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Abstract
Human activity recognition (HAR) aims to collect time series through wearable devices to precisely identify specific actions.
However, the traditional HAR method ignores the activity variances among individuals, which will cause low generalization
when applied to a new individual and indirectly enhance the difficulties of personalized HAR service. In this paper, we fully
consider activity divergence among individuals to develop an end-to-end model, the multi-source unsupervised co-transfer
network (MUCT), to provide personalized activity recognition for new individuals. We denote the collected data of different
individuals as multiple domains and implement deep domain adaptation to align each pair of source and target domains.
In addition, we propose a consistent filter that utilizes two heterogeneous classifiers to automatically select high-confidence
instances from the target domain to jointly enhance the performance on the target task. The effectiveness and performance of
our model are evaluated through comprehensive experiments on two activity recognition benchmarks and a private activity
recognition data set (collected by our signal sensors), where our model outperforms traditional transfer learning methods at
HAR.

Keywords Human activity recognition · Personalized service · Transfer learning · Domain adaptation

Introduction

Human activity recognition (HAR) is a fundamental tech-
nology in medical services and healthcare that can extract
information from time series data collected by wearable sig-
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nal sensors to predict the activities of human beings [1]. Due
to its real-time characteristic and portability, HAR is widely
used in rehabilitation monitoring [2], geriatric monitoring
[3], and other fields [4]. With the development of technol-
ogy and the maturity of intelligent algorithms, traditional
HAR has been far from satisfying human needs, but more
personalized services, which can accurately recognize the
activities for new individuals, have become the focus of cur-
rent research.

In recent years, deep learning based HAR algorithm has
got evolutionary progress [5, 6]. Specifically, it can overcome
the dependency on manual feature extraction by powerful
representation capability to obtain the correlation between
time series data and automatically extracting features for
better classification. Traditional deep learning relies on large
amount of high-quality labeled training data to obtain a robust
model [7, 8]. However, the deviation of activities among indi-
viduals will lead to data distribution discrepancy, makes the
deep learning models hard to perform well on new individu-
als, as shown inFig. 1.Therefore, how to effectively eliminate
the discrepancy among different individuals becomes the key
to enhance the generalization ability of personalized HAR
services.
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Fig. 1 Overview of HAR processing. Data and mean of two individuals collected by z-axis acceleration sensor on private data set: a left foot,
performing subject 1; b right foot, performing subject 8

Transfer learning breaks the assumption ofmachine learn-
ing that the distribution of training and testing data must be
the same [9]. It can improve the generalization ability of
the model by reducing the distribution discrepancies cross
domains [10, 11], which has beenwidely applied in computer
vision [7, 12], medical decision-making [13–16], natural lan-
guage processing (NLP) [17–19], and other fields [20–23].
By utilizing massive, similar and high-quality activity time
series data captured by other individuals, transfer learning
can effectively improve the generalization abilities of the
model on new individuals, thus realizing personalized HAR
service. According to the terminology of transfer learning,

we annotate the labeled activity data as the source domain,
and the unlabeled activity data collected from new individual
as the target domain [24]. In addition, considering the labeled
data often comes from multiple independent individuals in
practical application, we conductmulti-source transfer learn-
ing [25, 26] to separately eliminate the differences of activity
data among individuals to realizemore preciselyHARon tar-
get task.

On the other hand, due to the complexity of data distribu-
tion in real scenario, the effectiveness of the transfer learning
model is constrained. Ensemble learning can improve the
classification performance by constructing and combining
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multiple weak classifiers, which has been proved to be an
efficient way for multi-source transfer learning [27, 28]. In
general, we extend the advantages of ensemble learning for
two main purpose: (1) adopt a co-training strategy to select
high-confident target samples for training and (2) combine
the transfer results from different source domains to reduce
sensitivity to distribution variances and achieve a better aver-
age performance. Our previous studies have systematically
illustrated the advantages of ensemble learning on transfer
learning [29, 30].

