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Abstract

Recently, lung cancer prediction based on imaging genomics has attracted great attention. However, such studies often have
many challenges, such as small sample size, high-dimensional information redundancy, and the inefficiency of multimodal
fusion. Therefore, in this paper, a deep convolution cascade attention fusion network (DCCAFN) based on imaging genomics
is proposed for the prediction of lung cancer patients’ survival. The network consists of three modules: an image feature
extraction module IFEM), a gene feature extraction module (GFEM), and an attention fusion network (AFN). In the IFEM,
a pretrained residual network based on transfer learning is used to extract deep image features to fully capture the computed
tomography (CT) image information conducive to prognosis prediction. In the GFEM, the F-test is first used for gene screening
to eliminate redundant information, and then, a cascade network with the convolution cascade module (CCM) that contains
a convolution operation, a pooling operation, and an ensemble forest classifier is designed to better extract the gene features.
In the AFN, a bimodal attention fusion mechanism is proposed to fuse deep image features and gene features to improve
the performance of predicting lung cancer survival. The experimental results show that the DCCAFN model achieves good
performance, and its accuracy and AUC are 0.831 and 0.816, respectively. It indicates that the model is an effective multimodal
data fusion method for predicting the survival prognosis of lung cancer, which can greatly help physicians stratify patients’
risks, and achieve personalized treatment for improving the quality of patients’ lives.
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Introduction

Lung cancer is one of the most common malignant tumors in
the world, with the highest morbidity and mortality, which
seriously threatens human health and life [1, 2]. It is reported
that 70% of lung cancer diagnoses are made after the symp-
toms of advanced local or metastatic diseases appear, and the
5-year survival rate after diagnosis is about 16% [3, 4]. Only
when lung cancer patients are diagnosed at an early stage
can their survival rate reach more than 50% [5, 6]. Hence,
an accurate diagnosis is crucial for the treatment choice and
prognosis of each lung cancer patient [7]. Unfortunately, the
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heterogeneity of lung cancer in many aspects, such as his-
tology, molecular characteristics, and driving genes, makes
accurate diagnosis difficult and also makes the prognostic
survival time of patients vary from several months to 7 years
[8, 9]. Therefore, there is an urgent need for an effective sur-
vival prediction model to assist in the selection of treatment
plans so as to improve the treatment effect of patients and
increase their cure rate and survival rate.

With the rapid development of computer-aided technol-
ogy, many machine learning and deep learning methods
have been developed for the analysis of lung cancer survival
prognosis [10-12]. These methods primarily utilize clini-
cal information and image information, such as computed
tomography (CT) images and positron emission tomography
(PET) images, of lung cancer patients for predicting their
survival. For example, Katzman et al. [13] proposed a Cox
proportional hazards deep neural network and state-of-the-
art survival method, referred to as the DeepSurv model, for
establishing the interaction between patient covariates and
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treatment effects so as to provide personalized treatment sug-
gestions. She et al. [14] applied the DeepSurv model to the
survival analysis of non-small cell lung cancer (NSCLC) and
demonstrated that DeepSurv could be used to provide treat-
ment recommendations for better survival outcomes. Astarak
et al. [15] designed a novel feature set from the CT and PET
images for capturing intra-tumor heterogeneity and used a
support vector machine based on the novel feature set and the
classic radiomic features for the task of overall survival pre-
diction. Amini et al. [16] proposed a multi-level multi-modal
radiomics model based on feature level fusion and image
level fusion of PET images and CT images to improve the
overall survival prediction accuracy of non-small cell lung
cancer (NSCLC) patients. The results show that the concor-
dance index (C-index) of the 3D wavelet transform fusion
strategy in predicting survival risk is the highest (C-index =
0.708). Mukherjee et al. [17] developed a shallow convolu-
tion neural network to analyze CT images across four medical
centers for predicting the overall survival rate of NSCLC
patients. The C-index of the overall survival rate of each inde-
pendent cohort was 0.62, 0.62, 0.62, and 0.58, respectively.
Wu et al. [18] proposed a multimodal deep learning method
for NSCLC survival analysis. This method uses CT images
and clinical data to achieve fully automatic end-to-end lung
cancer survival analysis based on 3D ResNets, which allows
the rich information associated with survival information
in CT images to be preserved and provides personalized
prognosis and decision-making with sufficient granularity.
However, it is limited to further improve the performance of
the above methods using only images and clinical informa-
tion.

In addition to the above-mentioned clinical and image data
related to cancer, a large amount of gene data is also avail-
able with the development of high-throughput sequencing
technologies. These gene data are involved in the biologi-
cal processes in many cancers and are associated with the
prognostic survival time of patients, which makes them of
great interest in the survival prognostic analysis of can-
cer. Hence, many studies have attempted to use a clinically
acceptable combination of gene expression information and
images to maximize the prediction performance of cancer
survival [19-21]. For example, Wang et al. [22] proposed a
deep bilinear network (GPDBN) that effectively integrates
gene data and pathological images for improving the perfor-
mance of breast cancer prognosis prediction. In this model,
an inter-modal and two intra-modal bilinear feature coding
modules are designed to build complex inter-modal and intra-
modal relationships, respectively. Then, a multilayer deep
neural network is used to obtain complementary informa-
tion between inter-modal and intra-modal relationships for
the final prognosis prediction. Li et al. [23] proposed a new
hierarchical multimodal fusion method, HFBSurv, which is
mainly designed with modality-specific and cross-modality

@ Springer

attention factor decomposition bilinear modules and uses
multiple fusion strategies to gradually and hierarchically fuse
gene and image features. A large number of experiments
show that HFBSurv can effectively perform multimodal data
hierarchical fusion and achieve good performance in survival
prediction. Chen et al. [24] proposed an interpretable strat-
egy for end-to-end multimodal fusion of histology image and
genomic features for survival prediction, which can improve
prognostic determinations from ground truth grading and
molecular subtyping.

