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Abstract
System disturbances, such as the change of required service durations, the failure of resources, and temporary tasks during
the scheduling process of data relay satellite network (DRSN), are difficult to be predicted, which may lead to unsuccessful
scheduling of tasks. A high-efficiency and robust DRSN calls for smarter andmore flexible disturbances elimination strategies.
Here, we unify the above three system disturbances as temporary task arrival and extend the static scheduling model of DRSN.
Specifically, we derive and define a scheduling model that unifies the static scheduling and dynamic scheduling processes.
Meanwhile, we propose a k-step dynamic scheduling algorithm considering breakpoint transmission (k-steps-BT) to solve the
above model. Based on the principle of backtracking algorithm and search tree, k-steps-BT can eliminate disturbances quickly
by rescheduling tasks and can determine the rescheduling scheme when temporary tasks arrive. Finally, extensive experiments
are carried out to verify the proposed model and algorithm. The results show that the proposed model and algorithm can
significantly improve the task completion rate of dynamic scheduling without drastic adjustments to the static scheduling
scheme.
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Introduction

With the rapid increase of the earth observation satellites, the
demand for space transmission has been growing greatly [1,
2]. Satellites located in low and medium orbits mainly trans-
mit the data of tasks through ground terminals (GTs) and the
transmissions largely depend on the coverage of GTs. How-
ever, due to the relatively low coverage of theGTs, the visible
ranges and visible opportunities of user satellites and GTs
are limited. If the user satellites are directly connected to the
ground network, a large number of GTs need to be deployed
in different areas on the Earth, resulting in high operation
and maintenance costs [3, 4]. Additionally, the deployment
of GTs is restricted by geographical and political conditions,
e.g., it is not easy to construct GTs either on the ocean or
in oversea countries [5]. The above two reasons lead to a
low data transmission capacity between user satellites and
GTs. To satisfy the increasing demands of space data trans-
mission, data relay satellites (TDRSs) are widely used for
data relay. Theoretically, three TDRSs can achieve global
coverage and provide data relay service for user satellites
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located in low–medium orbits, thereby significantly extend-
ing the visible duration between the user satellites and GTs,
and improving the data transmission efficiency [6, 7].

More recently, researchers have proposed the concept of
a space information transmission system named data relay
satellite network (DRSN) [8, 9]. An overview of DRSN is
shown in Fig. 1, in which DRSN consists of a backbone
network layer, a user layer, and a terrestrial network layer.
The backbone network consisting of TDRSs is responsi-
ble for providing data relay services to the user layer. The
user layer includes various satellites, near-space vehicles,
and deep-space explorers, which are collectively called user
spacecrafts (USs). Moreover, the terrestrial network layer
involves networked GTs as well as the management center
(MC)ofDRSN. In this sense, researchers generally transform
the space data transmission problem into a task schedul-
ing problem of DRSN (DRSNSP), which is crucial to be
investigated for improving the data transmission efficiency
of DRSN.

Previous studies on DRSNSP mainly focused on static
scheduling problems. However, in practical applications, due
to unexpected system disturbances such as service duration
change, resource failure, and temporary tasks, the scheduling
process may yield uncertainties that cause interference to the
task scheduling of DRSN. Hence, studies on the dynamic
scheduling of DRSN considering system disturbances are
more in line with the requirements of actual scenarios [10].
Additionally, breakpoint transmission (i.e., task splitting) has
been proved effective to improve the task completion rate and
resource utilization of DRSN [9]. It would be promising to
obtain better scheduling results by incorporating the break-
point transmission mechanism into the dynamic scheduling
of DRSN. To the best of our knowledge, there are no previous
studies on the dynamic scheduling model and algorithm for
DRSNSP simultaneously considering breakpoint transmis-
sion and hybrid system disturbances (including the required
service duration change, resource failure, and temporary
tasks).

To eliminate system disturbances and improve the task
completion rate, we extend the static scheduling model of
DRSN to make it suitable for dynamic scheduling. Mean-
while, we design a k-step dynamic scheduling algorithm
considering breakpoint transmission (k-steps-BT) algorithm
to solve the dynamic scheduling problem. The major contri-
butions and innovations of this study are:

(1) A breakpoint transmission mechanism is considered in
the dynamic scheduling problem of DRSN. The mech-
anism aims to transform original tasks into a set of
subtasks, thereby fully utilizing the idle visible dura-
tion between user satellites and GTs to further improve
the data transmission efficiency.

(2) A schedulingmodel suitable for both static and dynamic
scheduling of DRSN is constructed, in which we trans-
form the hybrid disturbances dynamic scheduling of
DRSN into the temporary tasks’ dynamic scheduling.

(3) A k-steps-BTalgorithm is designed to solve the dynamic
scheduling problemconsidering temporary tasks.More-
over, we verify that the proposed model and algorithm
could significantly improve the task completion rate
without drastic adjustment to the static scheduling
scheme.

The remainder of this paper is organized as follows. The
section “Related work” reviews the related work. In the
section “Dynamic scheduling model”, we extend the static
scheduling model and make it suitable for both static and
dynamic scheduling of DRSN. In the section “Dynamic
scheduling algorithm”, we introduce the k-steps-BT algo-
rithm to solve the model. The section “Experimental results
anddiscussion” is devoted to the experimental results anddis-
cussion. “Conclusion” contains some concluding remarks.

