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Abstract
To protect the images and provide a more secure cipher image, DNA encoding is crucial in image encryption. Applying a
single, easily detectable coding rule to the image during DNA encoding has no impact on the encryption model’s security
level. Therefore, using various coding rules while applying encryption to the image, dynamic DNA-coding techniques have
emerged to strengthen and improve the encryption of the image and its security. This study integrates a dynamic DNA-coding
method with an encryption model. The model is applied to gray-scale images, where using a predetermined coding rule, every
two bits are DNA-encoded in the image. The proposed model generates the key by sending the image and its metadata to
hash functions. Following that, the hyperchaotic system constructs three chaotic sequences using the key, and the Lorenz–Liu
chaotic system generates a sequence of coding rules. Then, the image is passed to Arnold Transform, where the resulted
image is diffused by applying five chaotic maps. Last, using the coding rules, it is DNA-encoded, provided with the chaotic
sequences to DNA, and DNA-decoded. Twelve metrics were used to assess the proposed model on ten widely used images.
Results show a promising improvement in performance, since it enhanced the security of the model.

Keywords LLCS · LCS · DNA · Dynamic DNA coding · Image encryption

Introduction

Currently, image processing has rapidly expanded. Com-
monly, 2D images are used to apply image processing
techniques. These methods are used across a variety of
fields, including image search results [1], object identifica-
tion [2–4], image enhancement [5], and image encryption.
Both colourful and grayscale images are subject to image
encryption.

Recently, Deoxyribonucleic Acid (DNA) has been
employed in cryptography because of its high information
density, energy efficiency, and parallelization capability [6].
Therefore, the use of DNA-encoding in cryptography sys-
tems has grown. It has been massively useful for preserving
the images so they can be perfectly retrieved, in addition to
generating new cipher data that cannot be attacked easily.

DNA-encoding using one coding rule is the first and oldest
type applied in cryptography. It has been applied in many
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encryption modes, such as the models in [7–17], which give
the system a great amount of information and a huge number
of parallelisms while consuming less power. Nonetheless,
using one coding rule allows the rule to be predicted easily,
and the original image can be recovered.

This shortening is overcomeby introducingdynamicDNA
coding, in which the image is DNA-encoded using a different
number of coding rules. The coding rules can be applied in
different ways, including one for each block in the image [18,
19], one for each row in the block [20], one for each pixel
[10, 21–23], and one for every two bits of the image [24].

Themain challenge is raising the sensitivity of the key and
enhancing the encryption layers in the cryptography domain
by applying dynamic DNA coding. In this paper, we over-
come this challenge by applying dynamic DNA coding to the
model proposed in [7]. In the proposedmodel, dynamicDNA
coding is applied, where the model generates a sequence
of coding rules using the Lorenz–Liu chaotic system. The
sequence contains one coding rule for every two bits of the
image. After that, the sequence is used to create a DNA-
encoded image. The same sequence is then used for DNA
decoding of the image.

To evaluate the efficiency of the model, twelve evaluation
metrics are employed on ten popular gray-scale images. The
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comprehensive evaluation covers five aspects: key analysis,
differential attacks analysis, robustness analysis, statistical
attacks analysis, and computational complexity analysis. The
evaluation metrics are the key space, key sensitivity, num-
ber of pixels change rate (NPCR), unified average changing
intensity (UACI), mean square error (MSE), peak signal-to-
noise ratio (PSNR), histogram analysis, information entropy,
chi-square test (χ2 test), irregular deviation (ID), correlation
coefficient adjacent (CCA), and computational complexity.

The experimental results of the proposed model demon-
strate encouraging performance improvements. The key
became a wider space and being more sensitive to little
changes. The results of NPCR and UACI express the high
sensitivity of themodel tominor changes in the input images,
leading to the generation of completely different cipher
images. Regarding MSE and PSNR results, the proposed
model contains various encryption layers that perform wider
distances between the original image and the cipher image.
The color intensity distribution of the encrypted image is
muchmore uniform, as proven by histogram analysis in addi-
tion to the results of X2 and ID. The proposed model implies
great randomness in the images demonstrated in information
entropy and CCA. The contributions to this work are:

• Introducing a model based on integrating dynamic DNA-
coding techniques with the image encryption model.

