
Complex & Intelligent Systems (2024) 10:869–883
https://doi.org/10.1007/s40747-023-01200-6

ORIG INAL ART ICLE

Imperceptible graph injection attack on graph neural networks

Yang Chen1,2 · Zhonglin Ye1,2 · Zhaoyang Wang1,2 · Haixing Zhao1,2

Received: 8 February 2023 / Accepted: 15 July 2023 / Published online: 9 August 2023
© The Author(s) 2023

Abstract
In recent years, Graph Neural Networks (GNNs) have achieved excellent applications in classification or prediction tasks.
Recent studies have demonstrated that GNNs are vulnerable to adversarial attacks. Graph Modification Attack (GMA) and
Graph Injection Attack (GIA) are commonly attack strategies. Most graph adversarial attack methods are based on GMA,
which has a clear drawback: the attacker needs high privileges to modify the original graph, making it difficult to execute
in practice. GIA can perform attacks without modifying the original graph. However, many GIA models fail to take care of
attack invisibility, i.e., fake nodes can be easily distinguished from the original nodes. To solve the above issue, we propose
an imperceptible graph injection attack, named IMGIA. Specifically, IMGIA uses the normal distribution sampling and
mask learning to generate fake node features and links respectively, and then uses the homophily unnoticeability constraint
to improve the camouflage of the attack. Our extensive experiments on three benchmark datasets demonstrate that IMGIA
performs better than the existing state-of-the-art GIAmethods. As an example, IMGIA shows an improvement in performance
with an average increase in effectiveness of 2%.

Keywords Graph neural networks · Graph injection attack · Attack invisibility · Homophily unnoticeability constraint

Introduction

In real life, complex relationships can be represented by
graphs. For example, in social networks, we abstract indi-
viduals as nodes and relationships between individuals as
edges [1, 2]. In citation networks, nodes represent papers
and edges represent citation relations between papers [3].
Graphs are extensively utilized in diverse tasks, including
node-level classification [4–6], graph-level classification [7,
8], and molecular prediction [9].

B Haixing Zhao
h_x_zhao@126.com

Yang Chen
chenyang2753@stu.qhnu.edu.cn

Zhonglin Ye
zhonglin_ye@foxmail.com

Zhaoyang Wang
z.y.wang@stu.qhnu.edu.cn

1 School of Computer Science, Qinghai Normal University,
Xining, Qinghai, China

2 The State Key Laboratory of Tibetan Intelligent Information
Processing and Application, Qinghai Normal University,
Xining, Qinghai, China

In recent years, Graph Neural Networks (GNNs) have
achieved outstanding results in various tasks [10–12]. GNNs
overcome the problem that traditional deep learning mod-
els can’t migrate to non-Euclidean distance data. However,
recent studies have shown thatGNNs are vulnerable to adver-
sarial attacks leading to performance degradation [13–15].
The traditional Cyber [16] and DoS [17] attacks, they verify
the stability of themodel by theoretical analysis to get the sys-
tem’s steady state. The graph adversarial attack is a biased
execution attack that degrades the performance of GNNS
by modifying the node’s self-attributes (including links and
features) or injecting fake nodes. Various graph adversarial
attack models are proposed based on training gradients, rein-
forcement learning and federation learning [18–22].

Graph Modification Attack (GMA) ignore an essential
premise that the adversary has insufficient privileges in the
real attack [18, 23–25]. In GMA models, the adversary has
the privilege to modify the original data arbitrarily, which
are difficult to implement and can be easily detected by
defense models [19, 26]. For example, in some attacks on
large online social or commercial networks (Facebook or
Amazon), the adversary first attacks administrator accounts
and then changes users’ social connections (e.g., deleting or
adding friends) or user’ information (e.g., deleting or adding

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01200-6&domain=pdf
https://orcid.org/0000-0003-0957-1603

870 Complex & Intelligent Systems (2024) 10:869–883

preferences or postings). When the adversary performs the
attack, the defense system can detect that the administrator
accounts are executing abnormal commands, which leads
to an alert to other administrators or security departments.
FSP-GCN [27] and GraphNS [28] are two classical graph
defense models, which detect anomalous nodes by measur-
ing perturbed graph node similarity or node label differences.
Therefore, it is challenging to implement in real attacks.

To lift the above limitation, researchers have proposed the
Graph Injection Attack (GIA). Figure1 shows the compari-
son ofGMAandGIA strategies. Specifically, GMAdegrades
the performance of GNNs by generating perturbed edges
or features, and GIA performs attacks by generating fake
nodes with malicious information. Wang et al. [29] proposed
the first GIA model that uses a greedy strategy to generate
fake nodes. The literature [30] proposed AFGSM, which is
a white-box attack using a fast gradient sign method to gen-
erate fake nodes. Sun et al. [31] proposed a global poisoning
attack for NIPA based on a Q-learning strategy. The litera-
ture [32] presented NICKI based on an optimization policy
that implements the misclassification of a specific node into
a different class. Dai et al. [33] proposed the targeted uni-
versal attack (TUA), where TUA enhances the attackability
of nodes by connecting the fake node, and the victim nodes
connected to the attack nodes will be misclassified as the
attacker-specified label. Though the aboveGIAmodels solve
some problems, there are still two significant limitations. (1)
Features poorly invisible. The camouflage features of the
fake nodes are not considered. For example, a pair of fake
node features never co-occurred in the original nodes and
detectors can easily filter these anomalous nodes [34]. (2)
Structure poorly embedded. Previous studies have shown
that GIA lead to a significant decrease in the homophily of
the graph structure (the homophily can reflect the reliabil-
ity of the graph structure) [35–37]. Therefore, focusing only
on changes in graph topological properties (i.e., node degree
or betweenness) fails to guarantee the camouflage of fake
nodes.

In this paper, we consider the invisibility of the structure
and features and propose an IMperceptible Graph Injection
Attack (IMGIA), which can maintain the effectiveness and
camouflage of the attack. Specifically, IMGIA can be divided
into the following three processes: (1) Feature generation.
IMGIA uses a normal distribution sampling to generate the
fake node’s initial features. This mechanism not only has
low time consumption but also makes the feature distri-
bution of the fake nodes the same as the original nodes.
(2) Link generation. IMGIA obtains the best attack links
between fake and original nodes using the mask learning
method. Note that IMGIA does not need to manipulate the
links between the original nodes but only needs to modify
the links between the fake and original nodes. (3) Graph
optimization. Homophily unnoticeability constraint is used

to improve the camouflage of IMGIA, which can adjust the
perturbation graph structure and features.

The main contributions of this paper are summarized as
follows.

• We present a new graph injection attack: IMGIA. IMGIA
performs without modifying the original graph.

• We promote the imperceptibility of GIA from the topo-
logical structure and features perspective, rarely dis-
cussed in previous studies.

• We have demonstrated empirically that IMGIA can
achieve better performance and higher robustness than
the previous GIA models.