Related work

To solve DRSNSP, researchers have proposed different
scheduling models and algorithms. The scheduling types
involve static scheduling [9–11], dynamic scheduling [8, 12,
13], and hybrid static and dynamic scheduling [14]. Existing
models include mixed-integer linear programming model [4,
9, 11], constraint satisfaction model [12, 14, 15], and graph
model [7, 16]. The algorithms involve exact algorithms [4,
17], heuristics [10, 18–20] andmetaheuristics [7, 14, 21, 22].

As for exact algorithms, Rojanasoonthon et al. [4] con-
structed a mixed-integer linear programming model for
DRSNSP based on the modeling method of parallel machine
scheduling problem, and proposed a branch-and-bound algo-
rithm to obtain the optimal solution of the above model.
Reddy et al. [17] designed a dynamic programming algorithm
to solve the task scheduling of DRSNwith single access link.

Regarding the rule-based heuristics, He et al. [8] con-
structed a dynamic scheduling model considering hybrid
tasks, i.e., common tasks, emergency tasks, and temporary
tasks, and proposed a stochastic optimization framework and
two heuristics to solve the above model. The results show
that the proposed algorithms can effectively increase the
task completion rate. To solve the static scheduling prob-
lem of DRSN, Liu et al. [16] transformed the graph model
into a mixed-integer linear programming model considering
the antenna slewing time, and proposed a polynomial-time
algorithm to solve DRSNSP. Wang et al. [5] designed a
repeated game framework to solve the task conflict prob-
lem during the scheduling process of DRSN. Additionally,
Wang [18] et al. proposed a two-stage heuristic algorithm
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Fig. 1 An overview of a DRSN
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based on a hierarchical scheduling strategy. The results show
that compared with the greedy randomized adaptive search
procedure (GRASP), the proposed algorithm has a greater
gain in improving the task completion rate. Dai et al. [13]
designed a real-time scheduling algorithm for the emer-
gency task scheduling problem of DRSN. The algorithm
divides the task scheduling process into initial scheduling,
emergency task dynamic scheduling, and final scheduling.
The results verify that the proposed algorithm can signif-
icantly improve the completion rate of emergency tasks
comparedwith genetic algorithm (GA) and simulated anneal-
ing algorithm (SA). To solve the task scheduling problem of
DRSN, Chen et al. [9] designed two heuristic algorithms
considering breakpoints that can apply to the scenarios with
different scheduling requirements, respectively. The exper-
imental results show that, compared with the conventional
algorithms, the proposed algorithms can effectively improve
resource utilization. Wu et al. [10] designed a heuristic
algorithm based on conflict resolution, which effectively
solved the task scheduling of DRSN considering multiple
service time windows. Zhang et al. [20] decomposed the
long-term task scheduling and multi-dimensional resource
management problemofDRSN into numerousmixed-integer
programming problems and proposed an effective heuristic
algorithm to deduce the data drop rate and energy consump-
tion compared with the existed methods.

With regard to metaheuristics, as the most representa-
tive algorithms of metaheuristics, GA and artificial bee
colony (ABC) algorithm have achieved remarkable results
in solving DRSNSP. Song et al. [7] introduce the knowl-
edge about satellite scheduling into DRSNSP, and proposed
a knowledge-basedGA to improve the operating efficiency of
DRSN. To solve hybrid static and dynamic scheduling prob-
lems of DRSN, Deng et al. [14] proposed an improved GA
as the static scheduling algorithm and a heuristic algorithm

based on preemptive scheduling as the dynamic scheduling
algorithm.Meanwhile, Fang et al. [21] proposed an improved
GA to solve the static scheduling problem of DRSN. The
experimental results show the effectiveness of the algorithms
proposed byDeng et al. and Fang et al. Zhuang et al. [22] ver-
ified by simulation experiments that the artificial bee colony
(ABC) algorithm is better than the simulated annealing (SA)
in solving the static scheduling problem of DRSN.

More recently, the data-driven and knowledge-driven
algorithms such as learning-based algorithms are widely
used for solving task scheduling of DRSN. Li et al. [23]
addressed the scheduling problem of DRSN by formulating
it as a sequential decision-making problem. They proposed a
Markov decision model and developed a deep reinforcement
learning (DRL) algorithm to solve the scheduling problem.
The experimental results demonstrated the superiority of
the proposed algorithm over traditional heuristic and meta-
heuristic approaches, particularly for large-scale optimiza-
tion problems. To enhance the emergency dispatch capability
ofDRSN,Heet al. [24] proposed amulti-agent reinforcement
learning-based algorithm for the satellite resource allocation
problem considering heterogeneous resource competition
and cooperation. The experimental results showed that the
proposed algorithm can effectively improve the task comple-
tion rate. Tohandle the challenges posedbyuncertain channel
conditions, Wang et al. [25] developed a DRL algorithm for
the cooperative resource scheduling of the ground terminal
network and relay satellite network. To reduce system delays
and enhance the quality of experience for users, Wang et al.
[26] andHuang et al. [27] introduced amulti-layer neural net-
work model and knowledge-driven network access approach
to simulate task request and transmission, respectively. Fan
et al. [28] developed amulti-layer network graph aggregation
model for DRSN to group tasks with similar spatial–tem-
poral characteristics, and demonstrated that the proposed
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method can effectively reduce the solution time through a
real-world case study.To solve thematchingproblemof satel-
lite resources and data transmission requirements, Song et al.
[29] and Liu et al. [30] proposed an improved k-means algo-
rithm, respectively. Both studies successfully validated the
effectiveness of their proposed algorithms across different
scenarios.

