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Abstract
Silicon content of molten iron is an important indicator in the blast furnace ironmaking process. Accurate prediction of
silicon content is very important for monitoring the operating condition of the blast furnace and the quality of the molten
iron. However, accurate and effective online prediction of silicon content is a challenging task due to the complex and
high-dimensional nonlinear relationship between silicon content and process variables. Therefore, a two-stage multiobjective
evolutionary ensemble learning algorithm is proposed to achieve a high-accuracy and low-complexity prediction model
using support vector machine (SVR) as the base learner. In the first stage, a non-dominated sorting differential evolution
algorithm with dynamic resource allocation (DRA-NSDE) is proposed to generate a set of non-dominated solutions (SVRs)
with the objectives of accuracy and complexity. In the second stage, a stacking method based on clustering and differential
evolution (CDE-Stacking) is proposed to select base learners with better diversity and construct the ensemble model. The
effectiveness of the proposed DRA-NSDE and CDE-Stacking strategies is verified through a series of numerical experiments.
The experimental results show that the proposed algorithm outperforms the rival methods on both the UCI benchmark data
set and the actual blast furnace data set. In addition, the analysis of model complexity shows that the proposed model can
achieve higher prediction accuracy with relatively low model complexity, which indicates that the algorithm is very suitable
for the online prediction of silicon content in actual blast furnace ironmaking process.
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Introduction

As the main method of modern ironmaking, blast furnace
ironmaking is themost critical process in iron and steel indus-
try. As shown in Fig. 1, a blast furnace can be divided into
five zones from top to bottom: throat, shaft, belly, bosh, and
hearth. In practical production, the thermal state of the blast
furnace is a crucial indicator of its output, energy consump-
tion, and service life.However, as a typical black-box system,
it is difficult to directly measure the internal thermal state
of the blast furnace due to the limitations of measurement
and sensor technology [1, 2]. Many studies have demon-
strated that the silicon content of molten iron can indirectly
characterize the blast furnace temperature without loss of
information, and its trend can reflect the quality of themolten
iron and the operating condition of the blast furnace [3]. High
silicon content indicates that the blast furnace is overheating,
resulting in unnecessary energy loss [4]. On the contrary,
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Fig. 1 Blast furnace ironmaking process

low silicon content indicates a low blast furnace tempera-
ture, which severely affects the iron output and often takes
weeks to recover [5]. Therefore, it is important to establish a
predictionmodel for the silicon content ofmolten iron to pro-
vide guidance for the actual production of the blast furnace
ironmaking process.

Due to powerful data mining capability and less reliance
on expert knowledge, data-driven algorithms for silicon con-
tent prediction have gradually become the focus of research
[4, 6–8]. However, many existing works only applied a sin-
gle model to predict the silicon content [9–11], which may
not fully satisfy the accuracy requirement due to the com-
plex and high-dimensional nonlinear relationship between
silicon content and process variables. Therefore, in recent
years, some sophisticated models have been proposed to
address this problem. Liu et al. [12] proposed a novel silicon
content prediction method called T-HyperGAT, which com-
bined the hypergraph attention network (HyperGAT) and the
gated recurrent unit (GRU) network to capture the high-order
correlations and time-series characteristics from complex
industrial data. Li et al. [13] proposed a context-aware
enhanced GRU network with feature-temporal attention to
predict silicon content, which allowed for enhanced local
awareness and soft alignment of variables. Zhao et al. [14]
proposed an amelioratedMoth-Flame optimization (AMFO)
algorithm to optimize the parameters of fast learning network
(FLN) to build the prediction model of silicon content. These
algorithms aim to achieve better silicon content prediction
performance by building more complex models, but with a
corresponding increase in computational cost.

Support vector machine (SVR) is a promising machine
learning algorithm that can deal with high-dimensional non-
linear prediction problems. However, the hyperparameters
of SVR need to be adjusted carefully to achieve promis-
ing performance. Due to the powerful global search ability,
evolutionary algorithms (EAs) have been widely used to
search the optimal hyperparameters of SVR [15–18] and
other industrial parameter optimization tasks [19–21] (e.g.,
Stojanovic et al. proposed the optimal tuning of cascade
load force controllers for a parallel robot platform in [20]).
However, most existing works [22–25] only considered the
accuracy of SVR and ignored the complexity of the model,
which might not be adequate for online prediction tasks in
actual industrial processes.

Multiobjective evolutionary ensemble learning (MOEEL)
algorithms have gradually become the research focus in var-
ious prediction problems [26–30]. MOEEL is suitable for
dealing with real industrial data such as silicon content for
twomain reasons: (1)MOEEL aims to construct an ensemble
model based on a series of high-quality base learners in order
to better handle the complex and high-dimensional nonlinear
correlations between silicon content and process variables;
and (2) MOEEL usually takes the complexity and accuracy
of base learners as two conflicting optimization objectives to
achieve a balance between model accuracy and generaliza-
tion, which is crucial for online prediction of silicon content
in actual blast furnace ironmaking process. Wang et al. [31]
proposed a multiobjective sparse nonlinear ensemble learn-
ing with evolutionary feature selection (MOSNE-EFS) to
achieve the precise prediction of the strip hardness. Singh and
Singh [32] developed a stacking-based evolutionary ensem-
ble learning system called NSGA-II-Stacking to predict the
onset of Type-2 diabetes mellitus (T2DM). Hu et al. [4]
proposed a multiobjective evolutionary nonlinear ensemble
learning model with evolutionary feature selection mecha-
nism (MOENE-EFS) for silicon content prediction, which
can efficiently select input features and construct the ensem-
ble model in a nonlinear way. However, these works usually
adopted traditional multiobjective evolutionary algorithm in
training base learners and ignored the balance between local
search and global search, which may suffer from falling into
local optima with low diversity [31, 33–35].

To address the above issues, this paper proposes a two-
stage multiobjective evolutionary ensemble learning algo-
rithm for silicon content prediction of blast furnace, in
which support vector regression (SVR) is adopted as the
base learner. The proposed algorithm can obtain a series of
non-dominated solutions with high accuracy and diversity,
based on which an ensemble model with good prediction
performance and low model complexity can be constructed.
The main contributions in this paper are summarized as
follows:
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(1) Unlike traditional methods that only take the prediction
accuracy of SVR as the optimization objective, the pro-
posed method optimizes the accuracy and complexity of
SVR at the same time, and a prediction model with high
accuracy and low model complexity can be obtained.

(2) In the first stage, a non-dominated sorting differen-
tial evolution with dynamic resource allocation (DRA-
NSDE) is proposed to achieve the balance between local
and global search through dynamic resource allocation,
which results in a series of base learners with high accu-
racy and diversity.

(3) In the second stage, a stacking ensemble method based
on clustering and differential evolution (CDE-Stacking)
is proposed to select and ensemble the base learners, in
which the K-Means clustering is utilized to ensure the
diversity of base learners, and the single-objective DE is
used to optimize the ensemble weights of selected base
learners.

The remainder of this paper is organized as follows:
“Related works” section briefly introduces the related works.
“The proposed algorithm” section elaborates the framework
and details of the proposed two-stage MOEEL algorithm.
“Experiments” section consists of the analysis of the pro-
posed DRA-NSDE and CDE-Stacking strategies and the
performance analysis of the proposed two-stage MOEEL
algorithm on both the UCI benchmark data set and the actual
blast furnace data set. Finally, “Conclusion” section con-
cludes this paper and introduces our future work.

Related works

Support vector regression

Unlike traditional regression methods, SVR constructs a
fault-tolerant band and makes as many points as possible
fall into it. When | f (x) − y| � ε, i.e., the bias between the
predicted value and the actual value is within the tolerance
range, the prediction is considered correct.