The rest of this work is organized as follows. “Related work”
section discusses the related work on graph modification and
graph injection attacks. “Preliminary” section presents the
knowledge about graph neural networks and graph injec-
tion attack. In “Methodology” section, each component of
IMGIA is described in detail, including feature generation,
link generation, and graph optimization. In “Experiments”
section, we give the corresponding experiments, which
mainly discuss the performance of IMGIA in detail. Finally,
we conclude our work in “Conclusion” section.

Related work

Existing attack methods are classified into two main cate-
gories: GMA and GIA. In this section, we review works with
GMA and then present some works on GIA.

Adversarial attack on GMA

GMA degrades the performance of GNNs in downstream
tasks by perturbing the graph structure or node features [38].

The literature [19] proposed the classical graph adversar-
ial attack, namely Nettack, which adds some unnoticeable
perturbations (perturbed edges or features) into the graph to
degrade the performance of GNNs. To ensure the unnotice-
ability of the perturbations, the feature co-occurrence and
node degree distribution of the perturbed graph are similar
to the original graph. The literature [23] proposed Metattack
based on meta-learning, Metattack treats the graph structure
matrix as hyperparameters manipulating the graph structure
by the trained attack loss. Lin et al. [39] proposed amaximiz-
ing spectral distance attack SPAC, the core idea is to destroy
the graph filter to achieve the attack. In addition, SPAC uses
an approximation method to reduce the feature decomposi-
tion time. Liu et al. [40] proposed AtkSE, which uses edge
discrete sampling to select the set of perturbation candidates
and reduce the error of structural gradients. The literature [41]
found that the node topology is lost using the surrogate attack

123

Complex & Intelligent Systems (2024) 10:869–883 871

Fig. 1 Illustrative comparison
of GMA (left) and GIA (right)

model, so the surrogate representation learning attack with
isometric mapping (SRLIM) is proposed. To maintain node
similarity during propagation, the node topology from the
input layer to the embeddings is constrained by SRLIMusing
isometric mapping. Lin et al. [24] proposed EpoAtk, which
uses gradient information to guide the adversary to modify
the links. Specifically, EpoAtk uses three phases (generation,
evaluation, and reorganization) to address the problem that
gradient-based attacks will not get optimal solutions.

Although GMA can degrade the performance of GNNs
by perturbing the graph structure and node features. Unfor-
tunately, the implementation of GMA assumes that the
adversary possesses elevated privileges, which is often dif-
ficult to attain during real-world attacks. Thus, our work
focuses on practical GIA rather than GMA.

Adversarial attack on GIA

In the GIA scenario, the adversary cannot modify the struc-
ture or node features of the original graph. As a result, GIA
more closely aligns with realistic attacks.

The literature [42] proposed a single node injection attack
G-NIA, the experiment showed that injecting a single node
can achieve efficient attacks in evasion attacks. Wang et

al. [43] proposed a cluster attack (CLA). CLAcalculates sim-
ilarity metrics among victim nodes and injects perturbation
nodes into the victim nodes of the same cluster to cause the
GNNs to misclassify the targeted nodes. Zou et al. [44] ana-
lyzed the topological vulnerability of GNNs in GIA scenario
and proposed the topological defective graph injection attack
(TDGIA). TDGIA introduces a vulnerable topological edge
selection strategy and designs a smooth feature optimiza-
tion objective to generate the fake node edges amd features,
respectively. Tao et al. [45] proposed the CANA framework
in terms of both fidelity and diversity of self-networks cen-
tered on injection nodes, and the experimental results show
that CANA significantly improves the attack performance. Ju
et al. [21] studied the black-box graph injection attack and
proposedGA2C,whereGA2Cqueries the agentmodel based
on the idea of reinforcement learning with a potential behav-
ioral critic algorithm. The experimental results showed that
GA2C can efficiently execute the attack with a low budget.

However, most previous works focus on the effectiveness
of the attack and neglected attack invisibility. The litera-
ture [35] demonstrated that GIA models can damage the
homophily distribution of the original graph, which is eas-
ily detected by graph defense models. Therefore, a primary

123

872 Complex & Intelligent Systems (2024) 10:869–883

Table 1 Notations frequently used in this paper and their corresponding
descriptions

Notation Description

G Original graph

G′ Poisoned graph

V Set of nodes of the clean graph

E Set of edges of the clean graph

X Feature matrix of the clean graph

A Adjacency matrix of the clean graph

X ′ Feature matrix of the perturbed graph

A′ Adjacency matrix of the perturbed graph

fθ (·) Node classifier

Y Set of node labels

y True label

ỹ Prediction label

ŷ The attacker-specified label

n The number of clean graph nodes

n′ The number of perturbed graph nodes

m The number of fake nodes

�X Feature budget

�S Link budget

� Total Budget

λ Homophily parameter

Latk(·) GNNs loss

LHom (·) Homophily loss

focus of graph adversarial attack research is designing effec-
tive and unnoticeable attacks.

Preliminary

In this section, we introduce some knowledge about GNNs
and GIA. Table 1 gives the frequently used notations.

Graph neural networks

Let G be an attribute graph that can be represented formally
as G = (V , E, X). where V = {v1, v2, .., vn} represents
the set of nodes, n represents the number of nodes, E ⊆
V × V represents the set of edges, X ∈ R

n×d denotes the
d-dimensional feature matrix. The adjacency relationship of
nodes can be expressed as A ∈ {0, 1}n×n , Ai, j = 1 means
there is a link between node i and j , and 0 otherwise.

In ourwork, we focus on the node-level classification task,
where GNNs use known label nodes to predict the class of
unlabeled nodes. We take the classical Graph Convolutional
Network (GCN) [10] as an example, the two-layer GCN can

be represented as

f (G) = fθ (A, X) = so f tmax(̂Aσ(̂AXW (0))W (1)). (1)

where Â = D̃− 1
2 (A + I)D̃− 1

2 is the normalized adjacency
matrix, D̃ is the diagonal degree matrix, and I is the identity
matrix. σ(·) is the activation function, usually using ReLU.
W denotes the weight parameter, and fθ (·) is the node clas-
sifier. f (G) ∈ R

n×k , where k = |Y | is denoted as the number
of labels, and Y represents the set of node labels.