According to the above literature review, it can be found
that:

(1) Although exact algorithms can obtain the optimal solu-
tions when solving small-scale scheduling problems,
it is difficult to find the optimal solution within a
reasonable time when coping with a large-scale prob-
lem.Meanwhile, heuristics andmetaheuristics are more
promising for solving DRSNSP.

(2) Breakpoint transmission mechanism has been proved
effective to improve the task completion rate and
resource utilization of DRSN [9]. However, there are
few studies on dynamic scheduling of DRSN consider-
ing considers breakpoint transmission.

(3) Most studies on static scheduling of DRSN, and a
few studies on dynamic scheduling, but there are no
studies on mathematical models as well as algorithms
for dynamic scheduling of DRSN simultaneously con-
sidering breakpoint transmission and hybrid system
disturbances.

Dynamic schedulingmodel

In this section,we unify the hybrid systemdisturbances as the
disturbance of temporary tasks and extend the static schedul-
ing model of DRSN. The explicit symbols used throughout
this section are listed in Table 1.

Static schedulingmodel

In this study,we incorporate a breakpoint transmissionmech-
anism into the task scheduling of DRSN. The breakpoint
transmission mechanism has been introduced in the static
scheduling of DRSN [9], in which a single task can be rea-
sonably split into multiple subtasks and thus scheduled in
multiple time windows. Mathematically, the formulation of
the static scheduling model of DRSN considering breakpoint
transmission is shown in Eq. (1), where f 1 is the objec-
tive function, which means to maximize the task completion
rate and ZC(t) is a function that splits task t into n sub-
tasks. The first part of the numerator in f 1 is the number
of completed tasks without using breakpoint transmission,
and the second part is the number of completed tasks using
breakpoint transmission. Note that, if an original task is split

Table 1 Notations

Symbol Description

T A set of original tasks, T � {1, 2, · · · , t}
Tα A set of tasks in T that can be split

Tβ A set of tasks without splitting in T

T A subtask set transformed from T

R A set of antennas,R � {1, 2, · · · , r}
US A set of user spacecrafts,

US � {us1, us2 · · · ust }, where ust is the
user spacecraft that correspond to task t

V Ttr A set of visible time windows, vt jtr � [vts jtr ,

vte jtr ], vt jtr ∈ V Ttr is the j th visible time

window of taskt on antenna r, where vts jtr

and vte jtr denote the start time and end time,
respectively

[stst , stet ] The service time window of task t (i.e., the
earliest start time and latest end time of task
t)[

avts jtr , avte jtr
]

The available time window of task t (i.e., the
intersection of the visible time window and
the service time window)[

actstr j , actetr j
]

The actual start time and end time of task t

pt The priority of task t

Rt The set of available antennas for task t

dt The required service duration of task t

acdtr j The actual service duration of taskt in the time

window vt jtr
Adjust The alignment time of the antenna before

executing a task

Rec The reset time of the antenna after a task
scheduled

xtr j Binary decision variable, xtr j � 1 if task t is
scheduled to be serviced by antenna r in the

visible time window vt jtr , otherwise xtr j � 0

into multiple subtasks, it would be scheduled only if all
subtasks are successfully scheduled. Constraints C1 ~ C6
represent task requirement constraints, andC7~C9 represent
resource usage constraints. ConstraintsC1–C2guarantee that
the actual service duration of task t equals its required ser-
vice duration. Constraint C3 indicates the actual start time
of the original task or subtask is not earlier than the earliest
start time. Constraint C4 means that the actual end time of
the original task or subtask is not later than the latest end
time. Constraint C5 says that each original task or subtask
only be served by one antenna. Constraint C6 guarantees that
each original task or subtask is executed in one visible time
window. Constraint C7 restricts that the actual start time of
the original task or subtask should not be earlier than the start
time of the visible time windows and Constraint C8 requires
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that the actual end time of the original task or subtask is
no later than the end time of the visible time window. Con-
straint C9 guarantees that the antenna serves one task at a
time. Constraint C9 guarantees that the antenna serves one
task at a time, where actsmr j and actsnr j represent the actual
start timing of task n and m, actemr j and actenr j represent
the actual end timing, and adjust and recmean the alignment
and reset time of the antenna r before/after a task scheduled,
respectively

max f1 �
∑

t∈Tβ

∑
r∈R

∑
vt jtr∈VTtr

xtr j +
∑

{t1, t2, ···, tn}�ZC (t), t∈Tα

∑
r∈R

∑
vt jtr∈VTtr

min
(
xt1r j , · · · , xtnr j

)

|T |

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 : acdtr j � dt , ∀t ∈ Tβ , r ∈ R, vt jtr ∈ VTtr

C2 :
∑

n�1
xtnr j · acdtnr j � dt , {t1, t2, · · · , tn} � ZC (t), ∀t ∈ Tα , r ∈ R, vt jtr ∈ VTtr

C3 : actstr j · xtr j ≥ stst , ∀t ∈ T , r ∈ R, vt jtr ∈ VTtr

C4 :
(
actstr j + acdtr j

) · xtr j ≤ stet , ∀t ∈ T , r ∈ R, vt jtr ∈ VTtr

C5 :
∑

r∈R
xtr j ≤ 1, ∀t ∈ T , vt jtr ∈ VTtr

C6 :
∑

vt jtr∈VTtr
xtr j ≤ 1, ∀t ∈ T , r ∈ R

C7 : actstr j · xtr j ≥ vts jtr , ∀t ∈ T , r ∈ R, vt jtr ∈ VTtr

C8 : (actstr j + acdtr j ) · xtr j ≤ vte jtr , ∀t ∈ T , r ∈ R, vt jtr ∈ VTtr

C9 :
[
actsmr j − ad just , actemr j + rec

] ∩ [
actsnr j − ad just , actenr j + rec

] � ∅ , ∀m ∈ T , n ∈ T , r ∈ R

xtr j ∈ {0, 1}, ∀t ∈ T , r ∈ R, vt jtr ∈ VTtr

.