• The proposed model expands the key space and improves
key sensitivity while also enhancing the security of the
encryption layers.

• A comprehensive assessment of the proposed model on
ten popular images using twelve evaluation metrics.

The paper is structured as follows: the related dynamic
DNA-coding models and differences between them are rep-
resented in the next section. The following section describes
DNA sequences and dynamic DNA coding in addition to the
Liu chaotic system and how it is intercepted in the Loren-
z–Liu chaotic system. Next section introduces the proposed
model. In the following section, the performancemeasures of
the proposed model and its results are presented. Finally, the
conclusion of thework and the future directions are expressed
in the last section.

Related work

Dynamic DNA coding has been applied in many represen-
tations: a coding rule for the image, a coding rule for each
block in the image, a coding rule for each row in blocks of
the image, a coding rule for each pixel, and a coding rule for
every two bits in the image. In this section, these representa-
tions are addressed along with how they were used in recent
models, with a focus on their strengths and weaknesses.

A coding rule for the image

Signing et al. [16] proposed a model in 2021. The model
is joint-based on pseudo-random and sophisticated hyper-
chaotic behaviour alongwithDNA-encoding. First, the secret
key is obtained using the hyperchaotic system, and the
image is exposed to bit-by-bit shuffling. Next, the image
is binarized and DNA-encoded using the encoding rule.
Finally, the encoded sequence is provided toDNAoperations,
complemented, and DNA-decoded. The encrypted image is
generated from the resulting binary sequence. Themodel has
a large key space and is sensitive to small changes. However,
it implies low resistance to differential attacks.

A coding rule for each block in the image

In 2021, Mohamed et al. [19] introduced a new model based
on Choquet fuzzy integral (CFI) and dynamic DNA coding.
First, the original image is split into four parts. CFI is then
applied, and the four S-boxes are generated. Each box is
binarized and DNA-encoded with its coding rule generated
by the M sequence. Finally, down-sampling is applied to the
DNA boxes, which are diffused using Chen’s hyperchaotic
map sequences, and the sequences are decoded to get a cipher
image. The model implies high randomness for the images
and is sensitive to the image and key, but with a small key
space.

Another model was introduced in 2022 by Wang et al.
[18] which applies Zigzag scrambling besides dynamic DNA
coding relying on random blocks and the logistic–dynamics-
coupled map lattice (LDCML). Using SHA-512, the key is
generated. Then, the image is scrambled and split into blocks,
then inter-scrambled. Afterward, according to a sequence
generated by LDCML, each block is DNA-encoded by a
coding rule. Finally, DNA operations are performed, the
sequence is decoded, obtaining the cipher image. The model
has awide key space and is overly sensitive to image changes.
On the other hand, the model is less robust to differential and
robustness attacks.

A coding rule for each row in the image

Bao et al. [20] introduced an encryption model in 2022 that
combines compressive sensing and DNA coding. The model
begins with creating a key measurement matrix and applying
SHA-256 to the image to get the hash sequence. Next, the
image is split into four blocks, to which inter-scrambling is
applied. Afterward, each block is binarized, and each row in
it is DNA-encoded with its coding rule. In the end, the DNA
addition operation is applied to the DNA blocks, which are
DNA-decoded, recombined, and sorted to obtain a cipher
image. The model is sensitive to tiny changes in the original
image and the key. Meanwhile, it has a small key space,
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implies less randomness in the images, and is less robust to
differential attacks.

A coding rule for each pixel in the image

Li et al. [23] introduced a newmodel depending on the mem-
capacitor chaotic system and DNA coding. First, the key is
generated by SHA-3 for the image, where every eight pixels
are used as the chaotic system’s initial values. Following that,
the image is binarized, forming a matrix, and each pixel in
the matrix is DNA-encoded with its coding rule. Finally, the
chaotic sequence is used for scrambling the DNA-encoded
matrix, which is then decoded and converted to decimals,
obtaining a cipher image. The model has a large key space in
addition to its sensitivity to key and image changes. However,
it is less robust to statistical attacks.

