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Abstract
Although the short-text retrieval model by BERT achieves significant performance improvement, research on the efficiency
and performance of long-text retrieval still faces challenges. Therefore, this study proposes an efficient long-text retrieval
model based on BERT (called LTR-BERT). This model achieves speed improvement while retaining most of the long-text
retrieval performance. In particular, The LTR-BERT model is trained by using the relevance between short texts. Then, the
long text is segmented and stored off-line. In the retrieval stage, only the coding of the query and the matching scores are
calculated, which speeds up the retrieval. Moreover, a query expansion strategy is designed to enhance the representation
of the original query and reserve the encoding region for the query. It is beneficial for learning missing information in the
representation stage. The interaction mechanism without training parameters takes into account the local semantic details
and the whole relevance to ensure the accuracy of retrieval and further shorten the response time. Experiments are carried
out on MS MARCO Document Ranking dataset, which is specially designed for long-text retrieval. Compared with the
interaction-focused semantic matching method by BERT-CLS, the MRR@10 values of the proposed LTR-BERT method are
increased by 2.74%. Moreover, the number of documents processed per millisecond increased by 333 times.

Keywords Neural information retrieval · Long-text similarity · Pretrained language model · Efficiency

Introduction

In recent years, some large-scale pretrained language models
such as embeddings from language models (called ELMo)
[1] and bidirectional encoder representation from transform-
ers (called BERT) [2]) have continuously updated results on
many fields [3, 4]. These pretrained language models can
be fine-tuned to estimate the semantic relevance between
two texts. BERT is the most representative pretrained lan-
guage model. After BERT’s emergence, many BERT-based
ranking models have achieved state-of-the-art results on var-
ious retrieval benchmarks within less than 1 year [5–8]. It
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is beneficial that the BERT-based ranking models calculate
the semantic interaction to obtain the semantic matching
degree between two texts; these models can thereby bridge
the gap of common lexicalmismatch between documents and
queries [9, 10]. The input of theBERT retriever for interactive
semantic matching is a join for query and each passage from
the retrieved document (e.g., “[CLS] Query [SEP] Passage
[SEP]”). The probability of relevance between each passage
and query is obtained from [CLS]. Given the transformer-
based architecture, BERT’s memory and time consumption
increase exponentially as the input length increases. There-
fore, the architecture of the BERT model limits the input
length of text to 512 words.

In document retrieval, the average lengths of texts in docu-
ment collections greatly exceed the lengths of texts in passage
collections [11]. Figure 1 shows query document matching
paradigms in transformer-based information retrieval (IR).
There are two mainstream long-text retrieval schemes. One
is to divide the document into sentences or passages and
interact with the query one by one, as shown in Fig. 1a.
Another,which is similar to a slidingwindow, is to apply local
self-attention mechanisms that interact with queries segment
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Fig. 1 Query document matching paradigms in transformer-based IR

by segment. This scheme can reduce model complexity and
make it possible to input entire documents. However, the
interaction is time-consuming and costly. In a real-world sce-
nario, a user wait time of more than 100 ms for a query is not
a good user experience [12].

Recently, some scholars have used representation learning
via BERT to learn the representation of text in open-domain
question—answer tasks and short-text information retrieval
tasks [12, 13]. These scholars obtain semantic matching val-
ues between the query and sentences by delayed interaction
[12, 13]. However, the study of interactive semantic match-
ing still continues to impede long-text retrieval [8, 14, 15],
and the improvement of retrieval results is at the cost of a
considerable computing time. Therefore, this paper designs
a compromisemethod considering retrieval performance and
retrieval time. We propose an efficient long-text retrieval
model based on BERT (called LTR-BERT). Our major con-
tributions are listed as follows:

• The proposed LTR-BERT model preserves the vector
semantic representation of documents in advance. This
process needs to be calculated only once, so the cost is
lower than that of interaction-based semantic matching.

• Aiming at the missing query semantics caused by the large
difference between the query length and the document
length, a query expansion strategy is designed to improve
the semantic matching ability of a query and related doc-
uments.

• Inspired by exact termmatching, the proposed LTR-BERT
model uses a cheap interaction mechanism without train-
ing parameters. The interaction mechanism considers the
fine-grained relevance of documents and queries while
saving computing time during matching.

Related work

The extensive application of neural network in speech recog-
nition, computer vision, natural language processing, pattern
recognition and other fields has aroused great interest of
researchers, and the study of neural network has become
more in-depth [3, 4, 16, 17]. At this time, a number of neural
ranking models have been emerging [18]. Unlike traditional
information retrieval models, which consider exact matching
only at the term level, neural rankingmodels can capture rele-
vance between queries and documents at the semantic level.
These neural IR models are divided into two main types:
interaction-focused neural IR models and representation-
focused neural IR models. The interaction-focused neural
IR models use the embedded representation of queries and
documents to directly model local contextual interactions.
Before the advent of BERTmodels, interaction-based neural
IR models dominated. After the advent of the BERT model,
the performance of interaction-focused neural IRmodels has
improved significantly [19]. However, its time inefficiency is
prohibitive, especially for long-text retrieval tasks.

To address the issue of time efficiency in long-text
retrieval, this work combines BERT’s understanding of
sentence context and the characteristics of the represen-
tation learning twin tower structure to apply BERT to a
representation-focused approach. Several kinds of research
work related to our work will be explained below. We will
analyze the advantages and disadvantages of several existing
interaction-focused neural IR models and representation-
based neural IR models in “Interaction-focused neural IR
model” and “Representation-focused neural IR model”,
respectively. Furthermore, since our main research object is
long-text retrieval tasks, we will mention some studies on
long-text inference models in “Long-text inference model”.
In the comparison experiment, to show the advantages of
piecewise coding, we apply the proposedmethod to the long-
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text inference model for retrieval. Finally, we introduce the
work of existing long-text retrieval models and summarize
their advantages and disadvantages in “Long-text retrieval
model”.

Interaction-focused neural IR model

The interaction-based neural IR method extracts meaning-
ful matching patterns from words, phrases and sentences
and generates matching scores. The method first establishes
local interactions (i.e., local matching signals) between two
texts and then uses deep neural networks to learn hierar-
chical interaction patterns for matching. Interaction-based
neural ranking models include ARC-II [20], MatchPyra-
mid [21], PACRR [22], CO-PACRR [23], K-NRM [24]
and CONV-KNRM [25]. These models focus more on
modeling-related signals than on sentence-level representa-
tion. Although interaction-focused neural IR models have
achieved some improvement in retrieval performance, the
achievements of these models have been overshadowed by
the emergence of pretrained language models. Take BERT,
a standard pretrained language model, for example. It has
12 transformer layers with 340 M parameters and has real
bidirectional context encoding capability. In addition, train-
ing on a large set of unsupervised data enables understanding
common texts.