Therefore, the above-mentioned deep learning model
based on imaging genomics has great potential and applica-
tion in predicting survival prognosis of cancer using gene data
and image data. However, there are still some challenges to
achieving high prediction accuracy of cancer survival based
on imaging genomics: (1) The multimodal medical image
data available for most studies tends to have a small sam-
ple size and is prone to overfitting when trained directly
using deep learning models. (2) The high-dimensional gene
information contains a lot of redundancy and noise, which
will affect the model’s performance. (3) The existing stud-
ies on the fusion of multimodal information such as medical
images and genomics still have low fusion efficiency, which
is insufficient to establish the complex relationship between
multimodalities.

To this end, we propose a deep convolution cascade atten-
tion fusion network (DCCAFN) based on imaging genomics
to predict the survival prognosis of lung cancer. For CT
images, the pretrained residual network is used to extract
deep features, effectively preserving the image features
related to prognosis prediction. For gene data, feature selec-
tion is carried out for high-dimensional gene information,
and then features are further extracted through a cascade
network with the convolution cascade module (CCM), effec-
tively eliminating redundant data in gene information and
retaining the most relevant gene features. In addition, an
attention fusion mechanism is proposed, in which deep image
features and gene features are used for information fusion and
interaction so that the model can not only obtain important
features of each modality but also effectively perform deep
fusion.

The main contributions of this paper are as follows:

(1) A DCCAFN model based on imaging genomics is pro-
posed to predict the survival risk of lung cancer. The
network effectively solves the low-efficiency problem of
multimodal feature fusion and provides a new paradigm
for multimodal data fusion.

(2) A cascade network with the CCM is proposed to extract
gene features, effectively eliminate redundant data in
gene information, and retain the most relevant gene fea-
tures.
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(3) An attention fusion mechanism is proposed to fuse deep
image features and gene features, which can accurately
complete the task of lung cancer survival prediction.

Related work
Transfer learning

Deep learning has played an important role in the study of
medical imaging. However, the excellent classification abil-
ity of deep learning algorithms relies on large-scale datasets,
and medical image datasets are often limited and small scale.
For this reason, many studies have been proposed to solve the
limitations of small medical datasets. Transfer learning tech-
niques improve model performance by transferring image
representation capabilities learned from larger-scale natural
images to medical small-sample images [25-28]. Esteva et al.
[29] used a pretrained GoogleNet Inception v3 Convolutional
Neural Network (CNN) on a large-scale natural image set for
skin cancer classification. Hassan et al. [30] proposed an effi-
cient and accurate classification method for medical images,
which used transfer learning and pretrained ResNet50 model
to optimize feature extraction, and then performed linear dis-
criminant analysis classification. The method can be used
to retrieve clinical cases from large medical repositories.
Therefore, the paper uses transfer learning and pretrained
ResNet50 model to extract deep features conducive to sur-
vival prognosis, so as to avoid the problem of overfitting
caused by the small sample size. The schematic diagram of
the transfer learning process is shown in Fig. 1.

Deep cascade

In machine learning and deep learning, the quality of data
features directly affects the performance of the model.
High-dimensional data usually contains a large number of
redundant features, which will interfere with the subsequent
data analysis process, or even cause overfitting, thus affect-
ing the final classification result. Practice has proved that
the cascade model has made a new breakthrough, which not
only borrows from the advantages of deep learning, but also
effectively avoids the phenomenon of overfitting [31, 32]. For
example, Zhou et al. [33] proposed a multi-grained cascade
forest (gcForest) algorithm based on the idea of constructing
deep models with non-differentiable modules such as deci-
sion trees. The gcForest can perform representation learning
through forests. It works well with small-scale data, and its
performance is robust to hyperparameter settings. Ni et al.
[34] proposed a Cascade-Gate Forest with gating mecha-
nism. The base classifier of Cascade-Gate Forest only uses
random forest, and each layer does not use the previous layer

to extract all features, but uses out-of-bag error estimation
(OOB) to filter the base classifier with better classification
effect to extract features. Wang et al. [35] improved gcForest
based on the idea of DenseNet, and proposed a dense adaptive
cascade forest (daForest). In the dense connection, the fea-
tures extracted by each layer are spliced with all subsequent
layers. In the determination of the number of base classifiers
in each layer, a linear search method is used to determine
the optimal parameters. Mossa et al. [36] proposed a cascade
approach based on deep learning for the overall survival (OS)
classification of brain tumor patients using multimodal mag-
netic resonance images (MRI) to improve the performance
of CNN model on small volume datasets. Shaaban et al. [37]
proposed a dynamic deep cascade model for deep convo-
lution forest (DCF). The model uses the convolution and
pooling layers to automatically extract features, and dynam-
ically detects spam based on basic classifiers such as random
forest and extreme random tree. The results show that the
model achieves remarkable accuracy in text classification.

For small datasets, the performance of individual clas-
sifiers may be unsatisfactory. However, the cascade model
based on multiple classifiers can achieve satisfactory results.
Practice has proved that the cascade method can not only
improve the generalization performance and classification
accuracy of the model, but also reduce the complexity of the
algorithm, and it can be widely used in text, image, gene and
other fields [31, 32, 36, 37]. Therefore, based on the idea of
deep cascade, this paper proposes convolution cascade mod-
ules (CCMs) to extract gene features, and the CCMs improve
the model performance in predicting the survival prognosis
of lung cancer on small datasets.