Zhu et al. [22] proposed another model depending on the
5D continuous hyperchaotic system and DNA coding. First,
the chaotic system generates a chaotic sequence in addition
to the coding rules, and the original image is permuted using
the chaotic sequence. Then, the image is binarized, forming
a matrix, where each pixel is DNA-encoded with its coding
rule, DNA complemented, andDNA-decoded. In the end, the
decoded matrix is diffused, obtaining the cipher image. The
model implies great randomness in the images. Yet, it is less
robust to differential attacks, has a small key space, and is
less sensitive to tiny changes in the key and images.

Tian et al. [10] proposed a model relying on dynamic
DNA coding and piecewise linear chaotic map-based cou-
pled map lattices (SPWLCMmap-based CML). The chaotic
sequences are obtained using CML, which is then used to
generate DNA-encoding rules in addition to DNA-decoding
rules. The original image is scrambled and diffused with the
chaotic sequences, and it is binarized. Then, relying on the
encoding rule for each pixel, the image is DNA-encoded and
permuted. At the end, the DNA-encoded image is decoded,
converted to decimals, and diffused to obtain a cipher image.
The model is sensitive to small changes and implies high
randomness in the images. However, it is less robust to dif-
ferential attacks and has a small key space.

Zhang et al. [21] introduced a model relying on the sine-
piecewise linear chaotic map (SPWLCM) and DNA coding.
To begin, SPWLCM generates key and coding rules. Then,
the image is shuffled and binarized, forming a matrix. Next,
each pixel in thematrix isDNA-encoded using its own coding
rule. Finally, the DNA encryption algorithm is applied to
the encoded matrix. The matrix is decoded and converted to
decimals, obtaining the cipher image. The model is sensitive
tominor changes and implies high randomness in the images.
On the other hand, it has a small key space and less protection
for differential attacks.

A coding rule for each two bits in the image

Wang et al. [24] introduced a new model that depends on
random embedding and DNA coding. The 4D memristive
hyperchaotic system creates the control parameters, whereas
the image is preprocessed based on random number embed-
ding. Following that, the coding rules are obtained using the
4D memristive hyperchaotic system. Afterward, the image
is binarized, and each two bits in the image is encoded using
its coding rule. At the end, the image is scrambled and dif-
fused, and then DNA operations are applied to it before it
is decoded and converted to decimals to obtain the cipher
image. The model has a wide key space, which is sensitive to
minor changes and implies high randomness to the images.
Nonetheless, it is less robust to differential attacks.

Table 1 lists the models that employ the previous dynamic
DNA-coding techniques, along with their benefits and draw-
backs. The conducted comparison highlights significant
findings. First, the randomness of generating the encrypted
images is outstanding in the case of applying DNA-encoding
using a coding rule for each pixel technique and a coding
rule for each two bits technique. It is noted that the key space
and its sensitivity depend on the algorithm used in the key
generation. On the other hand, the robustness of the model
to statistical and differential attacks relies on the encryption
model. The differential attacks are found to be the biggest
challenge for the researchers.

Fundamental knowledge (preliminaries)

This section presents a detailed description of the DNA
sequences, the application of dynamic DNA coding, the
Lorenz–Liu chaotic system, and the Liu chaotic system.

DNA sequence

DNA, or Deoxyribonucleic acid, is a biological macro-
molecule that carries hereditary genetic information about
living organisms [25]. It consists of nucleic acid bases
bonded to form two strands using phosphodiester bonds.
These strands are linked with hydrogen bonds, forming a
helix structure. There are four kinds of bases: adenine (A),
thymine (T), cytosine (C), and guanine (G). A and T are
bonded together using two hydrogen bonds; therefore, they
are purines. Meanwhile, C and G are bonded together using
three hydrogen bonds, since they are pyrimidines [7]. DNA
has recently been used in cryptography for its high infor-
mation density, its energy efficiency, and its parallelization
capability [6].
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Table 1 Dynamic DNA-coding techniques