Yilmaz et al. [8] first applied the BERT model to infor-
mation retrieval tasks. This approach presents a challenge
for long-text retrieval, which generally has a longer input
length thanBERT allows. The authors solved this problemby
inferring sentences independently and then aggregating sen-
tence scores to generate document scores. The experimental
results show that the method was simple and effective. Later,
Yilmaz et al. [19] demonstrated Birch. This model applies
BERT to document retrieval by integrating BERT with the
open-source Anserini toolkit [26] to demonstrate end-to-end
search on large document collections. Birch adopts a simple
ranking model, and the researchers replicate the state-of-the-
art document ranking results proposed by Yilmaz et al. [8].

Although the availability of massive datasets and com-
puting power has enabled data-driven deep neural network
approaches to significantly affect research in information
retrieval, the computational time for each instant query
individually to interact deeply with the document is still pro-
hibitively long.

Representation-focused neural IR model

Before the advent of representation learning, researchers usu-
ally needed tomanually annotate features ormanually design
rules from the domain knowledgeof rawdata to construct fea-
tures and then deploy these features into relevant machine

learning algorithms. Although effective for machine learn-
ing, this approach is difficult, expensive and time-consuming
and relies on strong expertise. Representation learningmakes
up for these shortcomings by enabling machines not only
to learn features of the data but also to use these features
to accomplish specific tasks. The neural IR model based
on representation learning first learns the representation of
the query and document separately and then computes the
semantic similarity between the query and the document by
using a simple interactive method.

In 2013, Huang et al. [27] proposed the first deep struc-
tured semantic model (DSSM) based on a representation
learning framework. In this model, one-hot sparse word vec-
tors are converted into dense vector representations by the
word hashing technique. However, it cannot represent the
context information of the word. In 2014, Shen and He
et al. [28, 29] proposed a new convolutional latent semantic
model (named CLSM or CDSSM). CDSSM is an extension
of DSSM. When capturing the context information, con-
volutional neural network is used to better preserve local
word order information, and then a max pooling strategy
is used to filter semantic concepts to form sentence-level
representations. The advantage of CDSSM over the DSSM
model is that the CDSSM can make up for the lack of con-
textual information in DSSM and convert variable-length
text information into vectors of the same length. How-
ever, DSSM and CDSSM consider only semantic matching
between queries and documents [30]. In 2015, Hu and Lu
et al. [20] proposed two related convolutional architectures,
namely, Architecture-I (ARC-I) and Architect-II (ARC-II),
to semantically match two sentences. ARC-I is a neural net-
work model based on representation learning. The difference
between the ARC-I model and the DSSM model is that the
ARC-I model can extract n-gram information of words by
using convolutional layers and express the word order infor-
mation of sentences by using a layer-by-layer combination.
However, theARC-Imodel has a nonnegligible disadvantage
in that it delays the interaction between two sentences (in the
final MLP) until their respective representations mature (in
the convolutionmodel); consequently, details of representing
sentences may be lost in matching tasks. In 2018, Zamani
and Dehghani et al. [31] proposed a self-contained neural
ranking model (SNRM). The model learns a latent sparse
representation for each query and document by introducing
sparsity features. This representation constrains the seman-
tic relationship between queries and documents, but is sparse
enough to construct an inverted index for the entire collec-
tion. The authors generate a retrieval model that is as efficient
as the traditional term-based models by using the sparsity of
the parameterized model. Without losing the validity of the
model, the efficiency of the model is improved.

In 2020, Khattab et al. [12] proposed an efficient contex-
tualized late interaction over BERT (ColBERT for short-text
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retrieval). The method uses an off-line BERT to encode the
context of the paragraph and an online BERT to encode the
query separately and then uses a delayed interaction method
to obtain the relevance score between the query and the pas-
sage. ColBERT has a competitive advantage with existing
BERT-based models in terms of the accuracy of retrieval
results. More importantly, it turned out to be a more efficient
model. Additionally, Nie et al. [13] proposed a new decou-
pled contextual encoding frameworkwith dual BERTmodels
(DC-BERT). It pre-encodes all documents by using off-line
BERT and saves their encoding only once. The query is then
encoded using online BERT. Both methods employ delayed
interaction to address the long interaction time, but only for
passage retrieval and question and answer (QA) tasks. These
methods lack research on long-text retrieval, such as docu-
ments.

Long-text inferencemodel

The limitation of the maximum input length of BERT
reminds us that the capacity of human working memory is
limited. How do humans effectively perceive long texts? In
recent years, some scholars have conducted in-depth research
on long-text reasoning. Beltagy and Peters et al. [32] pro-
pose a long-text pretraining model called Longformer. The
model processes sequences linearly, making it easier to pro-
cess documents containing sequences of thousands of words
or longer. Subsequently, Ding et al. proposed a general BERT
model to cognize long texts (CogLTX) [33]. The authors train
a judgment model to identify key sentences and concatenate
them for reasoning. The CogLTX model performs best in
downstream tasks, such as reading comprehension, question
answering and text reasoning.However, these long-text infer-
encemethods have not been applied in document information
retrieval tasks, because for long text, part of the content in
the document is relevant to the query; that is, the document
is considered relevant to the query. Modeling long-distance
dependence between paragraphs and the semantic informa-
tion of the entire document ignores the information that is
truly relevant to the query, resulting in errors in the calcu-
lated semantic relevance between document topics and query
topics.

Long-text retrieval model

At present, the research on long-text retrieval includes the
following main aspects: (1) Nogueira et al. [14] consider the
interactive semantic matching between the top 512 terms of
the document and the query, ignoring the relevance between
the query and the rest of the document. (2) Yilmaz et al. [8]
applied the relevance estimator based on passage-level BERT
to long-text ranking. Specifically, the authors first split the

document into fragments and then interactwith the query seg-
ment by segment. Then, the semantic matching value of the
paragraph with the highest interactive matching value or the
sum of the semantic matching values of multiple paragraphs
is used as the semantic matching value of the document.
Finally, the documents are ranked in decreasing order of their
semantic matching values. (3) Hofstatter et al. [15] propose a
transformer–kernel pooling model for long text (TKL). The
model adopts a local self-attention method that uses a fixed-
size moving window to move over the document, allowing
long-text input by reducing the computational complexity of
the self-attention mechanism. The TKL model also interacts
directly with the query. When the number of documents is
large and the length of documents is long, the time and mem-
ory overhead of contextual semantic matching between the
query and the full text is high.

