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Abstract
In order to realize the intelligent energy management of the complex ship energy system, achieve the carbon peaking and
carbon neutrality goal and reduce the ship carbon emissions and ship operating costs, this paper proposes a distributed energy
management method for ships entering and leaving ports based on polymorphic network considering computing power
resources. Firstly, a polymorphic network-based energy management system for ships entering and leaving ports is proposed
to enhance the information exchange between ship computing power, power and port power, simultaneously improve the
communication quality and communication security among different modes. Secondly, in order to reduce the ship operating
costs and port carbon emissions, the energy management model of ships entering and leaving ports is constructed considering
computing power resources. Then, according to the ship’s berthing and departing operation modes, this paper uses the
distributed algorithm to solve the energy management problem, and explores the impact on the ship microgrid when the ship’s
data load changes. Finally, simulation results verify the effectiveness of the proposed algorithm.

Keywords Distributed energy management · Polymorphic · Ship · Computing power

Introduction

With the development of artificial intelligence technology
and new energy technology, the ship energy system has
become a complex and compact distributed system. As the
frequency of international trade exchanges increase, the total
demand for transportation is increasing year by year, result-
ing in increased the carbon emissions and serious marine
pollution. Under the goal of carbon peak and carbon neutral-
ization, it is urgent to develop low-carbonor even zero-carbon
transportation. [1] Among the existing transportation modes,
waterway transportation, which produces huge carbon emis-
sions, has always occupied a large proportion. Therefore,
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reducing the carbon emissions from shipping industry has
become the focus of many researchers. The ship energy
management is the key to reduce energy consumption and
improve energy efficiency, which has been widely concerned
in the development of shipping industry.

The essence of the energy management problem for the
ship energy system is an optimization problem of a complex
system. The ship energy management plan is an indispens-
able part of the energy management system implemented
by shipping enterprises, which can strictly control and man-
age ship energy consumption, energy utilization efficiency
and carbon dioxide emissions. For the ship energy manage-
ment problem,Wen [2] developed a data-driven optimization
scheme considering navigation routing dependent on pho-
tovoltaic (PV). In order to minimize the total cost and
greenhouse gas emissions of all-electric ship (AES), a new
coordinated optimization framework is proposed to jointly
optimize the size and voyage scheduling of energy storage
system (ESS) while considering the change of solar energy.
Yuan [3] proposed that the fuzzy logic energy management
strategy can optimize the operating conditions of individual
power generation sources, improve the overall performance
of the power system and reduce the fossil fuel consumption
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of ships. Yigit [4] considered a new algorithm for ship power
management based on a smart grid feature of a mix of renew-
able energy, energy storage, shore-based power connections
and different types of bunker fuels to minimize the environ-
mental impact of ship navigation. Kalikatzarakis [5] applied
the Equivalent ConsumptionMinimisation Strategy (ECMS)
to a ship powered by a hybrid propulsion plant with hybrid
power supply that can be recharged with renewable shore
power. To this end, aMixed-Integer Non-Linear optimisation
Problem was formulated and solved by combining Branch &
Bound and Convex optimisation. To reduce ship energy con-
sumption, Lan [6] proposed a method for determining the
optimal size of the photovoltaic (PV) generation system, the
diesel generator and the energy storage system in a stand-
alone ship power system and temperatured along the route
from Dalian in China to Aden in Yemen into account, that
minimizes the investment cost, fuel cost and the CO2 emis-
sions. Banaei [7] proposed an integrated power system (IPS)
based on fuel cell (FC), battery, photovoltaic panels (PV),
and two diesel generators and modeled for an all-electric
ship to address a solution for the high pollution resulting from
conventional ships. A decentralized model predictive control
(MPC) strategy is also designed to control the modules of
the IPS. Although the use of fossil fuel during ship operation
is reducing and the use rate of clean energy is increasing,
the treatment cost of the carbon emission generated while
using fossil fuel is huge, and its economy and environmen-
tal protection issue have been widely concerned by scholars
[8, 9]. In the process of decarbonization transformation of
shipping industry, carbon capture and storage technology
can be used to collect and store carbon dioxide gener-
ated by ship power generation equipment, which can avoid
environmental pollution. In the multi-objective optimization
framework, Alireza [10] solved the economic-emission dis-
patch problem of renewable energy and coal-fired power
plants equipped with carbon capture systems. Zhang [11]
presented a coupling model considering power to gas (P2G)
technology and carbon capture power plants (CCPP), and
extends it into an integrated energy system (IES) including
electricity, thermal and gas, then proposes an economic and
environment-friendly schedulingmodel at a highwind power
penetration level. To reduce carbon dioxide emissions from
ships, Li [12] proposed a stochastic unit commitment (UC)
model to realize the low-carbon operation requirement and
coped with wind power prediction errors for power systems
with intensive wind power and carbon capture power plant
(CCPP). However, because the ship is a closed and narrow
space with limited capacity, it cannot carry large-scale car-
bon capture equipment, and the carbon capture technology
cannot adapt to the mode of ship sailing at sea. Therefore,
the government considers to realize low carbon or even zero
carbon by levying carbon tax [13]. At present, how to use
carbon tax to describe the cost of the ship carbon emission

treatment has attracted widespread attention.Wang [14] con-
sidered the speed optimization problem of the ship carbon
emission, and analyzed the impact of three different forms of
carbon taxmodels on the ship carbon emission.Dan [15] con-
structed a mixed integer nonlinear programming model with
the objective ofminimizing the operating cost by considering
the ship carbon tax, and proposed an applicable dynamic pro-
gramming method and developed a suitable solution to solve
the problem. Liu [16] proposed a bi-objective optimization
model for carbon tax imposed on liner shipping system and
network trading mechanism, and used genetic algorithm to
solve the problem. Therefore, this paper intends to use carbon
tax to depict the cost of ship carbon emission treatment, and
comprehensively considers the energymanagement methods
of the ship entering and leaving to reduce the ship operation
cost.

The centralized method is usually used to solve the prob-
lem of the ship energy management. However, due to the
high single point failure rate of centralized method and the
rapid increase of ship data calculation with the development
of the intelligent ship, centralized method cannot accurately
and efficiently process a large amount of data. Meanwhile,
for the low-carbon ship micro-grid containing large-scale
clean energy, due to its power system connected to various
new energy power supply forms [17], its power genera-
tion equipment and distributed structure presented by load,
which is more appropriate to use distributed method based
on multi-agent system to solve its energy management prob-
lem [18, 19]. Edrington [20] proposed a distributed energy
management scheme for ship power systems to address the
use of supplementary energy when high loads are suddenly
introduced in isolated microgrids, which reduces the impact
on generators. Lai [21] proposed an improved ADMM-
based distributed energy management strategy to further
meet the needs of resilience, economy, and privacy protection
required by shipboard power systems. Zhang [22] proposed a
distributed optimal scheduling algorithm based on load pre-
diction to solve the problem considering the ship navigation
economy as the goal and then ensure the safety of ship navi-
gation. Although the distributed algorithm of the ship energy
management has been studied, the energymanagement prob-
lem of ships entering and leaving ports also needs to consider
the connection between ship power system and port power
grid,which is different from the energymanagement problem
of single ship sailing.