Dynamic
DNA-coding
technique

Model Features Drawbacks

Coding rule for
image

[16] Large key space
Sensitive key

Less resistant to
differential
attacks

Coding rule for
each block

[18] Large key space
Sensitive key

Less resistant to
differential
attacks
Less
randomness of
image

[19] High
randomness of
image
Sensitive key

Small key space

Coding rule for
each row in
block

[20] Sensitive key Small key space
Less resistant to
differential
attacks
Less
randomness of
image

Coding rule for
each pixel

[10] High
randomness of
image
Sensitive key

Small key space
Less resistant to
differential
attacks

[21] High
randomness of
image
Sensitive key

Small key space
Less resistant to
differential
attacks

[22] High
randomness of
image

Small key space
Less resistant to
differential
attacks
Key is less
sensitive

[23] Large key space
Sensitive key

Less resistant to
statistical
attacks

Coding rule for
every two bits

[24] Large key space
Sensitive key
High
randomness of
image

Less resistant to
differential
attacks

Dynamic DNA coding

Data can be encoded into a DNA sequence using its binary
representation, since each base is represented by two bits.
There are eight effective DNA rules that can be achieved
based onWatson and Crick’s complementary model: purines
and pyrimidines. These rules are listed in Table 2 [7].

The dynamic DNA-coding technique encodes each pixel
into a DNA sequence of four bases. Each two bits in one
pixel is DNA-encoded using chosen coding rules [26]. For

example, if pixel x contains a value equal to 125, its binary
representation is “01111101”. Assuming the chosen coding
rules for the pixel are {3, 4, 5, 8}, then the DNA-encoded
sequence is “GAGA”. The decoding operation will be based
on the chosen coding rules.

Lorenz–Liu chaotic system (LLCS)

The Lorenz–Liu chaotic system (LLCS) is constructed by
considering the Liu chaotic system state variables as the
Lorenz chaotic system parameters. The generated system is
described in Eqs. (1–3) [26]:

l1(1, i + 1) = (r1 + λm1(1, i))(l2(1, i) − l1(1, i)) (1)

l2(1, i + 1) = (s1+λm2(1, i))l1(1, i) − l1(1, i)l3(1, i) − l2(1, i)

(2)

l3(1, i + 1) = l1(1, i)l2(1, i) − (t1 + λm3(1, i)) (3)

where l1, l2, and l3 are stateful variables; r1, s1, and t1 are
the parameters of the system with values r1 = 10, s1 = 28,
and t1 = 8/3 [26]; m1, m2, and m3 are the disturbances of the
system parameter provided by the Liu chaotic system; and λ

is the LLCS disturbance intensity. The LLCS is provided to
mod 1000.

Liu chaotic system (LCS)

The Liu chaotic system (LCS) is a system that reveals prop-
erties of Lyapunov exponents, Poincare mapping, fractal
dimension, continuous spectrum, and chaotic behaviours. It
can be described in Eqs. (4–6) [26, 27]:

m1(1, i + 1) = r2(m2(1, i) − m1(1, i)) (4)

m2(1, i + 1) = s2m1(1, i) − um1(1, i)m3(1, i) (5)

m3(1, i + 1) = −t2m3(1, i) − vm1(1, i)2 (6)

where m1, m2, and m3 are the stateful variables; and r2, s2t2,
u, and v are the system parameters with values r2 = 10, s2

= 40, t2 = 2.5, u = 1, and v = 4 [26]. The LCS is provided
to mod 1000.

Proposedmodel

This section describes in detail the proposed model, its com-
ponents, the encryption, and decryption schemes. The model
in [7] generates a key through the incorporation of the MD5
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and SHA-256 hash algorithms. With the aid of a memris-
tor hyperchaotic system, it produces four matrices. Once the
key was generated, Arnold’s transform is applied to the orig-
inal image. Five chaotic maps are then used to scramble the
image. The image is then DNA encoded, followed by being
diffused using three of the four matrices generated using the
hyperchaotic system, and finally DNA decoded. This model
is adapted as follows:

Proposed encryptionmodel

The proposed encryption model applied to the M × N
grayscale image is described in Fig. 1. It consists of the fol-
lowing steps:

Step 1: 256-bit Hash value generation.MD5hash function
is applied to the original image and its metadata, where the
generated 128-bit hash values are concatenated and provided
to SHA-256, generating a 256-bit hash value H:

H = [h1, h2, . . . , h64]

Step 2: Generation of parameters. The image is split into
four parts. The average of each part and H are applied to
equations in model [7] resulting in the Arnold Transform
parameters a, b, and c; and Hyper-Chaos system initial val-
ues w0, x0, y0, and z0. The values of Liu chaotic system
parameters are r2 = 10, s2 = 40, t2 = 2.5, u = 1, and v
= 4. Meanwhile, the values of Lorenz–Liu chaotic system
parameters are r1 = 10, s1 = 28, and t1 = 8/3.

Step 3: Calculate initial values of LLCS. The initial values
of LCS are calculated, as shown in Eqs. (7–9):

m1 = (h1 ⊕ h2 ⊕ . . . ⊕ h10)/256 (7)

m2 = (h11 ⊕ h12 ⊕ . . . ⊕ h20)/256 (8)

m3 = (h21 ⊕ h22 ⊕ . . . ⊕ h32)/256 (9)

Meanwhile, the initial values of LLCS are obtained by
Eqs. (10–12):

l1 = (h1 + h2 + . . . + h10)/(10 ∗ max(h1, h2, . . . , h10))

(10)

l2 = (h11 + h12 + . . . + h20)/(10 ∗ max(h11, h12, . . . , h20)) (11)

Fig. 1 Proposed encryption model

l3 = (h21 + h22 + . . . + h32)/(12 ∗ max(h21, h22, . . . , h32)) (12)

λ is calculated by Eq. (13):

λ = mod((l1 + l2 + l3 + m1 + m2 + m3)/6, 0.02) (13)

The secret key is {a, b, c, w0, x0, y0, z0, r2, s2, t2, u, v, r1,
s1, t1, λ, m1, m2, m3, l1, l2, l3}, which are obtained in steps
2 and 3.

Step 4: Image transformation using Arnold transform.The
image is provided to Arnold Transform using a, b, and c to
obtain scrambled image I1.

Table 2 Rules for DNA encoding
Rule Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

00 A A T T C C G G

01 G C G C T A T A

10 C G C G A T A T

11 T T A A G G C C
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Step 5: Get coding rules using the Lorenz–Liu chaotic sys-
tem. LLCS is iterated using the parameters and initial values,
creating three sequences: L1, L2, and L3. Equation (14) is
applied to generate the coding rules for the chaotic sequence
CR:

CR = mod
(
floor

(
abs(L1) × 103

)
, 8

)
+ 1. (14)

Step 6: Hyper-chaos sequence generation. Memristor
HCS is applied to initial values w0, x0, y0, and z0 to obtain
four chaotic sequences, W , X, Y , and Z , which are applied to
equations in model [7] resulting in three M × N sequences,
Y2, Z2, and W2.

Step 7: Encryption using chaotic maps. I1 is provided to
sequences of five XOR operations within five chaotic maps,
where the sequence of maps is Tent, Logistic, Piecewise,
Gauss, and Henon maps: yielding I2.

Step 8: Dynamic DNA coding of the image. I2,W2,Y2, and
Z2 are binarized and DNA-encoded using the CR sequence
to determine the coding rule for each two bits, creating 4 ×
M × N DNA sequences: I2, W2, Y2, and Z2.

Step 9: Applying DNA operations. I2 and Y2 are provided
to the XOR operation, resulting in I3. Then, Z2 is added to I3

to generate I4 which is then sorted based on W2 to achieve
I5.

Step 10: Dynamic DNA decoding. I5 is DNA-decoded
using CR and converted from binary to decimal, achieving
cipher image C.