By maximizing the interval and minimizing the empiri-
cal risk, SVR can obtain the optimal regression model. A
maximizing interval problem can be transformed into a min-
imizing interval problem by taking the inverse and adding
the empirical risk loss term into the objective function, as
shown in Eq. (1).

min
ω,b

1

2
‖ω‖2 + C

m∑

i=1

lε( f (xi ) − yi ) (1)

where C is the regularization parameter, and lε is the ε-
insensitive loss function.

lε(z) =
{
0, |z| � ε

|z| − ε, |z| > ε

However, setting ε by experience can not ensure that most
of the data are located within the interval band, therefore, it is
necessary to add slack variables for each sample so that some
samples are allowed to be located outside the interval band.
After introducing the slack variables ξ, ξ̂ , the optimization
objective shown in Eq. (1) is changed to the following form
[36]:

min
ω,b,ξi ,ξ̂i

1

2
‖ω‖2 + C

m∑

i=1

(ξi + ξ̂i )

s.t. f (xi ) − yi � ε + ξi

yi − f (xi ) � ε + ξ̂i

ξi � 0, ξ̂i � 0, i = 1, 2, . . . ,m

The following Lagrangian function [37] can be obtained
by introducing the Lagrangian multipliers ui � 0, ûi �
0, αi � 0, α̂i � 0 to remove the constraints:

L(ω, b, α, α̂, ξ, ξ̂ , u, û)

= 1

2
‖ω‖2 + C

m∑

i=1

(ξi + ξ̂i )

−
m∑

i=1

uiξi −
m∑

i=1

ûi ξ̂i

+
m∑

i=1

αi ( f (xi ) − yi − ε − ξi )

+
m∑

i=1

α̂i (yi − f (xi ) − ε − ξ̂i )

Substituting f (x) = ωT x + b into the Lagrangian function
and making the partial derivative of ω, b, ξ, ξ̂ equal to zero,
the following equations can be obtained:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

(α̂i − αi )xi = ω

m∑
i=1

(α̂i − αi ) = 0

ui + αi = C

ûi + α̂i = C
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According to KKT Conditions [37]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi ( f (xi ) − yi − ε − ξi ) = 0

αi (yi f − (xi ) − ε − ξi ) = 0

αi α̂i = 0

ξi ξ̂i = 0

(C − αi )ξi = 0

(C − α̂i )ξ̂i = 0

the pairwise problem of SVR can be obtained as follows:

max
α,α̂

m∑

i=1

yi (α̂i − αi ) − ε(α̂i + αi )

− 1

2

m∑

i=1

m∑

j=1

(α̂i − αi )(α̂ j − α j )x
T
i x j

s.t.
m∑

i=1

(α̂i − αi ) = 0

0 � αi , α̂i � C

By solving the above optimization problem, the regression
function of SVR can be obtained as Eq. (2).

f (x) =
m∑

i=1

(α̂i − αi )x
T
i x + b (2)

Whendealingwith the nonlinear regression problem, SVR
generally maps x to a high-dimensional space by φ(x), and
consequently the nonlinear problem is transformed into an
approximately linear regression problem. However, as the
number of variables becomes larger, the problem dimension-
ality grows exponentially, which significantly increases the
computational resource. This problem can be solved by intro-
ducing kernel function into SVR to avoid the tremendous
inner product computation in the high-dimensional feature
space. The commonly used kernel function are Gaussian
kernel function, polynomial kernel function, Laplace ker-
nel function and Sigmoid kernel function. After introducing
kernel functions into SVR, Eq. (2) can be rewritten as:

f (x) = ωTφ(x) + b

=
m∑

i=1

(α̂i − αi )φ(xi )
Tφ(x) + b

=
m∑

i=1

(α̂i − αi )k(x, xi ) + b

(3)

Multiobjective evolutionary ensemble learning

In ensemble learning, the construction and integration of
base learners are two important processes. According to the
“error-ambiguity decomposition” theory [38], the ensemble
performancedependsheavily onwhether the prediction accu-
racy and diversity of the base learners are well balanced.
Even if the base learners with high accuracy and strong
diversity are obtained, the ensemble performance will not be
satisfactory if an inappropriate ensemble strategy is chosen.
Therefore, various ensemble strategies have been proposed,
such as AdaBoost [39] and Random Forest [40], which have
specific steps to build the ensemble model. In multiobjective
evolutionary algorithms (MOEAs), multiple Pareto optimal
solutions can be obtained by one evolution, and the corre-
sponding non-dominated solution set can meet the accuracy
and diversity requirements of ensemble learning. Therefore,
multiobjective evolutionary ensemble learning (MOEEL) is
very suitable for the silicon content prediction problem of
blast furnace [4].

Algorithm 1 Framework of MOEEL
Require: Data set; parameters of MOEA; base learner
Ensure: Ensemble model
1: Design solution encoding scheme for base learners and initialize the

population.
2: Define the evaluation metrics to evaluate the base learners in terms

of model accuracy and complexity, and use them as the objective
function of the solution.

3: Using appropriate evolutionary operators and environment selec-
tion strategies to generate offspring solutions and update the current
population. Repeat this step until the stop condition is met.

4: Select base learners from the last population to construct the ensem-
ble model with an appropriate selection strategy.

5: Construct the ensemble model with the selected base learners based
on the appropriate ensemble strategy.

The framework of MOEEL is shown in Algorithm 1,
which includes two stages. In the first stage (lines 1–3), the
base learners are encoded as solutions in the population, and
then a suitable multiobjective evolutionary algorithm is used
to search for base learners with high accuracy and strong
diversity. To achieve this purpose, we need to design the
encoding scheme, define objective functions for base learn-
ers, and choose appropriate genetic operators as well as the
environment selection method. The second stage (lines 4–5)
is to select appropriate base learners and then integrate them
in some way to construct the final ensemble model.
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The proposed algorithm

Algorithm overview

Algorithm 2 outlines the overall framework of the proposed
two-stage MOEEL algorithm, where the contributions are
highlighted in italic. In the first stage (lines 1–6), the initial
population is generated and evaluated according to the pro-
posed solution encoding scheme and two objective functions.
Then the non-dominated solution set consisting of base learn-
ers with high accuracy and strong diversity is obtained based
on the proposed DRA-NSDE algorithm. In the second stage
(line 7), the obtained base learners are integrated through
the proposed CDE-Stacking method to construct the ensem-
ble model with high accuracy and generalization ability for
silicon content prediction.

Algorithm 2 Framework of the Proposed Algorithm
Require: Training and validation data; algorithm parameters in two

stages; base learner SVR
Ensure: Ensemble model EM

// Stage 1: Training of base learners with DRA-NSDE
1: P ←Generate the initial population according to the solution encod-

ing scheme described in “Encoding and decoding” section.
2: for each solution x in P do
3: Decode x to a SVR model.
4: Calculate the evaluation metrics of the SVRmodel and take them

as the objective values.
5: end for
6: NDSet ← Evolve the population based on the proposed DRA-

NSDE algorithm and get the non-dominate solution set.
// Stage 2: Ensemble of selected base learners

7: EM ← Select appropriate base learners and construct the final
ensemble model based on the CDE-Stacking method.

Encoding and decoding

As shown in Fig. 2, a solution in the population is encoded as
a vector which has two parts: the feature selection part and
the hyperparameter part. The feature selection part is a binary
vector whose length equals to the total number of features.
In the binary vector, 1 indicates that the feature is selected
to construct the base learner while 0 indicates that the fea-
ture is not selected. The hyperparameter part is a real number
vector which contains three genes, representing three hyper-
parameters in SVR, i.e., regularization parameter C , width
coefficient γ in Gaussian kernel function and insensitive loss
coefficient ε. Please note that the upper and lower bounds of
the hyperparameter part are determined by pre-experiments,
i.e., multiple experiments on a single SVR model to roughly
determine the range of values of C , γ and ε.

The solution needs to be decoded to get its objective
function values. First, the features used to build the base
learner are determined from the feature selection section,
and the corresponding training data can be extracted from
the blast furnace dataset. Then three SVR hyperparameters
are obtained from the hyperparameters section, and the SVR
model can be constructed and trained. After the training is
completed, the SVRmodelwill be evaluated on the validation
set and the evaluation results are considered as the objective
function values of this solution.

Noted that the upper and lower bounds for the hyper-
parameter part are determined by pre-experiments. Several
experiments are conducted on a single SVRmodel before the
formal experiments in which we can roughly determine the
range of values forC , γ and ε. The upper and lower bounds of
parameters obtained in pre-experiments are shown inTable 1.