Visualizing CNNs

Deep neural networks are known for their excellent handling
of a variety of machine learning and artificial intelligence
tasks. However, due to their over-parameterized black-box
nature, they are often accused of lacking interpretability,
and it is often difficult to understand the prediction results
of deep models. In recent years, many interpretative tools
have been proposed to help systematically investigate the
learned weights and further examine the results of neural
networks. Some recent work visualizes the internal represen-
tations learned by CNN in an attempt to better understand the
features they extract [38]. Zhou et al. [39] elucidated how the
global average pooling layer explicitly enables CNN to have
significant localization capability, and the proposed network
is able to localize the identified image regions, exposing the
implicit attention of CNN on images. Selvaraju et al. [40]
proposed a technique for generating "visual explanations" for
decisions from a large number of CNN-based models, Gradi-
ent Weighted Class Activation Mapping (Grad-CAM), which
uses the gradient of any target concept that flows into the final
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Fig. 1 The schematic diagram of the transfer learning process

convolutional layer to generate a coarse localization mapping
that highlights important regions of the predicted concept in
the image, making CNN understanding more transparent.
Katafuchi et al. [41] proposed a Layer-wise External Atten-
tion Network (LEA-Net) that converts anomaly maps into
an attention map and then incorporates the attention map
into an intermediate layer network to effectively detect image
anomalies. Experiments demonstrate that the proposed lay-
ered visual attention mechanism can consistently improve
the anomaly detection performance of existing CNN mod-
els. Rosso et al. [42] proposed the use of CNN ResNet-50
and a transfer learning approach to accomplish the classifica-
tion of defects in raw images provided by the GPR instrument
and employed a state-of-the-art neuro-vision converter (ViT)
architecture to generate attention maps to enhance the inter-
pretability of the model. These works have demonstrated that
the introduction of attention maps can indeed improve the
prediction results of the models and that the interpretability
of neural networks can be effectively enhanced by visualizing
the attention maps.

Method

In this section, DCCAFN based on imaging genomics is pro-
posed to predict the survival of lung cancer. The overall
architecture mainly includes three modules: image feature
extraction, gene feature extraction, and the attention fusion
network. In the image feature extraction module (IFEM), the
CT image is transformed into a 2D image block contain-
ing nodules by clipping, and the deep features are extracted
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using the pretrained ResNet50 network. In the gene feature
extraction module (GFEM), the gene expression data of RNA
sequencing (RNA-seq) is screened by F-test, and then further
extracted by a cascade network with the CCM. In the atten-
tion fusion network (AFN), the extracted deep image features
and gene features are processed by Hadamard product and
sumpooling. Then, they are assigned different importance
levels and input into the constructed AFN to predict the sur-
vival of lung cancer. The final output is obtained from the
predicted survival probability value. The overall architecture
is shown in Fig. 2. In the following, the image feature extrac-
tion, the gene feature extraction, and the attention fusion
network will be introduced, respectively.

Image feature extraction

For image information, we design an IFEM to extract deep
image features, as shown in Fig. 2a. In this module, a pre-
trained ResNet50 network is used to extract more effective
deep features from the CT images. This paper mainly regards
ResNet50 as a baseline for deep feature extraction, which is
mainly composed of the residual block and the jump con-
nection between the block and the block. The residual block
consists of a series of convolutional layers, batch normaliza-
tion, and Relu activation layers. The jump connection makes
the gradient of back propagation better by shortening the
distance between non-adjacent layers, and it also enables the
network to automatically learn the path of feature motions
without affecting the performance of the network, thereby
enhancing the generalization ability of the network.
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Fig.2 The overall architecture of DCCAFN. There are three main mod-
ules in DCCAFN: a image feature extraction module: The pretraining
ResNet50 is used to extract deep features; b gene feature extraction
module: F-test is used for gene feature screening, and then the gene

Fig.3 The details of image
feature extraction

features are further extracted based on deep convolution cascade algo-
rithm; ¢ attention fusion network: based on the extracted image features
and gene features, the attention fusion network is designed to predict
survival

/ Original Structure \

AUO,

-

Figure 3 shows the details of image feature extraction. In
the original network, the fully connected layer of ResNet50
provides an optimal feature, followed by the softmax classi-
fication. In this study, we use pretrained ResNet50 based on
transfer learning to extract deep image features, which can
make better use of the robustness and discrimination learning
ability of ResNet50. Firstly, we perform preprocessing steps
to adjust the size of images and align them with the ResNet50
network input size. Then, we utilize the pretrained ResNet50
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model trained on the ImageNet dataset. Using the transfer
learning, the weights except the last fully connected layer
are frozen in the setting of the pretrained ResNet50 model,
and the original 1000 classes are replaced with the two classes
in the last fully connected layer. Lastly, the ResNet50 model
is trained on a relatively small dataset to learn and fine-tune
the weights of the fully connected layer for CT image classi-
fication, and modules before the last fully connected layer in
the well-trained model are used as the deep feature extraction
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module. Eventually, in the deep feature extraction module,
the optimal deep image feature vector fimage Of size 2048 is
obtained at the "Average pool" layer, and input into the AFN
for lung cancer survival prediction.