Proposed decryptionmodel

The decryption model depends on the opposite operations
applied in the encryption model. The HCS is applied on
w0, x0, y0, and z0 creating chaotic sequences W , Y , and Z .
Next, the CR sequence is achieved by applying LLCS on l1,
l2, l3, m1, m2, m3, r1, r2, s1, s2, t1, t2, u, v, and λ. After-
ward, the encrypted image C, in addition to W , Y , and Z, are
DNA-encoded using CR. The created DNA sequences, I5,
W2, Y2, and Z2, are supplied to inverse DNA operations: I5

is inverse-sorted based on W2 yielding I4, Z2 is subtracted
from I4 generating I3 which is provided with Y2 to the XOR
operation to obtain I2. Then, I2 is DNA-decoded. Finally,
XOR operations are applied to I2 and the inverse sequence
of chaotic maps, and the resulting matrix I2 is provided to
the Arnold Transform, obtaining the original image I .

Experimental evaluation

Themodel is implemented on a 64-bitmachinewith an Intel®

Core™ i7-4500U CPU @ 1.80 GHz processor and 8 GB
RAM in MATLAB R2021b platform on the Windows 10
operating system. The data set, the evaluation metrics, the

evaluation results, and their interpretation are described in
the following subsections:

Data set

The data set used for assessing the model holds the most
popular ten 256 × 256 Gy-scale images: Cameraman, Lena,
Baboon, House, Peppers, Barbara, QR code, Couple, White,
and Black [12, 14, 16, 18–21, 24].

Experimental results

The experimental evaluation metrics are divided into five
main categories: key analysis, differential attacks analysis,
robustness analysis, statistical attacks analysis, and com-
putational complexity analysis. Table 3 lists some of the
comprehensive evaluation results of the proposed model.
The following subsections describe the evaluation metrics
in detail.

Key analysis

The strength of the key is one of themain purposes of encryp-
tion models. Therefore, the encryption model should have a
strong key that is robust to attacks. The strength of the key
is measured by the key space and its sensitivity to minor
changes.

Key space analysis: The key space is calculated based on
the number of variables and their probabilities, and its value
should exceed 2100 [17, 28]. In the proposed model, the key
contains 2256 × 2128 × 2 × 1014 × 4 of the parameters of the
mainmodule of [7]; the selectedDNA-encoding rule for each
two bits of the image (8 kinds); and the initial values in addi-
tion to the parameters of LCS and LLCS l1, l2, l3, m1, m2,
m3, r1, r2, s1, s2, t1, t2, u, v, and λ. Therefore, the key space
is:

K = 2256 × 2128 × 2 × 1014 × 4 × 28 × 1015 × 15 = 21453,
which is extremely higher than 2100. This value signifies that
the secret key is particularly safe, because it makes it very
difficult for attackers to guess the proper values.

Key sensitivity analysis: The key sensitivity affects the
robustness to brute force attacks. It is detected by chang-
ing a tiny part of the key and testing the retrieved image [29].
Some variables: x0, y0, z0,w0, l1, l2, l3,m1,m2,m3, r1, r2, s1,
s2, t1, t2, u, v and λ are altered by only the 10th digit before
their decimal point by adding 10−10 to test key sensitivity
on an image, for example, Lena image. The results on Lena
image are shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19 and 20 for variables x0, y0, z0, w0, l1,
l2, l3, m1, m2, m3, r1, r2, s1, s2, t1, t2, u, v and λ. The results
imply that the model is susceptible to these minor changes,
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Table 3 Experimental results of the proposed model

Criteria Cameraman Lena Baboon House Peppers Barbara QR Code Couple White Black

NPCR 99.64% 99.61% 99.58% 99.62% 99.63% 99.62% 99.59% 99.63% 99.61% 99.56%

UACI 33.39% 33.42% 33.48% 33.52% 33.39% 33.39% 33.42% 33.45% 33.40% 33.44%

MSE 16,016 9010 8579 7733 11,957 7448 21,591 7697 21,774 21,712

PSNR 6.1 8.6 8.8 9.2 7.4 9.4 4.8 9.3 4.8 4.8

Information
entropy

7.997 7.9975 7.9974 7.9976 7.9972 7.9973 7.9967 7.9976 7.9973 7.9974

Chi-square 275 225 236 221 256 248 300 222 248 233

Irregular
deviation

4702 10,077 10,397 11,180 6928 11,596 1309 11,621 905 1

CCA
horizontal

0.0033 0.0012 −
0.00002

0.0039 − 0.0023 0.002 0.0018 − 0.0025 0.0084 − 0.0063

CCA vertical 0.0003 − 0.0031 − 0.0006 0.0038 − 0.0024 0.0015 − 0.0012 0.0034 0.0008 0.0035