These studies share some common features: these studies
all use interaction-focused semantic matching for long-text
retrieval. For each query, the interaction with each long-text
and even each paragraph needs to be calculated; such calcu-
lations are time-consuming and expensive. However, in real
scenarios, if the user waits more than 100 ms for a query, the
user experience will suffer [12]. In view of this, this work
explores a more efficient long-text retrieval model by com-
bining the characteristics of the two-tower structure and the
advantages of the BERTmodel for contextual representation.
Inspired by the research of Zhuang et al. [34] and Zhou et al.
[35], it is very necessary to study the stability and experi-
mental parameters of the system. We conducted an ablation
study on the model and studied the influence of document
input length, query expansion and other factors on the model
results.

Representation-focused long-text retrieval
method

An overview of the architecture

Figure 2 shows the architecture of the proposed LTR-BERT
model, which consists of three parts: (1) off-line BERT for
long-text representation; (2) online BERT for query repre-
sentation; and (3) an interaction mechanism without training
parameters. Overall, the execution process of the model is as
follows: first, the contextual semantic representation of the
long text is obtained by using BERT. The representation of
the long text is stored off-line. This process includes a com-
pression layer, which is also designed to save storage space.
It needs to be calculated and merged only once. Second, for
ad hoc queries, online BERT is used to obtain a represen-
tation of the query, which is usually short, so the time cost
of this process is not very high. Additionally, aiming at the
matching problem caused by the large difference between the
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length of the query and long text, a query expansion strategy
is designed to improve the semanticmatching ability between
the query and the long text. Finally, to further reduce the com-
putational timeof semanticmatching, amatchingmechanism
without training parameters is proposed.Wewill describe the
design of these three parts in detail in later chapters of this
paper.

Query representation via online BERT

The input of BERT for representing a single query is shown
in Fig. 2. Specifically, for a queryQ: “Buy apples on iPhone”,
the query is split into “Buy”, “apples”, “on” and “iPhone”,
and these query terms are recorded as q1, q2, ..., qm . The
starting position of the input is marked with [Q]. The user’s
queries are based on the user’s store of real-world knowl-
edge and understanding, which the search engine does not
have. Therefore, the input query has difficulty expressing the
user’s real intention clearly due to the lack of information. In
addition, the query length is usually much shorter than the
document length. To address these questions, we design a
query expansion strategy. Query expansion has been shown
to be an effective strategy to better find relevant documents
by complementing themissing information in the query [36].
The specific processing of our query expansion strategy is:
the maximum length of the query is set as LQ . For queries
whose length is less than LQ , the query expansion strategy is
adopted, the query terms are input repeatedly once and [SEP]
is used to indicate the end position. The remaining positions
less than LQ are filled with a special marker [MASK] until
the length reaches LQ . The strategy’s goal is to preserve
the original query semantics while enabling the model to

learn the ability to query missing information during train-
ing. Simultaneously, we enhance the input of the original
query to avoid query topic drift caused by the semantics of
the supplementary query.

For the output of online BERT, we use a linear layer for
compression. The specific role of this layer is described in
“Long-text representation via off-line BERT”. The represen-
tation of query Q is denoted as EQ , and the size of EQ is
LQ × dim, where dim is the compressed dimension of each
word embedding (the dimension of each word embedding is
768 before compression).

EQ �

⎧
⎪⎨

⎪⎩

Linear(BERT([Q]q0, ..., qm , q0, ..., qm , [sep], [mask]
, ..., [mask])) len(Q) < LQ

Linear(BERT([Q]q0, ..., qm , )) len(Q) ≥ LQ .

(1)

Long-text representation via off-line BERT

Due to BERT’s input length limitation, the entire content of
the document cannot be fed into the model at once. The size
of the shard is set to Ld , and the document is segmented if
the length of the document exceeds Ld . For a document up to
Ld in length, the special marker [mask] is used for padding.
If a document is longer than Ld , the document is divided
into a series of paragraphs of length Ld ; these paragraphs
are denoted as d � {p1, p2, ..., pk}. pi represents the ith
segment after segmentation, where pi ∈ d, i ∈ {1, 2, .., k}.
toki , j represents the word embedding of the jth token in the
ith segment of document d. For the beginning of each input
paragraph, we use the [D] marker. Although off-line com-
putation can reduce the running time when a new query is
entered, the off-line storage approach can be expensive due to
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the large storage requirements for embedding representations
of long text (for example, 768 floating point values per token
in BERT-Base). Inspired by MacAvaney et al. [37], the pro-
posedLTR-BERTmodel solves this problemby compressing
and storing the representation of documents to reduce the
storage space. We use a simple linear layer and a regulariza-
tion process to compress the representation of the document.
This approach not only fits well with the transformer net-
works, but also reduces the dimensionality of representing
each word embedding without costing too much. The length
of the output vector of each token by BERT is 768 dimen-
sions, and direct off-line storage requires considerable space.
The linear layer is the simplest layer of the neural network
to reduce the number of dimensions. The linear layer can
easily reduce the dimension of the vector and reduce the
storage overhead. Such reductions just require a matrix mul-
tiplication and an addition. Finally, we obtain the compressed
and concatenated representation of BERT’s last hidden layer,
which is stored in each document according to the document
number. The representation process of documents is shown
in Eq. (2).

Ed � concat
toki , j∈pi , pi∈d

(
Linear

(
BERT

(
[D], toki , 1, ..., toki , Ld

)))

len(d) ≥ Ld .
(2)

The representation of document d obtained by off-line
BERT is denoted as Ed . The size of the first dimension of
Ed is k × Ld , which is the total length of k paragraphs from
document d. The second dimension of Ed is dim, which rep-
resents the compressed dimension of each word embedding
(the dimension of each word embedding is 768 before com-
pression). Similarly, when len(d) of a document does not
exceed Ld , [mask] is used to pad the length until the length
is Ld . The representation process of documents is shown in
Eq. (3). In Eq. (3), toki represents the embedded representa-
tion of the ith word in the document.

