dust population with size of m, the mixing
probability A of new dust particles is based on their center as
line 4 in Algorithm 1, and parameters w are inherited from
their center dust particle as line 5 in Algorithm 1.

Process of EGFA-NAS

As described above, during the process of NAS, the two
parameters: architecture A and weight w need to be opti-
mized meanwhile. To solve the bi-level optimization prob-
lem, we divide the original training dataset into two parts: the
new training dataset Dt and the validation dataset Dy, then
use the new training dataset Dt to optimize the parameter
w, use the validation dataset Dy to optimize the parameter
A. In EGFA-NAS, we apply the EGFA and gradient descent
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Fig.7 Process of generating new
dust particles by weight
inheritance during explosion
operation

center.A
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jointly to optimize the parameter w and architecture A mean-
while in an iterative way. The processes of EGFA-NAS are
described in detail as follows:

Step 1: Initialize all parameters, including the size of
dust population n, the number of group g, the absorptivity
abs for absorb operation, the number of epochs epochmax,
the maximum radius rmax and minimum radius rpyi, for
explosion strategy; initialize the dust population Dust =
{dusty, dusty, - - -, dust,—1} randomly. For each dust;, the
location (the ith cell architecture dust;.A) is initialized ran-
domly, whichisaex|O|tensor as Eq. (3). Afterinitialization,
each cell can be stacked into a neural network. Then the loss
on training dataset Lt and the loss on validation dataset Ly
can be calculated. To optimize the two parameters w and A
meanwhile, we use Eq. (6) to evaluate the performance of
network architecture, and denote Eq. (6) as the mass value
of dust;. It is noted that the Lt and Ly are not the loss
of network architecture after full training, but the loss on
the training dataset and the validation dataset at the current
epoch, respectively.

dust;.mass = L% +L2, (6)

where the losses Lt and Ly are calculated by Eq. (7), which
are the cross-entropy loss functions [49].

1
L= (ynf+~yh(l-3)), )

where x represents the data sample, y is the true label, y
represents the predicted label, and s is the size of data.

Step 2: Divide the dust population into g subgroups. In
EGFA-NAS, the value of g is set as 2; set the dust particle
with maximum mass as the center dust, and the others are
the surrounding dust particles. For dust;, the attribute flag
is set as Eq. (8), where best_mass; is the maximum mass
value in group j.

1, dust;.mass = best_massj, j < g

dust;. flag = 0 s (®)
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Step 3: Check the termination conditions. There are two
termination conditions in EGFA-NAS, one is the maximum
epochs, the other one is the average change of mass value of
dust population. Once one condition is met, the main loop
of EGFA-NAS ends. Then return the optimal network archi-
tecture A and deduce the structure of the neural network;
otherwise, go to Step 4.

Step 4: Perform the movement and rotation operation. The
surrounding dust particles move toward the center dust. For
each dust particle dust;, the pace of movement is calculated

by Eq. (9).

AA| = px (exp (center.A +3) — exp (dust; A + 3))
+q * Arandom» C)

where center. A presents the cell structure of the center dust;
dust;. A represents the ith cell structure; Apandom 1S a 6 X 5
tensor generated randomly. p is the pace of movement, g is
a value close to zero. In this work, we set p = 0.1, g =
0.001, respectively. We denote the pace of the movement
and rotation operation on the location of dust; as AA1. In
addition, in EGFA-NAS, we also apply the gradient descent
to optimize the parameters: A and w. We denote the pace of
gradient descent on the location of dust; as AAj, which is
calculated by Eq. (10).

AAy = =& Vausy; ALy (dust;.w, dust;.A), (10

where & is the learning rate, V51, 4 Lv represents the archi-
tecture gradient on validation dataset.

As shown in Fig. 8, considering the impacts of the above
two factors on the cell structure A, the location of dust; is
updated as Eq. (11)

dust;.A = dust;. A+ AA| + AAs. (11)

During this process, for each dust particle dust;, we not
only need to optimize the parameter dust;.A, but also need
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to optimize the parameter dust;.w, which is updated by
Eq. (12).

dust;. w = dust;. w — & Vs, wLt (dust; w, dust; A),
(12)

where & is the learning rate, V51, . L7 represents the archi-
tecture gradient on training dataset.