Graph injection attackmodel

The utility of IMGIA is that the adversary does not need
to modify the original graph structure or node features, and
the performance degradation of GNNs can be achieved by
manipulating fake nodes. Specifically, the graph attack is
divided into untargeted and targeted attacks. In this study,
we mainly focused on untargeted attacks. Furthermore, we
extended our model to targeted attacks. Formally, the objec-
tive function of the untargeted and the targeted attacks can
be respectively expressed as

max
A′∈�(A′),X ′∈�(X ′)

∑

t∈Vtest
I
(

fθ∗
(

A′, X ′) �= yt
)

.

s.t. θ∗ = argmin
θ

Ltrain
(

fθ
(

A′, X ′)) ,G′ − G ≤ �

(2)

max
A′∈�(A′),X ′∈�(X ′)

∑

t∈Vtar ,yt �=ŷt

I
(

fθ∗
(

A′, X ′) = ŷt
)

.

s.t. θ∗ = argmin
θ

Ltrain
(

fθ
(

A′, X ′)) ,G′ − G ≤ �

(3)

where yt represents the label of node t . ŷt is the attacker-
specified label. � is the attack budget. Ltrain usually
uses the cross-entropy function, i.e., Ltrain

(

fθ
(

A′, X ′)) =
∑

v∈Vtrain −yv log ỹv , ỹv is the prediction label. I(·) is an indi-
cator function that returns 1 when the parameter is true and 0
otherwise. �(A′) and �(X ′) are the feasible domains of the
adjacency matrix A

′
and the feature matrix X

′
, respectively.

Poisoned graph G ′
can be expressed as G ′ = (V

′
, E

′
, X

′
),

where V ′ = {v1, v2, . . . , vn, . . . , vn′ } is the set of poisoned
graph nodes, n′(n′ = n + m) is the number of perturbed

graph nodes, m is the number of fake nodes. X ′ =
[

X
Xm

]

is set of the poisoned graph feature. Xm ∈ R
m×d is the set

of features of the fake node. A′ =
[

A Am

AT
m Bm

]

is the adja-

cency matrix of the poisoned graph. Bm ∈ R
m×m is the unit

matrix, Am ∈ R
n×m represents the adjacency matrix of the

fake nodes and the original nodes.
Equations 2 and 3 show that the victim nodes of the untar-

geted attack are all the nodes in the test set, and GNNs
misclassify the nodes indicating that the attack is successful.

123

Complex & Intelligent Systems (2024) 10:869–883 873

In the targeted attack, the victimnodes are the specified nodes
in the test set, and GNNs need to not only misclassify the
nodes but also classify them to the attacker-specified labels.
Furthermore, the aim of the untargeted attack is to decrease
the classification accuracy of GNNs, and the targeted attack
focuses on maximizing the accuracy of classifying victim
nodes to the attacker-specified label.

Methodology

In this section, we describe the building blocks of IMGIA in
detail, and the pipeline is shown in Fig. 2. Specifically, we
use a normal distribution sampling to generate the fake node
features. This method has a low time and space cost, and we
will describe this item in detail in “Feature generation” sec-
tion. Fake node links are obtained using the mask learning
mechanism, which is described in detail in “Link genera-
tion” section. GIA is known to harm the homophily of the
graph, which can lead to the destruction of imperceptibility.
Database administrators or homology defenders can easily
detect and remove fake nodes. We use homophily unnotice-
ability constraint to improve attack imperceptibility, and we
will describe this item in detail in “Graph optimization” sec-
tion.

Feature generation

In previous GIA models, fake node features are often gener-
ated using Generative Adversarial Networks (GAN) [29] and
GraphAutoencoders (GA) [32]mechanisms. However, these
models usually use GNNs to optimize model performance,
which significantly improvesmodel complexity and runtime.
Taking GAN as an example, the generator and discrimi-
nator components require constant feedback during feature
generation. If the number of feedback is low, the generated
features are more different from the original features. GAN
has been successful in modeling continuously distributed
data. It is less effective in discrete graph data due to the
difficulty in optimizing the model distribution to match the
target data distribution. Moreover, they are not suitable for
high-dimensional and small training datasets.

To address the above issues, we chose a simple and robust
feature generation method, named normal distribution sam-
pling. Specifically, the original features are first fitted to a
normal distribution, and then the fake node features are sam-
pled from it. No other operations are required for continuous
features. For binary features, we need to binarize the sam-
pled feature values, which are 0 when the Gaussian sample
is less than 0.5 and 1 otherwise. The above operations are
mathematically expressed as

X′(x) = Sample(x). s.t. x ∼ U ,
∥

∥X′ − X
∥

∥ ≤ �X . (4)

X′(x) =
{

1, Sample(x) > 0.5.
0, Sample(x) ≤ 0.5.

s.t. x ∼ U , ‖X ′ − X‖ ≤ �X . (5)

where U represents the fitted normal distribution, �X rep-
resents the feature budget. If the training set contains 1 with
probability p and 0 with probability 1 − p, the fitted normal
distribution with mean p and variance p(1 − p). The prob-

ability of IMGIA sampling to 1 is 1
2 [1 − er f (

1
2−p√

2p(1−p)
)].

After the above feature generation process, the feature dis-
tribution of the poisoned graph has a high similarity to the
original graph. Therefore, the use of normal distribution sam-
pling can improve the camouflage of the fake node feature.

Link generation

For link generation, many works utilize gradient learning
or meta-learning methods. These methods are typically less
efficient, as they tend to generate only one perturbed edge per
iteration. Besides, the literature [23] found thatmeta-learning
is expensive in terms of both computation and storage.

IMGIA uses a mask learning mechanism to generate links
for fake nodes. This mechanism sets the mask as a hyper-
parameter and iteratively optimizes it to obtain the final link
mask. The mask learning mechanism not only improves the
effectiveness of the attack but also has the advantage of low
complexity and memory. In graph adversarial learning tasks,
fake node generation can be represented as a two-layer opti-
mization problem.

maxLatk
(

yt , fθ∗
(

S, X ′))

s.t. θ∗ = argmin
θ

Ltrain (fθ (A, X)) . (6)

where yt represents the real label of node t . Latk(·) rep-
resents the train loss, which usually uses a cross-entropy
function. S ∈ R

n′×n′
represents the link mask. Specifically,

S =
[

A A1

AT
1 Bm

]

, A1 ∈ R
n×m denoted as an all-1 matrix, A

represents the original graph adjacency matrix. X ′ is consid-
ered a constant and not modified in this section. Note that
IMGIA does not modify the structure and features of the
original graph.

When the mask learning is complete, we sort A1 and filter
to get the final links. First, sorting A1 is sorted from largest to
smallest to get Asort

1 , then the top�S node pairs are selected,
and finally the value of �S node pairs in Am is set to 1. The
above procedure can be expressed formally as

Am,(i, j) = 1 s.t . S1,(i, j) ∈ Ssort1,�S
. (7)

where �S denotes the budget of the modified link.

123

874 Complex & Intelligent Systems (2024) 10:869–883

Fig. 2 Illustration of IMGIA. We first generate fake node features and links using the normal distribution sampling and mask learning mechanisms
respectively, and then use the homophily unnoticeability constraint to adjust both the graph structure and fake node features

Graph optimization

The high flexibility of GIA can result in the destruction of
the original graph’s homophily distribution and significantly
damage the similarity of neighboring nodes, consequently
negatively impacting its invisibility. How can the effect of
GIA on homology be reduced? To answer this question,
we use the homophily unnoticeability constraint to optimize
the graph (including graph structure and node features). By
achieving homophily unnoticeability, IMGIA can mitigate
the damage of GIA on graph homogeneity. Here, we give the
definition of node homophily,

hu = sim
(

ru, X
′
u

)

, ru =
∑

j∈Nu

1
√

d j
√
du

X j . (8)

where sim(·) is the cosine similarity, du is the degree of node
u, andNu denotes the set of neighbors of node u. Equation8
shows that the homophily of node u is expressed the similar-
ity between the features of node u and the aggregated features
of its neighbors.