Fig. 2 Schematic of the solution
encoding and decoding
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Table 1 Upper bounds and
lower bounds of parameters in
the hyperparameter part

Parameter Name Lower bounds Upper bounds

Regularization parameter C 0.004 10.000

Width coefficient γ 0.004 10.000

Insensitive loss coefficient ε 0.0 0.4

Objective functions

In the silicon content prediction problem of blast furnace,
the prediction accuracy and the model complexity are two
conflicting optimization objectives to guide the evolutionary
search direction of the algorithm.

Accuracy

The first objective is to maximize the prediction accuracy of
the model. In this paper, root mean square error loss (RMSE)
is used as the accuracy metric, which is defined as Eq. (4).

RMSE =
√√√√ 1

L

L∑

i=1

(ŷi − yi )2 (4)

where L is the number of samples, ŷi is the predicted value
for the i th sample, and yi is the true value of the i th sample.
It should be noted that a smaller RMSE indicates a higher
accuracy.

Complexity

The second objective is to minimize the complexity of the
model. In this paper, the number of support vectors in the
SVRmodel is used as the complexitymetric,which is defined
as Eq. (5).

CMPLX = Nsupport (5)

where CMPLX stands for model complexity and Nsupport is
the number of support vectors in the SVR model.

Mutation and crossover

The mutation operator used in the proposed algorithm is
DE/rand/1/bin [41]. In DE/rand/1/bin, for each target vec-
tor xi , its associated mutant vector vi can be generated by
Eq. (6).

vi = xr1 + F(xr2 − xr3) (6)

where xr1 , xr2 , xr3 are three randomly selected solutions from
the population and r1, r2, r3 are mutually exclusive integers

randomly generated with the range [1, N ] (N is the popula-
tion size). The scaling factor F is a positive control parameter
for scaling the difference vector.

Since the solution in the proposed algorithm is encoded
as a vector that contains both binary part and real part, some
necessary modifications have to be made in the original
DE mutation operator. The mutation of the hyperparame-
ter part (real encoded) between two solutions is the same
as Eq. (6), while the mutation of the feature selection part
(binary encoded) is performed as follows [4]:

Step 1: Apply an Exclusive-OR operation on the feature
selection part of xr2 and xr3 to obtain a binary vector
xtemp.

Step 2: Generate a randomnumber R between [0, 1) for each
gene in the feature selection part of xtemp if its value
is 1. Compare this random number with the differ-
ence weight F . If R < F , the binary number of this
gene is changed from 1 to 0, otherwise no operation
is performed.

Step 3: Perform OR operation on the feature selection part
of the obtained xtemp and xr1 to obtain the mutant
vector vi .

According to DE/rand/1/bin, the trial vector ui can be
obtained by the crossover operation on the mutant vector vi
and the target vector xi , as shown in Eq. (7).

ui, j =
{

vi, j , if r j < CR or j = i

xi, j , otherwise
(7)

where ui, j denotes the j th gene on the i th solution in the pop-
ulation, r j is a random number between [0, 1), andCR is the
crossover probability. Note that there is no selection oper-
ation after the mutation and crossover operation compared
with the original DE algorithm. Instead, the trial vector ui
is also regarded as an offspring solution and added to the
offspring population directly.

DRA-NSDE

A variety of crossover operators have been designed for the
differential evolution (DE) algorithm, each with a different
search behavior. For example, the DE/rand/1/bin operator
focuses on maintaining good diversity and therefore con-
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Algorithm 3 DRA-NSDE
Require: Training and validation data; maximum generation G; pop-

ulation size N ; the number of clusters K
Ensure: Non-dominated solution set NDSet
1: Set current generation g = 0.
2: while g < G do
3: P ← Cluster the population P into K clusters with K-Means

algorithm and obtain the sub-population set.
4: ρL , ρG ← Get local search and global search ratio.
5: Q ← Initialize the offspring population with φ.

// Local search
6: for each Pk(k := 1 to K ) in P do
7: for i ← 1 to ρL ∗ |Pk | do
8: xr1 , xr2 , xr3 ← Randomly select three solutions from the

sub-population Pk .
9: vi ← Perform Mutation operator on xr1 , xr2 , xr3 .
10: ui ← Perform Crossover operator on the current solution

xi and vi .
11: Q ← Q ∪ ui ;
12: end for
13: end for

// Global search
14: for i ← 1 to ρG ∗ N do
15: xr1 , xr2 , xr3 ←Randomly select three solutions from the cur-

rent population P;
16: vi ← Perform Mutation operator on xr1 , xr2 , xr3 ;
17: ui ← Perform Crossover operator on the current solution xi

and vi ;
18: Q ← Q ∪ ui ;
19: end for
20: J ← Evaluate the offspring population Q and combine it with

the current population P to obtain the joint population;
21: P ← Perform environment selection on J and obtain the new

population into the next generation;
22: ρL , ρG ← Update local search ratio and global search ratio

based on their success rate;
23: g ← g + 1;
24: end while
25: NDSet ← Obtain the non-dominated solution set from the final

population after the evolution process is done.

verges relatively slowly, while the DE/best/1/bin operator
converges faster but tends to lose good diversity. To achieve
a good balance between exploration and exploitation, the
dynamic allocation strategy of computational resources is
proposed in the DRA-NSDE. The algorithm details are pre-
sented in Algorithm 3.

The schematic of local search and global search in Algo-
rithm 3 is shown in Fig. 3. First, the K-Means clustering
algorithm is performed on the current population P in the
objective space, and the population P will be divided into
K sub-populations, i.e., P = {P1, P2, . . . , PK }. Then we get
the local search ratio ρL and the global search ratio ρG in
the current evolution process, where ρL is used to calculate
the number of offspring solutions Nk

L generated only from
sub-population Pk(k = 1, . . . , K ), and ρG is used to calcu-
late the number of offspring solutions NG generated from
the whole population P (see Eqs. (8) and (9)). In the fol-
lowing local search process, for each sub-population Pk in

set P, we first select three different solutions to perform the
mutation and crossover operation described in “Mutation and
crossover” section to generate the offspring solution ui , and
then add it to the offspring population Q. This process will
be repeated until Nk

L offspring solutions are generated and
added to Q. After the local search is completed on all sub-
populations, the global search begins subsequently. Different
from the local search, the three random solutions are selected
from the whole population P . The subsequent mutation and
crossover operations are consistentwith the local search. This
process will also be repeated until NG offspring solutions are
generated and added to Q. After the offspring population Q
is obtained, Q will be combined with the current population
P to get the joint population. Based on the non-dominated
ranking and crowding distance [42], the environment selec-
tion operation is performed on the joint population to obtain
a new population for the next generation.

Nk
L = ρL ∗ |Pk | (8)

NG = ρG ∗ |P| (9)

To achieve the dynamic resource allocation, the algorithm
needs to maintain two variables, i.e., the local search ratio
ρL and the global search ratio ρG during the evolution pro-
cess. At the beginning of the algorithm, these two variables
are set to be equal, i.e., ρL = ρG = 0.5, so that each of
the two searching strategies generates half of the solutions
in the offspring population Q. After the environment selec-
tion, a new population that will enter the next generation can
be obtained, and we can count the following four numbers:
nsL , n fL , nsG , n fG . Among all the offspring solutions gen-
erated from the local search, the number of solutions that
successfully enter the next generation is counted as nsL ,
while the number of solutions that failed to enter the next
generation is counted as n fL . Similarly, among all the off-
spring solutions generated from the global search, the number
of solutions that successfully enter the next generation is
counted as nsG and the number of solutions that failed to
enter the next generation is counted as n fG . These four num-
bers are accumulated after LP (learning period) generations,
and then the two ratios ρL and ρG can be updated according
to Eqs. (10) and (11) [43].

ρL = nsL
nsL + n fL

(10)

ρG = nsG
nsG + n fG

(11)

The above equations denote the success rate of the two
searching strategies in a given learning period. After the ini-
tial LP generations, the local search ratio ρL and the global
search ratio ρG will be dynamically updated in each gener-
ation, so that the computational resources can be allocated
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Fig. 3 Local search and global
search (K = 3)

dynamically at different stages of the evolution. In this way,
the algorithm can avoid falling into local optimal point and
have a good ability tomaintain better diversity. Note that after
each update of the two searching strategy ratios, their suc-
cess number ns and fail number n f recorded in the earliest
generation need to be cleared from the archive to ensure that
the update of the two ratios relies only on the most recent LP
generations, thus eliminating the potential negative impact at
the early stage of the evolution.