In this paper, we fully consider the variance in the
distribution of different individuals and propose an end-to-
end model, multi-source unsupervised co-transfer network
(MUCT), to establish a personalized and precise classifica-
tion model for HAR. We use feature extractors to automat-
ically extract the time series data feature and use domain
adaptation to align the distribution variance cross domains.
Furthermore, a consistency filter is developed, consisting of
two heterogeneous classifiers to assign the pseudo-label for
the target domain with a final agreement. Based on the co-
training strategy with a consistency filter, high-confidence
target samples are selected to reintegrate the training set and
iteratively boost the effectiveness of the classifiers.We aggre-
gate the classification results from themulti-source domain to
acquire the final result. The main contributions of this model
can be summarized as follows:

• We propose an unsupervised multi-source transfer learn-
ing network that provides a feasible end-to-end way to
realize personalized HAR service;

• An adaptive feature extractor is presented to automat-
ically extract the feature of time series data and align
the distribution variance among domains to improve the
transferability of the model;

• MUCT can iteratively enhance the robustness of the
model by training with high-confidence target samples
collected by a consistency filter;

• Experimental results on benchmark data sets and a
real-world data set (collected by our signal sensors)
demonstrate the superior performance of our model over
traditional unsupervised domain adaptation methods.

The remainder of this paper is structured as follows.
“Related work” section presents related work. “Methods”
section describes the workflow ofMUCT. “Experiment” sec-
tion reports simulation results on benchmark data sets and
a real-world data set. In “Discussion” section, we analyze
the results and discuss future work. In the last section, we
describe the conclusions of our model.

Related work

We discuss work on human activity recognition via tradi-
tional machine learning methods and multi-source transfer
learning.

Human activity recognition

In recent years, the spotlight has been on HAR [31], which
can learn advanced information about human activities from
raw sensor input [32]. Some recent surveys introduce tradi-
tionalmachine learningmodels onHAR [33–37]. Bayat et al.
[38] proposed a digital low-pass filter that could extract the
component of gravity acceleration from body acceleration to
improve classifier performance. Hossain et al. [39] combined
K-means with active learning to reduce the reliance on train-
ing data labels in HAR. Some recent methods have bridged
deep learning and HAR, utilizing deep learning methods to
extract features from raw time series data. Zeng et al. [40]
proposed deep learning based on convolutional neural net-
works (CNNs) and a partial weight-sharing technique, which
could capture the local dependency and scale invariance of a
signal.Apartialweight-sharing technique could apply to sen-
sor signals to further improve data. Lee et al. [41] proposed a
one-dimensional CNN-based method using smartphone tri-
axial accelerometer data to transform x, y, and z acceleration
data to vector magnitudes.

Many traditional HARmethods require manual design for
the features, which is time and labor consuming. Although
deep learningmethods such as CNNs have gradually become
mainstream methods in HAR, they fail to account for indi-
vidual variance, which will cause the poor generalization of
classifiers for different individuals.

Multi-source domain adaptation

Domain adaptation is a significant branch of transfer learning
that aligns a labeled source and unlabeled target domains in
a specific feature space. In real-world applications, multi-
source data can be drawn. Hence multi-source domain
adaptation is an appropriate method to gain knowledge from
multiple perspectives to enhance the classification ability of
the target domain [42]. Zhu et al. [43] used MaximumMean
Discrepancy (MMD) loss to align domain-specific distri-
butions, and Disagreement Classifier (DISC) loss to align
domain-specific classifiers, enabling classifiers to achieve
satisfactory results in the target domain. Fang et al. [27] pre-
sented a method that mapped target domain samples into
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multi-label samples, which could comprehensively consider
the correlation between tags. Themodel creates a shared label
subspace in multi-source domains, applying the obtained
knowledge to the target domain classifier.

Recently, domain adaptationmethods havebeen applied in
HAR.Wang et al. [44] measured the distance of activity data
distributions among multiple humans to find the best domain
to accomplish transfer tasks, utilizing CNN and long short-
termmemory (LSTM) layers to extract time series and spatial
features, and MMD loss to align them as similarly as possi-
ble. Zhao et al. [45] proposed a transfer learning-embedded
decision tree that integrates decision trees with the K-means
algorithm in personalized HAR. Methods based on domain
adaptation cannot deal with multi-source domains, and their
generalization ability is poor in practical applications with-
out a suitable ensemble paradigm, especially on unbalanced
data sets.

We propose a MUCT model that leverages knowledge
gained from multiple individuals with annotated informa-
tion (source domain) to precisely recognize activities for a
specific person (target domain). By adopting a boost strat-
egy, the generalization ability of the algorithm is improved
on both benchmark and real-world data sets.