Gene feature extraction

The gene expression data used in this study is RNA-seq data.
In the RNA-seq data, each patient contains more than 20,000
gene with a large amount of redundant and noisy information,
which will significantly increase the computational cost and
reduce the prediction accuracy. Therefore, the relevant genes
need to be screened from the RNA-seq data before train-
ing the model. In the screened genes, some ambiguous gene
expressions (N/A) will be deleted. In the section, a GFEM is
proposed to extract the gene feature from the RNA-seq data,
as shown in Fig. 4. First, genes most relevant to lung can-
cer survival are selected through the F-test algorithm [43].
Then, the deep gene features are further extracted through a
cascade network with the CCM.

In the GFEM, the CCM at each level consists of the con-
volution, pooling, and classification layers, among which the
classification layer contains some random forest (RF) base
classifiers. The convolution layer is responsible for feature
extraction, while the pooling layer helps reduce overfitting
in the proposed model. In addition, the classification layer
predicts the probability of survival. Each level receives pro-
cessed feature information from its previous level and outputs
its processing results to the next level. The output at each
level is the probability of base classifiers, which are then
connected to the feature maps of the pooling level output
to form the input of the next level. Specifically, the convo-
lution layer extracts the most relevant hidden features from
the gene data by performing the convolution operation on
the screened gene features and applying the ReLU activa-
tion function to the output end. Then, the global maximum
pooling operation is used to obtain the maximum values of
the output feature maps of the convolution layer, and these
maximum values are input to the RF classification layer. At
the same time, the new features extracted from the convolu-
tion and the pooling layers are concatenated with the output
probability features of the classification layer as the input
vector of the next convolution layer. Until the last CCM, its
output probability features are concatenated with the output
features of the pooling layer as the input of the next layer,
and then the output feature vector fyene of GFEM is obtained
through average pooling and full connection layer.

The GFEM combines the advantages of ideas in the
bagging and boosting methods. Multiple RFs are used in
each CCM for classification, which reflects the advantage of
bagging methods in reducing variance. Multiple CCMs are
cascaded, and the next level continuously corrects the errors
of the previous level through the output of the previous level,
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reflecting the advantage of boosting in reducing deviation. In
this paper, the adaptive method is used to determine the num-
ber of levels (i.e. CCM). When the three consecutive levels of
the model cannot extract new features based on the previous
level to obtain better classification accuracy, the model stops
training. Unlike deep neural networks in which the number
of hidden layers is a predefined parameter, the GFEM can
adjust the complexity during training by itself. Therefore, the
proposed model is very suitable for high-dimensional small
sample gene data.

Attention fusion network

In order to effectively fuse the extracted image and gene
information, we design the AFN based on the extracted deep
features and gene features to fuse information of different
modalities. The network can clearly explore the complex
relationship between different modalities and give them dif-
ferent importance, as shown in Fig. 5. In our work, using
feature representations fimage and fgene Of different modali-
ties, the cross-modality representation ffysion can be obtained
by:

Stusion = SumPOOIing<UT fimage O] vT fgene, k) s (D

where Sumpooling( f, k) represents performing sumpooling
operation over f by using non-overlapping windows of size
kUT and VT represent learnable weight matrices; © is the
Hadamard product of two feature vectors.

Furthermore, a bimodal attention is introduced to deter-
mine the importance of the cross modality representation. In
our work, the importance of deep image features and deep
gene features is first measured by «1 and a5, as follows,

a1 = Sigmoid(w1 fimage + b1).
o) = Singid(W2fgene + b2)’ (2)

where w,, and b,,(m = 1,2) are the parameter matrix and
bias terms (from image feature modality and gene feature
modality) of the fully connection layer from image feature
modality and gene feature modality, respectively. Then, we
consider the similarity Sfusion between fimage and fgene, and
it is estimated as follows:

%1 fimage %2 faene
Stusion = Z (Z o1 fimage ) (Z %2 feene ) 3)

The calculated similarity is in the range of 0 to 1. The
importance o of the final cross modality is obtained as fol-
lows:

eO{

= Ze&’

o1+or

a= ,
Sfusion + SO

o
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where Sy represents a predefined term that controls the rela-
tive contribution between the similarity and the importance
of a specific modality, which is set to 0.5 here. Therefore,
the output feature ffusion of the AFN can be denoted as the
following weighted cross modality representation,

ffusion = o ffusion- ©)

The output features of the last fully connected layer are
input into the output layer (i. e. sigmoid layer) to generate
the final prediction scores for shorter term and longer term
survivors.

Experimental results
In this section, we first introduce specific data preprocess-

ing, experiment details, and evaluation metrics. Then, some
ablation experiments are performed to verify the validity of

each module in the DCCAFN model. Finally, the proposed
model is compared with other studies to demonstrate that
the proposed DCCFAN model can make full use of the CT
image information and the gene information and effectively
improve the performance of predicting survival.

Datasets

Some experiments are conducted on the public datasets
NSCLC Radiogenomics, TCGA-LUSC, and TCGA-LUAD
downloaded from the TCIA website (https://wiki.cancerim
agingarchive.net). The patients involved in the dataset have
received ethical approval. Meanwhile, patients from the pub-
lic dataset need to meet the following inclusion criteria:

(1) Primary lung cancer is confirmed by histology;

(2) All selected patients included follow-up data for 5-year
survival time;

(3) Cases contain both CT data and RNA-seq data.
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Fig.6 Lung cancer CT images
including the shorter term
survivors and longer term
survivors image samples

Shorter-term survivors

Longer-term survivors

Besides, in the training and testing datasets, patients will
be excluded with the following situation, such as (1) the lack
of clinical data; (2) the lack of RNA-seq data; (3) the lack of
CT data; (4) the lack of follow-up data.