With the rapid development of information technologies
such as the Internet, cloud computing and the Internet of
Things, some large shipping companies have gradually estab-
lished a global ship operation data center to monitor and
manage the position, navigation status and equipment sta-
tus of ships. With the increasing complexity and accuracy
of the intelligent ship control and optimization method, the
data generated by the Internet and the Internet of Things
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increases by geometric multiples. Under the double-layer
superposition of the data scale and the method, the demand
for computing power is increasing. The current Internet
economy is mostly centralized and group-oriented develop-
ment, which does not bring good application scenarios to
distributed computing power and develop appropriate oper-
ation mode, so as to make distributed computing power
cannot achieve targeted application. As the core productivity
of digital economy, computing power has become the new
focus of global strategic competition. At present, there have
been many studies on the power consumption of computing
systems. Hogade [23] managed geographically distributed
data centers to minimize energy consumption by considering
detailed data center cooling power, co-location interference,
electricity pricing, renewable energy, net metering, and peak
demand pricing distribution models. Beloglazov [24] pro-
posed an architecture of cloud energy saving management,
which realizes significant reduction of data center power con-
sumption cost while considering the energy-saving resource
allocation strategy and scheduling algorithm of the quality
of service (QOS) expectation and the power utilization char-
acteristics of equipment, which shows great potential for
improving energy efficiency under dynamic workload sce-
narios. Wang [25] proposed a branch-and-bound algorithm
to obtain a global optimal solution and a heuristic algorithm
with low computational complexity to obtain an alternative
solution close to the optimal solution, which distributes the
computational workload amongmultiple geographically dis-
persed data centers by using the difference in electricity price
to reduce the energy cost of the data center. Therefore, in the
distributed energy management of ships, how to reduce the
power consumption of shipboard data center to reduce the
carbon emission of ships and achieve green ships is a prob-
lem that needs to be solved.

Considering the ship operation cost, the ship distributed
energy management system tends to reduce the carbon
emission and ensure that the ship has sufficient computing
resources. At present, the integration of ship microgrid and
power calculation network is being considered to establish
a comprehensive power calculation network and ship micro-
grid. In the process of the ship energy management, a variety
of data information interaction among different equipment
is required, but the existing traditional IP communication
network architecture cannot meet the demand for real time,
reliability and safety level of ship information communica-
tion. A network architecture in [26] with intelligence, high
efficiency and high robustness for ship communication is
needed. A sovereign network and a high-security private
network in [27] under an autonomous polymorphic identifi-
cation space are established to support data interaction of the
ship distributed energy management systems under different
data streams. Therefore, this paper proposes an energy man-
agement system for ships entering and leaving ports based

onpolymorphic networkby combiningmulti-target andpoly-
morphic information observed by different equipment.

To sum up, the innovation points of this paper are as fol-
lows

1. A polymorphic network-based energy management sys-
tem is constructed for ships entering and leaving ports,
which improves the information exchange of power flow,
computingpowerflowandcarbonflowamongdistributed
equipment on board. At the same time, the ship’s com-
puting resource allocation is considered to improve the
ship’s energy efficiency.

2. Adistributed energymanagementmethod for ships enter-
ing and leaving ports is proposed to reduce the operating
cost and carbon emissions of ships entering and leaving
ports. The carbon tax is used to dealwith the carbon emis-
sions from ships and ships are encouraged to give priority
to using new energy for power supply. The ship is pow-
ered by the ship’s power generation equipment and is in
island mode before berthing. And the distributed average
consensus algorithm is used to obtain the optimal energy
management solution. Meanwhile, the ship microgrid is
connected to the port power system and mainly pow-
ered by shore power when berthing. And the distributed
leader–follower consensus is used to solve the problem.

Polymorphic energymanagement system

System structure

Distributed energy management for ships entering and exit-
ing ports relies on the interaction of information from a
variety of data such as power flow, computing flow and car-
bon flow between the ship’s distributed equipment, which
reduces the ship’s operating costs and reduces the ship’s
carbon footprint. Therefore, the requirements for real time,
reliability and security level of information communication
are higher, which cannot be met by the existing traditional
IP communication network architecture. To meet the devel-
opment demand of intelligent, high performance and high
robustness of ship communication network, in this paper, a
polymorphic network-based energy management system for
entering and leaving ports is proposed, as shown in Fig. 1.

The polymorphic network-based energymanagement sys-
tem for ships entering and leaving ports is mainly divided
into three layers: data layer, control layer and service layer.
Its data layer is externally connected to physical equipment
such as shipboard data center, ship power supply equipment
and port shore power, as shown in Fig. 1. Among them,
the data layer is responsible for storing relevant data used
for the energy management of ships entering and leaving
ports, which can define the communication protocols, inter-
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Fig. 1 Polymorphic architecture diagram of the proposed energy man-
agement system

faces and topologies of the ships entering and leaving ports
energy management system in full dimensions. The data
layer provides services for diversified applications of the
energy management of ships entering and leaving ports, and
provides basic support for realizing the intelligence and flexi-
bility of ship communication. The control layer is responsible
for taking over the service layer and controlling the data layer.
And it is also responsible for domain management, rights
management and other tasks that are more integrated with
the physical layer power supply. Simultaneously, logging of
the routing status within the domain and authentication of
requests within the domain after completion of the verifica-
tion of the ship information and after consensus have been
reached in the control layer. Diverse routing can be defined
according to service requirements by the ship’s polymor-
phic controller, and domain namemanagement and authority
management between polymorphic network can be realized,
laying the foundation for the distributed energy management
in ships.The service layer is responsible for implementing the
distributed energy management for ships entering and leav-
ing port. Firstly, an energy management model is established
for ships entering and leaving ports. Secondly, the computing
resources of the ships is analyzed, and finally the distributed
energy management method according to the navigation sta-
tus of the ship is designed.

The polymorphic network-based energymanagement sys-
tem for ships entering and leavingports proposed in this paper
is a new domain name management system with polymor-
phic addressing, efficient availability and privacy protection,

which can enhance the security of ship communication net-
work. The proposed energy management systems are no
longer limited to the existing IP network architecture and
protocols, and can fully meet the evolving requirements of
ship communication services.