Step 5: Perform the absorption operation. Some surround-
ing dust particles with small mass value will be absorbed
by their center dust. During this process, the size of dust
population will change, the new size is determined by the
absorptivity abs as Eq. (13).

n =nx* (1 — abs), (13)

where n is the size of the initial population, abs represents
the absorptivity. In this work, we set abs as 0.5.

Step 6: Perform the explosion operation. During the pro-
cess of Step 5, some dust particles with small mass value
are absorbed by their center dust particles. To maintain the
size of dust population, some new dust particles will be gen-
erated around the center dust particles during this process.
This part is descripted in “Explosion operation and weights
inheritance” in detail.

Once Step 6 finishes, go to Step 3.

According to the above detailed description of EGFA-
NAS, the pseudo-code of EGFA-NAS is shown in Algorithm
1. Step 1 (lines 1-3) is the initialization. Step 2 (lines 4-5)
is the operation of grouping. Step 3 (line 6) checks the ter-
mination conditions. Step 4 (lines 7-12) is the process of
movement and rotation. Step 5 (line 13) is the absorption
operation. Step 6 (line 14) is the explosion operation.

Algorithm 1: EGFA-NAS

Input: the training dataset D, , the validation dataset D, , the population size n, the number of group g, the absorptivity abs, the

maximum radius r,, and minimum radius r,

min

epoch_cur =0, dust population Dust < @, best dust particle best <~ .

Output: center , best

for explosion strategy, the maximum and current number of epochs epoch .,

1. initialize all parameters

2. Dust « initialize the dust population with size of n randomly
3. Compute mass value for each dust particle by Eq. (6)
4

. Divide the dust population into g groups

W

. Set the dust with max mass value as the center for each group

6. while termination conditions are not met do

7. for each individual dust, ( flag=0) do

8. Update dust..A by Eq. (9)-(11)
9. Update dust,.w by Eq. (12)
10. Update dust,.mass by Eq. (6)
11.  end for

12.  Update the center , best

13.  Perform the absorption operation

14.  Perform the explosion operation as Algorithm 1
15. Update center , best

16. end while

17. return center , best
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Fig. 8 Change of the ith cell structure A during the process of movement
and rotation operation

Experimental design

The goal of EGFA-NAS is to search the optimal neural net-
work architecture automatically which can achieve satisfying
performance on a complex task, such as image classifica-
tion. For this purpose, a series of experiments is designed
to demonstrate the advantages of the proposed EGFA-NAS
compared with the state-of-the-art NAS methods. First, we
utilize the proposed EGFA-NAS to search neural network
architectures in the benchmark search space: NAS-Bench-
201, and evaluate the performance of proposed EGFA-NAS
by investigating the classification accuracy and compu-
tational cost of the searched architecture on CIFAR-10,
CIFAR-100, and ImageNet-16-120. Second, we investigate
the consistency of relative evaluation with absolute evalua-
tion, in terms of the accuracy and loss. Third, we investigate
the effectiveness of the weight inheritance strategy. Finally,
we examine the proposed EGFA-NAS in the larger and more
practical search space: DARTS search space, and investigate
the performance and universality of EGFA-NAS.

We first perform the proposed EGFA-NAS in the bench-
mark search space: NAS-Bench-201. When the search pro-
cess terminates, the absolute performance evaluation of the
optimal architecture can be obtained directly by the NAS-
Bench-201’s API with negligible computational cost. By
utilizing NAS-Bench-201, we verify the consistency of rel-
atively performance evaluation and absolute performance
evaluation for the searched network architectures without
retraining from scratch. In addition, we verify the effective-
ness of weight inheritance in NAS-Bench-201 search space.
But when the search process in DARTS search space termi-
nates, the optimal network architecture needs to be retrained
from scratch and be test on the test datasets. The test classifi-
cation accuracy is reported as the results of our experiments.

In the rest of this section, we introduce the peer com-
petitors to compare with this proposed EGFA-NAS, the
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benchmark datasets, and finally the parameter setting for
the two typical search spaces: NAS-Bench-201 and DARTS
search space.