After the evolution process is completed, a fast non-
dominated sorting [42] is performed on the population in the
last generation. Then all solutions on the first non-dominated
layer are extracted to obtain the final non-dominated solution
set NDSet.

In the proposed DRA-NSDE algorithm, we divided the
population into different local areas based on K-Means clus-
tering, and then dynamically select the local search strategy
or global search strategy based on their success rate to achieve
dynamic resource allocation. This solves the problemof diffi-
cult selection of target vector in traditional NSDE algorithm,
improves the diversity of the algorithm, and enables the algo-
rithm to jump out of the local optimal region.

CDE-stacking

After the non-dominated solution set is obtained in the first
stage, we need to further ensemble these solutions to con-
struct the ensemble model for silicon content prediction. In
the ensemble learning, the key to achieve successful ensem-
ble effectiveness lies in the accuracy and diversity of selected
base learners that have potential contradictory relationship
[4]. In the stacking-based ensemble learning, the ensem-
ble weights also have significant influence on the ensemble
effectiveness. The simple average method assigns the same
ensemble weight to each base learner, which ignores the
differences between base learners. Therefore, a clustering
and differential evolution-based stacking ensemble (CDE-
Stacking) method is proposed in this paper. Based on the
K-Means clustering, the proposed CDE-Stacking first selects

Algorithm 4 CDE-Stacking
Require: Non-dominate solution set NDSet ; the number of clusters

Ke; the number of solutions selected from each cluster n; maximum
generation Ge; population size Ne

Ensure: Ensemble model EM
1: S ← Cluster NDSet into Ke classes with K-Means algorithm and

obtain Ke solution sets;
2: L ← Select n solutions from each solution set in S and obtain n∗Ke

solutions in total;
3: Set current generation ge = 0;
4: while ge < Ge do
5: Wr1 ,Wr2 ,Wr3 ← Randomly select three solutions from the cur-

rent population Pe;
6: vi ← Perform Mutation operator on the current solution Wi and

Wr1 ,Wr2 ,Wr3 according to DE/rand/1/bin;
7: ui ← Perform Crossover operator on the current solutionWi and

vi according to DE/rand/1/bin;
8: Wi ← Evaluate the fitness of ui and replace Wi if ui is better

than Wi ;
9: ge ← ge + 1;
10: end while
11: EM ← Get the global optimal solution W ∗ and decode it into

ensemble weights, then build the optimal ensemble model with base
learners in L using stacking method.

a series of “good and different” base learners, i.e., a series
of SVRs with high accuracy and strong diversity from the
non-dominated solution set obtained in the first stage. Then
a single-objective differential evolution algorithm is used to
optimize the ensemble weights of the selected base learn-
ers, based on which the selected base learners are integrated
to construct the ensemble model for silicon content predic-
tion. The details of the proposed CDE-Stacking algorithm
are shown in Algorithm 4.

In Algorithm 4, there are two key hyperparameters, i.e.,
the number of clusters Ke and the number of non-dominated
solutions n selected from each cluster. Figure 4 shows the
schematic of the proposed CDE-Stackingwhen Ke = 5, n =
4. Once the base learners are randomly selected from each
cluster, the output of the ensemble model can be obtained
by computing the weight-sum of all base learners’ outputs.
The weights used above are optimized by a single-objective
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Fig. 4 Schematic of CDE-Stacking (Ke = 5, n = 4)

DE algorithm, where each solution W in the population
{W1,W2, . . . ,WNe } is a real encoded vector and each gene
represents a base learner’s ensemble weight. The DE algo-
rithm aims to minimize the prediction error of the ensemble
model,which ismeasured by theRMSEmetric inEq. (4). The
evolution process is based on the standard DE/rand/1/bin.
After the evolution, the global best solution W ∗ is obtained
and decoded to integrate all the selected base learners in L

to construct the final ensemble model for silicon content
prediction. In Fig. 4, our proposed CDE-Stacking method
selects solutions at different locations on the Pareto front
by clustering the population into sub-populations, ensuring
variability in the combinations of accuracy and complexity
among the selected base learners. In general, the reduction
of the complexity of the SVR base learner makes it easier
to improve the generalization ability. Therefore, using the
proposed CDE-Stacking method to construct the ensemble
model can achieve a balance between accuracy and general-
ization ability.

Experiments

In this section, the proposed two-stage MOEEL algorithm
with twomain contributions, namely DRA-NSDE and CDE-
Stacking, were tested through a series of experiments. The
effectiveness ofDRA-NSDEandCDE-Stackingwas initially
verified based on 14 multi-objective benchmark problems
and a UCI benchmark dataset, respectively. Subsequently,
the proposed two-stage MOEEL algorithm was evaluated
based on both the UCI benchmark dataset and the actual blast
furnace dataset, and compared with several other powerful
machine learning algorithms. All the experiments were inde-
pendently conducted multiple times to eliminate the effects
of randomness. To determine the statistical significance, the

Wilcoxon’s rank sum test with a significance level of 0.05
was used to compare our proposed algorithm with the other
rivals. The symbols “(+)” and “(-)” indicate whether our pro-
posed algorithm is significantly better or worse than a rival,
while “(=)” indicates that there is no statistical significant
difference between them.

Validation of DRA-NSDE

To verify the effectiveness of the proposedDRA-NSDEalgo-
rithm in the first stage, 14 multiobjective benchmark test
problems were used, including ZDT1-ZDT4, ZDT6 [44],
UF1, UF2 [45] and DTLZ1-DTLZ7 [46]. The diversity and
convergence of the approximate PFs obtained by the multi-
objective evolutionary algorithms are two important factors
to measure the algorithm performance [21]. Due to the abil-
ity to both measure the convergence and the diversity of the
algorithm, the inverted generational distance (IGD) [47] and
the hypervolumne (HV) [48] are used as performance eval-
uation indicators. The IGD metric is defined as follows:

IGD =
∑|P∗|

j=1 dmin(x∗
j , P)

|P∗| (12)

dmin(x
∗
j , P) = min

⎧
⎨

⎩

√√√√
m∑

k=1

( fk(xi ) − fk(x∗
j ))

2, i = 1, 2, . . . , |P|
⎫
⎬

⎭

(13)

where P is the non-dominated solution set obtained by the
algorithm and P∗ is the real Pareto optimal set. |P| and |P∗|
represent the number of solutions in the solution set, respec-
tively. xi is the ith solution in |P|, and x∗

j denotes the jth
solution in |P∗|. m is the number of objectives, and fk(x)
represents the kth objective value of solution x . Given a ref-
erence point r∗ = (r∗

1 , r∗
2 , . . . , r∗

m), the HVmetric is defined
as

HV (S) = V OL

(
⋃

x∈P

[ f1(x), r∗
1 ] × · · · × [ fm(x), r∗

m]
)

(14)

where V OL(·) is the Lebesgue measure. A lager HV metric
indicates a better algorithm performance.

Sensitivity test of parameter K

First, the sensitivity of the core parameter, i.e., parameter K
of the K-Means clustering, is analyzed. Four different values
of K , i.e., {2, 3, 4, 5}, are tested on the 14 benchmark prob-
lems. The population size is set to 100, and the maximum
generation is set to 300 on the ZDT problems and 500 on the
UF and DTLZ problems. For each problem, 30 independent
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experiments are conducted and the statistical results (mean
and standard deviation) of IGD are recorded. This experi-
mental setting is also adopted in the following experiments.
Note that the standard deviation results are shown in round
brackets, and the algorithmwith the best performance in italic
value. The experimental results are shown in Table 2.

According to Table 2, it is clear that the proposed DRA-
NSDE algorithm with K = 3 outperforms the other settings
for most test problems. The mean value of IGD in 30
independent experiments is visualized in Fig. 5. Intuitively,
DRA-NSDEwith K = 3 achieves lower IGDvalues formost
problems. It should be noted that although DRA-NSDE with
K = 3 does not achieve the best IGD values in some test
problems such as ZDT1 and ZDT6, the difference between
this setting and the best-performing setting is not significant.
Amore in-depth analysis suggests that using a too large clus-
ter number (i.e., K = 4 or K = 5) will lead to insufficient
non-dominated solutions assigned to each sub-population.
As a result, the quality of the offspring solutions generated
by the local search strategy may deteriorate, which will slow
down the convergence speed within the sub-population and
ultimately affect the overall performance of the algorithm.
Conversely, if the cluster number is too small (i.e., K = 2),
the clustering-based dynamic resource allocationmechanism
cannot be fully utilized. Therefore, based on these results, we
use K = 3 as the default hyperparameter setting for the fol-
lowing experiments.