Computing resource analysis

As the development of smart ships and their distributed tech-
nologies becomes more advanced, the generated data grows
significantly and the demand for computing power grows.
Therefore, the power consumption of shipboard data cen-
ters grows rapidly leading the cost of consuming computing
resources gradually dominates the cost of ship operation.
As the computing carrier for ship operation, shipboard data
centers play an important role in promoting the green and
low-carbon development of ships. Thus, this paper considers
the energy consumption of computing resources in the dis-
tributed energy management of ships entering and leaving
ports, and a shipboard data center power consumption model
is proposed to reduce the cost of ship computing resources
consumption and the ship operation cost.

Shipboard data centers

The brief architecture of a shipboard data center is shown
in Fig. 2. Firstly, the operation of the shipboard data cen-
ter starts with the arrival of data loads, with the input being
the total data load arriving and the output being the power
demand of each shipboard data center, which can be divided
into three main components: the power consumption of the
IT equipment, the power consumption of the cooling system
and the power consumption of other equipment. Specifically,
the IT equipment handles the incoming data load to ensure
the smooth operation of the ship. The cooling system pro-
vides cooling power to remove the heat generated by IT and
other equipment and then the internal ambient temperature of

Fig. 2 The overall operational architecture of a ship’s data center

123



Complex & Intelligent Systems (2024) 10:1247–1264 1251

Fig. 3 Schematic diagram of the
shipboard data center structure

the ship’s data center can be maintained. There is still some
other equipment such as lighting systems, security systems,
fire suppression system and waterproofing systems, which
ensures stable operation of the shipboard data center, reduces
energy costs and keeps the system running sustainably.

In terms of IT equipment, there are fourmain types of elec-
tronic equipment in a shipboard data center: processors for
data computing, switches, routers and other equipment for
data communication, storage equipment for data storage and
monitoring and other equipment for ITmanagement support.
For other equipment, such as the cooling system, the cooling
infrastructure, i.e. fans and air conditioners, can be used to
cool and then ensure the smooth operation of the shipboard
data center. The overall structure is shown in Fig. 3. Based
on this, we can construct a shipboard data center power con-
sumption model to facilitate ship operation cost calculation.

Assumption of power consumption model for shipboard
data center

Define the set of time slots as T = {1, 2, · · · ,U }, where
the data load allocation decision time matches the power
system dispatch schedule time, e.g., 1 h [28]. Define a set of
shipboard data centers distributed at different power nodes
as Q = {1, 2, · · · , V }. Within the time slots t (t ∈ T ), for
shipboard data centers j ( j ∈ Q), assume that there are

(1) Shipboard data center j is homogeneous data center,
where all servers are homogeneous (performance, power
rating, etc.).

(2) Other power consumption sources in the shipboard data
center j , such as network transmission equipment, cool-
ing equipment, storage systems, lighting systems, power
distribution systems, etc. can be regarded as a linear func-
tion of server power consumption.

(3) A dynamic cluster server configuration (DCSC) is used
and a minimum number of active servers are used while
the shipboard data center j handling the data load at rated
power, with other servers shutting down or sleeping.

(4) The data load on the vessel is delay-sensitive,with a delay
threshold D of no more than one time slot in length.
The data load allocated to the shipboard data center j is
evenly distributed across active servers andM/M/1 queu-
ing model is used to estimate the average time the data
load stays in the shipboard data center j , with the average
stay not exceeding a latency threshold D.

Shipboard data center power consumption model

The objective of the model is to reduce shipboard data center
power consumption during the ship navigation by consid-
ering the number of active servers as a decision variable,
which models the functional relationship between shipboard
data center power consumption and server power consump-
tion based on the assumptions. And shipboard data center
power consumption can be modelled as a linear function of
the number of active servers, as follows

min Pt
I DC j ,z = θ jm j,t + γ j ,∀ j ∈ Q, t ∈ T (1)
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where T is the set of time slots, Q is a collection of shipboard
data centers distributed across different power nodes, Pt

I DC,z
is the power consumption of the shipboard data center j in the
time slot t , m j,t is the number of active servers of shipboard
data center j in the time slot t , θ j is a positive constant, being
the increase in power consumption of the shipboard data cen-
ter j due to an increase in the number of active servers, γ j is
a positive constant and is the fixed power consumption when
the shipboard data center j is in operation.

The following constraints need to be considered.

Number of Servers Constraint. The number of servers in a
shipboard data center is finite and can be expressed as

0 ≤ m j,t ≤ Mj ,∀ j ∈ Q, t ∈ T (2)

where Mj is the number of servers in the shipboard data
center j .

Data Load Processing Delay Constraint. In order to ensure
the normal navigation of the ship, the shipboard data center
must process the data load within the allowed delay time.
According to the assumptions, server power consumption is
a linear function of the number of active servers, so the func-
tional relationship between server power consumption and
data load can be expressed as a function of the number of
active servers and data load. M/M/1 queuing model is used
to estimate the average stay time of the data load in the ship-
board data center, and with the average stay not exceeding a
delay threshold D, as the following function.

0 <
1

μ j −
∑

δ∈Φ λδ j,t
m j,t

≤ D,∀ j ∈ Q, t ∈ T (3)

where Φ is the collection of front-end portals for ships, λδ j,t

is the amount of data load allocated from the ship’s front-end
portal server δ (δ ∈ Φ) to the shipboard data center j at the
time slot t .

∑
δ∈Φ λδ j,t is the total data load arriving at the

shipboard data center j at the time slot t ,
(∑

δ∈Φ λδ j,t
)
/m j,t

is the amount of data load allocated to each active server
arriving in the shipboard data center j at the time slot t . μ j

is the average service rate per active server in the shipboard
data center j , or the service rate of a single active server
when the servers are homogeneous, and μ j is a fixed perfor-
mance parameter provided by the shipboard data center that
depends on server performance and the type of data load.
1/

[
μ j − (∑

δ∈Φ λδ j,t
)
/m j,t

]
is the average time the data

load stays in the shipboard data center j under the M/M/1
queuing model [29], D is the latency limit for data load pro-
cessing.