(1)

Dynamic schedulingmodel

Here, we extend the static scheduling model and make
it suitable for dynamic scheduling of DRSN. Specifically,
we consider three disturbances: required service duration
change, resource failure, and temporary tasks. Note that the
above three disturbances are unified. Specifically, for a task
with a changed required service duration, we can treat it as
a temporary task. In doing so, we can cancel the scheduling
scheme of the task, and release the resources occupied by
it (if the task is scheduled in the static scheduling scheme).
Resource failure mainly refers to TDRSs or Uss’ malfunc-
tion. Tasks executed by the failed resource will fail to be
scheduled, and thus, these tasks need to be adjusted. Simi-
lar to the processing method of tasks with changed required
service duration, tasks that are scheduled unsuccessfully due
to resource failure can also be regarded as temporary tasks.
Hence, all tasks affected by the above three disturbances con-
sidered in this study can be converted to temporary tasks.
Based on the above analysis, the static scheduling model can
be appropriately extended to obtain the dynamic scheduling
model.

(1) Evaluation metric of dynamic scheduling scheme

Without loss of generality, the greater the deviation
between the dynamic scheduling scheme and the static
scheduling scheme, the more adjustment cost [31–33].

Therefore, to evaluate the deviation between the dynamic
scheduling scheme and the static scheduling scheme, here
we introduce the dynamic disturbance measure (DDM) as an
evaluation metric to measure the deviation, which reads

ψ
(
Ssta , Sdyn

) � λdelndel + λcnc, (2)

whereψ represents DDM, Ssta represents the static schedul-
ing scheme, Sdyn represents the dynamic scheduling scheme,
ndel represents the number of tasks deleted from the static
scheduling scheme due to required service duration change,
resource failure or temporary tasks, λdel represents the
weight of the deleted tasks, nc represents the number of tasks
adjusted from the static scheduling scheme, andλc represents
the weight of the adjusted tasks. Meanwhile, λdel and λc sat-
isfy

λdel+λc � 1. (3)

(2) Extension of the task set

Based on the above analysis, we convert the system distur-
bances involving required service duration change, resource
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failure and temporary tasks to the disturbance of temporary
tasks. Let Tadd be a set of temporary tasks, we have

Tnew � T ∪ Tadd , (4)

where Tnew represents the task set for dynamic scheduling.
We use the breakpoint transmission mechanism in the

dynamic scheduling model. That is, a single task can be rea-
sonably split into multiple subtasks and thus scheduled in
multiple time windows. Note that, the task splitting process
is performed dynamically during the task scheduling pro-
cess, which is detailed in the section “Dynamic scheduling
algorithm“. Suppose T α

add to be the task set in Tadd that can
be split and T

α

add to be the subtask set of the task in T α
add .

Namely, we have

T
α

add � {
tn|{t1, t2, · · · , tn} � ZC (t), t ∈ T α

add

}
, (5)

where ZC(t) is a function that splits task t into n subtasks.
Let T β

add represent the set of taskswithout splitting in Tadd ,
that is

Tadd � T α
add ∪ T β

add . (6)

To unify the original task and the subtask, similarly, we

convert the original task set T β
add into a subtask set T

β

add .
Namely, we have

T
β

add � T β
add . (7)

In doing so, we can convert the temporary task set Tadd
into a subtask set T add , that is

T add � T
α

add ∪ T
β

add . (8)

To make the model formulation more concise, based on
the above analysis, the task set of dynamic scheduling Tnew
can be converted into a form of subtask set. Namely

Tnew � T ∪ Tadd

� (
Tα ∪ Tβ

) ∪
(
T α
add ∪ T β

add

)

� (
T α ∪ T β

) ∪
(
T

α

add ∪ T
β

add

)

� T ∪ T add , (9)

where T α and T β are the subtask sets corresponding to Tα

and Tβ , which can be obtained according to the derivation

method of T
α

add and T
β

add . T is the subtask set form of T
derived by breakpoint transmission [9].

(3) Extension of the set of visible time windows

The method for generalization of the visible time window
set of the dynamic scheduling model is as follows. We add
the visible time window of each task in the temporary task
set to the visible time window set of the static scheduling
model. We denote VT new

tr as a visible time window set of
dynamic scheduling model, and thus, for each t ∈ Tnew, its
visible time windows are defined as

vtnewtr j � [vtsnewtr j , vtenewtr j ], j � 1, 2 · · · , ∀r ∈ R, vtnewtr j ∈ VT new
tr .

(10)

(4) Extension of the constraints set

The dynamic scheduling of temporary tasks is also con-
strained by task requirements (C1 ~ C6 in Eq. (1)) and
resource usage constraints (C7 ~ C9 in Eq. (1)). Therefore,
the static scheduling model with specific adjustments could
be used for dynamic scheduling.