Intuitively, we can derive the definition of homophily of
all fake nodes by the node homophily definition.

H
(G,G′) = 1

m

∑

u∈V ′/V
hu . (9)

Our goal is to maximize the homophily of the perturbed
graph, so the overall goal of homophily unnoticeability is set
as

minLHom(G,G′) = −H(G,G′) + �(
∥

∥G′∥
∥)

s.t .
∥

∥G′ − G∥

∥ ≤ �. (10)

where �(·) is L1 norm used to coordinate the number of
modified structures and features. � is the total budget, i.e.,
� = �S + �F .

Overall objective and algorithm

Combining the adversarial attack and homophily unnotice-
ability constraint objectives, the overall objective function of
IMGIA is as follows:

123

Complex & Intelligent Systems (2024) 10:869–883 875

min
G∈�(G)

Latk
(

fθ∗
(G′)) + λLHom

(G,G′)

s.t.
∥

∥G′ − G∥

∥ ≤ �. (11)

where Latk
(

yt , fθ∗
(

S, X ′)) = −Latk
(

fθ∗
(G′)), �(G)

denotes the set of permissible perturbation graphs and λ(λ ≥
0) is the homophily parameter controlling the scale of
homophily unnoticeability.

Algorithm 1 shows the attack process of IMGIA.

Algorithm 1 IMGIA
Require: Original graph G = (V , E, X), Pre-training GNNs model

fθ∗ (·), Number of fake nodes m.
Ensure: Poisoned graph G ′ = (V

′
, E

′
, X

′
).

1: Initialization: iteration parameter T , link mask S
2: Generate fake node features using the normal distribution sampling

by Eq. 4 or Eq. 5
3: for i = 1 to T
4: Update the link mask by Eq. 6
5: Adjust the fake node features and links by Eq. 10
6: Filter the link mask to get fake node link by Eq. 7

Time complexity

In this section, we analyze the time complexity of IMGIA,
and the pre-training model is taken as an example of GCN.
Specifically, IMGIA contains three modules: feature gen-
eration, link generation and graph optimization. (1) In the
feature generation module, we use the normal distribution
sampling to generate fake node features which does not use
the GCN pre-trained model, so the time complexity is low.
The cost of the fake node generationmodule isO(md). (2) In
the link generation module, the masked learning mechanism
with GCNpre-training is used to generate fake node features.
The GCN pre-trained model includes forward and backward
propagations, the cost isO(nepod

∥

∥X ′∥
∥). Where d represents

the matrix dimension, nepo represents the number of train-
ing. Moreover, the cost of iteratively updating the link mask
isO(T (n′)2), T is the iteration number. Therefore, the cost of
the fake node generationmodule isO(nepod

∥

∥X ′∥
∥+T (n′)2).

(3) The graph optimization module is to adjust the features
and links of the fake nodes, so the time complexity can be
expressed as O(T (md + mn)).

Thus, the overall time complexity of IMGIA is O(md +
nepod

∥

∥X ′∥
∥ + T ((n′)2 + md + mn)).

Experiments

In this section, we will first introduce the corresponding
settings, including statistics of the datasets, baselines, and
GNNs and IGMIA parameter settings. Finally, the corre-

sponding experimental results and analysis are shown to
validate the performance of IGMIA.

Datasets

Our work focuses on the node-level classification task. To
illustrate the adaptability of IMGIA, we conducted node-
level classification experiments on three different types of
datasets (Cora, Citeseer, Cora-ML). The statistics of the
datasets are summarized in Table 2.

Baselines

We have verified the performance of IMGIA using several
state-of-the-art GIA models as the baselines. The baseline
details are as follows.

• GNIA [42]. G-NIA demonstrated the effectiveness of
injecting a single fake node, and we use a generalized
version ofGNIAwithmultiple fake node attacks injected.

• NIPA [31].NIPAuses hierarchicalQ-learning to generate
adversarial edges, and adds some Gaussian noise to the
original node features to obtain the fake node features.

• TDGIA [44]. TDGIA uses heuristics to select fake
node perturbed edges and uses optimization methods to
smooth the features of the fake nodes.

• AFGSM [30]. AFGSMuses an approximate greedy strat-
egy to generate fake node edges and features. Since
AFGSM is a targeted attack, here we perform the attack
using its untargeted attack version.

• GAFNC [46]. GAFNC uses GAN to generate fake node
features and uses edge mask learning to generate fake
node links.

• IMGIA-E1 and IMGIA-E2. IMGIA-E1 and IMGIA-E2
are extended models based on IMGIA. In the IMGIA-
E1 version, the fake node features are obtained by mask
learning and the links are randomly generated. In the
IMGIA-E2 version, the fake node features and links are
obtained by mask learning. Note that IMGIA-E1 and
IMGIA-E2 still use the homophily unnoticeability con-
straint to adjust the graph structure and node features.

Parameter settings and evaluationmetric

Parameter settings In this section, we introduce some exper-
imental parameters. In our experiments, we use two types
of GNNs, including normal GNNs (GCN [10], SGC [47]
and GraphSAGE [12]) and robust GNNs (RobustGCN [48],
RGAT [35]). The number of layers of GNNs is set to 2, the
hidden layer dimension is set to 64, and RELU is used as
the activation function. To ensure the fairness and validity of
the comparison, we fixed the maximum number of training
epochs as 500 and the learning rate is 0.005. In all experi-

123

876 Complex & Intelligent Systems (2024) 10:869–883

Table 2 Statistics of three
datasets

Datasets # Nodes # Edges # Features # davg # xavg # Class Binary

Cora 2485 5069 1433 4.18 18.30 7 Y

Citeseer 3327 4732 3703 2.84 20.34 6 Y

Cora-ML 2810 7981 2879 5.68 50.64 7 N

ments. the datasets are splitwith a training/validation/testing
ratio of 0.1:0.1:0.8. In all experiments, the weight parame-
ter λ is set to 1 by default. The number of fake nodes m is
set to m = εn, and ε is set to 0.01. We use �S and �F to
limit the number of modified links and features, respectively.
Specifically, �S = mdavg , where davg is the average degree
of original nodes. The feature budget can be expressed as
�F = mxavg , xavg = ‖X‖ /n is the average number of orig-
inal node features for discrete datasets, xavg = (X ! = 0)/n
is the average of the original node features that are not zero
for continuous datasets. The davg and xavg information of the
datasets are summarized in Table 2.