CCA
diagonal

0.0067 0.0034 − 0.0016 − 0.0055 − 0.0067 − 0.0029 0.0013 − 0.003 0.0013 − 0.0028

Fig. 2 Lena image histogram. a Original image, b cipher image,
c restored image after x0 change, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after x0 change

Fig. 3 Lena image histogram. a Original image, b cipher image,
c restored image after y0 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after y0 changed

leading to difficulty in predicting the image under different
attacks.

Fig. 4 Lena image histogram. a Original image, b cipher image,
c restored image after z0 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after z0 changed

Fig. 5 Lena image histogram. a Original image, b cipher image,
c restored image after w0 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image afterw0 changed

Differential attack analysis

Differential attacks analysis tests determine the link between
the original image and the cipher image by measuring the
sensitivity of the model to the original image. The analy-
sis is applied by assessing the number of pixels change rate
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Fig. 6 Lena image histogram. a Original image, b cipher image,
c restored image after l1 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after l1 changed

Fig. 7 Lena image histogram. a Original image, b cipher image,
c restored image after l2 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after l2 changed

Fig. 8 Lena image histogram. a Original image, b cipher image,
c restored image after l3 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after l3 changed

(NPCR) and the unified average changing intensity (UACI)
which are described as follows.

Number of pixel change rate (NPCR): It determines the rate
of changing the value of cipher image pixels before and after
changing one pixel of the original image. It is calculated
using Eqs. (15), (16) [7, 14, 30]:

NPCR =
∑
i , j

D(i , j)

M N
× 100% (15)

Fig. 9 Lena image histogram. a Original image, b cipher image,
c restored image after m1 changed, d histogram of original image,
e histogram of cipher image, f histogram of restored image after m1
changed

Fig. 10 Lena image histogram. a Original image, b cipher image,
c restored image after m2 changed, d histogram of original image,
e histogram of cipher image, f histogram of restored image after m2
changed

Fig. 11 Lena image histogram. a Original image, b cipher image,
c restored image after m3 changed, d histogram of original image,
e histogram of cipher image, f histogram of restored image after m3
changed

D(i , j) =
{
0 i f C1(i , j) = C2(i , j)
1 i f C1(i , j) �= C2(i , j)

, (16)

whereC1(i , j) andC2(i , j) are cipher imagebefore and after
one pixel changed. Moreover, the perfect value for NPCR is
near 100% [31].
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Fig. 12 Lena image histogram. a Original image, b cipher image,
c restored image after r1 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after r1 changed

Fig. 13 Lena image histogram. a Original image, b cipher image,
c restored image after r2 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after r2 changed

Fig. 14 Lena image histogram. a Original image, b cipher image,
c restored image after s1 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after s1 changed

The proposed model results are compared to [16, 18–21,
24] results on Cameraman, Lena, Baboon, Peppers, White,
and Black images in terms of NPCR in Table 4. The proposed
model achieves higher results on Cameraman, Peppers, and
White images with values of 99.64%, 99.63%, and 99.61%,
respectively. On the other hand, the results are comparable to
others on Lena, Baboon, and Black with values of 99.61%,
99.58%, and 99.56%, respectively. The proposed model is
comparable to others with slightly higher performance.

Fig. 15 Lena image histogram. a Original image, b cipher image,
c restored image after s2 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after s2 changed

Fig. 16 Lena image histogram. a Original image, b cipher image,
c restored image after t1 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after t1 changed

Fig. 17 Lena image histogram. a Original image, b cipher image,
c restored image after t2 changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after t2 changed

Unified average changing intensity (UACI): It detects the
average of the distance intensity between the cipher image
before and after changing one pixel in the original image.
The UACI value is calculated by Eq. (17) [7, 14, 30]:
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Fig. 18 Lena image histogram. a Original image, b cipher image,
c restored image after u changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after u changed

Fig. 19 Lena image histogram. a Original image, b cipher image,
c restored image after v changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after v changed

Fig. 20 Lena image histogram. a Original image, b cipher image,
c restored image after λ changed, d histogram of original image, e his-
togram of cipher image, f histogram of restored image after λ changed

UACI =
∑
i , j

|C1(i , j) − C2(i , j)|
255 × M N

× 100%, (17)

whereC1(i , j) andC2(i , j) are cipher imagebefore and after
changing one pixel. It is worthmentioning that the ideal value
for UACI is near 33.33% [31].