The lesion areas in all CT images from 168 patients in the
public dataset (NSCLC Radiogenomics 117 cases, TCGA-
LUSC 30 cases, and TCGA-LUAD 21 cases) are marked
by these experienced radiologists (lung imaging practice for
5 years) in the partner hospital. Based on these marked lesion
areas, the CT images are cropped to a region of interest (ROI)
with a size of 64 x 64, and a total of 6467 ROI images
are obtained. Among the 168 cases, there are 5268 genes
after deleting the missing values in the RNA-seq data. After
the z-score standardization of the remaining genes, the F-
Test algorithm is used to screen the genes, and the screened
genes are used as the input of the cascade network with the
CCM. These patients are further classified into longer term
and shorter term survivors using the 5-year survival crite-
rion based on their clinical information. Accordingly, shorter
term survivors are labeled as 1 (i.e., a poor prognosis), while
longer-term survivors are labeled as O (i.e., a good progno-
sis). Figure 6 shows some CT images, including the shorter
term survivors and longer term survivors image samples. To
comprehensively evaluate the proposed survival prediction
methods as well as ensure the robustness of the results, we
employ fivefold cross-validation. In particular, the dataset is
randomly divided into the training set and the testing set at a
ratio of 4:1.

Table 1 presents the clinical characteristics of patients,
including the number of patients, average age, sex, smok-
ing status, histology, and survival status in the training set
and testing set, and the corresponding p value between the
two datasets. It is evident from the table that the p values of
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CT images

Table 1 The clinical characteristics of patients

Attributes Training set ~ Testing set p value
The number of Patients 134 34
Average age 68.7 67.2 0.102
Sex
Female 38 (22.6%) 10 (6.0%) 0.336
Male 96 (57.1%) 24 (14.3%)
Smoking status
Non smoker 22 (13.1%) 5 (3.0%) 0.145
Former 82 (48.8%) 21 (12.5%)
Current 30 (17.9%) 8 (4.8%)
Histology
Adenocarcinoma 87 (51.8%) 22 (13.1%) 0.763
Squamous cell 45 (26.8%) 11 (6.5%)
carcinoma
NSCLC NOS (not 2 (1.2%) 1 (0.6%)
otherwise specified)
Five-year survival time
Shorter-term survivors 88 (52.4%) 22 (13.1%)
Longer-term survivors 46 (27.4%) 12 (7.1%)

age, sex, smoking status, and histology are greater than 0.05,
which implies that there are no significant differences in age,
sex, smoking status, and histology between the training set
and the testing set. Note that when the p value is less than
0.05, there is statistical significance for the corresponding
characteristic between the training set and the testing set.
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Table 2 Optimum parameter setting in the GFEM of the DCCAFN
model

Parameters Best value
The number of convolution layers in each CCM 1

The number of trees in each CCM 100

The number of cascade levels 4

Implementation details

In the experiment, CT images and RNA-seq data are used as
inputs to IFEM and GFEM, respectively. Deep image fea-
tures of CT images are extracted by pre-trained ResNet50,
which ensures that in the case of insufficient samples, low-
level features can be learned quickly and high-level features
can also be obtained by fine-tuning the pre-trained ResNet50
only, thus improving the convergence speed and prediction
accuracy of the model. Then, after removing the missing
values from the RNA-seq data, the genes are screened by the
F-Test algorithm, and the deep gene features are extracted
by the cascade network with the CCM. Finally, the obtained
deep image features and deep gene features are fused by the
AFN to output the prediction results.

To reduce the influence of imbalanced datasets, a mini-
batch training strategy is used. When a mini-batch is created,
the overlapping selections of a few samples are allowed to
balance the numbers of the two classes. In the experiment,
the Adam gradient optimization algorithm is used to optimize
the parameters of the model; the learning rate is set to le—4
and the number of training epochs to 30. The batch size is
set to 24, and the cross-entropy loss is used. Moreover, the
performance of the model is evaluated on the testing set at
each epoch.

Furthermore, the other best parameters of the DCCAFN
model are shown in Table 2. In the cascade network of the
DCCAFN model, four CCMs are used, and each CCM con-
tains a convolution layer and 100 random trees.

The experiments in this work are carried out on a worksta-
tion with NVIDIA RTX A5000 GPU. Besides, all the deep
learning frameworks are realized using Python 3.7.9 with
Keras 2.3.1 and TensorFlow 1.15.0.

Evaluation metrics

In order to comprehensively evaluate the prediction perfor-
mance, we take the accuracy (ACC), recall, precision rate
(precision), F'1 score (F1), and receiver operating character-
istic area under the curve (AUC) as the evaluation indicators,
which are widely used in classification and prediction tasks.
They are defined as follows:

TP + TN
ACC = , (6)
TP + TN + FP + FN
TP
Recall = ——, @)
TP + FN
. TP
Precision = ——, (8)
TP + FP
Recall x Precision
F1=2 )

X T ,
Recall + Precision

where TP is true positive, TN is true negative, FP is false
positive, FN is false negative, and AUC is the area under the
ROC curve.

Ablation study

To validate the effectiveness of the DCCAFN model in pre-
dicting lung cancer survival, we conducted a series of ablation

experiments, including the effect of IFEM, the effect of
GFEM, and the effect of AFN.

Effect of IFEM

To demonstrate the effectiveness of the IFEM for the
DCCAFN model, the DCCAFN with IFEM and the
DCCAFN without IFEM are compared. In the DCCAFN
without IFEM, the deep image features obtained by the
IFEM are replaced with handcrafted features extracted using
3D slicer software, including shape, first-order statistics, the
Gray Level Cooccurence Matrix (glcm), the Gray Level Run
Length Matrix (glrlm), and so on. In these two experiments,
the relevant parameters are set according to Section "Imple-
mentation details".