Evaluation metricWe use the classification rate as a measure
of IMGIA performance. Specifically, the classification accu-
racy of GNNs on perturbation graphs, i.e., the number of
correctly classified nodes/total number of classified nodes.
The node classification accuracy metric reflects the effec-
tiveness of IMGIA. Lower numbers indicate better results,
and bolded numbers indicate optimal results. We also use
the homophily distribution to measure the invisibility of the
attack. A more similar homophily distribution before and
after the attack indicates a good invisibility of the attack.

Experiment results

In “Attack performance under normal GNNs” section, we
evaluate the attack performance of IMGIA. In “Attack per-
formance under robust GNNs”–“Homophily distribution”
sections, we demonstrate the imperceptible of IMGIA. In
“Number of fake nodes”–“AMGIA on targeted attack” sec-
tions, we investigate the performance of IMGIA under
different parameters. Note that in “Attack performance under
normal GNNs”–“Homophily parameter” sections, the attack
is set to untargeted attack, and “AMGIA on targeted attack”
section to targeted attack.

Attack performance under normal GNNs

To evaluate the effectiveness and transferability of IMGIA,
we perform attack experiments on three benchmark datasets
under normal GNNs, and the results are shown in Table 3.
For each dataset, we bold the best attack results. The specific
experimental results are as follows.

Attack effectiveness Table 3 shows that the IMGIA and
IMGIA-E2 achieve the lowest classification accuracy at all

results. In our experiment using GCN as the victim model
in Citeseer dataset, NIPA achieves the highest performance
among baseline models, i.e., the classification accuracy of
NIPA is 67.81%. In our models, the classification accuracy
of IMGIA and IMGIA-E2 are 65.40%, 66.55% respectively.
This indicates that our models achieve superior performance
over the state-of-the-art models.

Comparing IMGIAwith the two extensionmodels reveals
that in most cases IMGIA-E2 achieves the best attack. For
example, the classification accuracies of IMGIA, IMGIA-E1
and IMGIA-E2 are 84.64%, 78.45%, 78.64% for Cora-ML,
respectively. IMGIA-E2 uses a mask learning mechanism
when generating features, and this approach focuses more
on the harmfulness of the feature than on its invisibility (this
observation will be verified later). The node link has a greater
effect on the performance of GNNs than node features with
the same budget, which shows that over-optimizing features
does not significantly impact the model. Thus, IMGIA-E2
demonstrates marginally superior performance compared to
IMGIA. IMGIA-E1 generates features in the same way as
IMGIA-E2, but the random link generation is inefficient, so
IMGIA-E1 can reduce the accuracy of GNNs but not signif-
icantly.

Attack transferability In addition to effectiveness, transfer-
ability is an important metric to judge the performance of a
model. Table 3 shows the attack performance of our models
in SGC and GraphSAGE. The results show that IMGIA-E2
achieves the best attack performance inmost cases. For SGC,
IMGIA-E2 shows significant improvement in attack perfor-
mance under three datasets. For SCG, GNIA, NIPA, TDGIA,
AFGSM, andGAFNC reduce the accuracy by 4.25%, 4.31%,
3.15%, 2.81%, and 5.02% in the case of Cora, respectively.
IMGIA-E2 and IMGIA reduce the accuracy by 7.40% and
6.47%, respectively. In other cases, the results are the same.
Overall, our attacks can be effectively transferred to other
normal GNNs.

Attack performance under robust GNNs

In this section, we conduct the experiment to further vali-
date the effectiveness and robustness of our models under
two classes of robust GNNs, and the results are shown in
Table 4. The performance of all attack models is reduced
under RobustGCN and RGAT. Comparing our models with
other benchmark models reveals that IMGIA and IMGIA-E2

123

Complex & Intelligent Systems (2024) 10:869–883 877

Table 3 Classification accuracy (%) of GIA models under normal GNNs

GCN SGC GraphSAGE

Cora Citeseer Cora-ML Cora Citeseer Cora-ML Cora Citeseer Cora-ML

Clean 85.44 71.96 85.34 85.79 70.12 84.17 83.08 71.64 84.85

GNIA 82.19 68.37 82.45 81.54 68.16 82.10 79.44 67.88 84.45

NIPA 81.48 67.81 81.05 81.48 67.94 80.75 80.15 68.12 81.88

TDGIA 82.86 67.14 80.11 82.64 68.36 79.15 81.11 67.11 79.87

AFGSM 83.60 69.72 81.67 82.98 69.84 80.75 81.48 70.56 81.15

GAFNC 81.14 67.89 79.15 80.77 67.34 78.21 80.16 66.78 78.51

IMGIA-E1 84.01 71.16 84.64 84.13 70.44 82.41 82.45 71.10 83.11

IMGIA-E2 79.63 65.40 78.45 78.39 65.70 76.52 77.97 66.02 77.48

IMGIA 79.20 66.55 78.64 79.32 66.23 77.97 78.53 66.78 77.10

Lower numbers indicate better results, and bolded numbers indicate optimal results. The results are the average of 10 runs

still manage to maintain the lowest classification accu-
racy. For example, the classification accuracy of GNIA,
NIPA, TDGIA, AFGSM, and GAFNC are 84.62%, 83.41%,
84.25%, 85.21%, and 83.13% in RGAT with Cora, respec-
tively. The classification accuracy of IMGIA and IMGIA-E2
are 81.67% and 81.59%, respectively. In summary, our mod-
els achieve the best attacks under different robust GNNs. In
other words, the robustness of our model is better than other
attack models.

Attack performance under defense mothods

In this section, we investigate the attack performance of
IMGIAunder the defensemodel. Note that the default setting
of the victim model is GCN in this and subsequent sections.

Since randomly sampled links can reduce the propagation
of malicious information than randomly sampled features,
so here we use a Randomly Droped Link Fusion (RDLF)
defense model. Specifically, we first generate multiple sam-
pled perturbation graphs by deleting links (the number of
sampled graphs is set to 5, and the number of deleted links is
set to 0.01

∥

∥E ′∥
∥), then we use GCN to train the perturbation

graph to obtain the node representations, and finally the node
representations are summed and fused to obtain the predic-
tion label of the nodes. Although RDLF is a simpler defense
model, which can reduce the attack performance, so we use
it here to verify the effectiveness and robustness of IMGIA.

Figure 3 showsGIAmodels classification accuracy results
with and without defense. It is observed that RDLF effec-
tively reduces the attack performance in all three datasets.
Comparing the baselinemodels, IMGIAand IMGIA-E2with
defense obtained satisfactory results in the defense case. For-
tunately, the difference between IMGIA and IMGIA-E2with
defense accuracy is small under Cora and Cora-ML datasets.
All in all, IMGIA and its variants remain efficiently attacking
under the defense model.

Perturbation graph visualization

To visualize the invisibility of IMGIA, we use T-SNE visu-
alization to investigate the fake node feature in this section.