(5) Extension of the static scheduling model

To sum up, we extend the static scheduling model of
DRSN considering breakpoint transmission into a dynamic
scheduling model suitable for temporary tasks, which reads
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max f �
∑

t∈T β
new

∑
r∈R

∑
vtnewtr j ∈VT new

tr
xtr j +

∑
{t1, t2, ···, tn}�ZC (t), t∈T α

new

∑
r∈R

∑
vtnewtr j ∈VT new

tr
min

(
xt1r j , · · · , xtnr j

)

|Tnew|

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1: acdtr j � dt , ∀t ∈ T β
new, r ∈ R, vtnewtr j ∈ VT new

tr

C2:
∑
n�1

xtnr j · acdtnr j � dt , {t1, t2, · · · , tn} � ZC (t), ∀t ∈ T α
new, r ∈ R, vtnewtr j ∈ VT new

tr

C3: actstr j · xtr j ≥ stst , ∀t ∈ Tnew, r ∈ R, vtnewtr j ∈ VT new
tr

C4:
(
actstr j + acdtr j

) · xtr j ≤ stet , ∀t ∈ Tnew, r ∈ R, vtnewtr j ∈ VT new
tr

C5:
∑
r∈R

xtr j ≤ 1, ∀t ∈ Tnew, vtnewtr j ∈ VT new
tr

C6:
∑

vt jtr∈VTtr

xtr j ≤ 1, ∀t ∈ Tnew, r ∈ R

C7: actstr j · xtr j ≥ vts jtr ,∀t ∈ Tnew, r ∈ R, vtnewtr j ∈ VT new
tr

C8: (actstr j + acdtr j ) · xtr j ≤ vte jtr , ∀t ∈ Tnew, r ∈ R, vtnewtr j ∈ VT new
tr

C9:
[
actsmr j − ad just , actemr j + rec

] ∩ [
actsnr j − ad just , actenr j + rec

] � ∅, ∀m ∈ Tnew, n ∈ Tnew, r ∈ R

xtr j ∈ {0, 1}, ∀t ∈ Tnew, r ∈ R, vtnewtr j ∈ VT new
tr

.

(11)

Hereby, it is important to note that, on the one hand, the
above model could be slightly adjusted to be suitable for
dynamic scheduling considering the required service dura-
tion change and resource failure. On the other hand, although
this model is extended from the static scheduling model, it
builds a framework that can uniformly characterize the static
scheduling and dynamic scheduling of DRSN, that is, it can
be applied to both static and dynamic scheduling of DRSN.

Dynamic scheduling algorithm

k-Steps-BT

To improve the task completion rate of dynamic schedul-
ing without drastic adjustments to the static scheduling
scheme, here we propose an algorithm named k-steps-BT.
Based on the principle of backtracking algorithm [34, 35]
and search tree [36–38], k-steps-BT realizes conflict reso-
lution and reschedules tasks quickly when temporary tasks
occur. k-Steps-BT includes three modules: (1) temporary
task-resourcematching; (2) task splitting; (3) adjustment tree
expansion and control.

(1) Temporary task-resource matching

The temporary task-resource matching aims to generate a
set of available time windows for scheduling the temporary
tasks according to the priority of the temporary tasks, sim-
ilar to [9]. If the available time windows satisfy the service
duration of a temporary task, the task will be scheduled by a
immediate predecessor. That is, the temporary task is inserted
immediately after the earliest start time of the available time
windows. If there exist temporary tasks that cannot be sched-
uled after temporary task-resourcematching, we record these
tasks and move to module (2).

(2) Task splitting

According to the breakpoint transmission mechanism, a
single task will be reasonably split into multiple subtasks
and then scheduled in multiple time windows. The process
of breakpoint transmission is shown in Algorithm 1.
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Specifically, if each available time window
[
avts jt∗r ,

avte jt∗r
]
of the temporary task t∗ in available resources set

AVTt∗ cannot meet scheduling requirements of t∗, we add
t∗ to the splitting task set T α

add (Lines 1–9). To minimize the
number of splits (Since the antenna will have an idling time
when it switches from one task to another [39] [40], which
will cause additional scheduling overhead), we choose the
split method based on the minimum number of splits to split
tasks (Lines 11–12). If the original task t∗ can be split into
multiple subtasks and be executed in multiple available time
windows, t∗will be scheduled. Afterward, we update the vis-
ible time window VTtr and record the task splitting scheme
Sspli t . Otherwise, we transfer to module 3 (Lines 13–19).
Additionally, according to different split objects, task split-
ting can be divided into three types: split of the scheduled

tasks, split of the temporary tasks, and split of both sched-
uled tasks and temporary tasks. The above three task splitting
types are shown in Figs. 2, 3, and 4, respectively.