Comparison with other DE strategies

In this section, we will analyze the performance of the DRA-
NSDE algorithm with different mutation strategies, namely
DE/rand/1/bin, DE/current-to-rand/bin, DE/best/1/bin, and
DE/current-to-best/bin. The first two strategies focus on
improving the algorithm diversity, while the last two strate-
gies prioritize the algorithm convergence. The comparison
results are presented in Tables 3 and 4.

According to Table 3, it is evident that DE/rand/1/bin out-
performs the other three DE strategies for both IGD and HV
metrics for most test problems. Specifically, when compared
to DE/best/1/bin and DE/current-to-best/bin, DE/rand/1/bin
achieves the best IGD and HV values for all ZDT and UF
problems. The main reason can be analyzed as follows.
The clustering and dynamic resource allocation can help
to ensure good convergence of the NSDE algorithm. Since
both DE/best/1/bin and DE/current-to-best/bin make full use
of the best solution in the population, which further helps
to improve the convergence, their interaction may lead to
early convergence and lack of diversity. On the contrary,
DE/rand/1/bin employs three randomly selected solutions to
generate the mutant vector instead of the target vector, which
can improve diversity. Therefore, the cooperation of the good
convergence of the clustering and dynamic resource alloca-

Table 6 Wilcoxon’s rank sum test analysis of DRA-NSDE with rivals
in terms of IGD and HV metrics on 14 benchmark test problems

DRA-NSDE v.s. NSGA-II NSDE MO-ES MO-CMA-ES

IGD

+ 13/14 11/14 14/14 13/14

= 0/14 1/14 0/14 0/14

− 1/14 2/14 0/14 1/14

HV

+ 12/14 12/14 14/14 13/14

= 0/14 1/14 0/14 0/14

− 2/14 1/14 0/14 1/14

tion and the good diversity of DE/rand/1/bin can achieve
better balance of exploration and exploitation. However,
DE/rand/1/bin is not the most effective strategy for DTLZ2,
DTLZ4, and DTLZ5, indicating that no single strategy can
performoptimally for all problems. Table 4 shows the statisti-
cal analysis results of DE/rand/1/bin and other DE strategies
on the Wilcoxon’s rank sum test of the IGD and HVmetrics.
The results indicate that DE/rand/1/bin significantly outper-
forms the other three DE strategies on most test problems.
Therefore, we choose DE/rand/1/bin as the DE strategy for
our proposed DRA-NSDE.

Comparison with other MOEAs

In this section, we compare the performance of the proposed
DRA-NSDE with four other powerful MOEAs: NSGA-II
[42], NSDE [49], MO-ES [50] and MO-CMA-ES [51].
NSGA-II is a popular multiobjective optimization algorithm
proposed by Kalyanmoy Deb in 2002. NSDE is a DE-
based algorithm that uses non-dominated sorting to generate
the next generation population. MO-ES is an evolution-
ary strategy designed for solving multiobjective optimiza-
tion problems. MO-CMA-ES is the multiobjective version
of CMA-ES - a highly effective stochastic optimization
algorithm that adaptively estimates and updates the covari-
ance matrix of the search distribution to efficiently find a
global optimum in continuous andhigh-dimensional problem
spaces. All algorithms were tested on 14 benchmark prob-
lems across 30 independent experiments, with the parameter
settings remaining consistent with the previous section.

The comparison results are presented in Tables 5 and 6.
According to the results, it can be found that the proposed
DRA-NSDE outperforms the other four rival algorithms in
terms of both IGD and HVmetrics on 11 out of 14 test prob-
lems, which demonstrates the superiority of DRA-NSDE.
It is worth noting that DRA-NSDE is unable to achieve the
best results on DTLZ3 andDTLZ4, whereas traditional algo-
rithms such as NSGA-II and NSDE perform better in the
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Table 2 Sensitive test on parameter K in the proposed DRA-NSDE

Problem DRA-NSDE (K=2) DRA-NSDE (K=3) DRA-NSDE (K=4) DRA-NSDE (K=5)

ZDT1 4.47e−03 (1.95e−04) 4.52e−03 (1.82e−04) 4.51e−03 (1.66e−04) 4.51e−03 (2.05e−04)

ZDT2 4.59e−03 (1.85e−04) 4.59e−03 (1.60e−04) 4.61e−03 (1.98e−04) 4.59e−03 (1.65e−04)

ZDT3 5.11e−03 (1.51e−04) 5.06e−03 (1.57e−04) 5.12e−03 (1.18e−04) 5.12e−03 (1.52e−04)

ZDT4 7.55e−02 (1.35e−01) 6.36e−02 (1.19e−01) 5.39e−02 (8.39e−02) 1.17e−01 (1.36e−01)

ZDT6 4.58e−03 (2.22e−04) 4.57e−03 (2.53e−04) 4.57e−03 (2.42e−04) 4.65e−03 (2.30e−04)

DTLZ1 2.68e−02 (9.29e−04) 2.67e−02 (8.39e−04) 3.55e−02 (5.04e−02) 3.58e−02 (5.04e−02)

DTLZ2 6.74e−02 (2.39e−03) 6.66e−02 (2.27e−03) 6.72e−02 (2.22e−03) 6.69e−02 (2.23e−03)

DTLZ3 1.63e−01 (2.93e−01) 9.97e−02 (1.75e−01) 3.30e−01 (9.71e−01) 4.87e−01 (7.58e−01)

DTLZ4 6.72e−02 (2.14e−03) 6.73e−02 (1.96e−03) 6.69e−02 (2.71e−03) 6.67e−02 (2.06e−03)

DTLZ5 5.54e−03 (3.30e−04) 5.51e−03 (2.72e−04) 5.51e−03 (2.25e−04) 5.60e−03 (2.72e−04)

DTLZ6 6.11e−03 (3.44e−04) 6.03e−03 (2.54e−04) 6.01e−03 (4.12e−04) 6.06e−03 (4.06e−04)

DTLZ7 7.30e−02 (4.48e−03) 7.42e−02 (4.13e−03) 7.51e−02 (4.32e−03) 7.54e−02 (4.01e−03)

UF1 5.98e−02 (1.77e−02) 4.60e−02 (1.49e−02) 4.97e−02 (2.19e−02) 4.69e−02 (1.83e−02)

UF2 3.80e−02 (4.92e−03) 3.58e−02 (5.65e−03) 3.32e−02 (7.20e−03) 3.60e−02 (1.20e−02)

Fig. 5 Sensitive test on parameter K in the proposed DRA-NSDE

two problems due to their powerful global search abilities.
In addition, MO-CMA-ES gives better result than our DRA-
NSDE on ZDT6, which suggests that MO-CMA-ES may be
more suitable for non-convex problems.

Figure 6 illustrates the Pareto fronts obtained by the
five algorithms on three typical problems: ZDT4, UF1, and
DTLZ2. The result indicates that the proposed DRA-NSDE
algorithm not only obtains a Pareto front closer to the true
Pareto front, but also maintains good diversity. In the case
of ZDT4, NSDE, MO-ES, and MO-CMA-ES failed to con-
verge to the true Pareto front, and NSGA-II lost the diversity
during the evolution process. On the contrary, the Pareto
front obtainedby the proposedDRA-NSDEalgorithmalmost
entirely covered the true Pareto front. The main reason is that
the proposed dynamic resource allocation mechanism adap-
tively adjusts the ratio of local and global search in each
generation based on their success rates, so that a good bal-
ance between exploration and exploitation can be achieved.
To give an insight to the proposed dynamic resource alloca-
tion mechanism, we further illustrate the variation curves of
local search ratio and global search ratio when solving the
above three typical problems. As shown in Fig. 7, in the early

stage of the evolution, the local search ratio is higher than the
global search ratio because at this stage the population is rel-
atively dispersed and thus the algorithm focuses more on
the convergence speed (more local search can accelerate the
convergence of the algorithm). As the evolution proceeds, the
global search ratio gradually exceeds the local search ratio
because the population may lose diversity during evolution,
and consequently the algorithm turns to focuses more on
maintaining good diversity by increasing the global search
ratio. The dynamic allocation mechanism allows the algo-
rithm to flexibly adopt different search strategies at different
stages of the evolution, thus enabling the algorithm to obtain
a balance between exploration and exploitation.