In Fig. 4, we find that GNIA and NIPA generate fake
node features with poor invisibility, i.e., the fake node fea-
ture distribution is different from the original node feature
distribution. AFGSM is extended from a targeted attack to
an untargeted attack, and the distribution of fake node fea-
tures is usually concentrated around the target node, which is
easily detected by the defense model. Figure4(f, g) show the
distribution of IMGIA-E1 and IMGIA-E2 fake node features.
Unfortunately, there are many outlier nodes, so we think that
the mask learning focuses on attack efficiency rather than
invisibility.

Since TDGIA and GAFNC use smoothed feature opti-
mization and GAN to obtain the features of the fake nodes,
respectively. Their fake node features are more hidden as
shown in Fig. 4(c, e). Figure 4(h) shows that the fake node
features of IMGIA can be well distributed and not concen-
trated. Table 5 shows the time complexity of generating fake
node features for TDGIA, GAFNC and IMGIA. The fake
nodes generated by TDGIA and GAFNC are well invisible,
but they are time costly. Normal distribution sampling can
generate invisible fake node features with low time com-
plexity. Comparing the time complexity of TDGIA, GNFNC
and IMGIA, we observe that IMGIA: O(md) < TDGIA:
O(‖X‖md) < GAFNC: O(Tnepo ‖X‖md). In short, the
above results demonstrate IMGIA can generate node features
with good camouflage at the cost of low complexity.

Homophily distribution

In the existing GIA models, many researchers have noticed
the distribution of the fake node in T-SNE visualization.
Intuitively, this is a preliminary exploration of the attack’s

123

878 Complex & Intelligent Systems (2024) 10:869–883

Table 4 Classification accuracy
(%) of GIA models under
normal GNNs

RobustGCN RGAT

Cora Citeseer Cora-ML Cora Citeseer Cora-ML

Clean 86.78 73.47 87.23 87.03 73.92 87.80

GNIA 84.44 70.64 85.13 84.62 70.49 84.67

NIPA 84.61 71.03 84.37 83.41 69.16 83.16

TDGIA 83.75 70.34 84.05 84.25 70.17 84.54

AFGSM 84.55 71.87 85.69 85.21 70.87 85.05

GAFNC 83.89 69.31 83.77 83.13 69.04 82.21

IMGIA-E1 85.46 72.17 86.42 86.22 72.13 86.10

IMGIA-E2 81.46 67.97 82.57 81.67 67.34 81.76

IMGIA 82.02 68.31 82.50 81.59 68.41 82.01

Fig. 3 Accuracy of different GIA models with and without defense

Table 5 The time complexity of
generating nodes for TDGIA,
GAFNC and IMGIA

Model Time Complexity

TDGIA ‖X‖md

GAFNC Tnepo
∥

∥X ′∥
∥md

IMGIA md

InGAFNC, theGCN is chosen to
implement the discriminator and
T represents the number of GAN
network optimizations

invisibility. We further investigate the impact of our models
on homophily. Figure5 visualizes the homophily distribu-
tion of the GIA models before and after the attack. The blue
and orange colors indicate the homophily distributions of the
original and perturbed graphs, respectively.

Figure 5(a–e) show that both baseline models damage the
homophily of the original graph, making a large difference in
the homophily distribution before and after the attack. From
Fig. 5(f–h), we find that our models are able to recover the
damage of GIA on graph homogeneity, especially in IMGIA
and IMGIA-E2.Homophily distribution is an important char-
acteristic to ensure the invisibility of attacks. The experiment

shows that IMGIA solves the GIA vulnerability problem in
homophily detection.

Number of fake nodes

This section investigates the impact of the number of fake
nodes on the performance of GIA models, and the results
are shown in Fig. 6. The number of fake nodes is positively
related to the performance of the GIA models, i.e., the more
fake nodes, the lower the accuracy rate. Figure6 shows that
the performance of IMGIA and IMGIA-E2 is always. Specif-
ically, taking Cora as an example, the classification accuracy
of IMGIA and IMGIA-E2 are {82.99%, 79.14%, 77.78%},
{83.12%, 79.08%, 77.10%} when the number of fake nodes
are {10, 30, 50}, respectively.

Homophily parameter

In this section, we performed an ablation study to analyze
the effect of homophily parameters on our models, and the
results are shown inFig. 7.Wefind that the homophily param-
eter does not significantly affect the IMGIA performance.
For example, in Cora, the classification accuracy of IMGIA-

123

Complex & Intelligent Systems (2024) 10:869–883 879

Fig. 4 T-SNE visualization of GIA models in Citeseer

E1, IMGIA-E2 and IMGIA are {85.41%, 85.14%, 84.12%},
{80.64%, 79.63%, 79.11%} and {80.20%, 79.14%, 79.05%}
when λ are {0.2, 0.6, 1.2}, respectively. Also, similar results
are obtainedonother datasets. In short, the homophily param-
eter does not affect the overall performance of our models.

AMGIA on targeted attack

In this section, we extend IMGIA and its variants from the
untargeted to targeted attack to demonstrate the attack’s gen-
eralizability. The untargeted attack aims at misclassifying
nodes without other label requirements. The targeted attack
aims to misclassify specified nodes as a pre-specified label.
Table 6 investigates the performance of our model under the
targeted attack.

Overall, IMGIA and IMGIA-E2 have superior attack
effectiveness under targeted attack. Specifically, when the
pre-specified label is 1, the attack success rates of IMGIA-
E1, IMGIA-E2 and IMGIA are 12.02%, 73.13% and 70.63%
inCiteseer, respectively.Moreover, we observe that ourmod-
els have the lowest attack performance in Cora-ML. For
example, the average classification accuracies of IMGIA
are 70.73%, 71.41%, and 67.04% in Cora, Citeseer, and

Cora-ML, respectively. Intuitively, Cora-ML is a continu-
ous feature, IMGIA is more difficult to generate continuous
features than discrete features, so the number of victim nodes
misclassified to the target label is lower.

Conclusion

In previous graph injection attacks, many attacks focus only
on the attack’s effectiveness but neglect the attack’s invisi-
bility, which makes the attack easily vulnerable. Therefore,
in this paper, we design an effective and imperceptible graph
injection attackmodel, namely IMGIA. IMGIAconsiders the
imperceptibility of attacks in terms of features and structure,
which has been rarely discussed in previouswork. The exper-
iments demonstrate that IMGIA achieves the lowest GNNs
classification accuracy compared to some of the advanced
GIAmodels. Besides, IMGIA shows good invisibility in var-
ious defense experiments.

In future work, we plan to explore efficient and stealthy
attacks in directed graphs or hypergraphs. In addition, our
work reflects the problem of GNNs’ vulnerability, whichwill
inspire us to design more robust GNNs.