Methods

We show how our model addresses individual invariance and
enhances generalization when applying HAR. Our model
consists of multi-source feature alignment and a consistency
filter, as shown in Fig. 2. Multi-source feature alignment
extracts discriminative and domain-invariant features for
source and target domains. Heterogeneous classifiers are
included in the consistency filter to provide predictive labels
for samples from different views. The consistency filter can
select high-confidence samples with pseudo-labels to enrich
the diversity of training samples and promote the learning
process of target information. The pseudocode is shown in
Algorithm 1.

Problem statement

We propose a personalized HAR service solution.We denote
K items of source domain data with labels as Dsk ={(
xski , yski

)}nsk
i=1, where nsk is the number of instances of the

kth source domain. Dt = {(
xti

)}nt
i=1 is the target domain,

with nt unlabeled instances. Dsk and Dt are sampled from
data distributions p and q, respectively, p �= q. MUCT trains
a network y = H(x) that can effectively reduce the distri-
bution variance between the source and target domains, and
the target risk Rt (H) = E(x,y)q [H(x) �= y] can be bounded
by leveraging the source domain.

Algorithm 1MUCT

Input: Data: K source domains Dsk = {(
xski , yski

)}nsk
i=1 and target

domain Dt =
{
xtj

}nt
j=1

. Networks: MUCT model H is con-

sists of feature extractor { fk(·)}Kk=1 and heterogeneous classifiers
{
Ck1 ,Ck2

}K
k=1 for each pair of source and target domain. Parame-

ters: hyperparameter β.
Output: The optimal MUCT H .
1: D∗

t = φ.
2: for n to N do
3: fsk ← fk(x

sk
i ); ftk ← fk(xtj ).

4: Calculate Lmmd in Eq. (3) with each pair of fsk and ftk .
5: if n mod β == 0 then
6: Update D∗

t in Eq. (4).
7: end if
8: Calculate Lcls in Eq.(5) with D∗

t ∪ Dsk
9: Compute the Lmuct in Eq.(6)
10: Update parameters of H by minimizing Lmuct
11: end for
12: return H

Multi-source feature alignment

In personalized HAR, the distributional variance between
domains reduces the generalizability of the model over
the target domain. Specifically, the feature extractor cannot
extract domain-invariant features due to domain distribu-
tion variance. The classifier is unable to classify the target
domain data effectively. Multi-source feature alignment
aligns the domain distribution variance and motivates the
feature extractor to extract domain-invariant features.

To extract domain-invariant features, we introduce MMD
to measure the variance between domains. MMD measures
the sample feature distributions in the Reproducing Kernel
Hilbert Space (RKHS) and calculates the mean embedding
distances from different domains [46]. The MMD distance
can be estimated as

dmmd(p, q) �
∥∥Exs∼p

[
φ

(
xs

)] − Ext∼q
[
φ

(
xt

)]∥∥2H , (1)

whereH is the RKHS endowed with a characteristic kernel,
kernel (Xs, Xt ) =< φ (Xs) , φ (Xt ) >, where < ·, · > is
the inner product of vectors, φ(·) denotes the mapping of
a feature distribution to RKHS, and p and q are the distri-
butions of xs and xt , respectively. In general, the empirical
estimate of MMD dmmd(p, q) can be further factorized as

d̂mmd(p, q) =
∥∥∥∥∥∥

1

ns

∑

xi∈Ds

φ (xi ) − 1

nt

∑

x j∈Dt

φ
(
x j

)
∥∥∥∥∥∥

2

H

= 1

n2s

ns∑

i=1

ns∑

j=1

k
(
xsi , x

s
j

)
+ 1

n2t

nt∑

i=1

nt∑

j=1

k
(
xti , x

t
j

)

− 2

nsnt

ns∑

i=1

nt∑

j=1

k
(
xsi , x

t
j

)
. (2)
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Fig. 2 Overview of MUCT model. Feature extractor obtains a spe-
cific common feature space in each pair of source and target domains
and can extract their domain-invariant feature representations to alle-
viate the problem of variance distribution among different domains.