(3) Adjustment tree expansion and control

Figure 5 is a schematic of the adjustment tree expansion
and control. As shown in Fig. 5, if temporary task t∗ cannot
be scheduled by the breakpoint transmission, we define the
scheduled task whose execution duration intersects the avail-
able timewindows of temporary task t∗ as an adjustable task.
If temporary task t∗ is successfully scheduled by removing
the adjustable task, we define the adjustable task as a new
node of the adjustment tree, that is, we regard the adjustable
task as a new temporary task. In doing so, we define the
above process as adjustment tree expansion. Sequentially,
we perform a new round of adjustment tree expansion of the
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Fig. 2 Split of the scheduled
tasks
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Time
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Scheduling Scheme 
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Scheduling Scheme 

(with splitting)

Time
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The available time window of temporary task 3

The available time window of temporary task 3

Task 1 Task 2Subtask 3-1 Subtask 3-2

The required service duration 

of the scheduled task

The required service duration 

of the temporary task

Fig. 3 Split of the temporary tasks

new temporary tasks, and this adjustment operation can be
regarded as the 2nd step of the adjustment of t∗.We repeat the
above process until the k-steps is reached, that is, the value
of k determines the adjustment depth of the k-steps-BT algo-
rithm. In this sense, it is obvious that the dynamic scheduling
of temporary tasks is a process of constantly expanding the
adjustment tree.

Note that, as k increases, the size of the adjustment treewill
grow exponentially. In addition, we consider the task split-
ting in the scheduling of each node task in the adjustment

tree, which further increases the running time of the algo-
rithm. Consequently, to meet the timeliness requirements of
dynamic scheduling, we control the size of the expansion
tree. In this study, we generally take k � 2.

Algorithm framework

In summary, we first present the pseudo-code of k-steps-BT
in Algorithm 2. Then, we analyze the algorithm flow and
computation complexity of k-steps-BT.
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Scheduling Scheme 
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Fig. 4 Split of the scheduled tasks and temporary tasks

(1) Analysis of Algorithm Flow

As shown in Algorithm 2, during the initialization phase
of k-steps-BT, we let the current search step k � 1, the
maximum search step kmax � 2 and the dynamic schedul-
ing scheme Sdyn � ∅ (Line 1). We perform task-resource
matching for each temporary task t∗ ∈ Tadd to generate the
available time window set AVTt∗ (Lines 3–4). If the avail-
able resources meet the scheduling requirements of the t∗,
t∗ will be scheduled. Then, we update the visible time win-
dow VTtr and add the scheduling information of t∗ to the
dynamic scheduling scheme Sdyn (Lines 4–7). If the avail-
able resources do notmeet the scheduling requirements of t∗,
we schedule t∗ by breakpoint transmission (i.e., Algorithm
1). In doing so, if t∗ is successfully scheduled, we update the
visible time window and add the scheduling information of
t∗ to the dynamic scheduling scheme Sdyn (Lines 8–13). If
t∗ is unsuccessfully scheduled by breakpoint transmission,
the execution duration of the scheduled tasks are used as the
resources of the t∗. Sequentially, we perform the temporary
task-resource matching to generate the adjustable task set for
t∗ in the current search step (Lines 14–17). If t∗ is scheduled
after releasing the resources occupied by the adjustable task
t, we remove the scheduling scheme of t, regard t as a new
temporary task, and then transfer to k + 1 search step (Lines
18–21). Note that temporary tasks generally have higher pri-
ority than common tasks. Hence, it makes sense to prioritize
temporary tasks. The algorithm repeats the above process
until the maximum search step kmax is reached. If the tempo-
rary task is failed to be scheduled during kmax steps, it reveals

that the adjustment cost of the temporary task t∗ is too high.
In this sense, the temporary task t∗ is rejected to be sched-
uled (Lines 15–29). Finally,we integrate the static scheduling
scheme Ssta and dynamic scheduling scheme Sdyn as a final
scheduling scheme (Line 33).

(2) Complexity Analysis of k-steps-BT

Wecan observe fromAlgorithm2 that the time complexity
of temporary task sorting is O

(|Tadd |2
)
(Line 2) and the com-

plexity of temporary task-resource matching is O(|Tadd | ×
|VT |) (Lines 3–4), where |Tadd | represents the number of
temporary tasks, |VT | indicates the total number of visible
time windows and is defined as |VT | � ∑

t∈T
∑

r∈R |VTtr |,
where |VTtr | represents the number of visible time windows
of task t on antenna r. The complexity of scheduling tem-
porary tasks using breakpoint transmission is O

(|Tadd | ×
|VT |2) (Lines 5–13). The complexity of adjustable task set
generation of the current step is O(|Tadd | × |ST |) (Lines
16–17), and the complexity of adjustment tree expansion is
O

(|Tadd | × (|ST |+|ST |2 + · · · + |ST |kmax
))

(Lines 18–30),
where |ST | is the number of scheduled tasks. Since |ST | ≤
|T |, the time complexity of k-steps-BT is O

(|Tadd | × (|T |+
|T |2 + · · ·+ |T |kmax

))
, which reveals that the time complexity

of k-steps-BT increases exponentially with the increase of k.
Therefore, to meet the timeliness requirements of dynamic
scheduling, we control the size of the expansion tree. Specif-
ically, we take kmax � 2.
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Experimental results and discussion

Simulation parameter setting

The proposed algorithm is implemented in Matlab and exe-
cuted on an Intel(R) Core(TM) i5 2.80 GHz, with 8.0 GB
RAM. The scheduling period is from 2019–10-08 00:00:00
to 2019–10-09 00:00:00. The application scenario involves
300 common tasks (the task ID are 1 to 300), 6 temporary
tasks (the task ID are 301 to 306), 10 USs, 3 TDRSs, and
each TDRS carries a single access antenna. The benchmark
and simulation scenarios’ settings are detailed in [9].