When the ship’s front-end portal is not assigned a data
load,

∑
δ∈Φ λtδ j = 0, and the minimum number of active

servers considered to satisfy the latency constraint D is
m j,t = 0. This gives the number of active servers m j,t as

a function of data load λtδ j , as follows

m j,t ≥ 1

μ j − 1
D

∑

δ∈Φ

λδ j,t ,∀ j ∈ Q, t ∈ T (4)

Data Load Balancing Constraints. To ensure the stable and
safe operation of the ship during entering and leaving from
the port, the ship’s incoming and outgoing data loads must be
consistent. A functional relationship between the data loads
of shipboard data centers distributed at different power nodes
is expressed as follows

Lδ,t =
∑

δ∈Φ

λδ j,t ,∀ j ∈ Q, δ ∈ Φ, t ∈ T (5)

Integer Constraints. Since the data loads of the ship and the
number of servers in the shipboard data center are both inte-
gers, they are bounded by integers as follows

λδ j,t ,m j,t are posi tive integers,∀ j ∈ Q, t ∈ T (6)

In summary, according to Eqs. (1)–(6), the shipboard data
center power consumption model can be obtained as

min Pt
I DC j ,z

= θ jm j,t + γ j

st : 0 < 1

μ j−
∑

δ∈Φ λδ j,t
m j,t

≤ D

0 ≤ m j,t ≤ Mj

Lδ,t = ∑

δ∈Φ

λδ j,t

λδ j,t ,m j,t are positive integers

(7)

Power model conversion and packaging for shipboard data
centers

Since we want to convert the decision variables into data
loads, the active server can be represented by the shipboard
data center power consumption according to Eq. (1) as

m j,t =
Pt
I DC j ,z

− γ j

θ j
(8)

(1) A constraint on the number of active servers in the
shipboard data center can be converted from Eq. (2) to a
constraint on the power consumption of the shipboard data
center.

γ j ≤ Pt
I DC j ,z ≤ θ j M j + γ j (9)

(2) The shipboard data center data load processing latency
constraint, i.e. Eq. (4), can be converted to

μ j − 1
D

θ j

(
Pt
I DC j ,z − γ j

)
≥

∑

δ∈Φ

λδ j,t (10)
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where when the equal sign of Eq. (10) is taken, there is a
minimum value Pt

I DC j ,z
, noted as Pt

I DC j ,z,min.

Pt
I DC j ,z,min = θ j

μ j − 1
D

∑

δ∈Φ

λδ j,t + γ j (11)

At this point, according to Eq. (8), the number of
active servers is m j,t = (∑

δ∈Φ λδ j,t
)
/
(
μ j − 1/D

)
. Data

load processing delay time of the shipboard data center j
in the M/M/1 queuing model equals to the delay bound
D = 1/

[
μ j − (∑

δ∈Φ λδ j,t
)
/m j,t

]
. The physical meaning

of Pt
I DC j ,z,min that can be derived is theminimumpower con-

sumptionvalue for a shipboarddata center j to ensure the data
load processing latency constraint. The physical meaning of
θ j/

(
μ j − 1/D

)
is the minimum variable power consump-

tion required to process a unit of data load in a shipboard
data center j .

(3) Equation (6) is an integer constraint, where the con-
version is applied. Pt

I DC j ,z,min is a discontinuous variable
under this constraint. However, as each shipboard data cen-
ter has tens of thousands of servers, the data loads that receive
allocated processing in each time slot are massive, and the
impact of power consumption from each server and data load
is negligible. Therefore, it is approximately assumed that
Pt
I DC j ,z,min is continuously variable, with the integer con-

straint λδ j,t ,m j,t ignored.
This gives the converted expression for the shipboard data

center power consumption model as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pt
I DC j ,z,min = θ j

μ j− 1
D

∑

δ∈Φ

λδ j,t + γ j

Lδ,t = ∑

δ∈Φ

λδ j,t

γ j ≤ Pt
I DC j ,z

≤ θ j M j + γ j

(12)

The shipboard data center power consumption model can
be encapsulated according to Eq. (12) as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pt
I DC j ,z,min = φ j

∑

δ∈Φ

λδ j,t + γ j

Lδ,t = ∑

δ∈Φ

λδ j,t

γ j ≤ Pt
I DC j ,z

≤ τ j

(13)

where φ j = θ j/
(
μ j − 1/D

)
, τ j = θ j M j + γ j .

In Eq. (13), φ j is the minimum variable power consump-
tion required to process a unit of data load in a shipboard
data center j , τ j , γ j are the upper and lower limits of power
consumption of the shipboard data center j respectively,
φ j , τ j , γ j are parameters for the shipboard data center [28],
which is [0.000015, 77.0, 2.0].

Fig. 4 Energymanagement systems for ships entering and leaving ports

Energymanagement model

This paper proposes an energy management system for ships
entering and leaving ports, as shown in Fig. 4. The system
uses solar energy, wind energy and fuel oil generators to
supply power to ships when ships are underway with the
power supply mode being island mode. But when ships are
docked, they are connected to the main port microgrid and
simultaneously use shore power to supply power to ships.
Therefore, the power supply mode is grid-connected. And
batteries are added to improve the instability of new energy
generation.

Objective function

Theobjective of this paper is to consider the economyof ships
entering and leaving ports and the reduction of the carbon
emissions from ships. In order to reduce the carbon emis-
sions from ships, this paper considers the use of a carbon
tax to increase the cost of using fossil energy to enable new
energy ships to reduce their carbon emissions. At the same
time, considering the computing resource requirements, the
shipboard data center needs power supply. Therefore, the
objective function consists of three parts: the cost of the ship
operation, the cost of using shore power and the cost of car-
bon tax. The cost of shipboard data center is included in the
cost of the ship operation.

F = min {F1 + F2 + F3} (14)

where F is the total cost of the ship, F1 is the cost of the ship
operation, F2 is the cost of shore power, and F3 is the cost of
the carbon tax.
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The ship operation cost

This paper considers a new energy ship powered by photo-
voltaics,wind power, and fuel oil.When the ship is underway,
the ship is powered by the ship’s power generation equip-
ment, and when the ship is docked, the ship is powered by
both the ship and shore power. Therefore, the new energy
operating cost has four components, namely, wind power
cost, photovoltaic power cost, fossil fuel power cost and bat-
tery cost.

F1 = Fw + Fpv + Ff u + Fd (15)

where Fw is the cost of wind power, Fpv is the cost of pho-
tovoltaic power, Ff u is the cost of fossil fuel power, and Fd
is the cost of the battery.

Thus, the cost functions of Fw, Fpv , Fg , Fd are specified
as follows [30]

Fw =
n1∑

z1=1

az1
(
Pw,z1

)2 + cz1 (16)

Fpv =
n2∑

z2=1

az2
(
Ppv,z2

)2 + cz2 (17)

Ff u =
n3∑

z3=1

az3
(
Pf u,z3

)2 + bz3 Pf u,z3 + cz3 (18)

Fd =
n4∑

z4=1

az4
(
Pd,z4 + bz4

)2 (19)

where Pw,z1 is the wind turbine output power, Ppv,z2 is the
photovoltaic output power, Pg,z3 is the diesel generator out-
put power, and Pd,z4 is the battery output power. az1 , az2 ,
az3 , az4 , cz1 , cz2 , cz3 , bz3 , bz4 are the cost factors for power
generation equipment, and n1, n2, n3, n4 are the number of
individual generating units respectively.