High-confidence data in the source domain are filtered by classifica-
tion results of multiple classifiers and added with their pseudo-labels
to the training set. Average probability is calculated for results of each
classifier to obtain final classification result

In multi-source transfer learning, it is challenging to con-
struct a suitable common latent feature space for all domains
because the data distributions in each domain differ. When
the number of domains is too large, the common latent feature
space will reduce the discriminability of features to adapt all
common domain features [43]. To enhance the representation
capability of the feature extractor,wepropose K subnetworks
{ fk(·)}Kk=1 as feature extractors to construct a common latent
feature space for each pair of source and target domains. The
source domain feature extraction process can be expressed
as fsk = fk

(
xski

)
. Similarly, we use each feature extractor

to perform feature extraction on the target domain data and
obtain the features of the target domain. The features of the
target domain extracted using the kth feature extractor can

be expressed as ftk = fk
(
xtj

)
. We useMMD to measure the

variance in the distribution of the source and target domains.
The MMD loss is

Lmmd =
K∑

k=1

d̂mmd(p, q)( fk(x
sk ), fk(x

t )). (3)

Consistency filter

We propose a consistency filter to enrich the diversity of
training samples and promote the learning process of the tar-
get information by assigning pseudo-labels to target domain
samples and collecting the prediction results of all classi-
fiers for the target domain samples. When all classifiers
predict the same result for the target domain sample, the
consistency filter will make the prediction a pseudo-label.
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This sample is eventually joined to the training set of each
classifier. With increasing iterations, the number of target
domain samples in the training set grows. Therefore, the
feature extractor will focus on extracting discriminable fea-
tures in the target domain, which are unique in it and are
not domain-invariant. In other words, the consistency fil-
ter helps in the extraction of potential features of the target
domain, ultimately improving the classifier’s performance.
We use multi-classifiers in the final recognition task. For
each source domain, two heterogeneous classifiers, Ck1(·)
and Ck2(·), perform classification tasks from different per-
spectives, receiving the domain-invariant feature after feature
extractor fk(·) for the kth source human domain. We com-
pute the instance’s filter label, Sit , which when 0 indicates
that an instance is highly trusted data, which helps improve
the classifier’s performance; otherwise, it is untrusted data.
Si calculation formula as follows:

Si =
K∑

k=1

EQ(|Ck1( fk(x
t
j ))|, |Ck2( fk(x

t
j ))|). (4)

EQ(·, ·) is used to judge whether the predictions of the two
classifiers are consistent, outputting 0 when they are, and
1 otherwise. After selection, we add the confidence data
and pseudo-label (xtj ,C11( f1(x

t
j )) to the confidence data set

D∗
t = {

x∗
l , y∗

l

}n∗
l=1, and add this to the classifier’s training set,

where n∗ is the number of samples in the confidence data set.
To prevent the classifier from non convergence, we run the
consistency filter after each iteration of hyperparameter β.

In HAR, a single classifier cannot accurately classify
the data from multiple views because of the spatial and
time series characteristics of the data, such as frequency
and sequence. These heterogeneous classifiers not only are
trained from different domain data but can combine the
advantages of different classification algorithms. Therefore,
these filtered target domain data have a high confidence
level. Therefore, we use two heterogeneous classifiers to
classify the samples fromdifferent perspectives to obtain pre-
dictive labels with high execution for each source domain.
We use cross-entropy to optimize the heterogeneous classi-
fiers. Cross-entropy loss measures the degree of difference
between two probability distributions in the same random
variable. We estimate the difference between the probability
distribution and its prediction. The smaller the cross-entropy,
the better the classifier predicts. We take the cross-entropy
loss as the classification loss of each classifier:

Lcls =
K∑

k=1

2∑

z=1

Lce(Ckz

(
fk

(
xsk

))
, ysk )

+
K∑

k=1

2∑

z=1

Lce(Ckz

(
fk

(
x∗)) , y∗), (5)

where Lce is cross-entropy loss, K is the number of source
domains, and Ckz is the zth classifier in the kth domain.

Multi-source unsupervised co-transfer learning
network

Design features are difficult for human activity recogni-
tion. In addition, the connections between multiple features
between activities are challenging to capture. To this end, we
propose MUCT. Our model comprises K feature extractors,
2K classifiers, and a consistency filter. The total loss of our
model generally consists of domain and classification loss,
where domain loss is measured by MMD, and classifica-
tion loss is calculated by cross-entropy. The feature extractor
extracts domain-invariant features and measures their dif-
ferences to represent the domain loss. The classification loss
improves the classifier’s performance, and therefore network
performance. We use a consistency filter to obtain the con-
fidence data of the target domain and add pseudo-labels to
the training set. Because the target domain data are added to
the training set, the classifier performs better on the target
domain. The total loss of our model is