Ed � concat
toki∈d

(
Linear

(
BERT

(
[D], tok1, ..., toklen(d),

[sep], [mask], ..., [mask])))len(d) < Ld . (3)

Matchingmechanismwithout training parameters

Traditional relevance matching methods can quickly find the
documents that may be relevant to the query by exact match-
ing based on query keywords. This approach is still widely
used in industry today. Inspired by the idea of exact term
matching, each word embedding already contains contextual
information via BERT-based representation learning. There-
fore, we use the average of several word embeddings most
relevant to the query as the representation of paragraphs to
match the representation of the query, as show in Fig. 3.

Specifically, we search for word embeddings with the clos-
est cosine similarity to each word embedding of query, take
the average of these word embeddings as the representation
of the passage p and take the average of the query embed-
dings as the representation of the query.

The matching score between a query and a single para-
graph is shown in Eq. (4). This interaction mechanism
without training parameters can reduce the time spent match-
ing the semantic representation of the document and query.

Score(Q, p) � cosine

⎛

⎝
1

|LQ |
∑

em∈Bt
em ,

1

|LQ |
∑

e j∈Qe j

⎞

⎠, p ∈ d. (4)

In Eq. (4), Bt � {e1, ..., em , ..., e|LQ |} represents the set
of paragraph word embeddings closest to the query embed-
ding, which is a subset of document word embeddings. eq
represents the embedding representation of word q in query
Q, and em represents the word item in document d with the
largest cosine similarity to the word embedding of query
word item eq . For the final score of document d, the maxi-
mum score of the query and each fragment of the document
is taken as the semantic relevance score of the document,
and the calculation method is shown in Eq. (5). In Eq. (5),
d � {p1, p2, ..., pk}, the fragment pi ∈ d, i ∈ {1, 2, .., k}.

Score(Q, d) � max
pi∈d

Score(Q, pi ). (5)

Model training

For the proposed LTR-BERT model, we fine-tune the BERT
encoder by using the Adam optimizer and train additional
parameters from scratch (i.e., the compression layer and
the embedding of [Q] and [D] markers). The interaction
mechanism of this model has no trainable parameters. The
training samples for our model are in the form of triples< Q,
Passage+, Passage− >. In the triple, Passage+ is the positive
passage of the query Q, while Passage− is the passage ranked
in the top 100 passages but not marked as relevant.

Loss � −
∑

(Q, p)

(y(Q, p)log(Score(Q, p))

+(1 − y(Q, p))log(1 − Score(Q, p))), (6)

where y(Q, p) is the relevance of passage and query and
Score(Q, p) is calculated as shown in Eq. (4).

Combining relevancematching and semantic
matching

This work also studies the effect of the LTR-BERT model
and the BM25 model on the final results. Equation (7) is
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Fig. 3 Matching mechanism without training parameters

a combination of relevance matching and semantic match-
ing. Score(Q, d) represents the final matching value of
document d and query Q; this score combines the con-
tributions of relevance matching and semantic matching
based on presentation learning. After normalizing the two
contributions with max–min, a linear regulatory factor α,
α ∈ {0, 0.1, 0.2, . . . , 1}, is introduced to study the effect
of α.

Score(Q, d) � α × Sr + (1 − α) × Sb, (7)

where Sb is the semantic matching value based on repre-
sentation learning and refers to the semantic matching value
between the query and document calculated by LTR-BERT,
as shown in Formula (5); Sr refers to the relevance matching
value obtained by the Anserini tool1 based on BM25. The
calculation method is shown in Eq. (8).

Score(Q, d) �
∑

q∈Q
(k1 + 1) × TF

k1 + TF
× (k3 + 1) × qtf

k3 + qtf
× IDF(t), (8)

where TF � tf/((1 − b) + b × dl/avdl) is the regularized
document length; avdl is the average length of the docu-
ment; k1 and k3 are constants; qtf is the frequency of the
query term q; and b is the regulating factor, which bal-
ances the effect of the document length dl. The inverse
document frequency IDF(t) is used mainly to measure the
importance of a term t in the document set. IDF(t) �
log

((
N

′ − d f t + 0.5
)
/
(
d f t + 0.5

))
, where N

′
represents

the number of all documents in the index and d f t represents
the number of documents in which the term t appears.

In general, combining relevance matching and semantic
matching based on representation learning for information
retrieval can be divided into three stages: in the first stage,
the LTR-BERT model is trained. In the second stage, the

1 https://github.com/castorini/anserini.

semantic matching of documents and queries via the LTR-
BERT model is evaluated. In the third stage, the documents
are reranked by combining relevance matching and semantic
matching.

Experimental data and parameter setting

Experimental data and evaluation

The machine reading comprehension (MSMARCO) dataset
was designed to benchmark large-scale deep learningmodels
[38]. The document set and the queries are derived from real
user search scenarios. Therefore, MS MARCO differs from
other known publicly available datasets for machine reading
comprehension and QA. MS MARCO contains 8,841,823
passages extracted from 3,563,535 web documents retrieved
by Bing. In 2019, “Deep Learning Tracking Task2” was pub-
lished at the Text Retrieval Conference (TREC). This task
uses the MS MARCO dataset. The task is divided into two
subtasks: the document ranking task and paragraph ranking
task. We use relevance labels containing 3.2 million docu-
ments and their corresponding query document pairs. The
number of queries in the training set is 367,013, the number
of queries in the development set is 5193 and the number
of queries in the test set is 200. For each query, the labels
relevant to it are transferred from the MS MARCO passage
ranking task by mapping a positive passage to the document
containing the relevant passage.

Figure 4 shows that long documents outnumber short
ones. The number of documents ranging from 0 to 500 terms
accounts for 43.47%; therefore, more than half of the docu-
ments cannot be entered into the BERT model at one time.
Therefore, the approach similar to Nogueira et al.’s [14]
approach, which considers the interaction between only the

2 https://microsoft.github.io/msmarco/TREC-Deep-Learning.
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Fig. 4 Document length statistics
on the MS MARCO dataset

first approximately 500 terms of the document and the query,
is unfair tomost long documents, because if the query-related
content appears at the end of the document important infor-
mation will be ignored, and the relevance of the document
will not be properly evaluated.

The development set in the 2019 TREC deep learning
tracking task contains binary judgment results for 5193
queries, where each query has only one relevant document.
The main evaluation metric officially recommended is the
mean reciprocal rank at position 10 (MRR@10). In addition,
the average accuracy of the top 100 documents (MAP@100)
is also used.