Dynamic scheduling scheme analysis

In this section, we first use a state-of-the-art metaheuristic
solver named adaptive variable neighborhood descent com-
binedwith a tabu list (AVND-TL)which is our previouswork
[9] as the static scheduling algorithm to find a scheduling
scheme of common tasks. Then, we use k-steps-BT to solve
the dynamic scheduling of temporary tasks, where k � 2. The
results are shown in Table 2, where mode “0” means the task
scheduling fails, “ + 1” means the task is scheduled without
using breakpoint transmission, and “ + 2” means the task is
successfully scheduled using breakpoint transmission.

In Table 2, the scheduling duration of tasks 16 and 47
in the static scheduling scheme conflicts with the service
time windows of temporary tasks 304 and 305, respectively.
The scheduling scheme of the scheduled tasks 16 and 47 is
adjusted by k-steps-BT algorithm and the conflict is further
resolved during the dynamic scheduling process. That is, the
scheduled tasks 16, 47 and the temporary tasks 304 and 305
are all successfully scheduled by using k-steps-BTalgorithm.
Additionally, the temporary tasks 303 can be scheduled by
breakpoint transmission. Note that, when k � 2, the tempo-
rary task 301 fails to be scheduled, because the adjustment
cost is too high. Therefore, based on the preliminary results
in Table 2, it can be verified that the k-steps-BT algorithm is
effective.

Comparisons and sensitivity analysis

In this section, we discuss the impacts of different numbers
of temporary tasks and different values of k for k-steps-BT.
For the sake of comprehensive and fair comparisons, we pre-
pare a set of real-world scenarios each scenario involves 300
common tasks, 38 temporary tasks, 10 USs and 3 TDRSs.
Additionally, we compare the proposed approach with a
state-of-the-art method named preemptive dynamic schedul-
ing algorithm (PDSA) [14] and a scalable framework for
dynamic scheduling of DRSN called whole rescheduling
algorithm (WRA) [12] on the same scheduling instances.

Note that WRA is an algorithm framework and we adopt
AVND-TL [9] in the framework of WRA.

As for dynamic disturbancemeasure (DDM),we calculate
the DDM between the dynamic scheduling schemes gener-
ated from the WRA, PDSA, and k-steps-BT with the static
scheduling scheme by Eq. (2), where we set λdel � 0.8 and
λc � 0.2. Specifically, the number of tasks deleted from the
static scheduling scheme, i.e., ndel , can be determined by
comparing the dynamic with static scheduling schemes. The
number of tasks adjusted from the static scheduling scheme,
i.e., nc, can be calculated in the sameway.Note that, although
a single task can be split intomultiple subtasks, and it (includ-
ing its subtasks) can be adjusted multiple times during the
dynamic scheduling, it is only recorded as one adjustment.

(1) Experimental results of different number of temporary
tasks

We set k � 2 in k-steps-BT algorithm and present the
experimental results with different number of temporary
tasks Fig. 6. With regard to temporary task completion rate,
we can observe from Fig. 6a that WRA is better than PDSA
and k-steps-BT, and PDSA is better than k-steps-BT in the
case with a small-scale temporary task, in which the num-
ber of temporary tasks is less than 30. That is, the number
of temporary tasks completed by k-steps-BT is more than
that of the PDSA when there are more than 30 temporary
tasks. As for total task completion rate, WRA is better than
k-steps-BT and k-steps-BT is significantly better than PDSA.
Regarding the results of dynamic disturbance measure, we
can observe from Fig. 6c that k-steps-BT is substantially
better than PDSA and PDSA is better than WRA. Note that,
the dynamic disturbance measure of the PDSA rises sharply
when the number of temporary tasks is more than 20, while
the dynamic disturbance measure of k-steps-BT is still rel-
atively stable. Regarding the running time of algorithms,
PDSA and k-steps-BT are substantially better than WRA.

It is noteworthy that the advantage of the k-steps-BT
algorithm in enhancing task completion rate becomes less
pronounced when the count of temporary tasks is limited.
In such cases, the DRSN conserves available resources,
enabling most temporary tasks to be scheduled without
requiring sophisticated adjustments. In contrast, the WRA
algorithm profoundly ensures optimal task completion rate
by subjecting all tasks to rescheduling. Nevertheless, as the
temporary task volume expands, both the computing time
and dynamic disturbance measurement of WRA experience
substantial escalation. Furthermore, in comparison to the k-
steps-BT algorithm, the PDSA algorithm obviates the need
for retrospective scheme adjustments. It directly arranges
temporary tasks based on their priorities, showcasing a pro-
nounced advantage in computing time and temporary task
completion rate. However, for extensive temporary task
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Table 2 Dynamic scheduling scheme (no. 301–306 is the scheduling scheme of temporary tasks)

Task ID USs ID Mode Service duration/Executed TDRS ID Duration (sec)

16 5 + 1 [04:59:28, 05:11:59]/1 751

47 4 + 1 [18:51:05, 18:59:41]/1 516

301 5 0 – –

302 8 + 1 [00:36:57, 00:41:39]/2 282

303 5 + 2 [01:41:59, 01:44:12]/1、[02:23:50, 02:25:57]/3、
[02:55:45, 02:57:19]/2

354

304 5 + 1 [04:45:30, 04:52:29]/1 419

305 4 + 1 [18:36:16, 18:41:37]/1 321

306 10 + 1 [19:55:32, 19:59:50]/3 258

Fig. 5 Schematic of adjustment tree expansion
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(a) Temporary task completion rate of different algorithms (b) Total task completion rate of different algorithms

(c) Dynamic disturbance measure of different algorithms (d) Running time of different algorithms
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Fig. 6 Experimental results of different number of temporary tasks (k � 2)

scheduling, the PDSA algorithm’s performance in terms of
task completion rate and dynamic disturbance measurement
still significantly trails that of the k-steps-BT algorithm.