Lmuct = Lcls + Lmmd . (6)

In MUCT, the feature is extracted by the feature extractor,
and the feature distribution of each pair of source and target
domains is as similar as possible to MMD. After this stage,
we can approximately consider the source and target domain
data distributions to be similar. This provides the basis for our
second stage. MUCT improves the classifier’s performance
on the target through a consistency filter. We determine its
final label by averaging the weights.We use each classifier to
predict the probability of the class to which the target human
sample belongs by summing the possibilities and averaging
them. The category with the highest probability is its label.
This process can be expressed as follows:

H(xti ) = 1

2K

K∑

k=1

Z∑

z=1

Ckz( fk(x
t
i ))). (7)

Experiment

We conducted a number of evaluations and experiments to
compare the effectiveness and performance of our methods
with other state-of-the-art (SOTA) domain adaptation meth-
ods on two benchmark HAR data sets and a real-world data
set.
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Data sets and setup

We compared the effectiveness and performance of MUCT
with ResNet [47], JDA [48], TCA [49], DAN [50], DAAN
[51], and MFSAN [43], which include traditional deep
learning, single-source domain adaptation, and multi-source
domain adaptation methods.

We performed three standard comparisons: (1) Source
combine unites different source domains into one, despite
the distribution variance; (2) Single best reports the optimal
results in multiple single-source domain adaptations among
multi-source domain, to compare the differences between the
upper bound of single-source andmulti-source domain adap-
tation; (3)Multi-source compares the classification results of
multi-source domain adaptation methods. To further validate
the effectiveness of every component in ourmodel,we carried
out ablation experiments and evaluated several MUCT vari-
ants: (1) MUCTSV , with a single classifier; (2) MUCTNC ,
without a consistency filter; (3) MUCT , the whole pipeline,
combining multiple classifiers and a consistency filter. Con-
sidering calculation and time constraints, we followed the
experimental setup in FedHealth [52], randomly selecting
four subjects in each data set to evaluate the effectiveness
and performance of our model.

Experimental data sets included twoHARbenchmark data
sets, the UCI daily and sports data set (DSADS) [53] and the
WISDM Lab human activity recognition data set (WISDM)
[54], and a real-world data set collected by our signal sensors
(real data set). Table 1 describes these data sets.

The DSADS data set was collected from eight subjects
who wore sensors in five positions while completing 19
movements. Each subject performed all movements for five
minutes. Four males and four females were subjects, and the
sensors collected data at 25 Hz. The five minutes of data
collected from each subject were divided into 60 segments.
Sensors were worn on the subject’s torso (T), right arm (RA),
left arm (LA), right leg (RL), and left leg (LL). We ran-
domly selected four individuals from the DSADS data set
and noted them as P1–P4. We built four transfer tasks using
themas target domains: P1, P2, P3 → P4; P1, P2, P4 → P3;
P1, P3, P4 → P2, and P2, P3, P4 → P1.

WISDM included six activities intelligently collected
from 36 subjects. We randomly selected four individuals
from this data set and labeled them as P1–P4. For WISDM,
cell phone accelerometers collected six types of human
activity data: Walking, Jogging, Upstairs, Downstairs, Sit-
ting, and Standing. We built four transfer tasks, P1–P4,
as target domains: P1, P2, P3 → P4; P1, P2, P4 → P3;
P1, P3, P4 → P2 and P2, P3, P4 → P1.

The real data set included 13 activities intelligently col-
lected from four subjects. We collected 19 types of activity
information from four volunteers using wearable sensors in
Kunming, Yunnan Province, China. We labeled the volun-

Table 1 Benchmark and real HAR data sets

Data set Subject Activity Sample Body part

DSADS 8 19 1,140,000 5

WISDM 36 6 1,098,207 1

Real data set 4 13 330,800 5

teers as P1–P4. Sensor units were on the waist (W), right
arm (RA), left arm (LA), right leg (RL), and left leg (LL).
These units collected activity data 20 times per second, and
this was grouped in 5-second increments after completing
the collection. We used ResNet-18 to extract features.

We compared our MUCTmodel with the five SOTA algo-
rithms for human activity recognition problems. Our model
was based on the PyTorch framework.We set the initial learn-
ing rate at 0.2, and it decreased with iterations. We used
the SGD optimizer and set its momentum to 0.9. We used
ResNet-18 to extract features. Softmax and DNN were used
as classifiers. Among ResNet, DAN, DAAN, and MFSAN,
we usedResNet18 as the backbone network.We used a learn-
ing rate of 0.2 and SGD in these models as the optimizer.