The 2019 TREC deep learning tracking task test query set
has 200 queries, including 43 queries with relevance labels,
with an average of 153 judgments per query. The level of
judgment has four scales: “irrelevance” is indicated by 0;
“relevance” is indicated by 1; “high relevance” is indicated
by 2; and “perfect relevance” is indicated by 3. Therefore,
the main average metric recommended by the test query
set is normalized discounted cumulative gain at position 10
(nDCG@10). To unify the evaluation indicators, all compar-
ison models use these three indicators for evaluation.

Comparemodels and parameter settings

With the application and development of deep neural net-
works in image processing, machine vision and natural
language processing,many neural information retrievalmod-
els have emerged in information retrieval tasks (these models
include MatchPyramid [21], PACRR [22], CO-PACRR [23],
K-NRM [24], CONV-KNRM [25] and TKL [15]). These
models differ from traditional information retrieval methods
in that they capture relevance between queries and docu-
ments at the semantic level, not just exact matching at the

term level. In addition, BM25 was also used as a representa-
tive of the relevance matching model to show the level of the
baseline model for easy comparison with other models. With
the development of pretrained language models, interactive
semantic matching methods represented by BERT have been
widely used and have achieved better results. Therefore, we
also used BERT-base [CLS] [14] and bm25_marcomb [8] for
comparison.

Based on the above considerations, the comparative mod-
els used in this experiment include BM25 (tuned Anserini)
[26], MatchPyramid [21], PACRR [22], CO-PACRR [23],
K-NRM [24], CONV-K-NRM [25], BERT-base[CLS] [14],
bm25_marcomb [8], ColBERT [12], TKL [15],DRSCM[39]
andLTR-Longformer.MatchPyramid, PACRR,CO-PACRR,
K-NRM, CONV-KNRM, BM25_Marcomb and TKL are
interactive neural information retrieval models, and LTR-
Longformer adopts a representation learning-based method.
The BERT model was replaced by the Longformer model
[32]. BM25 (tuned Anserini) uses the results of the top
100 documents per query run by Anserini [26]. BM25 is
optimized. k1 is 4.46, and b is 0.82. Other models rerank
this result. The exception is bm25_marcomb (the result of
a successful TREC run in 2019), using a stronger first-
round retrievalmodel.All themodels except bm25_marcomb
rerun on the same hardware and environment; these models
include the MatchPyramid, PACRR, CO-PACRR, K-NRM
and CONV-KNRM models, with a maximum document
length of 500. TKL, LTR-Longformer and LTR-BERT are
specially designed for long-document information retrieval
tasks and can process longer text. In our experiment, the
lengths of documents are set to 1000 or 2000, and the length
of queries is set as 50. The compared experiment in this
section uses the same server equipped with an NVIDIA RTX
8000 GPU graphics card.
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Table 1 Results of the proposed
LTR-BERT model and several
related models on queries with
binary label

Model 2019 TREC deep learning track dev—binary relevance labels

Max doc length nDCG@10 MRR@10 MAP@100 Average docs./ms

BM25 (tuned) – 0.3251 0.2646 0.2769 –

MatchPyramid 500 0.3364 0.2716 0.2789 27

PACRR 500 0.3344 0.2729 0.2816 22

CO-PACRR 500 0.3436 0.2824 0.2819 14

K-NRM 500 0.3214 0.2609 0.2638 49

CONV-KNRM 500 0.3424 0.2836 0.2866 10

BERT-base [CLS] 500 0.4165 0.3535 0.3594 0.1

ColBERT 500 0.4057 0.3425 0.3498 31.3

TKL 1000 0.3758 0.3125 0.3213 1.5

TKL 2000 0.3396 0.2790 0.2892 1.1

DRSCM (2 sum) 1000 0.4216 0.3433 0.3567 10.0

DRSCM (4 sum) 2000 0.4178 0.3325 0.3425 10.0

LTR-Longformer 1000 0.3347 0.2658 0.2734 26

LTR-Longformer 2000 0.3364 0.2712 0.2776 26

LTR-BERT 1000 0.4338 0.3632 0.3701 33.3

LTR-BERT 2000 0.4289 0.3574 0.3647 33.3

“Average docs/ms” indicates the average number of documents processed per millisecond during retrieval.
The bold font indicates the optimal result under the corresponding metric

Experimental results and analysis

Our experiment answers the following main research
questions. Additionally, each subsection of “Experimental
Results and Analysis” analyzes and answers a research ques-
tion.

RQ1: For long-text retrieval tasks, can LTR-BERT simul-
taneously ensure the highest retrieval performance and
improve efficiency (“Study on semantic matching for long
text”)?

RQ2: How well does the LTR-BERT model perform on
the more fine-grained relevance discrimination task (“Study
on fine-grained semantic matching for long text”)?

RQ3: How does each LTR-BERT component (e.g., inter-
action mechanism and query expansion) contribute to the
model’s results (“Ablation study”)?

RQ4: How does the model perform on different types of
long-text datasets (“Study on different types of datasets”)?

RQ5: What is the indexing cost of LTR-BERT in terms of
documents’ off-line storage and memory overhead (“Index-
ing throughput and footprint”)?

RQ6: Howmuch does BM25 affect the first round of sort-
ing results (“Sensitivity analysis of parameter α”)?

Study on semantic matching for long text

In this section, we mainly test the results of the proposed
model on binary labels. The 2019 TREC deep learning track-
ing development set contains binary judgment results on
5193 queries, where each query has only one relevant docu-
ment. The major evaluation metric is the MRR@10. Table 1
compares the proposed LTR-BERTmodel with several other
baselines on the TREC deep learning document task.

We compare the LTR-BERT with MatchPyramid [21],
PACRR [22], CO-PACRR [23], K-NRM [24], CONV-
KNRM [25], BERT-base [CLS] [14] and ColBERT [12].
Experimental results show that on documents of 1000–2000
words, the LTR-BERT model is more effective than the
BERT-basedmodel and other neural network rankingmodels
that consider only 500 words. Notably, LTR-BERT increases
documents’ length of processing without increasing GPU
cost.