123

880 Complex & Intelligent Systems (2024) 10:869–883

Fig. 5 The distribution of homology before and after the attack in Citeseer

Fig. 6 The classification accuracy under the different number of fake nodes

123

Complex & Intelligent Systems (2024) 10:869–883 881

Fig. 7 The influence of the homophily parameter on the performance of our models

Table 6 Classification accuracy
(%) of IMGIA and extended
models under the targeted attack

Target label

Datasets Model 1 2 3 4 5 6 7

Cora IMGIA-E1 10.19 11.51 10.01 11.02 10.54 13.05 9.23

IMGIA-E2 71.31 71.06 70.18 72.23 71.67 70.32 71.92

IMGIA 70.02 70.43 70.94 71.12 70.64 71.67 70.31

Citeseer IMGIA-E1 12.02 11.03 11.45 11.57 10.66 12.40 –

IMGIA-E2 73.13 72.97 73.45 71.66 72.75 73.09 –

IMGIA 70.63 71.64 71.67 72.16 70.98 71.39 –

Cora-ML IMGIA-E1 10.65 9.48 10.14 10.63 10.54 11.19 10.96

IMGIA-E2 68.64 67.45 67.43 68.31 67.61 66.50 66.41

IMGIA 66.33 67.06 67.10 67.41 66.97 67.63 66.78

Higher numbers indicate better results, and bolded numbers indicate optimal results in each attack setting.
The results are the average of 10 runs

Acknowledgements This work was supported by the National Key
R&D Program of China (No. 2020YFC1523300), and Construction
Project for Innovation Platform of Qinghai Province (No. 2022ZJT02).

Data availability The processed data required to reproduce these find-
ings cannot be shared at this time as the data also forms part of an
ongoing study. In the future, the processed data that support the find-
ings of this study are available from the corresponding author upon
reasonable request.

Declarations

Conflict of interest The authors declare no conflicts of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Amara A, Hadj T, Ben AM (2022) Cross-network representation
learning for anchor users on multiplex heterogeneous social net-
work. Appl Soft Comput 118:108461

2. Yin X, Lin W, Sun K, Wei C, Chen Y (2023) A2s2-GNN: Rigging
GNN-based social status by adversarial attacks in signed social
networks. IEEE Trans Inf Forensics Secur 18:206–220

3. Pornprasit C, Liu X, Kiattipadungkul P, Kertkeidkachorn N (2022)
Enhancing citation recommendationusing citation network embed-
ding. Scientometrics 127(1):233–264

4. Wu H, Ng MK (2022) Hypergraph convolution on nodes-
hyperedges network for semi-supervised node classification. ACM
Trans Knowl Discov Data 16(4):1–19

5. Pang Y, Huang T,Wang Z, Li J, Hosseini P (2022) Graph decipher:
a transparent dual-attention graph neural network to understand the
message-passing mechanism for the node classification. Int J Intell
Syst 37(11):8747–8769

6. Xiao L, Xu P, Jing L, Akujuobi U, Zhang X (2022) Semantic guide
for semi-supervised few-shot multi-label node classification. Inf
Sci Int J 591:235–250

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

882 Complex & Intelligent Systems (2024) 10:869–883

7. Xie Y, Lv S, Qian Y, Wen C, Liang J (2022) Active and semi-
supervised graph neural networks for graph classification. IEEE
Trans Big Data 8(4):920–932

8. Doshi S, Chepuri SP (2022) Graph neural networks with parallel
neighborhood aggregations for graph classification. IEEE Trans
Signal Process 70:4883–4896

9. Wang Z, Liu M, Luo Y, Xu Z, Xie Y, Wang L, Cai L, Qi Q, Yuan Z,
Yang T (2022) Advanced graph and sequence neural networks for
molecular property prediction and drug discovery. Bioinformatics
38(9):2579–2586

10. Kipf TN, Welling M (2016) Semi-supervised classification with
graph convolutional networks. arXiv:1609.02907

11. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio
Y (2017) Graph attention networks. arXiv:1710.10903

12. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation
learning on large graphs. Adv Neural Inf Process Syst 30

13. Yang S, DoanBG,Montague P, DeVelO (2022) Transferable graph
backdoor attack. In: Proceedings of the 25th international sympo-
sium on research in attacks, intrusions and defenses. p 321–332

14. Liu Z, Luo Y, Wu L, Liu Z, Li SZ (2022) Towards reasonable
budget allocation in untargeted graph structure attacks via gradient
debias. In: Oh AH, Agarwal A, Belgrave D, Cho K (eds) Advances
in neural information processing systems

15. ChenY,Ye Z, ZhaoH,Meng L,Wang Z, YangY (2022) A practical
adversarial attack on graph neural networks by attacking single
node structure. In: 2022 IEEE 24th international conferences on
high performance computing & communications. IEEE, p 143–
152

16. ZhangZ, SongX, SunX, StojanovicV (2023)Hybrid-driven-based
fuzzy secure filtering for nonlinear parabolic partial differential
equation systems with cyber attacks. Int J Adapt Control Signal
Process 37(2):380–398

17. Song X,WuN, Shuai S, Stojanovic V (2023) Switching-like event-
triggered state estimation for reaction-diffusion neural networks
against dos attacks. Neural Process Lett

18. Chen J,WuY,XuX,ChenY,ZhengH,XuanQ (2018) Fast gradient
attack on network embedding. arXiv:1809.02797

19. ZügnerD,AkbarnejadA,GünnemannS (2018)Adversarial attacks
on neural networks for graph data. In: Proceedings of the 24thACM
SIGKDD international conference on knowledge discovery & data
mining. p 2847–2856

20. Sharma K, Trivedi R, Sridhar R, Kumar S (2022) Imperceptible
adversarial attacks on discrete-time dynamic graph models. In:
NeurIPS 2022 temporal graph learning workshop

21. Ju M, Fan Y, Zhang C, Ye Y (2022) Let graph be the go board:
gradient-free node injection attack for graph neural networks via
reinforcement learning. arXiv:2211.10782

22. Chen J, Huang G, Zheng H, Yu S, Jiang W, Cui C (2021)
Graph-fraudster: adversarial attacks on graph neural network based
vertical federated learning. https://doi.org/10.48550/arXiv.2110.
06468

23. Zügner D, Günnemann S (2019) Adversarial attacks on graph neu-
ral networks via meta learning. In: International conference on
learning representations (ICLR)

24. Lin X, Zhou C, Wu J, Yang H, Wang H, Cao Y, Wang B (2023)
Exploratory adversarial attacks on graph neural networks for semi-
supervised node classification. PatternRecogn133:109042. https://
doi.org/10.1016/j.patcog.2022.109042

25. Chen Y, Ye Z, Zhao H, Wang Y et al (2023) Feature-based graph
backdoor attack in the node classification task. Int J Intell Syst 2023

26. Nguyen TT, Quach KND, Nguyen TT, Huynh TT, Vu VH, Le
Nguyen P, Jo J, Nguyen QVH (2022) Poisoning GNN-based rec-
ommender systems with generative surrogate-based attacks. ACM
Trans Inf Syst. https://doi.org/10.1145/3567420