The shore power cost

When a ship docks, the ship microgrid is connected to the
port microgrid, and the ship’s power generation equipment
and shore power together supply the ship with electricity. At
this point, the energy management system for ships entering
and leaving ports is in grid-connectedmode, and shore power
is more economical and green. The cost function of shore
power is shown below.

F2 = Cs Ps (20)

where Cs is the cost factor for port shore power, and Ps is
the output power of the port microgrid.

The carbon tax cost

This paper uses a carbon tax to address the carbon emissions
from ships and reduces the carbon emissions from ships by
reducing fuel consumption.

F3 = CCO2MCO2 (21)

MCO2 =
n3∑

z3=1

ηPf u,z3 (22)

where CCO2 is the carbon tax price, MCO2 is the mass of
carbon dioxide emitted from ships, and η is the coefficient
of CO2 production from fossil fuel combustion. According
to [31], the carbon tax price is set at 50.

Constraints

In order to ensure the stability and safety of ships entering and
leaving ports during their operation, the following constraints
are therefore required.

Computing Resource Constraints. In order to handle the data
load while the ship is underway, the computing resources
onboard must be sufficient and therefore the shipboard data
center has to satisfy the following equation constraints.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Pt
I DC j ,z,min = φ j

∑

δ∈Φ

λδ j,t + γ j

Lδ,t = ∑

δ∈Φ

λδ j,t

γ j ≤ Pt
I DC j ,z

≤ τ j

(23)

Power Balance Constraint. In order to ensure that the ship
can operate properly while underway, the ship’s power gen-
eration must meet the demand for total load of the ship.
Therefore, the ship microgrid has to satisfy the following
equation constraints.

n1∑

z1

Pw,z1 +
n2∑

z2

Ppv,z2 +
n3∑

z3

Pf u,z3 +
n4∑

z4

Pd,z4 + PM

− PI DC,z =
n∑

z=1

L p,z

(24)

where N is the total number of ship’s power generation equip-
ment, which meets n1 + n2 + n3 + n4 = N . And L p,z is the
ship load demand.

Capacity Constraints on Generating Equipment.In order to
ensure the safe operation of the power generation equipment
on newenergy ships, the generation capacity of the ship needs
to be within certain limits, which can be expressed by the

123



Complex & Intelligent Systems (2024) 10:1247–1264 1255

constraints as follows

Pmin
w ≤ Pw,z1 ≤ Pmax

w , Pmin
pv ≤ Ppv,z2 ≤ Pmax

pv

Pmin
f u ≤ Pf u,z3 ≤ Pmax

f u , Pmin
d ≤ Pd,z4 ≤ Pmax

d

(25)

where Pmin
w , Pmax

w , Pmin
pv , Pmax

pv , Pmin
f u , Pmax

f u , Pmin
d , Pmax

d are
the upper and lower power limits for wind turbine power
generation equipment, photovoltaic power generation equip-
ment, diesel power generation equipment and battery gener-
ation equipment, respectively.

Battery Capacity Constraints. Due to the presence of wind
and photovoltaic power generation equipment on new energy
ships that are characterised by instability in their power gen-
eration, batteries are added to the intelligent ship. There is a
capacity limit on the amount of electricity generated by the
batteries, which is constrained as follows

SoCmin ≤ 1 − Pd
Pe

≤ SoCmax (26)

where Pe is the power rating of the battery, SoCmax and
SoCmin are the maximum and minimum state of charge of
the battery onboard respectively.

Alternating directionmethod of multipliers
(ADMM)-based distributed algorithm

Graph theory

The concerned ship microgrid with N equipment is in fact
a multi-agent system with N agents. When the ship enter-
ing and leaving the port, it is in the island mode. And the
communication topology of the multi-agent system can be
represented by a directed graph G = {V , E, A}, where
V is the set of nodes, which can be represented as V =
{Vi , i = 1, 2, 3 · · · N }, E is the set of edges, which can be
represented as E ⊆ V × V . A is the strengthened adjacency
matrix of the graph, which can be represented as A = [

ai j
]
.

In this directed graph G, all equipment nodes are connected,
which can generate interaction between information flow and
energy flow. If the agent i can pass information to the agent
j , then there is a directed edge in the node Vi and the node
Vj , which can be represented as Vi , Vj ∈ E . Next, the rein-
forced adjacency matrix can be defined as if Vi , Vj ∈ E ,
then it can be expressed as ai j > 0. If Vi , Vj /∈ E , then it
can be expressed as ai j = 0. Define the degree matrix as
D = diag {d1, d2, d3 · · · dN }, where di = ∑N

i=1 ai j . Then
the Laplacian matrix can be expressed as L = D − A, and
the Laplacian matrix can represent complex geometric struc-
tures. Moreover, when the ship is berthing at the port, it is in
grid-connected mode and connected to shore power, then a
leader agent is added to the multi-agent system.

Distributed algorithm in islandmode

When a ship is running on the sea, the ship load is supplied
by the power generation equipment on the ship. At this time,
the ship’s energy management system is in island mode, and
the leaderless distributed algorithm is used. In order to bet-
ter solve the model established in this paper, the objective
functions mentioned in “Energy management model” of this
paper can be rewritten as the following equation.

Fi (Pi ) = (Pi − αi )
2

2βi
+ ε, i = 1, 2, · · · , N (27)

where αi , βi , εi are all coefficients of the transformed cost
function for the ship power generation equipment.

In this paper, the energy management problem of ships
entering and leaving ports considering computing power
resources can be rewritten as the following equation.

min
N∑

i=1
Fi (Pi )

st :
N∑

i=1
Pi =

N∑

i=1
Li +

N∑

i=1
PI DC,i +

N∑

i=1
Si P2

i

Pmin
i ≤ Pi ≤ Pmax

i

(28)

where Si Pi 2 is the network loss generated by the power gen-
eration equipment in the transmission process.