Peer competitors

To demonstrate the advantage of the proposed EGFA-NAS,
a series of competitors are chosen for comparison. “Com-
petitors of NAS-Bench-201” introduces the competitors
compared with the performance of the optimal architec-
ture searched by EGFA-NAS in NAS-Bench-201 search
space, and “Competitors of DARTS search space” introduces
the competitors compared with the performance of opti-
mal architecture searched by EGFA-NAS in DARTS search
space.

Competitors of NAS-Bench-201

Due to the facts that NAS-Bench-201 (only has five candidate
operations) is a smaller search space, and the best architecture
has lower classification accuracy compared with the best one
searched in other search space, the performance of optimal
architecture searched by EGFA-NAS in NAS-Bench-201 are
only compared with the competitors which have reported the
results in NAS-Bench-201 search space.

The selected competitors are mainly the efficient GD-
based NAS methods, including DARTS-V1[19], DARTS-V2
[19], SETN [50], iDARTS [51], and GDAS [20]. The other
three selected NAS competitors, namely ENAS [18], RSPS
[22], and EVNAS [52], utilize RL, random search, and EA as
the search strategies for NAS tasks, respectively.

Competitors of DARTS search space

DARTS search space is a functional search space for NAS
tasks, in which the optimal network architecture has promis-
ing performance compared with the state-of-the-art manually
designed CNN architectures. To compare the performance of
the optimal network architecture searched by EGFA-NAS in
the DARTS search space, we select four different kinds of
competitors for comparison.

1. The first kind of competitors are the state-of-the-art CNN
architectures, manually designed by domain experts,
including ResNet-101 [10], DenseNet-BC [11], SENet
[53], IGCV3 [54], ShuffleNet [55], VGG [1], and Wide
ResNet [56].

2. The second kind of competitors are the state-of-the-
art EA-based NAS methods, including Hierarchical EA
[15], AmoebaNet-A [16], LEMONADE [24], CGP-CNN
[25], CNN-GA [26], AE-CNN [32], and AE-CNN +
E2EPP [33], LargeEvo [27], GeNet [31], SI-EvoNet [57],
NSGA-Net [28], and MOEA-PS [58].
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3. The third kind of competitors utilize RL to search for  Table 1 Hyperparameter settings of searching process
CNN architectures, such as NASNet-A [17], NASNet- Parameter Value
A + CutOut [17], Proxyless NAS [34], BlockQNN [35],
DPP-Net [59], MetaQNN [60], and ENAS [18]. Initial channels 16
4. The fourth kind of competitors are mainly the GD- B 5
based NAS methods, such as DARTS-V1 + CutOut [19], Optimizer SCD
DARTS-V2 + CutOut [19], RC-DARTS [38], and SNAS
[21]. In addition, PNAS [40] is also selected for compar- Nesterov !
ison, which use a sequential model-based optimization Momentum 0.9
(SMBO) strategy. Batch size 256
LR scheduler Cosine
Initial LR 2.5x 1072
Benchmark datasets min_LR 1x1073
Weight decay 5% 107
To investigate the performance of EGFA-NAS on NAS  Random flip 0.5

tasks, we test EGFA-NAS in two different search space,
including NAS-Bench-201 and DARTS search space. All
experiments involve three benchmark datasets: CIFAR-10,
CIFAR-100 [47], and ImageNet-16-120 [48], which are
widely adopted in experimental studies of state-of-the-art
CNNs and NAS methods. In this work, each architecture
searched in NAS-Bench-201 is trained and evaluated on
CIFAR-10, CIFAR-100 [47], and ImageNet-16-120 [48].
Each architecture searched in DARTS search space is trained
and evaluated on CIFAR-10, CIFAR-100. Each dataset is
splitinto three subsets: training set, validation set, and test set.

CIFAR-10: It is an image classification dataset consisting of
60K images with with classes. The original set contains 50K
training images and 10K test images. Due to the need for a
validation set, the original training set is randomly split into
two subsets with equal size, each subset contains 25K images
with ten classes. In this work, we regard one subset as the
new training set and another as the validation set.

CIFAR-100: It has the same images as CIFAR-10, but it
categorizes the images into 100 fine-grained classes. The
CIFAR-100 original contains 50K images in the training set
and 10K images in the test set. In this work, the original
training set is randomly split into two subsets with equal
size. One is regarded as the training set and another as the
new validation set.