27. Li Y, Liao J, Liu C,WangY, Li L (2022) Node similarity preserving
graph convolutional network based on full-frequency informa-

tion for node classification. Neural Process Lett. https://doi.org/
10.1007/s11063-022-11094-z

28. Zhuang J, Hasan MA (2022) How does bayesian noisy self-
supervision defend graph convolutional networks? Neural Process
Lett 54(4):2997–3018

29. Wang X, Eaton J, Hsieh C-J, Wu SF (2018) Attack graph convolu-
tional networks by adding fake nodes. arXiv:1810.10751

30. Wang J, Luo M, Suya F, Li J, Yang Z, Zheng Q (2020) Scal-
able attack on graph data by injecting vicious nodes. Data Min
Knowl Discov 34(5):1363–1389. https://doi.org/10.1007/s10618-
020-00696-7

31. Sun Y, Wang S, Tang X, Hsieh T-Y, Honavar V (2020) Adversarial
attacks on graph neural networks via node injections: a hierarchi-
cal reinforcement learning approach. In: Proceedings of the web
conference 2020. WWW ’20. p 673–683. https://doi.org/10.1145/
3366423.3380149

32. SharmaAK,Kukreja R,KharbandaM,Chakraborty T (2023)Node
injection for class-specific network poisoning. arXiv:2301.12277

33. Dai J, Zhu W, Luo X (2022) A targeted universal attack on graph
convolutional network by using fake nodes. Neural Process Lett
54(4):3321–3337. https://doi.org/10.1007/s11063-022-10764-2

34. Boukerche A, Zheng L, Alfandi O (2020) Outlier detection: meth-
ods,models, and classification.ACMComput Surv. https://doi.org/
10.1145/3381028

35. Chen Y, Yang H, Zhang Y, KAILIM, Liu T, Han B, Cheng J (2022)
Understanding and improving graph injection attack by promoting
unnoticeability. In: International conference on learning represen-
tations

36. Liu Z, Wang G, Luo Y, Li SZ (2022) What does the gradient tell
when attacking the graph structure. arXiv:2208.12815

37. Fang J, Wen H, Wu J, Xuan Q, Zheng Z, Tse CK (2022) Gani:
global attacks on graph neural networks via imperceptible node
injections. arXiv:2210.12598

38. Wu B, Yang X, Pan S, Yuan X (2021) Adapting membership
inference attacks to GNN for graph classification: approaches and
implications. arXiv:2110.08760

39. Lin L, Blaser E,Wang H (2022) Graph structural attack by perturb-
ing spectral distance. In: Zhang A, Rangwala H (eds) KDD ’22: the
28th ACM SIGKDD conference on knowledge discovery and data
mining, Washington, DC, USA, August 14–18, 2022. p 989–998.
https://doi.org/10.1145/3534678.3539435

40. Liu Z, Luo Y, Wu L, Li S, Liu Z, Li SZ (2022) Are gradients on
graph structure reliable in gray-box attacks? In: Association for
computing machinery, vol 9. p 1360–1368

41. Liu Z, Luo Y, Zang Z, Li SZ (2022) Surrogate representation learn-
ing with isometric mapping for gray-box graph adversarial attacks.
p 591–598. https://doi.org/10.1145/3488560.3498481

42. Tao S, Cao Q, Shen H, Huang J, Wu Y, Cheng X (2021) Single
node injection attack against graph neural networks. In: Proceed-
ings of the 30th ACM international conference on information;
knowledge management. p 1794–1803. https://doi.org/10.1145/
3459637.3482393

43. Wang Z, Hao Z,Wang Z, Su H, Zhu J (2021) Cluster attack: query-
based adversarial attacks on graphs with graph-dependent priors.
arXiv:2109.13069

44. Zou X, Zheng Q, Dong Y, Guan X, Kharlamov E, Lu J, Tang J
(2021) TDGIA: Effective Injection Attacks on Graph Neural Net-
works. arXiv:2106.06663

45. Tao S, Cao Q, Shen H, Wu Y, Hou L, Cheng X (2022) Adversarial
camouflage for node injection attack on graphs. arXiv:2208.01819

46. Jiang C, He Y, Chapman R, Wu H (2022) Camouflaged poison-
ing attack on graph neural networks. In: Proceedings of the 2022
international conference on multimedia retrieval. p 451–461

47. Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K (2019)
Simplifying graph convolutional networks. In: Proceedings of the
36th international conference on machine learning. p 6861–6871

123

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1809.02797
http://arxiv.org/abs/2211.10782
https://doi.org/10.48550/arXiv.2110.06468
https://doi.org/10.48550/arXiv.2110.06468
https://doi.org/10.1016/j.patcog.2022.109042
https://doi.org/10.1016/j.patcog.2022.109042
https://doi.org/10.1145/3567420
https://doi.org/10.1007/s11063-022-11094-z
https://doi.org/10.1007/s11063-022-11094-z
http://arxiv.org/abs/1810.10751
https://doi.org/10.1007/s10618-020-00696-7
https://doi.org/10.1007/s10618-020-00696-7
https://doi.org/10.1145/3366423.3380149
https://doi.org/10.1145/3366423.3380149
http://arxiv.org/abs/2301.12277
https://doi.org/10.1007/s11063-022-10764-2
https://doi.org/10.1145/3381028
https://doi.org/10.1145/3381028
http://arxiv.org/abs/2208.12815
http://arxiv.org/abs/2210.12598
http://arxiv.org/abs/2110.08760
https://doi.org/10.1145/3534678.3539435
https://doi.org/10.1145/3488560.3498481
https://doi.org/10.1145/3459637.3482393
https://doi.org/10.1145/3459637.3482393
http://arxiv.org/abs/2109.13069
http://arxiv.org/abs/2106.06663
http://arxiv.org/abs/2208.01819

Complex & Intelligent Systems (2024) 10:869–883 883

48. Zhu D, Zhang Z, Cui P, Zhu W (2019) Robust graph convolutional
networks against adversarial attacks. In: Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery
& data mining. p 1399–1407

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Imperceptible graph injection attack on graph neural networks
	Abstract
	Introduction
	Related work
	Adversarial attack on GMA
	Adversarial attack on GIA

	Preliminary
	Graph neural networks
	Graph injection attack model

	Methodology
	Feature generation
	Link generation
	Graph optimization
	Overall objective and algorithm
	Time complexity

	Experiments
	Datasets
	Baselines
	Parameter settings and evaluation metric
	Experiment results
	Attack performance under normal GNNs
	Attack performance under robust GNNs
	Attack performance under defense mothods
	Perturbation graph visualization
	Homophily distribution
	Number of fake nodes
	Homophily parameter
	AMGIA on targeted attack

	Conclusion
	Acknowledgements
	References