The TKL model is a neural ranking model designed for
document information retrieval [15]. The comparison of the
retrieval results of LTR-BERT and TKL shows that the
retrieval time of the LTR-BERT model is more than 30
times shorter than that of the TKL model. When the doc-
ument length is 2000, the results of the TKL-BERT model
on MRR@10, nDCG@10 and MAP are significantly lower
compared to the results when the document length is 1000,
because although theTKLmodel allows processing long text,
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the TKL model performs interaction-based semantic match-
ing, and each query needs to interact with each passage in
the document. Although the local self-attention mechanism
can save time, the mechanism still needs to wait for every
ad hoc query that interacts with all documents. However, the
LTR-BERT model calculates the representation of the docu-
ments off-line and stores the representation in advance so that
the representation of the documents is calculated only once.
When a new query arises, only the representation of the short
query needs to be calculated. Since the matching mechanism
is simple enough, ranked documents can be obtained quickly.
Therefore, the long-text retrieval method based on presenta-
tion learning is more efficient than the retrieval method based
on interaction.

A comparison of the two proposed retrieval models
according to representation learning (LTR-BERT and LTR-
Longformer) shows that the retrieval results of the LTR-
Longformer differ from those of the LTR-BERT model,
because Longformer models can handle longer text than
BERT models can, but long-text inference models are not
necessarily bad at handling long-text information retrieval
tasks. In document information retrieval tasks, the part of
the content related to the query is regarded as the docu-
ment related to the query. However, the LTR-Longformer
model considers the information of the whole document,
thereby possibly reducing the importance of the informa-
tion relevant to the query. Consequently, it is difficult for
the LTR-Longformer model to distinguish the truly query-
relevant parts of the long text. Based on the above comparison
results, the proposedLTR-BERTmodel ensures the effective-
ness and efficiency of the retrieval result. Wang et al. [39]
proposed a DRSCM model, which uses a linear combina-
tion of the segment correlation score and segment correlation
matrix to obtain the final document score. The experimental
results show that compared with the latest DRSCM model,
the proposed LTR-BERT model still has advantages in long-
text retrieval, not only in efficiency but also in performance
(nDCG@10, MRR@10, and MAP@100). It shows that our
fine-grained interaction can not only obtain fine-grained sim-
ilarity information, but also save time in the interaction stage.

Study on fine-grained semantic matching for long
text

In “Study on semantic matching for long text”, we test the
retrieval performance of the proposed LTR-BERTmodel and
the comparison models on 5193 binary labeled queries. In
this section, we test the retrieval performance of the proposed
LTR-BERTmodel and comparisonmodels on continuous rel-
evance labeled queries. Different levels of relevance labels
are used to evaluate the model’s results in terms of the nDCG
metrics. Therefore, the main evaluation for queries with con-
tinuous relevance judgment is nDCG@10. To be consistent

with the evaluation in Table 1, the experimental results in this
section also show the results of the MRR@10 and the MAP.

In Table 2, the results of the bm25_marcomb model are
the results of a successful run on the 2019 TREC deep
learning track [8]. The bm25_marcomb model also uses
the BERT model for long-text retrieval. The difference is
that the bm25_marcomb model divides the document into
passage chunks, generates scores for each passage and com-
bines these scores into a document score. Therefore, the
results obtained by this model can also be compared with
those obtained by the LTR-BERT model and the TKL
model in terms of nDCG@10. In terms of MRR@10 and
nDCG@10, the results of the LTR-BERT model are higher
than those of the bm25_marcob and TKL models. However,
the bm25_marcob model has a higher MAP, but this result
is due to a stronger first-round retrieval. In other words, all
models except bm25_marcob rerank the top 100 documents
provided by the track organizer; bm25_marcob reranks the
full documents using a stronger first-round retrieval model.
As the experimental results in Table 2 show, the proposed
LTR-BERT model significantly improves the nDCG@10
obtained by other neural ranking models. The results of the
four evaluation indices show that the proposed LTR-BERT
model has the best comprehensive performance. Therefore,
long-text retrieval approach utilizing presentation learning
on short text is not only effective, but also efficient.

Furthermore, to compare the results of each query more
clearly, Fig. 5 shows the MAP results for 43 queries by
the BM25 model, TKL model and the proposed LTR-
BERT model. Comparing the MAP results of the three
models shows that for most queries, the MAP results of
the LTR-BERT model are higher than those of the BM25
and TKL models. The title of the query in number 39 is
“What is theraderm used for”. In the annotation results, five
documents (D2536093, D3494217, D3494218, D3494220
and D3494221) are labeled as relevant, where documents
D3494217 and D3494218 are labeled as perfectly relevant.
Figure 5 shows the MAP values of different models for this
query: the result of TKL is 0.8909, the result of BM25 is 1
and the result of the proposed LTR-BERT model is 1. As the
statistical analysis reveals, the word “theraderm” appeared
in a few documents marked as relevant. In addition, the word
“theraderm” is not ambiguous, so the analysis shows that
the relevant documents can be found for query No. 39 only
by using the keyword-based exact matching method (e.g.,
BM25). In long-text retrieval tasks, a document often has
multiple topics. In general, if part of the content of a doc-
ument is related to the query, users think that the relevant
document has been found. However, the TKL models the
entire document, focusing too much on the long-distance
dependence of the document, and ignores the topic that
should be considered. Of course, this result is only a rela-
tively rare case.
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Table 2 Results of the proposed
LTR-BERT model and several
neural ranking models on queries
with continuous relevance labels

Model 2019 TREC deep learning track test—continuous relevance labels

Max doc length nDCG@10 MRR@10 MAP@100 Average docs/ms

BM25 (tuned) – 0.5234 0.8632 0.2339

MatchPyramid 500 0.5741 0.9011 0.2324 27

PACRR 500 0.5960 0.8591 0.2183 22

CO-PACRR 500 0.5349 0.8845 0.2231 14

K-NRM 500 0.4936 0.7631 0.2124 49

CONV-KNRM 500 0.5465 0.8993 0.2341 10

BERT-base [CLS] 500 0.6512 0.9436 0.2613 0.1

bm25_marcomb – 0.640 0.913 0.323 < 0.1

ColBERT 500 0.6439 0.9279 0.2610 31.3

TKL 1000 0.5284 0.910 0.2278 1.5

TKL 2000 0.5475 0.915 0.2351 1.1

DRSCM (2 sum) 1000 0.6434 0.9193 0.2531 10.0

DRSCM (4 sum) 2000 0.6375 0.9108 0.2452 10.0

LTR-Longformer 1000 0.5366 0.9085 0.2286 26

LTR-Longformer 2000 0.5424 0.9128 0.2347 26

LTR-BERT 1000 0.6674 0.9341 0.2711 33.3

LTR-BERT 2000 0.6666 0.9341 0.2734 33.3

“Average docs/ms” indicate the average number of documents processed per millisecond during retrieval. The
bold font indicates the optimal result under the corresponding metric

Overall, when compared with the latest DRSCM model,
the proposed LTR-BERT model still has advantages in long-
text retrieval, not only in efficiency but also in performance
(nDCG@10, MRR@10, and MAP@100). This is because
the LTR-BERT model divides the document into passages,
matches the representation of each passage with the query
and takes the content most relevant to the current query as
being relevant to the whole document. Therefore, as long as
the LTR-BERT model finds that the most relevant content
is relevant to the query, the content can be identified as the
relevant document. Therefore, the LTR-BERTmodel is more
suitable than the TKLmodel for long-text retrieval for whole
document modeling.