From the above experimental results and analysis, we can
draw the conclusion that the proposed DRA-NSDE method
can achieve superior or competitive results for most of test
problems. This ensures the stability of DRA-NSDE in gen-
erating a range of high-quality solutions to participate in
the next stage and construct an ensemble model which is
expected to achieve promising prediction performance.
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Table 3 Comparison of IGD and HV between different DE strategies

Metric Problem DE/rand/1/bin DE/best/1/bin DE/current-to-best/bin DE/current-to-rand/bin

IGD ZDT1 4.53e−03 (1.62e−04) 4.53e−03 (1.99e−04) (=) 6.16e−02 (2.47e−02) (+) 7.38e−02 (1.09e−02) (+)

ZDT2 4.62e−03 (1.30e−04) 4.86e−01 (2.42e−01) (+) 5.72e+00 (2.08e+00) (+) 4.67e+00 (1.42e+00) (+)

ZDT3 5.15e−03 (1.23e−04) 5.34e−03 (2.09e−04) (+) 5.79e−02 (1.69e−02) (+) 9.88e−02 (1.52e−02) (+)

ZDT4 8.59e−03 (2.21e−02) 2.35e+00 (1.19e+00) (+) 3.99e+00 (1.01e+00) (+) 4.70e+00 (1.30e+00) (+)

ZDT6 4.73e−03 (2.47e−04) 5.02e−03 (2.47e−04) (+) 5.81e−02 (1.04e−01) (+) 9.43e−02 (1.51e−01) (+)

DTLZ1 2.73e−02 (8.06e−04) 5.45e−02 (8.49e−02) (+) 7.97e−02 (1.29e−01) (+) 6.53e−02 (6.27e−02) (+)

DTLZ2 6.87e−02 (2.26e−03) 6.56e−02 (2.40e−03) (−) 6.45e−02 (1.94e−03) (−) 6.47e−02 (2.48e−03) (−)

DTLZ3 1.03e−01 (1.76e−01) 4.63e+00 (7.51e+00) (+) 2.70e+00 (2.03e+00) (+) 1.76e+00 (1.40e+00) (+)

DTLZ4 6.82e−02 (2.40e−03) 6.76e−02 (3.75e−03) (−) 2.07e−01 (2.46e−01) (+) 1.23e−01 (1.50e−01) (+)

DTLZ5 5.66e−03 (3.30e−04) 6.23e−03 (5.39e−04) (+) 5.70e−03 (3.73e−04) (=) 5.47e−03 (2.99e−04) (−)

DTLZ6 5.97e−03 (3.30e−04) 6.84e−03 (7.49e−04) (+) 2.56e−01 (4.81e−01) (+) 6.00e−03 (3.20e−04) (=)

DTLZ7 7.61e−02 (5.51e−03) 8.24e−02 (5.31e−02) (+) 1.96e−01 (7.28e−02) (+) 2.67e−01 (1.13e−01) (+)

UF1 7.53e−02 (2.23e−02) 9.36e−02 (1.29e−02) (+) 9.28e−02 (1.37e−02) (+) 9.06e−02 (1.91e−02) (+)

UF2 4.28e−02 (4.70e−03) 6.21e−02 (4.82e−03) (+) 5.59e−02 (1.21e−02) (+) 5.38e−02 (1.43e−02) (+)

HV ZDT1 6.61e−01 (1.90e−04) 6.61e−01 (2.39e−04) (+) 5.76e−01 (3.31e−02) (+) 5.58e−01 (1.47e−02) (+)

ZDT2 3.28e−01 (1.62e−04) 6.54e−02 (1.28e−01) (+) 0.00e+00 (0.00e+00) (+) 0.00e+00 (0.00e+00) (+)

ZDT3 7.79e−01 (7.39e−05) 7.78e−01 (5.92e−04) (+) 6.72e−01 (2.61e−02) (+) 6.08e−01 (2.55e−02) (+)

ZDT4 6.55e−01 (3.04e−02) 1.96e−02 (7.14e−02) (+) 0.00e+00 (0.00e+00) (+) 0.00e+00 (0.00e+00) (+)

ZDT6 2.64e−01 (2.35e−04) 2.64e−01 (2.62e−04) (+) 2.26e−01 (5.89e−02) (+) 2.03e−01 (8.93e−02) (+)

DTLZ1 9.51e−02 (4.45e−04) 8.71e−02 (2.64e−02) (+) 8.03e−02 (2.50e−02) (+) 7.86e−02 (2.13e−02) (+)

DTLZ2 3.68e−01 (6.98e−03) 3.82e−01 (5.14e−03) (−) 3.84e−01 (6.35e−03) (−) 3.85e−01 (6.05e−03) (−)

DTLZ3 3.48e−01 (6.71e−02) 1.43e−01 (1.91e−01) (+) 2.13e−02 (7.20e−02) (+) 5.60e−02 (1.24e−01) (+)

DTLZ4 3.69e−01 (5.10e−03) 3.85e−01 (7.66e−03) (−) 3.33e−01 (9.89e−02) (+) 3.57e−01 (5.89e−02) (+)

DTLZ5 4.62e−02 (1.09e−04) 4.60e−02 (9.85e−05) (+) 4.63e−02 (8.80e−05) (−) 4.64e−02 (8.58e−05) (−)

DTLZ6 4.63e−02 (8.46e−05) 4.62e−02 (1.00e−04) (+) 3.51e−02 (1.98e−02) (+) 4.63e−02 (9.46e−05) (+)

DTLZ7 7.30e−01 (7.86e−03) 7.08e−01 (1.49e−02) (+) 4.19e−01 (5.36e−02) (+) 3.65e−01 (5.76e−02) (+)

UF1 5.60e−01 (2.83e−02) 5.05e−01 (2.71e−02) (+) 5.10e−01 (2.27e−02) (+) 5.27e−01 (2.18e−02) (+)

UF2 6.15e−01 (4.21e−03) 5.82e−01 (4.99e−03) (+) 5.97e−01 (5.97e−03) (+) 6.04e−01 (6.27e−03) (+)

Table 4 Wilcoxon’s rank sum
test analysis of different DE
strategies in terms of IGD and
HV metrics on 14 benchmark
test problems

DE/rand/1/bin v.s. DE/best/1/bin DE/current-to-best/bin DE/current-to-rand/bin

IGD

+ 11/14 12/14 11/14

= 1/14 1/14 1/14

− 2/14 1/14 2/14

HV

+ 12/14 12/14 12/14

= 0/14 0/14 0/14

− 2/14 2/14 2/14

Validation of CDE-stacking

In order to verify the effectiveness of the proposed CDE-
Stacking method in selecting non-dominated solutions and
constructing the ensemble model in the second stage, CDE-
Stacking is compared with its DE-free version (denoted as
C-Stacking) and clustering-free version (denoted as DE-

Stacking) after the same evolutionary process in the first
stage. Please note that all the three versions have the same
non-dominated solution set obtained by the proposed DRA-
NSDE algorithm, and thus the convincing and valid results
can be obtained. In C-Stacking, instead of optimizing the
ensemble weights by DE, the ensemble weight of each solu-
tion is set to be equal to 1

n∗Ke
, where n ∗ Ke represents
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Fig. 6 Comparison of Pareto front obtained by different algorithms

Fig. 7 The variation curves of local search ratio and global search ratio

the total number of selected solutions. In DE-Stacking, the
solution selection process based on K-Means clustering is
removed, and all solutions are selected in the non-dominated
setwhose ensembleweights are optimized byDE to construct
the ensemble model.