Table 3 lists the prediction performance of the DCCAFN
model with IFEM and without IFEM on the survival prog-
nosis of lung cancer, respectively. In the DCCAFN without

Table 3 Prediction performance

of the DCCAFN model with Method Precision Recall F1 ACC AUC
IFEM and without IFEM
DCCAFN without IFEM 0.792 0.803 0.792 0.807 0.782
DCCAFN with IFEM 0.825 0.812 0.804 0.831 0.816

The bold values indicate that the DCCAFN model achieves the best performance under the optimal parameter

setting
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Fig.7 ROC curve for predicting lung cancer survival using the
DCCAFN models with and without IFEM

IFEM, the AUC value of the model on the testing set reaches
0.782, and the ACC is 0.807. In the DCCAFN with IFEM,
the AUC value of the model on the testing set reaches 0.816,
and the ACC is 0.831. From the table, the AUC value and
the ACC of the DCCAFN with IFEM are improved by 0.034
and 0.024, respectively. The results show that the IFEM pro-
vides more information, and these deep image features are
effective in improving the accuracy of the model.

Figure 7 shows the ROC curve for predicting lung cancer
survival using the DCCAFN models with and without IFEM.
The performance of the model with IFEM is better than that
without IFEM in ACC, AUC, recall, precision, and F'1 score.
The results show that the deep image features obtained by the
IFEM are helpful for the prediction of the model.

Effect of GFEM

In the subsection, we consider the effect of gene feature
screening, the number of convolution layers in CCM, clas-
sification algorithms in CCM, and the number of cascade
levels in GFEM on the performance of the DCCAFN model
in predicting lung cancer survival.

(1) Effect of gene feature screening
In the DCCAFN model, the original genes (non-selected

genes) and the screened genes using the F'-test algorithm
are used to investigate the effect of gene feature screening,

False Positive Rate

Fig.8 The ROC curves of models using the screened genes and the
non-selected genes for the prediction of lung cancer survival

respectively. In the experiments, the deep image features are
still obtained through the IFEM, and the relevant parameters
are set according to Section "Implementation details".
Table 4 lists the performance of the DCCAFN models using
the non-selected genes and the screened genes. In the exper-
iments, the F-test algorithm selects 735 features with a
p-value less than 0.05. The results show that the model using
the screened genes by the F-test algorithm has improved in
ACC, AUC, recall, precision, and F'1 score compared with
the non-selected genes, among which the ACC and AUC val-
ues increased by 0.067 and 0.06, respectively. This implies
that F-test feature screening is effective, which can reduce
the redundancy of gene data, reduce the interference of genes
with weak correlation to the model, and improve the perfor-
mance of the model in predicting lung cancer survival.

Figure 8 shows the ROC curves of models using the
screened genes and the non-selected genes for the prediction
of lung cancer survival. It can be seen from Fig. 8 that the
performance of the model using the F-test algorithm out-
performs the non-selected method. The results show that
the F-test feature screening can effectively remove a large
amount of irrelevant and redundant information and improve
the prediction accuracy of the model.

(2) Effect of the number of convolution layers in CCM

We consider the effect of the number of convolution layers in
the CCM of the GFEM on the performance of models. Table

Table 4 Performance of the

DCCAFN models using the Selection method Selected genes Precision Recall F1 ACC AUC

non-selected genes and the

screened genes Non-selected 5268 0.684 0.669 0.632 0.764 0.756
F-test 735 0.825 0.812 0.804 0.831 0.816

The bold values indicate that the DCCAFN model achieves the best performance under the optimal parameter

setting
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Table 5 Performance of

DCCAFN models with different Convolution layers Precision Recall F1 ACC AUC
numbers of convolutional layers
in CCM 0 0.769 0.751 0.747 0.786 0.794
1 0.825 0.812 0.804 0.831 0.816
2 0.816 0.791 0.797 0.826 0.812
3 0.809 0.805 0.796 0.819 0.807
The bold values indicate that the DCCAFN model achieves the best performance under the optimal parameter
setting
Performance prediction effect of different convolution layers The model performance of the different base classifiers
0.84 0.9
0.82 0.8
0.8 0.7
0.78 0.6
0.74 0.4
=1l ) I
0.7 0.2
Precision Recall F1 ACC AUC o1
mom1m203 0
GNB KNN RF

Fig.9 Performance of DCCAFN models with different numbers of con-
volutional layers in CCM

5 and Fig. 9 show the effect of different numbers of con-
volutional layers in CCM on network performance. From
these results, we find that the DCCAFN model with one
convolution layer in each CCM has the best performance
(precision = 0.825, recall = 0.812, F1 = 0.804, ACC =
0.831, AUC = 0.816). The results also show that the convo-
lution layer is effective for extracting gene information to a
certain extent. But the performance of the DCCAFN model
does not significantly improve as the number of convolu-
tional layers increases. Therefore, we select one convolution
layer in the CCM for all experiments.

(3) Effect of classification algorithms in CCM

The effect of classification algorithms in the CCM is con-
sidered. In the experiments, three types of classification
algorithms are compared, including random forest (RF),
gaussian naive bayes (GNB), and K-nearest neighbor (KNN).
Table 6 and Fig. 10 show the performance of the DCCAFN

M Precision M Recall ® F1 @ ACC

Fig. 10 Comparison of DCCAFN model performance for the different
classification layer algorithms

models with different classification layer algorithms in CCM
in predicting lung cancer survival. It can be seen from Table
6 that the performance of the model using the RF algorithm
in the classification layer of the CCM to predict lung can-
cer survival is higher than that using other algorithms (GNB,
KNN), improving by 0.093 and 0.075 in accuracy and by
0.091 and 0.037 in AUC. The results show that CCM using
RF algorithm can effectively extract gene features, which is
positive for improving the performance of lung cancer sur-
vival prediction.