Effectiveness of MUCT

Performance on DSADS. We compared our model with oth-
ers on DSADS and recorded the best results, obtaining an
average over five trials. Table 2 shows that the algorithm’s
experimental effect on Source Combine was better than on
Single Best. This situation does not square with our pre-
vious experience. The reasons for the experimental results
are that the activity movements between humans are small
in DSADS, which leads to slight variance in the gener-
ated data distribution, so the model’s performance is not
degraded because of the difference in data distribution in
Source Combine. On the contrary, it can increase the gener-
alization performance of the model. It can be seen from the
experiment that in this case, better classification results can
be obtained even without the use of transfer learning. For
these reasons, the performance of the multi-source model
MFSAN did not exceed that of Source Combine.

Although there is little difference in data distribution,
there is still the issue of complex data characteristics in time
and space. However, our algorithm performs better because
multiple heterogeneous classifiers and consistent filters can
address these aspects. Due to the small difference in data
distributions, our consistency filter can screen out more high-
confidence samples in the target domain to participate in the
classifier’s training. Our multiple heterogeneous classifiers
can capture more features of the data for classification. In
addition, the consistency filter adds the target domain data
to the training set so that the classifiers can adapt to the tar-
get distribution. The accuracy of our ablation experiment on
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Fig. 3 ACC curve on real data set

MUCTNC and MUCTSV also decreased after removing the
consistency filter, which confirmed our conjecture. We can
see that our model achieved optimal results in four groups of
experiments on DSADS.

Performance on WISDM. We compared the results of our
model to others on the WISDM data set. WISDM was col-
lected on smartphones with a single sensor, making little
information available. Table 3 compares classification accu-
racy on WISDM. We can clearly see that the performance
on Single Best was better than on source combine. DAAN
had a better accuracy rate in classification tasks due to the
few category labels in the WISDM data set. DAAN could
be more accurate based on label subdomains, thus improv-
ing the ability to extract common features with data labels.
The multi-source model MFSAN had better results than the
source combine models because MFSAN can capture infor-
mation from multi-source domains.

As shown in Table 3, our model can improve the per-
formance of the HAR task more effectively with multiple
classifiers and a consistency filter. In WISDM, MUCT
achieves the best results in terms of average accuracy.

Performance on real data set. We evaluated our model’s
performance on a real application data set, with results as
shown in Table 4, from which we can see that the model
performance with single best was better than with source
combine. This is consistent with our previous experience.
Multi-source model MFSAN was better than single best
and source combine because multi-source models can obtain
more source domain information and improve classifier per-
formance by adapting to the data distribution of the target
domain. Our model achieved the best performance. To fur-
ther verify our model’s performance, we implemented task
P2, P3, P4 → P1 on the real data set and plotted the ACC
curve, as shown in Fig. 3, which shows the ACC curves of all

Fig. 4 Box plots on real data set

four models, where the horizontal axis represents the num-
ber of training iterations, and the vertical axis represents
the accuracy rate of the model. From the ACC curve, we
can observe the model’s rate of convergence and stability.
Although the curve of DAAN is sharper, the accuracy of our
model is higher, and the algorithm more stable, after con-
vergence. To verify the reliability of our model, we repeated
the experiment 5, 10, 15, and 20 times and drew box plots,
as shown in Fig. 4. We can find that the results of the four
groups of experiments are similar of the mean, maximum,
and minimum values. This shows that our model has reliable
performance in HAR service.

Evaluation of MUCT on unbalanced data set

We tested the performance of our model on unbalanced data
sets through experiments with the MUCT model on the real
data set, whose data and label distribution are shown in
Table 5. We can see that the subject 10 data accounted for
20.73%. However, the data collected from subject 8 only
accounted for 4.69%. This data imbalance exists not only
between subjects but between domains. For example, in sub-
ject 8, there are only 15 samples of P1, while there are 33, 61,
and 46 samples of P2, P3, and P4, respectively. This imbal-
ance is a challenge for the HAR task.