Given the aforementioned observations, it is evident that
the k-steps-BT algorithm offers significant advantages over
the PDSA and WRA algorithms in effectively addressing
the dynamic scheduling challenges within DRSN involving
extensive temporary tasks. Conversely, the PDSA algorithm
appears better suited for tackling scheduling problem entail-
ing smaller-scale temporary tasks.

(2) Experimental results of different values of k

Here,we analyze how thevalue of k affects performanceof
k-steps-BT. The experimental results are reported in Fig. 7,
in which the number of temporary tasks is 20. The results
show that k-steps-BTwith different values of k have different
performances in the number of temporary tasks completed,
the total number of tasks completed, the dynamic disturbance
measure, and the running time of the algorithm. Specifically,
the increase of the k can effectively increase the completion
rate of temporary tasks and the total task completion rate.
However, the dynamic disturbancemeasure and running time
increases sharply with the increase of k.

Discussion

The dynamic scheduling of temporary tasks will inevitably
interfere with the scheduling tasks. Therefore, to solve the

dynamic scheduling problem caused by arriving of tempo-
rary tasks, we designed an algorithm named k-steps-BT with
a faster response speed and lower adjustment cost. Mean-
while, the effectiveness of the k-steps-BT is proved through
extensive experiments. In this section, we further discuss the
applicability of k-steps-BTbased on the experimental results.

The experimental results of Fig. 6 show that although
WRA can effectively improve the task completion rate, the
higher running time and dynamic disturbance measure of
WRA do not meet the requirements of dynamic scheduling
(timeliness and minor adjustment of scheduling scheme),
which is a typical example of “no free lunch” [41, 42]. In
addition, PDSA focuses overly on improving the comple-
tion rate of temporary tasks, while ignoring the total task
completion rate, which leads to a higher dynamic distur-
bance measure. However, the number of temporary tasks
completed of the k-steps-BT is more than that of the PDSA
when there are more than 30 temporary tasks, and the total
number of tasks completed of the former is substantially
greater than that of the latter.Meanwhile, the dynamic distur-
bance measure of the PDSA rises sharply when the number
of temporary tasks more than 20, while the dynamic distur-
bance measure of k-steps-BT is still relatively stable. The
results of the above situation can be accounted for the fol-
lowing two reasons. On the one hand, k-steps-BT with a
backtrack mechanism are more flexible for dynamic adjust-
ment of tasks, which can handle conflicts between temporary
tasks and scheduled tasks well. On the other hand, PDSA
can only schedule temporary tasks by deleting the scheduled
tasks because of the limited resources in the case with large-
scale temporary tasks, which will lead to large adjustments
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(a) Number of temporary tasks completed (b) Total number of completed tasks

(c) Results of dynamic disturbance measure (d) Results of running time
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Fig. 7 Experimental results of different value of k

in the dynamic scheduling scheme (i.e., the dynamic distur-
bancemeasure). Note that the time overhead of k-steps-BT is
slightly more than that of PDSA (the maximum gap is within
2 s), which is reasonable for the timeliness requirement of
dynamic scheduling. In this sense, k-steps-BT substantially
outperform PDSA.

It is noteworthy that k-steps-BT achieves a good balance
in terms of the temporary task completion rate, total comple-
tion rate, dynamic disturbance measure, and running time.
Specifically, the numerical value of k determines the search
depth of k-steps-BT in the solution space according to the
idea of “exploration and exploitation” [43]. Thek-steps-BT
with a larger numerical value ofk has a robust global search-
ing ability but takes more time and vice versa. Therefore, we
can select k-steps-BT with different k values for scenarios
with different user requirements. If users pay more attention
to the total task completion rate and temporary task comple-
tion rate, the k-steps-BT with a larger numerical value of k
is more appropriate. Conversely, if users focus on the timeli-
ness of scheduling, the k-steps-BT with a smaller numerical
value of k is more appropriate.

Note that a great balance trade-off between timeliness and
performance should made in practical applications, and we
can observe from Fig. 7 that the running time and dynamic
disturbance measure increase sharply with the increase of

the k, which do not meet the dynamic scheduling require-
ments of DRSN. In this sense, to balance the performance
and timeliness of k-steps-BT, k is recommended to be 2.

Conclusion

In this paper, first, we transform the dynamic scheduling
considering hybrid system disturbances into the temporary
tasks dynamic scheduling of DRSN. Second, we construct
a dynamic scheduling model considering breakpoint trans-
mission, which builds a framework that can uniformly
characterize the static scheduling and dynamic scheduling
of DRSN. Finally, we design an efficient algorithm to solve
the above model and verify the effectiveness of the proposed
model and algorithm by extensive experiments. Specifically,
the proposed algorithm can improve the task completion rate
with minimum adjustment cost and reasonable scheduling
overhead when system disturbance occurs.

Future works will be focused on applying the breakpoint
transmission to distributed scheduling considering hybrid
system disturbances and designing more efficient algorithms
to improve the performance of DRSN.
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