(4) Effect of the number of cascade levels in GFEM

We study the impact of the number of cascade levels in the
GFEM to obtain the optimum cascade levels. In the experi-
ments, we use the cascade networks with 1 level, 2 levels,...7

Table 6 Comparison of

DCCAFN model performance Classification layer algorithms Precision Recall F1 ACC AUC

for different classification layer

algorithms GNB 0.543 0.738 0.617 0.738 0.725
KNN 0.682 0.608 0.635 0.756 0.779
RF 0.825 0.812 0.804 0.831 0.816

The bold values indicate that the DCCAFN model achieves the best performance under the optimal parameter

setting
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The model performance effect of different numbers of CCM
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Fig. 11 The model performance for different numbers of cascade levels
in the GFEM

levels in the GFEM. Figure 11 shows the effect of different
numbers of cascade levels in the GFEM on network per-
formance. From the figure, we find that when the number of
cascade levels is set to 4, the prediction effect is the best (pre-
cision = 0.825, recall = 0.812, F'1 = 0.804, ACC = 0.831,
and AUC = 0.816). The number of cascade levels is not pos-
itively correlated with the prediction performance of models.
When the number of cascade levels is greater than 4, the pre-
diction effect may become stable and will not increase or
decrease significantly. Therefore, the proper number of cas-
cade levels can improve the final prediction efficiency of the
network to some extent, and the number of cascade levels is
set to 4 in the other experiments.

Effect of AFN

To verify the impact of AFN on the performance of the
DCCAFN model, the DCCAFN models without AFN and
with AFN are compared. In the DCCAFN model without
AFN, deep image features and deep gene features are directly
concatenated for lung cancer survival prediction. Table 7 lists

Fig. 12 Visualizations of
attention maps

Original images & *
-
Attention maps &

the performance of the DCCAFN model without AFN and
with AFN. From the table, we find that the use of AFN can
improve the performance of the DCCAFN model in predict-
ing lung cancer survival, increasing by 1.6% and 2.4% in the
ACC and AUC values, respectively.

To demonstrate the advantages of the AFN module, we
visualized the attention maps, where the attention maps are
the feature maps after the fusion of deep image features and
deep gene features. In Fig. 12, the first row is the original CT
images, the second row is the corresponding attention maps,
the left side is the images corresponding to poor survival
prognosis, and the right side is the images corresponding to
good survival prognosis. We observe that the attention maps
after the fusion not only focus on the morphological informa-
tion of the nodules themselves (such as contour and location),
but also pay attention to some features of the edges. The atten-
tion maps place a greater weight on the tumor edges and their
vicinity than other irrelevant information in the whole lung
parenchyma, which allows the model to better learn the rich
semantic information in and around the tumor features. In
addition, it is also observed that when there is pleural inva-
sion or vascular attachment (e.g., the third column of Shorter
term survivors and the third column of Longer term survivors
in Fig. 12), the attention maps focus well on the tumor and its
surrounding features. The experimental results fully demon-
strate the effectiveness of the proposed AFN module, which
can greatly improve the accuracy of lung cancer survival pre-
diction.

Comparison with other advanced methods

In the experiments, DCCAFN is further compared with
the recent deep learning-based survival prediction meth-
ods DeepSurv [13], DeepMMSA [18], GPDBN [22], and
HFBSurv [23] to evaluate their performance in the survival

Shorter-term survivors

Longer-term survivors

ac
acn

Table 7 Performance of the

DCCAFN model without AFN Fusion results Precision Recall F1 ACC AUC
and with AFN
DCCAFN without AFN 0.806 0.785 0.779 0.815 0.792
DCCAFN with AFN 0.825 0.812 0.804 0.831 0.816

The bold values indicate that the DCCAFN model achieves the best performance under the optimal parameter

setting
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Table 8 Performance of different

deep learning-based survival Author Method Precision Recall F1 ACC AUC
prediction methods
Katzman et al. [13] DeepSurv 0.695 0.674 0.657 0.682 0.719
Wu et al. [18] DeepMMSA 0.709 0.687 0.662 0.734 0.740
Wang et al. [22] GPDBN 0.738 0.692 0.721 0.781 0.767
Li et al. [23] HFBSurv 0.796 0.745 0.774 0.814 0.803
Our research DCCAFN 0.825 0.812 0.804 0.831 0.816

The bold values indicate that the DCCAFN model achieves the best performance under the optimal parameter

setting
ROC Curve
1.04
0.81
g 06
go
2
< 0.4
]
&
0.4 — DeepSurv AUC=0.719
’ —— DeepMMSA AUC=0.740
—— GPDBN AUC=0.767
—— HFBSurv AUC=0.803
0.04 —— Our DCCAFN AUC=0.816
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Fig. 13 The ROC of survival prediction using state-of-the-art methods
and the proposed DCCAFN method

prognosis prediction task for lung cancer. The results are
listed in Table 8. In order to make a fair comparison, all the
above prediction methods use the same multimodal data for
performance evaluation throughout the experiment. It is clear
from Table 8 that all these methods have satisfactory perfor-
mance when combining multimodal information. Compared
with DeepSurv, DeepMMSA, GPDBN, and HFBSurv, the
DCCAFN model has the highest performance, and its AUC
values are 9.7%, 7.6%, 4.9%, and 1.3% higher, respectively.
These results show that our method performs an effective and
specialized multimodal data fusion for survival prediction.
It further shows that the proposed architecture has certain
improvement abilities and that the DCCAFN is effective in
predicting the survival prognosis of lung cancer.
Furthermore, Fig. 13 shows the comparison of the ROC
curves for DCCAFN with other survival prediction meth-
ods. As shown in Table 8 and Fig. 13, our DCCAFN model
achieves better performance than other deep learning meth-
ods such as DeepSurv, DeepMMSA, GPDBN, and HFBSurv.
We observe that the proposed method significantly improves
performance, and the ACC reaches 83.1%. The results show
that the DCCAFN based on image genomics is of great sig-
nificance for learning more useful features and improving

the accuracy of survival prognosis prediction based on CT
images.