The data set used in this subsection, i.e., SkillCraft1 Mas-
ter Table Dataset [52], is obtained from the UCI Machine
Learning Repository. This data set contains 3395 samples

and each sample has 20 original attributes. After discarding
the first attribute GameID and handling the missing values, a
set of 3338 samples with 18 input features and 1 predictable
feature (LeagueIndex) is obtained. Then, the obtained data
set is normalized according to the following method:

xnorm = x − xmin

xmax − xmin
(15)
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Table 7 Comparison between
different solution ensemble
methods

RMSE R2

Mean Std Mean Std

C-Stacking 9.59e−01 (+) 6.87e−03 5.16e−01 (+) 6.94e−03

DE-Stacking 9.49e−01 (+) 6.35e−03 5.26e−01 (+) 6.35e−03

CDE-Stacking 9.37e−01 2.61e−03 5.38e−01 2.57e−03

Fig. 8 Box plots of different
solution ensemble methods

Fig. 9 Sensitive test on
parameter Ke in the proposed
CDE-Stacking

In the prediction problems, RMSE and R2 are two com-
monly used metrics to evaluate the algorithm performance.
RMSE is the root mean square error that can evaluate the
model prediction accuracy as shown in Eq. (4), while R2 is
the model goodness of fit which is defined as follows:

R2(y, ŷ) = 1 −
∑L

i=1(yi − ŷi )2∑L
i=1(yi − ȳi )2

(16)

where ŷi is the predicted value for the i th sample, yi is the
corresponding true value and ȳi is the average value of all
true value yi .

In the following experiments, three versions of ensemble
method, i.e., C-Stacking, DE-Stacking, and CDE-Stacking,
are tested on the preprocessed SkillCraft1 data set. The pop-
ulation size in DE-Stacking and CDE-Stacking is set to 100,
and their maximum number of generations is set to 500. The
number of clusters Ke is set to 5, and the number of solu-
tions selected from each cluster n is set to 4. All results are
obtained through 15 independent experiments.

The computational results are shown in Table 7 and Fig. 8.
It can be seen that CDE-Stacking achieved the best and the
most stable results in both RMSE and R2 among all the three
methods, which means that CDE-Stacking is significantly
better and more robust than C-Stacking and DE-Stacking.
The clustering-based solution selection process can further
improve the diversity of the ensemble model by randomly
selecting solutions in sub-populations. The DE-based opti-
mization of ensemble weights can utilize the solutions in
different locations of the Pareto front, thus improving the
accuracy of the ensemblemodel. Therefore, the above results
verified the effectiveness of the proposed CDE-Stacking
method.

We further analyze the sensitivity of the parameter Ke

in the proposed CDE-Stacking method. The values of Ke

are set as Ke ∈ {2, 4, 5, 10}. To ensure the total number of
selected solutions is the same, i.e., 20, the parameter n (num-
ber of solutions selected from each cluster) needs to be set
as n ∈ {10, 5, 4, 2}. The other parameters are the same as
the above settings. Figure 9 gives the R2 and RMSE results
obtained by different values of Ke. It shows that the perfor-
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Table 8 Parameter setting of the
proposed algorithm

Parameter Name Value

Stage 1 Population size N 100

Maximum generation G 1000

Number of clusters in DRA-NSDE K 3

Stage 2 Population size Ne 100

Maximum generation Ge 500

Number of clusters in CDE-Stacking Ke 5

Number of solutions selected from each cluster n 4

Table 9 Comparison between
different prediction models in
SkillCraft1 data set

Model RMSE R2

Mean Std Mean Std

MLP 9.48e−01 (+) 7.04e−03 5.28e−01 (+) 7.02e−03

SVR 9.66e−01 (+) 2.22e−16 5.09e−01 (+) 2.22e−16

Bagging 9.61e−01 (+) 1.22e−02 5.14e−01 (+) 1.23e−02

AdaBoost 9.60e−01 (+) 5.90e−03 5.15e−01 (+) 5.97e−03

RF 9.49e−01 (+) 8.93e−03 5.26e−01 (+) 8.97e−03

Bagging-SVR 9.67e−01 (+) 1.41e−03 5.08e−01 (+) 1.44e−03

AdaBoost-SVR 9.62e−01 (+) 1.21e−03 5.13e−01 (+) 1.22e−03

Stacking-SVR 9.67e−01 (+) 5.05e−03 5.08e−01 (+) 5.16e−03

Proposed 9.36e−01 2.03e−03 5.39e−01 2.00e−03

mance of the proposed algorithmfirst becomes better but then
worse as the number of clusters increases. This indicates that
when Ke increases, more sub-populations in different loca-
tions of the Pareto front are generated so that the diversity
of the selected solution set is getting better. But when Ke

becomes too large, i.e., 10, the solutions with high accuracy
will be less in the selected solution set, which will in turn
deteriorate the performance of the algorithm. Therefore, the
setting of Ke should balance the diversity and the accuracy of
the selected solution set. The sensitive results indicate that
the proposed CDE-Stacking method works well when the
number of clusters Ke is set to 5.

UCI benchmark test

Toverify the effectiveness of theproposed two-stageMOEEL
algorithm, a series of numerical experiments are conducted
on the same UCI benchmark data set described in “Valida-
tion of CDE-stacking” section, i.e., the SkillCraft1 data set.
For the purpose of model comparison, we introduce 8 rival
prediction models including 2 single machine learning mod-
els, 3 tree-based non-linear ensemble learning models, and 3
SVR-based non-linear ensemble learning models.

(1) MLP: Multi-layer perceptron regressor;
(2) SVR: Support vector regression model;

(3) Bagging: Bagging regressorwith decision tree as its base-
learner;

(4) AdaBoost: AdaBoost regressor with decision tree as its
base-learner;

(5) RF: Random forest regressor with decision tree as its
base-learner;

(6) Bagging-SVR: Bagging regressor with SVR as its base-
learner;

(7) AdaBoost-SVR: AdaBoost regressor with SVR as its
base-learner;

(8) Stacking-SVR: Stacking of SVRs which uses a MLP
model as its final regressor. Consistent with the proposed
algorithm, the number of SVRs in Stacking-SVR is set
to 20. The MLP model used to combine the SVRs’ out-
puts is a three-layer neural network which has 20 hidden
nodes in its hidden layer.

(9) Proposed: The proposed two-stage MOEEL algorithm
with DRA-NSDE and CDE-Stacking.

The main parameters of the proposed algorithm are listed
in Table 8. All the 9 models were tested on SkillCraft1 data
set, and the comparison results obtained through 15 indepen-
dent experiments are shown in Table 9 and Fig. 10. Based on
these results, the following analysis can be drawn:
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Fig. 10 Box plots of different
prediction models in SkillCraft1
data set

(1) The proposed predictionmodel significantly outperforms
the other 8 models in both RMSE and R2, indicating that
our model is more advantageous.

(2) MLP and three tree-based ensemble learning models
(Bagging, AdaBoost, RF) achieve better performance
than SVR, indicating that neural network and ensemble
learning are more suitable than SVR in complex pre-
diction problem because they have a strong non-linear
relationship extraction ability.

(3) While the superiority has been verified in tree-based
ensemble models, three SVR-based ensemble models
(Bagging-SVR, AdaBoost-SVR, Stacking-SVR) fail to
show a significant improvement compared with SVR.
However, based on the proposed two-stage MOEEL
algorithm, the SVR-based ensemble model (Proposed)
achieves significantly better performance than all the
three tree-based ensemble models. This indicates that
the proper selection of base learners and the proper
ensemble method are critical when constructing the
ensemble model. Our proposed method can obtain a bet-
ter non-dominated solution set with high accuracy and
strong diversity through the dynamic resource allocation
mechanism, and it can efficiently select high-diversity
solutions and construct the ensemble model with appro-
priate ensemble weights.

Blast furnace data test

Toverify the effectiveness of theproposed two-stageMOEEL
algorithm for silicon content prediction, the blast furnace data
set is introduced in this subsection. The data come from one
major iron and steel enterprise in China and is collected from
May 1, 2021 to March 14, 2022. After handling the outliers
and missing values, the silicon content prediction data set
is obtained. It has 843 samples, each of which contains 40
input features (blast furnace process variable) and 1 output
variable (silicon content).