The Lagrangian function for the energy management
problem above is

L
(
Pi , λ, v̄, v

) =
N∑

i=1

(Fi (Pi ))

+λ

(
N∑

i=1

Li +
N∑

i=1

PI DC,i +
N∑

i=1

Si P
2
i −

N∑

i=1

Pi

)

+v̄
(
Pi − Pmax

i

) + v
(
Pmin
i − Pi

)

(29)

If the function is continuously differentiable at a point P∗
i ,

and P∗
i is a local minimum solution, then there exists a set

of Lagrange multipliers λ, v̄, v such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇Pi L
(
P∗
i , λ, v̄, v

) = 0
N∑

i=1
Li +

N∑

i=1
PI DC,i +

N∑

i=1

(
Si P∗

i

)2 −
N∑

i=1
P∗
i = 0

P∗
i − Pmax

i ≤ 0

Pmin
i − P∗

i ≤ 0

v̄ ≥ 0

v ≥ 0

v̄
(
P∗
i − Pmax

i

) = 0

v
(
Pmin
i − P∗

i

) = 0

(30)
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The global optimal solution obtained is as follows

P∗
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αi+λβi
1+2Siβiλ

Pmin
i ≤ αi+λβi

1+2Siβiλ
≤ Pmax

i

P∗,max
i

αi+λβi
1+2Siβiλ

> Pmax
i

P∗,min
i

αi+λβi
1+2Siβiλ

< Pmin
i

(31)

where P∗
i is the global optimal solution of each power gen-

eration equipment.
In the island mode, the k + 1th iteration electricity price

is calculated by adding the penalty factor to obtain the incre-
mental cost as follows

λi (k + 1) = λi (k) + oi

⎡

⎣
N∑

j=1

ai j (λ j (k) − λi (k))

⎤

⎦

+κ (k) ΔP̂i (k) (32)

where oi > 0 is the algorithm step size; κ(k) > 0 is the
feedback gain; ΔP̂i (k) is the kth iteration of the estimated
local mismatch power.

According to Eq. (32), each generation unit uses λi (k) to
calculate the active power generated at the kth iteration as

Pi (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi+λi (k)βi
1+2Si Piλi (k)

Pmin
i ≤ αi+λi (k)βi

1+2Si Piλi (k)
≤ Pmax

i

Pmax
i

αi+λi (k)βi
1+2Si Pi (k)

> Pmax
i

Pmin
i

αi+λi (k)βi
1+2Si Piλi (k)

< Pmin
i

(33)

where Pi (k) is the active power of the equipment at the kth
iteration, calculated by iteration of λi .

Then, according to the local mismatch power is estimated,
and the equation is as follows

ΔP̂i (k + 1) = ΔP̂i (k) + ρ

⎡

⎣
N∑

j=1

ai j (ΔP̂j (k) − ΔP̂i (k))

⎤

⎦

+ΔPi (k + 1) − ΔPi (k)

(34)

where ρ > 0 is the algorithm step size; ΔPi (k) is the actual
local mismatch power at the kth iteration.

Based on the above analysis, when oi ∈
(

0, 1
∑N

j=0 ai j

)

,

ρ ∈
(

0, 1
maxi=1,2,3...N

∑N
j=0 ai j

)

, limk→∞κ(k) = 0 and
∑∞

k=0 κ(k) = ∞ are satisfied [32], for algorithms (32) -
(34), there are limk→∞λi (k) = λ∗

i , limk→∞Pi (k) =
Pi ∗, limk→∞ΔP̂i (k) = 0. This means that in the island
mode, the incremental cost and penalty factor converge to
the electricity price of the microgrid, and follow the average
consensus [33]. Thus, the optimal solution can be obtained,

and the microgrid can achieve the balance of power supply
and demand.

Distributed algorithm under grid-connectedmode

When the ship is in shore, the ship microgrid is connected
with the port microgrid, which is regarded as the grid-
connected state. The port microgrid is regarded as the main
power system, and the distributed algorithm with the leader
agent is used in this case, the ship energy management prob-
lem can be written as follows

min
N∑

i=1
Fi (Pi ) + λ0PM

st :
N∑

i=1
Pi + PM =

N∑

i=1
Li +

N∑

i=1
PI DC,i +

N∑

i=1
Si P2

i

Pmin
i ≤ Pi ≤ Pmax

i

(35)

The Lagrangian function for the energy management
problem above is

L
(
Pi , λ, v̄, v

) =
N∑

i=1

(Fi (Pi )) + λ0PM

+λ

(
N∑

i=1

Li +
N∑

i=1

PI DC,i +
N∑

i=1

Si P
2
i −

N∑

i=1

Pi − PM

)

+v̄
(
Pi − Pmax

i

) + v
(
Pmin
i − Pi

)

(36)

Because thedistributedoptimization algorithmwith leader
is used in the grid-connected mode, the value of λ shall be
the same as that of the leader, that is, λ of each power gen-
eration equipment on the ship shall be equal to λ of the port
microgrid. So that λ satisfies that following equation.

λ∗ = λ0 (37)

If the function is continuously differentiable at a point P∗
i ,

and P∗
i is a local minimum solution, then there exists a set

of Lagrange multipliers λ, v̄, v such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇Pi L
(
P∗
i , λ, v̄, v

) = 0
N∑

i=1
Li +

N∑

i=1
PI DC,i +

N∑

i=1

(
Si P∗

i

)2 −
N∑

i=1
P∗
i − PM = 0

P∗
i − Pmax

i ≤ 0
Pmin
i − P∗

i ≤ 0
v̄ ≥ 0
v ≥ 0
v̄

(
P∗
i − Pmax

i

) = 0
v

(
Pmin
i − P∗

i

) = 0

(38)

123



Complex & Intelligent Systems (2024) 10:1247–1264 1257

Therefore, the global optimal solution in grid-connected
mode can be obtained as follows

P∗
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi+λβi
1+2Siβiλ

Pmin
i ≤ αi+λβi

1+2Siβiλ
≤ Pmax

i

P∗,max
i

αi+λβi
1+2Siβiλ

> Pmax
i

P∗,min
i

αi+λβi
1+2Siβiλ

< Pmin
i

(39)

P∗
M =

N∑

i=1

Pi −
N∑

i=1

Li (40)

where P∗
i is the global optimal solution of each power gen-

eration equipment, and P∗
M is the optimal solution of port

power generation capacity, i.e. the power generation capac-
ity of the main power grid.

In the grid-connected mode, the iterative method of elec-
tricity price follows the leader-following consensus, and the
iterative process is as follows

λi (k + 1) = λi (k) + oi
′
⎡

⎣
N∑

j=1

ai j (λ j (k) − λi (k))

+ai0(λ0 − λi (k))]

(41)

where oi ′ > 0 is the algorithm step size.
According to Eq. (41), the active power generated by each

generation unit can be obtained by the following equation.

Pi (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi+λi (k)βi
1+2Si Piλi (k)

Pmin
i ≤ αi+λi (k)βi

1+2Si Piλi (k)
≤ Pmax

i

Pmax
i

αi+λi (k)βi
1+2Si Pi (k)

> Pmax
i

Pmin
i

αi+λi (k)βi
1+2Si Piλi (k)

< Pmin
i

(42)

where Pi (k) is the active power of the equipment at the kth
iteration, calculated by λi iteration.

Then, according to the actual local mismatch power, the
estimated local mismatch power of all nodes in the microgrid
are as follows

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gi (k + 1) =ΔP̂i (k) + ρ′
⎡

⎣
N∑

j=1

ai j
(
ΔP̂j (k) − ΔP̂i (k)

)
⎤

⎦

+ ΔPi (k + 1) − ΔPi (k)

ΔP̂i (k + 1) = (
1 − a0 j

)
gi (k + 1)

(43)

where ρ′ > 0 is the algorithm step size;ΔP̂i (k) is the kth
iteration of the estimated local mismatch power; ΔPi (k) is
the actual local mismatch power at the kth iteration.