To further evaluate the performance of DCCAFN, we plot
the Kaplan—Meier curves of the above methods, as shown in
Fig. 14. In Fig. 14, we can observe that deep learning meth-
ods such as DeepSurv, DeepMMSA, GPDBN, HFBSurv, and
the proposed DCCAFN all achieve good performance. But
compared with DeepSurv (p = 0.012), DeepMMSA (p =
0.0087), GPDBN (p = 0.0055) and HFBSurv (p = 0.0015),
the DCCAFN can more easily classify patients into low-risk
and high-risk groups, and its stratification is significantly
better (p < 0.0001). Moreover, it is worth noting that, in con-
trast, the p value of DCCAFN is the most significant, less
than 0.0001, providing a more favorable prognosis predic-
tion, which again confirms the effectiveness of this method
in predicting survival. All these results clearly demonstrate
the superiority of our multimodal fusion method for survival
prediction.

Discussion

The non-invasive automatic prediction of lung cancer sur-
vival is challenging due to the small size and imbalance
of most lung cancer image datasets. The small sample
size of image data and the redundant information in high-
dimensional gene data all affect the prediction performance
of the deep learning framework. In the paper, we investi-
gate the prediction of lung cancer survival using CT images
and gene data to help physicians and patients prepare for the
risks that may occur. To achieve high prediction performance,
DCCAFN is proposed for predicting lung cancer survival to
overcome the problems of small sample size, high feature
dimension, and poor multimodal feature fusion effect.

The DCCAFN model proposes a series of strategies to
solve the above problems, including IFEM for deep image
features based on transfer learning, GFEM based on deep
convolution cascades, and AFN based on image and gene
multimodal information. The IFEM uses the deep learning
transfer technique to extract the deep image features of CT
images that are conducive to improving the accuracy of the
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Fig. 14 Kaplan—Meier curves of
the DCCAFN and other
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survival prediction. The GFEM, based on a deep convo-  Conclusion

lution cascade, is proposed to solve the high-dimensional
redundancy of gene data. In the experiments, we investigate
the impact of gene feature screening, the number of con-
volution layers in CCM, classification algorithms in CCM,
and the number of cascade levels in GFEM on the network
performance, which implies that the DCCAFN model with
GFEM is effective in predicting lung cancer survival prog-
nosis. Firstly, using the F-test algorithm to select genes can
eliminate some redundant information in genes and improve
the accurate expression of gene features. Then, when one
convolution layer and RF classification algorithm in the CCM
are designed and four cascade levels are set, the cascade net-
work with the CCM can better extract deep gene features.
In addition, the proposed AFN is effective and practical for
predicting the survival performance of lung cancer and can
improve the prediction performance of the model to a certain
extent. Therefore, the DCCAFN model can make full use
of information correlation and diversity to fuse multimodal
information from CT images and gene data for predicting the
survival of lung cancer.

@ Springer

In this paper, we propose a DCCAFN model based on small
sample CT image data and gene data for predicting the sur-
vival of lung cancer. In the model, the deep image features
and deep gene features can be better extracted through a pre-
trained ResNet50 model and the proposed cascade network
with the CCM, respectively. Then, an attention fusion mech-
anism is constructed to better fuse the extracted deep image
features and deep gene features. Through a series of abla-
tion experiments and comparison experiments, we find the
following conclusions:

(1) In the DCCAFN model, the IFEM can better extract
deep image features from CT images; the GFEM can
better extract deep gene features associated with lung
cancer survival; and the AFN can better fuse deep image
features and deep gene features. They both have positive
effects on improving the performance of lung cancer
survival prediction.

(2) Compared with the existing models, the proposed model
based on image genomics is of great significance for
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learning more useful features and improving the accu-
racy of survival prediction, with ACC and AUC values
of 0.831 and 0.816, respectively.

Therefore, the proposed DCCAFN model can effectively
fuse the extracted features from CT images and gene data and
improve the prediction accuracy of the survival of lung can-
cer. Although DCCAFN enhances prediction performance,
there is still considerable room for further expansion and
improvement:

(1) The sample size of lung cancer in this study is relatively
small, which impedes the development of a more power-
ful and robust survival prediction model. The follow-up
studies need to collect more patient samples and actively
promote large sample sizes in multicenter studies to
reduce differences and improve prognosis performance.

(2) This study conducts a fusion study on CT image features
and RNA gene features and does not make full use of
other modalities (such as copy number variation, gene
methylation data, miRNA gene expression data, etc.).
More modalities can be further considered and included
in future work.

In the future, the model can be extended to the fusion of
different modalities for other prediction tasks and can pro-
vide clues for further cancer prognostic studies. Meanwhile,
we need to continuously optimize the algorithm to meet clin-
ical needs so as to establish models with high generalization
and accuracy and realize the clinical application of artificial
intelligence-assisted diagnosis.
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