ImageNet-16-120: ImageNet is a large-scale and well-known
dataset for image classification. Image-16-120 was built with
16 x 16 pixels from the down-sampling variant of ImageNet
[61] (i.e., ImageNet 16 x 16). ImageNet-16-120 contains
all images with labels € [0, 119]. In sum, ImageNet-16-120
consists of 151.7K images for training, 3K images for vali-
dation, and 3K images for testing with 120 classes.

Parameter settings

This section introduces the parameter setting for EGFA-NAS
in detailed.

Parameter settings for NAS-Bench-201

For the NAS-Bench-201 search space, the parameter settings
are only involved in the search process, because NAS-Bench-
201 provides the absolute (final) performance evaluation for
each architecture, and we can obtain the evaluation of the
optimal architecture directly without retraining from scratch.
We adopt the same skeleton network following [23] as Fig. 3.
Specifically, we set the number of initial channels for the first
convolution layer as 16; set the number of cells in one normal
block B as 5. During the search, almost parameter settings
follows [23], as shown in Table 1. Specifically, we train each
architecture via Nesterov momentum SGD, using the cross-
entropy loss as the loss function with batch size 256. We set
the weight decay as 5 x 10~* and decay the learning rate from
2.5 x 1072 to 1 x 1073 with a cosine annealing scheduler.

In NAS-Bench-201 search space, we set up the same
hyperparameters on three different datasets: CIFAR-10,
CIFAR-100 [47], and ImageNet-16-120 [48], except for the
part of data augmentation due to the slightly difference of
images’ resolution. For CIFAR-10 and CIFAR-100, we use
the random flip with probability of 0.5, the random crop 32
x 32 patch with 4 pixels padding, and the normalization
over RGB channels. For ImageNet-16-120, we use the same
strategies, except for random crop 16 x 16 patch with 2 pixels
padding.

The parameters listed in Table 1 are related to neural
network architecture. As a population-based method, EGFA-
NAS has its own parameters. Specifically, we set the number
of groups g as 2, set the absorptivity abs as 0.5 for absorb
operation, set the maximum radius rpyax as 0.1, and set the
minimum radius rpi, as 0.001 for the explosion operation.

As a population-based NAS method, a larger number of
epochs may lead to better performance, but the computa-
tional cost will also increase. We investigate the impact of
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Table 2 Relative and absolute

performance (accuracy) of best Dataset Number of Relative Absolute Search cost (GPU
architectures searched by epochs performance performance days)
EGFA-NAS on CIFAR-10 with
different number of epochs CIFAR-10 40 38.12 91.71 0.025

60 4391 92.16 0.037

80 48.27 93.67 0.048

100 53.05 93.67 0.062

120 57.58 93.67 0.076
Table 3 Relative and absolute
performance (accuracy) of best Dataset Population size Relative Absolute Search cost (GPU
architecture searched by performance performance days)
EGFA-NAS on CIFAR-10 with
different population size CIFAR-10 10 50.08 93.28 0.0481

15 49.00 93.36 0.0482

20 51.02 93.67 0.0482

25 48.83 93.67 0.0481

30 49.61 93.67 0.0482

Note that all experimental settings are constrained by the computational resources available to us. All exper-
iments are implemented via PyTorch 1.7 on one NVIDIA GeForce RTX 3090 GPU card. The computational
cost is evaluated in terms of “GPU days”, calculated by multiplying the number of GPU cards by the search
time in the days, following [19, 20, 62].

the maximum number of epochs on the performance and
computational cost on the CIFAR-10 dataset. The relative
and absolute performance (accuracy) of the best architec-
ture searched by EGFA-NAS on CIFAR-10 with different
numbers of epochs are shown in Table 2. The relative perfor-
mance of the searched architectures is evaluated at the last
epoch in the search phase without retraining. The absolute
performance of the searched architecture is inquired by the
API provided by NAS-Bench-201. From the results in Table
2, we can observe that the best performance (93.67% accu-
racy on CIFAR-10) is achieved when the number of epochs
is set as 80. When the number of epochs is increased to 100,
no improvement of the absolute performance is achieved,
although the computational cost becomes more. Hence, we
set the number of epochs as 80 in the experiments for NAS-
Bench-201.