In the actual blast furnace production process, the experts
are more interested in the hit rate (HR) of the silicon content
prediction, which is defined as follows:

HR = 1

L

(
L∑

i=1

Hi

)
× 100%

Hi =
{
1, |ŷi − yi | < 0.1

0, otherwise
(17)

where ŷi is the predict value of silicon content for the i th
sample, yi is the true value, and L is the total number of sam-
ples. Hit rate indicates the prediction accuracy of the silicon
content. Together with RMSE (Eq. (4)) and R2 (Eq. (16)),
the three indicators are used to evaluate the silicon content
prediction performance of different algorithms.

To verify the effectiveness of the proposed algorithm,
a new rival model called Proposed/RF is introduced. Pro-
posed/RF is a variation version of the proposed two-stage
MOEEL algorithm in which the random forest regressor is
taken as the base learner instead of SVR. Due to the char-
acteristic of randomly selecting features in random forest
algorithm, all features collected in blast furnace data set
are considered in the Proposed/RF model training process,
which means the feature selection part in Fig. 2 is removed
and only the hyperparameter part is utilized to optimize the
parameters ofRF.Other settings ofProposed/RF are the same
as proposed. Including the other models described in “UCI
benchmark test” section, all the 10 models are tested on blast
furnace data set through 15 independent experiments, and
the comparison results are presented in Table 10 and Fig. 11.

Based on the results, it can be clearly seen that our pro-
posed model outperforms the other rivals, because the pro-
posed model achieves the best results of R2 and RMSE and
the performance difference is significant. Though AdaBoost
obtains the highest HR, the difference in HR results between
our model and AdaBoost is not significant. We can also
see that Proposed/RF achieves better prediction perfor-
mance than RF, which indicates that the proposed two-stage
MOEEL framework is effective in finding the optimal param-
eters of the base learner in ensemble learning. Compared
with Proposed/RF, the performance of Proposed can be fur-
ther improved, which indicates that SVR is a better choice
than random forest to construct the ensemble model as base
learner under our proposed two-stage MOEEL framework.
The key reason is that the feature selection part in our
designed encoding scheme is more effective than the orig-
inal feature selection mechanism in random forest, leading
to better diversity in our proposed two-stage MOEEL model
and thus improving the prediction accuracy. For a more spe-
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Table 10 Comparison between different Silicon prediction models

Model RMSE R2 HR

Mean Std Mean Std Mean Std

MLP 6.40e−02 (+) 2.87e−03 4.92e−01 (+) 4.53e−02 75.58% (+) 1.95e−02

SVR 6.08e−02 (+) 1.39e−17 5.43e−01 (+) 0.00e+00 79.29% (+) 0.00e+00

Bagging 6.09e−02 (+) 1.60e−03 5.41e−01 (+) 2.42e−02 78.34% (+) 1.27e−02

AdaBoost 5.99e−02 (+) 1.05e−03 5.55e−01 (+) 1.55e−02 80.08% (=) 1.49e−02

Bagging-SVR 6.08e−02 (+) 2.44e−04 5.42e−01 (+) 3.67e−03 79.01% (+) 6.43e−03

AdaBoost-SVR 6.04e−02 (+) 5.35e−04 5.48e−01 (+) 8.02e−03 77.40% (+) 9.95e−03

Stacking-SVR 6.03e−02 (+) 2.62e−03 5.49e−01 (+) 4.00e−02 76.77% (+) 3.13e−02

RF 5.87e−02 (+) 5.16e−04 5.74e−01 (+) 7.51e−03 79.53% (+) 1.12e−02

Proposed/RF 5.84e−02 (+) 3.13e−04 5.78e−01 (+) 4.51e−03 79.37% (+) 7.75e−03

Proposed 5.73e−02 1.23e−03 5.93e−01 1.74e−02 80.00% 1.52e−02

Fig. 11 Box plots of different
Silicon prediction models

Fig. 12 Comparison of Pareto
fronts between Proposed/RF
and Proposed

cific illustration, Fig. 12 gives a comparison of Pareto fronts
betweenProposed/RF andProposed obtained from their best
results in the 15 independent experiments. It can be clearly
seen that the front diversity of Proposed is much better than

that of Proposed/RF. Please note that the total number of
non-dominated solutions is also more than that obtained by
Proposed/RF, which is helpful in stage two when selecting
solutions from different sub-populations. More specifically,
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Fig. 13 Prediction curves and error distribution plots of different silicon prediction models
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Fig. 14 Comparison of model
complexity

if a sub-population contains enough numbers of different
solutions, the solutions it generated will have a better diver-
sity. At last, it is worth noting that the proposed method not
only improves the prediction accuracy but also significantly
saves the model training cost since the model complexity of
SVR is much lower than that of random forest. Therefore,
the above analysis verified the superiority of the proposed
model in the silicon content prediction.

The prediction curves and its error distribution of each
model on the test set are visualized in Fig. 13, from which
we can see that the prediction value of the proposed model
is closer to the true value. In addition, the error distribution
curve of the proposed model is thinner and the errors are
centered around zero, indicating that the proposed model has
a better prediction accuracy.

Further discussion

In this subsection, we further perform a statistical analysis
of the model complexity. In the proposed DRA-NSDE, the
number of support vectors in SVRbase learner is used to eval-
uate the complexity of a solution (Eq. (5)). Consequently, in
the proposed ensemble model, the average support vector
number of all SVR base learners is adopted as the evaluation
of the model complexity. The same method is used to eval-
uate the complexity of other SVR-based ensemble models
(Bagging-SVR, AdaBoost-SVR, Stacking-SVR). The statisti-
cal results in 15 independent experiments on both the UCI
benchmark data set and the blast furnace data set are shown
in Fig. 14.

From the results, we can see that the proposed model has
the lowest complexity on both the UCI benchmark data set
and the blast furnace data set. This indicates that the second
objective (CMPLX)of solutions in the proposedDRA-NSDE
is effective, as it enables our proposed model to improve the
prediction accuracy while maintaining relatively low model
complexity. This property of our proposedmethod can save a
large amount of computational resources during model train-
ing process and accelerate the online prediction efficiency of
blast furnace silicon content. In actual blast furnace iron-
making process, the silicon content is detected about every
40 min [53], while our model can produce online predictions

in real time once it is trained offline. Therefore, our proposed
method can fully satisfy the task of online prediction of sili-
con content in the actual blast furnace ironmaking process.

Conclusion

As an important indicator of operating conditions for blast
furnace, accurate prediction of silicon content in the molten
iron is very important to ensure stable production of blast
furnace in the iron and steel industry. To achieve a pre-
diction model with high accuracy and good generalization,
this paper proposed a two-stage multiobjective evolutionary
algorithm. The task of the first stage is to construct a set
of near Pareto optimal base learners by means of the DRA-
NSDEwith dynamic resource allocation based on clustering,
while the task of the second stage is to achieve the ensem-
ble learning model from the candidate base learners using
a single-objective differential evolution algorithm. There are
threemain characteristics of the proposed silicon content pre-
diction method: 1)The proposed method chooses SVR as the
base learner. Together with the designed solution encoding
scheme, the input features of eachbase learner canbe selected
automatically so that the algorithmcannot only extractmean-
ingful combinations of features to improve the accuracy of
the model, but also maintain better diversity of the ensemble
model. 2) The proposed DRA-NSDE algorithm can dynami-
cally allocate resources at different evolution stages based on
the success rate of the two search strategies (local search and
global search), which can solve the problemof difficult selec-
tion of target vectors in traditional NSDE. DRA-NSDE also
improves the quality of the non-dominated solutions, which
helps the algorithm to obtain faster convergence speed and
better diversity. The diversity of the solutions to be integrated
in stage two is further improved by the proposed CDE-
Stackingmethod,which also optimizes the ensembleweights
through a single-objective differential evolution algorithm.
3) The ensemble model has relatively lower model complex-
ity, which is important in actual blast furnace ironmaking
process. Experimental results on both the UCI benchmark
data set and the actual blast furnace data set demonstrate the
effectiveness of the improvement strategies used in the pro-
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posed two-stage MOEEL algorithm, and further comparison
results show that the proposed algorithm can achieve predic-
tion models with higher accuracy and lower complexity with
comparison to some other powerful single machine learning
methods and ensemble learning methods.

In the future work, it is worthwhile to further investi-
gate how to select potential base learners from the clustered
subpopulations in a more targeted manner rather than ran-
dom selection. In addition, the application of the proposed
algorithm to the operation optimization of the blast furnace
ironmaking process is also one of our future research.
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