Ablation study

In the context of deepneural networks, ablation studies can be
used to remove parts of the network structure to better under-
stand the source of validity. This work studies two sources
(query expansion and the matching method).

The results of the ablation study on the query expansion
of the LTR-BERT model and the effectiveness of the match-
ing method are shown in Fig. 6. “[A] LTR-BERT-Average
Similarity” indicates changing the matching mechanism of
LTR-BERT to the average cosine similarity of queries and
all word embedding of documents. “[B] LTR-BERT-[CLS]-
cosine” means that the CLS in LTR-BERT is used as the

relevance score between the query and document, and the
cosine is used to express the similarity of the text. “[D]” is
the proposed LTR-BERTmodel. Comparing [A], [B] and [D]
shows that the cosine similarity of the matching mechanism
changed to calculate the average value of word embedding or
that the cosine similarity of the CLS vector is not as good as
that of the proposed matching method. Therefore, it is effec-
tive for the matching method to take the average of the word
embeddings most similar to the query as the representation
of the passage.

Then, we study whether the query expansion has a gain
effect on the proposed LTR-BERT model. “[C] LTR-BERT
w/o query expansion” indicates that the LTR-BERT model
does not use query expansion, and the query length is still
fixed at 30. When the length is insufficient, the randommask
is set to zero. [C] and [D] show that the query extension can
help users find more relevant documents. The results show
that our query expansion strategy is more effective because
it can automatically learn and supplement the missing infor-
mation during training, which helps to find more relevant
documents.
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Fig. 5 Comparison of MAP
results for the BM25 model, TKL
model and LTR-BERT model on
the 2019 TREC deep learning
tracking task test on 43 queries
with continuous relevance labels

Study on different types of datasets

To test the applicability of the short-text training model
for long-text retrieval tasks, we also test the LTR-BERT
model on four datasets fromdifferent sources3 (FBIS, SJMN,
Disk1&2, andLA). In the experiments, theMSMARCOpas-
sage training dataset was still used to train the LTR-BERT
model. In addition, due to BERT’s input length limita-
tion, the entire document cannot be fed into the model at
once. We assume the long-text input to be n terms, n �
{500, 1000, 1500, 2000}; here, we take the passage size of
3 https://pan.baidu.com/s/4rcD131U.

500. The comparison results between the LTR-BERT model
and BM25 are shown in Table 3.

As shown in Table 3, in terms of nDCG@10, MRR@10
and MAP, the results for document lengths from 1000 to
2000 are mostly better than those for document lengths of
500. According to the document length statistics, the lengths
of 70% of the documents are less than 1000, and the lengths
of more than 90% of the documents are less than 2000. Con-
sidering only the first 500 terms of the document will ignore
some content that may be relevant to the query. However,
when the calculated document length is too long, too much
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Fig. 6 Ablation results of the
LTR-BERT model on the MS
MARCO development set

irrelevant information may be introduced, affecting the rep-
resentation of the document and interfering with the final
result.

Indexing throughput and footprint

In this section, we test the index throughput and footprint to
comprehensively evaluate the performance of the proposed
LTR-BERT model. Table 4 shows the throughput and foot-
print of the LTR-BERTmodel for indexing on the LAdataset.

The results in Table 4 show the space occupation of the
index by the LTR-BERT model under word embedding of
various dimensions. Notably, the higher the word embedding
dimension is, the better the MAP results of the model. How-
ever, the index footprint is higher. The most recommended
setting is when we use 24-dimensional word embeddings to
store the representation of documents. At this point, theMAP
result is only approximately 1% worse than the most space-
consuming setting (theMAP value is 0.2536 when the model
uses 128-dimensional word embeddings), but the space foot-
print is reduced by approximately 81%.

Sensitivity analysis of parameter˛

In “Study on semantic matching for long text” and “Study on
fine-grained semantic matching for long text”, thementioned
models rerank the results according to thefirst-round ranking.
Therefore, in this section, we also study the impact of the
document scores added in the first round of ranking on the
model. In thiswork, a linear adjustment factorα is introduced
to study the effect of different α values on the MRR@10,
nDCG@10 and MAP results. The value range of α is [0,1],
and the step is 0.1.When theα value is 0, theBM25 algorithm
is not used, and only the reranking score of representation

learning-based BERT is used. When the value of α is 1, only
BM25 is used.

As Fig. 7 shows, α is approximately 0.5–0.6, with
MRR@10,NDCG@10andMAPreachingmaximumvalues,
which indicate increases of 39.08%, 34.56% and 35.46%,
respectively, over the results obtained by BM25 on queries
with binary relevance labels. α is approximately 0.4–0.5,
with MRR@10, NDCG@10 and MAP reaching their max-
imum values, which indicate increases of 13.15%, 31.10%
and 16.12%, respectively, over the results obtained by BM25
on queries with continuous relevance labels. It shows that rel-
evance matching and semantic matching seem to be equally
important in this experiment. However, past studies on other
datasets have found that the optimal setting requires a greater
weighting ofBM25 [11]. The experimental data in Fig. 7 used
the same document datasets, and the queries were different.
Therefore, the optimal value of α is affected by the queries
and type of datasets. The results on queries with binary rel-
evance labels show that the reranking results of using BERT
alone without adding the first-round retrieval scores are bet-
ter than the results of using BM25 alone.When the α value is
between 0 and 0.7, the results are relatively stable, and when
the α value is greater than 0.8, the results decrease signifi-
cantly. When α is set to 0.5, the LTR-BERT model performs
better in terms ofMRR@10, nDCG@10 andMAP values on
both query datasets.