Generally, population size is a vital factor for the per-
formance and efficiency of the population-based method, a
larger population size usually leads to better performance,
but also leads to an increment in search cost. But, in EGFA-
NAS, we proposed a training strategy, which utilizes all
dust individuals to complete the data training at each epoch.
This training strategy reduce the sensitivity of performance
to the population size, which can be verified by the results
in Table 3. Specifically, EGFA-NAS not only has a similar
performance, but also has similar search cost (GPU days)
with different population size. In addition, the architectures
searched by EGFA-NAS achieve the best absolute perfor-
mance when population sizes n > 20. In view of above
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observation, we set the population size n as 20 in this work.
In a word, absolute performance (accuracy) and search cost
(GPU days) of EGFA-NAS are closely related to the max-
imum number of epochs, but are not much related to the
population size.

Parameter settings for DARTS search space

The neural cells for CNNs are searched in DARTS search
space on CIFAR-10/100 following [7, 17]. The macro skele-
ton of DARTS search space is shown as Fig. 4. The parameter
setting for DARTS search space can be divided into two parts:
(1) searching phase and (2) evaluation phase.

During searching phase, we set the number of initial chan-
nels for the first convolutional layer as 16, set the number of
cells in a normal block B as 2, set the number of epochs as
200. For training parameter w, we optimize each architec-
ture via Nesterov momentum SGD with batch size of 256,
set the initial learning rate as 2.5 x 102, and anneal it down
to 1 x 1073 with a cosine annealing scheduler. We set the
momentum as 0.9 and decay weight as 5 x 10~*. To opti-
mize parameter A, we use the Adam optimizer with default
settings.

During evaluation phase, we train the searched network
by 600 epochs in total. We set the initial channels as 33, and
set the number of cells in a normal block B as 6 or 8. We
start the learning rate of 2.5 x 1072 and reduce it to 0 with
the cosine scheduler. We set the probability of path drop as
0.2 and the auxiliary tower with the weight of 0.4. Other
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Table 4 Hyperparameter settings for DARTS search space

Parameter Searching Evaluation
Epochs 200 600

Initial channels 16 33

B 2 6/8
Optimizer SGD/Adam SGD
Batch size 256 256
Nesterov 1 1
Momentum 0.9 0.9
Scheduler Cosine Cosine
Initial LR 2.5 x 1072 2.5x 1072
Min_LR 1x1073 0

Decay weight 5x 1074 5x 1074

parameter settings are set as same as in the searching phase
(Table 4).

Compared with NAS-Bench-201 (e = 6, |O| = 5),
DARTS search space (e = 14, |O| = 8) is a larger search
space. Then we set the number of epochs as 200 to explore
DARTS search space. The other parameters about EGFA-
NAS, such as population size n, the number of groups g, the
absorptivity abs, the maximum radius 7pyax, and the maxi-
mum radius rpyin, are set as same as “Parameter settings for
NAS-Bench-201".

Experimental results
Overall results in NAS-Bench-201 search space

The experimental results of the optimal network discovered
by EGFA-NAS and other competitors in NAS-Bench-201,
in terms of classification accuracy and computational cost
(GPU days), are presented in Table 5. The symbol “~” means
that the corresponding result was not reported. The results of
iDARTS [51] and EVNAS [52] are sourced from the original
published paper, and the consequences of the other competi-
tors are extracted from [23]. The results highlighted in bold
are the results of optimal best architectures and the results of
the architectures searched by EGFA-NAS.

From the results in Table 5, we can observe that EGFA-
NAS can achieve better performance than the peer com-
petitors: DARTS-V1 [19], DARTS-V2 [19], SETN [50],
iDARTS [51], GDAS [20], ENAS [18], RSPS [22], and
EVNAS [52]. Specifically, in the NAS-Bench-201 search
space, EGFA-NAS discovers a network architecture with
only 1.29M parameters, which consumes 0.048 GPU days
and achieves 93.67% accuracy on CIFAR-10. For the CIFAR-
100 dataset, EGFA-NAS achieves 71.29% accuracy with

1.23M parameters, and consumes 0.094 GPU day. For
ImageNet-16-120, the architecture searched by EGFA-NAS
obtains 42.33% accuracy with 1.32M parameters and 0.236
GPU days cost. Limited by the small search space: NAS-
Bench-201, the performance of the network architecture
searched is not comparable with the state-of-the-art designed
CNN networks. But the performance of network architec-
ture searched by EGFA-NAS has the smallest difference
(0.7% worse on CIFAR-10, 2.22% worse on CIFAR-100, and
4.95% worse on ImageNet-16—120) with the performance of
the optimal theoretical architecture, compared with the other
competitors in the NAS-Bench-201 search space. In addition,
the proposed EGFA-NAS has the best efficiency compared
with all selected peer competitors.