To confirm that our model handles unbalanced data, we
calculated the confusion matrix on the real data set with
source domains P2, P3, P4, and target domain P1. Figure5
shows the confusionmatrices of DAN, DAAN,MFSAN, and
our model, where each row represents the true label of a cat-
egory of samples, and each column represents the predicted
label of the model for predicting a category. The diagonal of
the confusionmatrix is the result of correct classification.We
can observe the performance of themodels on the unbalanced
data set by the confusion matrix. The MSFAN approach is
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Table 2 Comparison of classification accuracy (%) on DSADS

Standard Method P1, P2, P3 → P4 P1, P2, P4 → P3 P1, P3, P4 → P2 P2, P3, P4 → P1 Avg

Single best ResNet 66.32 63.60 63.95 58.95 63.21

JDA 44.39 46.49 43.42 49.12 45.86

TCA 46.97 46.70 40.83 52.48 46.75

DAN 54.74 61.23 63.77 65.96 61.43

DAAN 70.79 69.91 73.42 68.25 70.59

Source combine ResNet 75.18 76.40 80.44 81.67 78.42

JDA 71.93 62.19 46.14 50.04 57.58

TCA 52.84 58.07 43.12 56.14 52.54

DAN 61.23 70.35 69.56 62.72 65.97

DAAN 79.65 80.09 78.77 58.25 74.19

Multi-source MFSAN 69.30 71.05 68.42 65.88 68.66

MUCTSV 83.95 88.86 80.26 86.84 84.98

MUCTNC 80.53 86.49 79.74 82.98 82.44

MUCT 85.00 93.25 82.46 84.39 86.28

Bold indicates the best result

Table 3 Comparison of classification accuracy (%) on WISDM

Standard Method P1, P2, P3 → P4 P1, P2, P4 → P3 P1, P3, P4 → P2 P2, P3, P4 → P1 Avg

Single best ResNet 78.21 89.92 53.63 81.10 75.72

JDA 74.51 78.29 63.10 88.58 76.12

TCA 66.16 89.87 52.02 87.55 73.90

DAN 61.67 93.02 71.77 85.63 78.02

DAAN 77.04 93.02 72.18 81.10 80.84

Source combine ResNet 85.21 71.32 59.48 76.57 73.15

JDA 68.09 78.29 44.76 81.30 68.11

TCA 67.03 81.01 43.27 66.81 64.53

DAN 71.40 83.72 76.21 84.84 79.04

DAAN 85.02 89.92 65.12 82.48 80.64

Multi-source MFSAN 60.31 73.64 76.61 77.95 72.13

MUCTSV 88.33 88.37 73.19 85.43 83.83

MUCTNC 86.38 88.37 65.73 84.84 81.33

MUCT 88.91 91.47 76.81 86.02 85.80

Bold indicates the best result

superior to DAN andDAANwith unbalanced data sets. DAN
is more inclined to classify data as label 1 in the classifica-
tion task, and DAAN is more prone to labels 5 and 12. Our
model weights the data, which enables it to perform better on
unbalanced data sets. Ourmodel has fewermisclassifications
and higher accuracy on unbalanced data sets.

To further analyze the performance of ourmodel on unbal-
anced data sets, we experimented on the real data set with
source domains P2, P3, P4 and target domain P1, and drew
the ROC curve. We compared our model with MFSAN,
DAN, and DAAN. Figure6 shows the Receiver Operating

Characteristic (ROC) curve, which can accurately reflect the
relationship between the true example rate and a certain
learner’s false-positive rate. It can be found from the figure
that the Area Under Curve (AUC) region of MFSAN is sig-
nificantly larger than that of DAN and DAAN. Due to richer
samples, the multi-source domain models perform better on
unbalanced data sets. We can find that the AUC region of our
model is more significant than those of other models, which
confirms its stronger robustness on unbalanced data sets.
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Fig. 5 Confusion matrix on real data set

Discussion

Our experiments illustrated that our model can achieve
impressive classification results for personalized HAR with-
out target data labels. Our model acquired high-confidence
data through a Consistency Filter to assist in classifier train-
ing, and it could still maintain a high AUC on unbalanced
data sets. Hence, it provides a promising, easy-to-use tech-

nique to address personalizedHARproblems.We summarize
the method’s innovations and drawbacks and propose future
work.