The active power exchangebetween the port’s shore power
and the ship’s microgrid is as follows

PM (k + 1) = PM (k) +
N∑

i=n

a0i gi (k + 1) (44)

where PM (k + 1) is the power supplement value of shore
power to adjacent nodes at the kth iteration.

After the above analysis, when oi ′ ∈
(

0, 1
∑N

j=0 ai j

)

and

ρ′ ∈
(

0, 1
maxi=1,2,3...N

∑N
j=0 ai j

)

are satisfied [32], for algo-

rithms (41–44), there are limk→∞λi (k) = λ(0), limk→∞
Pi (k) = Pi ∗, limk→∞ΔP̂i (k) = 0, limk→∞PM (k) = P∗

M .
Based on this, in the grid-connected mode, the optimal solu-
tion can be obtained, by which the balance between the
energy supply and demand of the ship is achieved.

Simulation

In this case, Matlab is used to verify the effectiveness of the
proposed distributed energy management method for ships
entering and leaving ports. In the simulation cases, the topol-
ogy of the power generation equipment in the considered
ships entering and leaving ports is shown in Fig. 3, and the
parameters of the power generation equipment are shown in
Table 1. When the ship is sailing, the ship microgrid is in
island mode comprising two photovoltaic power generation
equipment (agent 1 and agent 2 in Fig. 5), two wind power
generation equipment (agent 3 and agent 4 in Fig. 5), two
fuel generators (agent 5 and agent 6 in Fig. 5), a shipboard
data center (agent 7 in Fig. 5) and an energy storage equip-
ment (agent 8 in Fig. 5), but shore power (agent 0) is not
comprised. When the ship is in shore, the ship microgrid is
in grid-connected mode, so the ship microgrid is connected
with the shore power supply (agent 0) to supply power for the
ship together. In island mode, the overall load of the ship is
120MW, the network loss generated by the power generation
equipment during power transmission is Si Pi 2, and the net-
work loss coefficient Si of each power generation equipment
is [0.0023, 0.0023, 0.0019, 0.0019, 0.0013, 0.0013, 0.0019].
In the simulation cases, 90 iterations are set in total, where
the first 30 iterations are the sailing process of the ship, the
30th–60th iterations are the berthing process of the ship, and
the 60th–90th iterations are the departure process of the ship
from the port. The simulation results are shown in Figs. 6, 7,
8, 9, 10.

Islandmode

In this case, assuming that the ship is sailing in island mode
between 8:00 a.m. and 9:00 a.m., the power consumption of
the shipboard data center is 6MW, and the energy manage-
ment model is constructed as (28). The centralized algorithm
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Table 1 Parameters of the equipment

Equipment ai bi ci Pmin
i Pmax

i

PV1 0.30 0.029 0.10 0 200

PV2 0.29 0.029 0.20 0 300

W1 0.21 0.012 0.44 0 100

W2 0.20 0.010 0.44 0 150

FU1 0.30 0.030 0.00 45 180

FU2 0.25 0.029 0.00 45 180

STO 0.20 0.016 0.00 0 80

Fig. 5 Communication topology

Fig. 6 Simulation results of centralized algorithm for ship power gen-
eration in island mode

[30] is adopted to solve the problem, the power supply of each
generator set is [16.38, 19.28, 14.92, 24.81, 21.90, 16.38,
17.20], as shown in Fig. 6. And the network loss generated
by the ship power generation equipment is 4.60MW, the car-
bon emission is 33.03t, the carbon emission cost is 1651.59¥,
generation of the ship is 130.87MW. The operation cost of
the ship is 120,560¥.

Under the same conditions, based on the distributed algo-
rithm in this paper, the incremental cost of each power
generation equipment converges to λ = 0.51 uniformly at
k = 200, as shown in Fig. 7a. At this time, the power supply
of each generator set is [16.03, 18.94, 14.55, 24.46, 21.50,
18.20, 16.84], as shown in Fig. 7b. The network loss gener-
ated by the ship’s power generation equipment is 4.53 MW,
the carbon emission of the ship is 27.08t, and the carbon
emission cost is 1354¥. The estimated powermismatch value
converges to zero at k = 200, as shown in Fig. 7c. The total
generating capacity of the ship is 130.52 MW, and the ship
operation cost is 116,630¥, as shown in Fig. 7d. During the
navigation of ships, a large amount of carbon dioxide will
be generated due to the combustion of fossil fuels. When the
generated carbon dioxide is processed, the carbon tax will
be generated, resulting in the increase of the ship operation
cost. Therefore, based on the constructed energy manage-
ment model, ships use less fossil fuels and prioritize clean
energy. By comparison, the results of the distributed algo-
rithm are consistent with the centralized algorithm, which
shows the accuracy of the distributed algorithm in this paper.

Enter and leave port mode

Port Entering Mode. In this case, it is assumed that between
8 a.m. and 9 a.m., the ship completes the process of entering
and leaving the port, and the shipboard data center consumes
6 MW. After entering the port and berthing, the ship will
be in grid connection mode, and the ship will be connected
to the port microgrid, PM is the power provided by the port
microgrid for the ship. In addition, the ship’s load is reduced
by 26.52 MW due to the closing of the ship’s navigation
equipment, while the load is increased by 24.89 MW due
to the opening of the loading and unloading equipment by
the docked ship. When the ship is connected to the grid at
the shore, the energy management model is shown as (32),
which is solved by the distributed algorithm. It can be seen
from Fig. 8a that when the ship is docked and connected to
the grid at k = 500, the incremental cost of the final power
generation equipment converges to λ = 0.48 at k = 800. At
this time, the power supply of each generator unit is [12.42,
15.38, 10.69, 20.75, 17.35, 14.01, 13.01, 25.29], as shown in
Fig. 8b. The network loss generated by ship power generation
equipment is 2.90 MW, the carbon dioxide emitted by the
ship is 20.45t, and the carbon emission cost is 1022.5¥. It
can be seen from Fig. 8c that during the process of entering
the port and berthing, it passes through 520 iterations, and
the estimated power mismatch value converges to 0 again
after rapid adjustment. The total generating capacity of the
ship is 128.89 MW, and the operating cost is 204,860¥, as
shown in Fig. 8d. It can be seen that since shore power is
more economical and green, the output power of the ship
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Fig. 7 Simulation results of distributed algorithm for ship in island mode