To explore whether different levels of α values signifi-
cantly affected the results, we performed one-way analysis of
variance (ANOVA) on the results of MRR@10, NDCG@10
and MAP for different parameters α, and the results indi-
cated that the p value was 0. We have reason to believe that
different levels of parameter α still significantly affects the
results. Therefore, we still recommend using joint relevance
matching (BM25 scores used in the first round of retrieval)

123



976 Complex & Intelligent Systems (2024) 10:963–979

Table 3 Results of the
LTR-BERT model on six datasets
where document lengths have
different values

NDCG@10 MRR@10 MAP

BM25 0.3251 0.2646 0.2769

MS docs dev 500 0.4329* + 33.16% 0.3627* + 37.07% 0.3696* + 33.48%

1000 0.4338* + 33.44% 0.3632* + 37.26% 0.3701* + 33.66%

1500 0.4343* + 33.59% 0.3636* + 37.41% 0.3705* + 33.80%

2000 0.4289* + 31.93% 0.3574* + 35.07% 0.3647* + 31.71%

BM25 0.5234 0.7843 0.2339

MS docs
Test2019

500 0.6602* + 26.14% 0.9341* + 19.10% 0.2666* + 13.98%

1000 0.6674* + 27.51% 0.9341* + 19.10% 0.2711* + 15.90%

1500 0.6673* + 27.49% 0.9341* + 19.10% 0.2726* + 16.55%

2000 0.6666* + 27.36% 0.9341* + 19.10% 0.2734* + 16.89%

BM25 0.3190 0.4218 0.2188

FBIS 500 0.3557* + 11.50% 0.4495* + 6.57% 0.2297* + 4.98%

1000 0.3404* + 6.71% 0.4583* + 8.65% 0.2265* + 3.52%

1500 0.3416* + 7.08% 0.5755* + 36.44% 0.2286* + 4.48%

2000 0.3383* + 6.05% 0.4568* + 8.30% 0.2280* + 4.20%

BM25 0.3276 0.5186 0.2019

SJMN 500 0.3426* + 4.58% 0.5454 + 5.17% 0.2074* + 2.72%

1000 0.3435* + 4.85% 0.5428 + 4.67% 0.2077* + 2.87%

1500 0.3468* + 5.86% 0.5494 + 5.94% 0.2081* + 3.07%

2000 0.3468* + 5.86% 0.5494 + 5.94% 0.2080* + 3.02%

BM25 0.5040 0.6327 0.2375

Disk1&2 500 0.5302* + 5.20% 0.6720* + 6.21% 0.2502* + 5.35%

1000 0.5414* + 7.42% 0.6867* + 8.53% 0.2561* + 7.83%

1500 0.5381* + 6.77% 0.6866* + 8.52% 0.2562* + 7.87%

2000 0.5373* + 6.61% 0.6850* + 8.27% 0.2561* + 7.83%

BM25 0.3772 0.5750 0.2470

LA 500 0.4019* + 6.55% 0.5853* + 1.79% 0.2649* + 7.25%

1000 0.3973* + 5.33% 0.5899* + 2.59% 0.2642* + 6.96%

1500 0.4039* + 7.08% 0.6030* + 4.87% 0.2674* + 8.26%

2000 0.3977* + 5.43% 0.6001* + 4.37% 0.2677* + 8.38%

“*”Indicates that the results of the LTR-BERT model are statistically significant improvements over those
of the BM25 model (Wilcoxon signed-rank test, p < 0.05). The values shown in bold under each evaluation
metric represent the optimal value on the current dataset. The percentage value on the right of each metric
represents the percentage of improvement over the metric obtained by the BM25 model

Table 4 Throughput and
footprint for indexing on the LA
dataset

Method Dim Space (GiBs) Throughput (documents/s) MAP

LTR-BERT 128 8.96G 76.294 0.2536

LTR-BERT 96 6.87G 97.247 0.2528

LTR-BERT 48 3.45G 111.366 0.2517

LTR-BERT 24 1.74G 111.025 0.2496

LTR-BERT 12 0.95G 131.765 0.2204

“Dim” indicates the dimension of each word embedding in the document representation when the document
index is stored off-line. “Space” indicates the disk space occupied by the index when the index is stored off-
line. “Throughput” indicates the system throughput when creating the index, that is, the number of documents
processed per second
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Fig. 7 Influence of parameter α

on the reranking result of the
LTR-BERT model on the queries
with binary relevance labels and
continuous relevance labels

and semanticmatching (representation learning-basedBERT
scores used in the second round of retrieval) to obtain better
retrieval results.

Conclusions and future work

The existing methods for long-text retrieval use mainly the
interaction-focused neural IR method. Although the per-
formance has been improved, interaction-focused semantic
matching takes a long time. Therefore, we propose an effi-
cient long-text retrieval by BERT (named LTR-BERT). The
representation of query and long text is divided into online
and off-line forms. First, the LTR-BERT model is trained
with the relevance of short text and queries to obtain seg-
mented text-encoded representations of long texts. A com-
pression layer is designed so that the LTR-BERT model can
use lower dimensional density word embedding to represent
the semantics of long documents. This process is calculated
only once. Second, a query expansion strategy is designed to
compensate for the lack of query information and improve
the matching ability between the query and the long text.
Finally, benefiting from the idea of keyword exact matching
in relevance matching, a cheap interaction mechanism with-
out training parameters is designed. This mechanism speeds
up response times when fine-grained relevance is consid-
ered. Combining representation-focused semantic matching
and keywords-based relevance matching, the model is tested
on MS MARCO document ranking datasets specifically
designed for long-text retrieval. Experimental results show
that comparedwith the interaction-focusedneural IRmethod,
the proposed method can guarantee better accuracy and can
increase the number of long texts processed per unit time.
This work also displays that segmented encoding is better at
long-text retrieval than long-text encoding. The number of
long-text processed per millisecond increased by 333 times

when comparedwith the interaction-focused neural retrieval,
therefore off-line pre-storage improves efficiency of long-
text retrieval.

This work proposes a representation-focused method for
efficient long-text retrieval. Therefore, we take only the
BERT model as an example to perform representation-based
semantic matching on queries and long text. In the future,
we will first study and discuss the application of different
semantic matching models to information retrieval tasks by
using representation learning-based methods. Second, our
proposed method will be applied for more applications (such
as biomedicine and Clinical IR) in the future [40–42]. Fur-
ther research and applications will be considered to explore
the generality and limitations of the proposed method.
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