Our model can work in a personalized human environ-
ment without new human data labels in human activity
recognition. This multi-source unsupervised transfer learn-
ing method requires less target data than the traditional
deep learning method. The information of multiple source
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Table 4 Comparison of classification accuracy (%) on real data set

Standards Method P1, P2, P3 → P4 P1, P2, P4 → P3 P1, P3, P4 → P2 P2, P3, P4 → P1 Avg

Single best ResNet 53.27 69.38 65.47 69.97 64.52

JDA 64.45 82.85 73.32 76.55 74.29

TCA 58.61 83.31 71.46 72.85 71.56

DAN 53.39 71.54 72.19 76.42 68.39

DAAN 58.23 72.31 74.46 73.83 69.71

Source combine ResNet 60.84 73.32 78.22 71.76 71.04

JDA 65.80 75.22 69.18 75.26 71.37

TCA 58.01 80.19 68.63 75.07 70.48

DAN 49.32 70.01 71.96 73.83 66.28

DAAN 57.22 76.37 81.92 73.96 72.37

Multi-source MFSAN 59.48 72.17 83.43 80.96 74.01

MUCTSV 62.64 73.06 81.46 80.96 74.53

MUCTNC 64.45 73.82 80.64 80.83 74.94

MUCT 69.41 79.42 84.94 82.51 79.07

Bold indicates the best result

Table 5 Data distribution of real data set

Subject Total P1 P2 P3 P4

0 214 55 59 47 53

1 233 62 40 64 67

2 223 63 42 63 55

3 220 56 45 56 63

4 213 53 43 59 58

5 202 58 38 60 46

6 220 54 56 66 44

7 184 25 51 62 46

8 155 15 33 61 46

9 273 72 63 68 70

10 258 79 53 70 56

11 664 236 202 121 105

12 249 58 62 66 63

Fig. 6 ROC curve on real data set

domains improves the classification performance of target
domains. Since our model does not need the target domain
data label, it can quickly process the data of newuserswithout
manual data processing. Because of its multi-source domain
nature, it can take full advantage of previous data from mul-
tiple humans rather than just using a single human.

We use the idea of co-training and using classifiers and
high-confidence data screening to improve the performance
and stability of our model. Tables 2, 3 and 4 compare the
performance of our model and other methods. After intro-
ducing high-confidence data, our classifier can better adapt
to the data distribution in the target domain. With the addi-
tion of a multi-perspective classifier, it can classify data from
multiple perspectives. It can make better use of some hidden
features of the data and improve the stability of the model.
Figure3 shows our model’s better stability and performance.
Our model better adapts to the data imbalance problem using
aweighted sample, classifiers, and high-confidence data. Fig-
ures5 and 6 show the excellent performance of our model on
unbalanced data sets.

Our model avoids the manual design of activity recogni-
tion features and is an end-to-end neural network. It does not
need to design features by hand, as with traditional meth-
ods. It significantly reduces manual work compared with
traditional and supervised models. In the feature extraction
module, we use a CNN as the backbone network. For long-
term and repetitive behaviors, CNN has a huge advantage.
An RNN is more suitable for short-time and natural sorting
behaviors [55]. Our model can replace the backbone network
with more realistic scenarios.

While experiments showed that ourmodel has good results
on public and real-world data sets for personalized HAR,
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some issues still must be considered. The quality of the
pseudo-label of high-confidence data is related to the per-
formance of our model. Therefore, our model requires the
classifier to perform better when filtering high-confidence
data. We must rely on experience to set suitable parameters
for filtering high-confidence data, and to find the best param-
eters is a challenge.Moreover, as the data in the target domain
are more important to the classifier, the classifier should pay
more attention to it.

To address the shortcomings of our model, we propose
some future work. After obtaining high-confidence data,
we can use a method similar to TrAdaboost [56] to weigh
the source domain and high-confidence data. In addition,
since samples in the source domain contribute differently
to classification results, we can weight them according to
the similarity between the source and target domains when
integrating multiple classification results.

Conclusion

We proposed the MUCT model, which can offers a viable
solution for personalized HAR. Our model communicates
differences in the activities of individuals and can quickly
recognize new human activity data using previous such data.
In the absence of target domain data labels, our model uti-
lizes co-training to make full use of target domain data.
Multiple-view classifiers are added to improve the model’s
performance. The model is an end-to-end network that can
automatically extract features with less labor than traditional
methods. Experimental results on public and real-world data
sets show that our model yields superior personalized classi-
fication results in HAR. The model also shows its robustness
in practical applications.
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