Note that the search cost (GPU Days) of the competi-
tors listed in Table 5 is extracted from [23]. But reference
[23] does not indicate to which dataset the result belongs.
The number of parameters (Params) for the peer competi-
tors is obtained by running the code provided by [23] on the
CIFAR-10 dataset. The search cost (GPU Days) of EGFA-
NAS is the computational consumption counted for the three
datasets, respectively, on the computational platform with
one NVIDIA GeForce RTX 3090 GPU card.

Effectiveness of the relative performance evaluation

Due to the fact that NAS-Bench-201 [23] provides the eval-
uation information for each candidate architecture, in this
section, we utilize the API provided by NAS-Bench-201
to obtain the absolute (final) performance evaluation (loss
and accuracy) for the searched architectures without retrain-
ing, and verify the effectiveness of the evaluation strategy
adopted by EGFA-NAS. Figure 9 shows the comparison
of relative performance evaluation with absolute perfor-
mance evaluation, in terms of loss (Fig. 9a) and accuracy
(Fig. 9b) on CIFAR-10. InFig. 9, the label “rel” represents the
relative performance, and the label “abs” represents the abso-
lute performance. The relative performance of the searched
architectures is obtained on the validation dataset at the cur-
rent epoch during the architecture search phase. From the
results in Fig. 9, we can observe that the relative perfor-
mance of searched architectures cannot be comparable with
their absolute performance, this is because the architectures
searched during the search phase are not trained sufficiently.
Figure 9 illustrates that the trend of the relative performance
is consistent with the absolute performance of the searched
architectures. In addition, we can observe that EGFA-NAS
is only not stable enough for the first several epochs and
can achieve architectures with stable performance when the
number of epochs is larger than 30. The observation above
verifies the effectiveness of the evaluation strategy adopted
by EGFA-NAS.
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Table 5 Comparison of

EGFA-NAS with the peer Method Search GPU Params(M) CIFAR-10 CIFAR-100 ImageNet-16-120
competitors in terms of the strategy days
classification accuracy (%) and
the computational cost (GPU DARTS-V1 GD 0.13 0.072 54.30 15.61 16.32
days) on CIFAR-10, CIFAR-100, [19]
and ImageNet-16-120 datasets DARTS-V2  GD 041 007 54.30 15.61 16.32
[19]
iDARTS GD - - 93.58 70.83 40.89
[51]
SETN [50] GD 0.35 0412 86.19 56.87 31.90
GDAS [20] GD 0.33 1.22 93.51 70.61 41.71
ENAS [18] RL 0.15 0.072 54.30 15.61 16.32
RSPS [22] Random  0.10 0.432 87.66 58.33 31.44
EvNAS [52] EA 0.26 - 92.18 66.74 39.00
Optimal - - - 94.37 73.51 47.31
EGFA-NAS EGFA 0.048 1.29 93.67 - -
EGFA-NAS EGFA 0.094 1.23 - 71.29 -
EGFA-NAS EGFA 0.246  1.32 - - 42.33
4Calculated by running the code publicly released by [23]
CIFAR-10 CIFAR-10
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Fig. 9 Comparison of relative evaluation and absolute evaluation of the architecture searched by EGFA-NAS

Effectiveness of weight inheritance strategy

To improve the efficiency of EGFA-NAS and reduce the com-
putational cost, we propose a weight inheritance strategy
during the explosion operation as described in “Explosion
operation and weights inheritance”. Specifically, the param-
eters w of new generated dust individuals are inherited from
their centers. In this section, we attempt to verify the effec-
tiveness of the weight inheritance strategy by replacing this
proposed strategy with generating the parameter w randomly
on CIFAR-10, and other settings are kept unchanged. To
observe the difference between our proposed strategy and
the way of generating parameter w randomly more clearly,
we set the number of epochs as 300 in this experiment. The