’s power generation equipment becomes less and the shore
power output power is more when berthing.
Port LeavingMode. In this case, when the ship is sailing away
from the port, the ship energy management system changes
from the grid connection mode to the island mode, where the
ship loading and unloading equipment is closed, so that the
ship load decreases by 24.89MW, and the navigation equip-
ment is opened, so that the ship load increases by 26.52MW.
The ship energy management model is shown as (28), which
is solved by using the distributed algorithm. As shown in
Fig. 9a, when k = 500, the ship leaves the port, and the
incremental cost of each power generation equipment con-
verges to λ = 0.51 at k = 800. It can be seen from Fig. 9b
that the power supply of each equipment is [12.41, 15.37,
10.68, 20.75, 17.34, 14.00, 13.00, 25.34] when leaving the
port. Power supply of each equipment after switching back
to island mode is [12.42, 15.38, 10.69, 20.75, 17.35, 14.01,
13.01, 25.29]. The net loss generated by the ship power
generation equipment is 2.90 MW, the carbon emission is

27.07t, and the carbon emission cost is 1353.5¥. As shown
in Fig. 9c, after the switching, the mismatch value of the
ship fluctuates briefly, and after 600 iterations, the estimated
power mismatch value of the ship microgrid converges to 0
again quickly after adjustment. The total power generation
of the departure ship is 128.89 MW, and the operation cost is
116,130¥. When sailing on an island mode, the total power
generation of the ship is 130.52 MW, and the operation cost
is 116,630¥, as shown in Fig. 9d

Through the comparison and analysis of the two sets of
simulation results, it can be seen that the carbon emission
of the ship using shore power to supply power for the ship
after the ship is docked is obviously reduced, compared with
that of the ship during navigation. At the same time, the
operation cost of ships entering ports is much higher than
that leaving the port. The reason is that when the ship is
docked, the ship preferentially uses more economical and
environment-friendly shore power to supply power to the
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Fig. 8 Simulation results of ship power generation in port entering mode

ship, so the carbon emission content is reduced, resulting in
the obvious reduction of operation cost.

Equipment troubleshootingmode

In this case, it is assumed that the ship is in island navi-
gation mode between 8:00 a.m. and 9:00 a.m.. The power
consumption of the shipboard data center is 6 MW, the ship
power generation equipment FU1 has a fault and needs to be
repaired, and the ship enters the equipment troubleshooting
mode. The energy management model is as shown in (28),
which is solved based on the proposed distributed algorithm.
When k = 230, the ship power plant FU1 fails and is shut
down for maintenance. When k = 350, the ship incremental
cost converges again to λ = 0.54, as shown in Fig. 10a. The
amounts of power supplied by the remaining power plants
PV1, W1, STO, PV2, W2, FU2 are [18.48, 21.35, 0, 26.98,
24.34, 21.07, 19.44], as shown in Fig. 10b. The network
loss generated by the ship power generation equipment is

5.28MW, the carbon emission is 16.77t, and the carbon emis-
sion cost is 838.5¥. When one of the ship’s diesel generators
fails, the output power of the remaining power generation
equipment is increased while reaching the upper limit of its
own power generation. As shown in Fig. 10c, after the fail-
ure of FU1, the estimated power mismatch value reaches to
15 and fluctuates greatly. After 300 iterations, the estimated
power mismatch value converges to 0 again, meeting the
demand for ship supply and balance. As shown in Fig. 10d,
the total power generation of the ship is 131.66 MW, and
the ship operation cost is 169,340¥. Compared with the con-
ventional island mode, the ship operation cost increases by
52,710¥, but due to less fossil fuel combustion and more use
of clean energy, the ship carbon emission is greatly reduced,
and the carbon emission cost is reduced accordingly.
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Fig. 9 Simulation results of ship power generation in port leaving mode

Power consumption of shipboard data center

The shipboard data center is an important load on the ship.
Assuming that there are two shipboard data centers on the
ship, only one is started and one is standby, so as to ensure
sufficient computing resources of the ship. In the above sim-
ulation cases, it is assumed that the simulation period is from
8:00 a.m. to 9:00 a.m., the load of ship operation data is
266,700 number/s, and the power consumption of the ship-
board data center is calculated to be 6MWbased on the power
consumption model of the shipboard data center as shown in
(13). In order to obtain the power consumption of the ship-
board data center in each time period, the data load generated
in the process of receiving the ship sailing data from the front
end of the shipboard data center is given, as shown in Table 2.
As the data load generated during the operation of the ship
is variable [28], the power generation capacity of the power
generation and energy storage equipment on the ship changes
accordingly to meet the load demand of the shipboard data

center, which increases the ship operation cost, as shown in
Table 3.

Conclusion

This paper has proposed a polymorphic distributed energy
management method for ships entering and leaving the port
considering computing power resources. Firstly, a polymor-
phic network-based energy management system for ships
entering and leaving ports has been proposed to enhance
the information exchange between ship computing power,
power and port power, which improves the communication
quality and communication security among different modes.
Secondly, in order to reduce the ship operating costs and
port carbon emissions, the energy management model of
ships entering and leaving ports has been constructed. Then,
according to the ship’s berthing and departing operation
modes, this paper has used the distributed algorithm to solve
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Fig. 10 Simulation results of ship power generation in equipment troubleshooting mode

Table 2 Ship operation data
load

Time Data load Time Data load Time Data load
(h) (105 Number/s) (h) (105 Number/s) (h) (105 Number/s)

1 1.000 9 2.667 17 3.400

2 0.800 10 3.100 18 3.000

3 0.600 11 3.200 19 3.600

4 0.500 12 2.800 20 4.000

5 0.400 13 3.100 21 3.800

6 0.400 14 3.000 22 3.400

7 0.600 15 3.400 23 3.100

8 1.400 16 3.400 24 2.400
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Table 3 Operation cost per time period of a shipboard data center

Time Operation Time Operation Time Operation
(h) cost (105 ¥) (h) cost (105 ¥) (h) cost (105 ¥)

1 0.8390 9 1.0589 17 1.2981

2 0.7999 10 1.1796 18 1.2708

3 0.7617 11 1.2338 19 1.3023

4 0.7426 12 1.2109 20 1.3507

5 0.7243 13 1.2324 21 1.3651

6 0.7222 14 1.2322 22 1.3461

7 0.7517 15 1.2696 23 1.3140

8 0.8699 16 1.2883 24 1.2483

the energymanagement problem, and explored the impact on
the shipmicrogridwhen the ship’s data load changes. Finally,
the simulation results verify the effectiveness of the pro-
posed polymorphic distributed energy management method
for ships entering and leaving ports considering computing
power resources.

In the future, low-carbon green ships and ports includ-
ing clean energy are the development direction, which are
with the multi-energy network. To improve the efficiency
of comprehensive utilization of multiple energy sources, the
research on distributed energy management strategies to
solve the energy management problem with coupling con-
straints requires concern.
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