@ Springer

estimated (relative) performance of searched network archi-
tectures using weight inheritance and the way of generating
the parameter w randomly are shown in Fig. 10a and c, in
terms of accuracy and loss, respectively. The final (absolute)
performance of the network architectures searched by the
two strategies is shown in Fig. 10b and d, in terms of accu-
racy and loss, respectively. The results in Fig. 10 show a big
difference between the estimated (relative) performance of
the two strategies. Although the final (absolute) performance
of the architectures searched by the two strategies is similar
on CIFAR-10, EGFA-NAS using the proposed weight inher-
itance can achieve the best network architecture earlier than
utilizing the way of generating the parameter w randomly. In
addition, the final performance of the architecture searched
by inheritance weight is slightly better (93.67% accuracy)
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Fig. 10 Comparison of the performance of EGFA-NAS using weight inheritance strategy and by way of generation parameter w randomly on

CIFAR-10

than utilizing the way of generating parameter w randomly
(96.36% accuracy).

Overall results in DARTS search space

The experimental results of the optimal network discovered
by EGFA-NAS in DARTS search space, in terms of clas-
sification accuracy and computational cost (GPU days), are
presented in Table 6. The symbol “~” means that the corre-
sponding results were not reported. The symbol “*” means
that the results are extracted from [19]. The mode “a/b” in
Table 5.4 means that “a” is the result for CIFAR-10 and “b”
is the result for CIFAR-100. The results of most competitors
are extracted from the original published papers. B = 6 or §
represents the number of normal cells in a normal block in
the retraining phase. The results highlighted in bold are the
result of the architectures searched by EGFA-NAS.

The results in Table 6 show that EGFA-NAS (B =
8) can achieve better performance than most state-of-the-
art manual-designed CNN networks, including ResNet-101,
ResNet + CutOut, SENet, IGCV3, ShuffleNet, VGG, and

Wide ResNet, but a little worse than DenseNet-BC (1.05% on
CIFAR-100). The performance improvement of optimal net-
work architecture searched by EGFA-NAS (B = 8) is 13.9%
on CIFAR-100, and 3.89% on CIFAR-10, compared with
VGG.

Compared with the 12 EA-based NAS methods, EGFA-
NAS (B = 8) achieves better performance than Hierarchical
EA, AmoebaNet-A, CGP-CNN, CNN-GA, AE-CNN, AE-
CNN + E2EPP, LargeEvo, GeNet, SI-EvoNet, and MOEA-
PS, but slightly worse than LEMONADE (0.19%) and
NSGA-Net (0.02%) on CIFAR-10. EGFA-NAS (B = 8)
achieves the best classification accuracy (81.85%) on the
CIFAR-100, and consumes the least search cost (0.21 GPU
days) than all selected EA-based NAS methods.

Compared with the six RL-based NAS methods, EGFA-
NAS (B = 8) achieves better performance than NASNet-A,
NASNet-A + CutOut, BlockQNN, DPP-Net, MetaQNN, and
ENAS, but a little worse than Proxyless NAS (0.86%) on
the CIFAR-10. The performance improvement of the opti-
mal network architecture searched by EGFA-NAS (B = 8)
is 4.15% on the CIFAR-10, and 8.99% on the CIFAR-100,
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Table 6 Comparison of

EGFA-NAS with the peer Method Search GPU days Params CIFAR-10 CIFAR-100

competitors in terms of the strategy ™M)

classification accuracy (%) and

the computational cost (GPU ResNet-101 [10] Manual - 1.7 93.57 74.84

days) on CIFAR-10, CIFAR-100  RegNet + CutOut [10] Manual - 1.7 95.39 77.90
DenseNet-BC [11] Manual - 25.6 96.54 82.82
SENet [53] Manual - 11.2 95.95 -
IGCV3 [54] Manual - 2.2 94.96 77.95
ShuffleNet [55] Manual - 1.06 90.87 77.14
VGG [1] Manual - 28.05 93.34 67.95
Wide ResNet [56] Manual - 36.48 95.83 79.50
Hierarchical EA [15] EA 300 61.3 96.37 -
AmoebaNet-A [16] EA 3150 32 96.66 81.07
LEMONADE [24] EA 90 13.1 97.42 -
CGP-CNN [25] EA 27 1.7 94.02 -
CNN-GA [26] EA 35/40 2.9/4.1 96.78 79.47
AE-CNN [32] EA 27/36 2.0/5.4 95.3 77.6
AE-CNN + E2EPP [33] EA 7/10 4.3/20.9 94.7 77.98
LargeEvo [27] EA 2750/2750 5.4/40.4 94.6 77.00
GeNet [31] EA - - 94.61 74.88
SI-EvoNet [57] EA 0.46/0.81 0.51/0.99 96.02 79.16
NSGA-Net [28] EA 4/8 3.3/3.3 97.25 79.26
MOEA-PS [58] EA 2.6/5.2 3.0/5.8 97.23 81.03
NASNet-A [17] RL 2000 33 96.59 -
NASNet-A + CutOut [17] RL 2000 3.1 97.17 -
Proxyless NAS [34] RL 1500 5.7 97.92 -
BlockQNN [35] RL 96 39.8 96.46 -
DPP-Net [59] RL 8 0.45 94.16
MetaQNN [60] RL 90 11.2 93.08 72.86
ENAS [18] RL 0.5 4.6 97.06 -
ENAS [18]* RL 4 4.2 97.09 -
DARTS-V1 + CutOut [19] GD 1.5 33 97.00
DARTS-V2 + CutOut [19] GD 4 34 97.18 82.46
RC-DARTS [38] GD 1 0.43 95.83
SNAS [21] GD 1.5 2.8 97.15 -
PNAS [40] SMBO 225 32 96.37 80.47
EGFA-NAS (B = 6) EGFA 0.21/0.4 2.56/2.15 96.57 80.08
EGFA-NAS (B = 8) EGFA 0.21/0.4 3.47/2.88 97.23 81.85

*Extracted from the reference [19]

compared with MetaQNN. The proposed EGFA-NAS (B =
8) has the best efficiency and consumes the least GPU days
even compared with the ENAS, which only consumes 0.5
GPU days on the CIFAR-10 in the published paper.
Compared with four GD-based NAS methods and PNAS,
EGFA-NAS (B = 8) achieves better performance than
DARTS-V1 + CutOut, RC-DARTS, and SNAS, but a little
worse than DARTS-V2 + CutOut (0.61%) on the CIFAR-
100. Although GD-based NAS methods usually have better
efficiency than EA-based and RL-based methods, our pro-

@ Springer

posed EGFA-NAS (B = 8) has the best efficiency compared
to all selected GD-based NAS methods.

In addition, EGFA-NAS can obtain better final learning
accuracy when setting larger number of cells in a normal
block during the retraining phase, but will lead to larger num-
ber of parameters. The overall results in Table 6 show that
this proposed EGFA-NAS not only has competitive learning
accuracy but also has the best efficiency compared with the
four kinds of competitors.



Complex & Intelligent Systems (2024) 10:1667-1687

1685

Conclusion

This paper proposes an efficient population-based NAS
method based on the EGFA, called EGFA-NAS, which
can achieve an optimal neural architecture with competitive
learning accuracy but consumes a little computational cost.
Specifically, EGFA-NAS relaxes the discrete search space
to a continuous one and then utilizes EGFA and gradient
descent to optimize the weights of the candidate architectures
in conjunction. The proposed training and weight inheri-
tance strategies for EGFA-NAS reduce the computational
cost dramatically. The experimental results in two typical
micro search spaces: NAS-Bench-201 and DARTS, demon-
strate that EGFA-NAS is able to match or outperform the
state-of-the-art NAS methods on image classification tasks
with remarkable efficiency improvement. Specifically, to
search the CIFAR-10 on the computational platform with one
NVIDIA GeForce RTX 3090 GPU card, EGFA-NAS obtains
the optimal neural architectures in NAS-Bench-201 search
space with 93.67% accuracy but only consumes 0.048 GPU
days, discovers the optimal neural architectures in DARTS
search space with 97.23% accuracy and a cost of 0.21 GPU
day.

Although EGFA-NAS is promising for designing high-
performance neural networks automatically, it still has one
limitation. Similar to the other NAS methods using the low-
fidelity evaluation strategy, the relative evaluation adopted
in EGFA-NAS during the search phase may lead to miss-
ing some promising architectures. In future work, we will
attempt to design a better evaluation strategy with better rank
consistency for lightweight NAS.
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