With respect to UACI in Table 5, the proposed model
results are compared to [16, 18–21, 24] results on Camera-
man, Lena, Baboon, Peppers, White, and Black images. The

proposed model surpasses the others on Cameraman, Lena,
Peppers, and White images with values of 33.39%, 33.42%,
33.39%, and 33.4%, respectively. For Baboon and Black, the
proposed model results are comparable to others with values
of 33.48% and 33.44%, respectively. In general, the proposed
model’s efficiency slightly surpasses the others in respect of
UACI.

Robustness analysis

The robustness of the model is analysed by applying mean
square error (MSE) and peak signal-to-noise ratio (PSNR)
analysis.

Mean square error test (MSE): It describes the diffusion char-
acteristics of themodel. It is calculated using Eq. (18) [7, 11]:

MSE = 1

M N

M∑
i=1

N∑
j=1

(I (i , j) − C(i , j))2, (18)

where I (i , j) and C(i , j) are the values of pixel in the origi-
nal and cipher images, respectively. The ideal value for MSE
should be > 10,000 [13].

In terms ofMSE, the proposedmodel results are compared
to [18] on Cameraman, Lena, Baboon, Peppers, White, and
Black images, as shown in Table 6. The model outperforms
[18].

Peak signal-to-noise ratio (PSNR): It represents the peak of
the error between the original and cipher images to describe
the quality of the reconstruction of the image. It is calculated
using Eq. (19) [11]:

PSNR = 20 log10

(
255√
MSE

)
. (19)

The value of PSNR should be near 0 [11].
The proposed model results in Table 7 are compared to

[18, 19] on Cameraman, Lena, Baboon, Peppers, White, and
Black images regarding PSNR. The proposed model results
surpass others on Cameraman, Lena, Peppers, White, and
Black images with values of 6.1, 8.6, 7.4, 4.8, and 4.8. For
the Baboon image, it is comparable to others with a minor
difference of 0.3.

Statistical attacks analysis

Themodel should be robust to the statistical characteristics of
the original images. Therefore, statistical analysis should be
applied to the proposedmodel, including histogram analysis,
information entropy, chi-square χ2, irregular deviation ID,
and correlation coefficient adjacent CCA.
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Table 4 NPCR against other
benchmark approaches Model Cameraman Lena Baboon Peppers White Black

[18] 99.61% 99.62% NA NA NA NA

[20] 99.61% 99.61% NA NA NA NA

[16] NA 99.65% NA NA NA NA

[21] 99.63% 99.62% NA NA 99.6% 99.62%

[24] NA 99.62% NA NA NA NA

[19] 99.6% 99.62% 99.6% 99.61% NA 99.55%

Proposed model 99.64% 99.61% 99.58% 99.63% 99.61% 99.56%

Table 5 UACI against other
benchmark approaches Model Cameraman Lena Baboon Peppers White Black

[18] 33.46% 33.47% NA NA NA NA

[20] 33.55% 33.59% NA NA NA NA

[16] NA 33.45% NA NA NA NA

[21] 33.56% 33.5% NA NA 33.41% 33.54%

[24] NA 30.64% NA NA NA NA

[19] 33.44% 33.44% 3.46% 33.46% NA 33.4%

Proposed model 33.39% 33.42% 33.48% 33.39% 33.40% 33.44%

Table 6 MSE against other
benchmark approaches Model Cameraman Lena Baboon Peppers White Black

[18] 9411 NA NA NA NA NA

Proposed model 16,016 9010 8579 11,957 21,774 21,712

Table 7 PSNR against other
benchmark approaches Model Cameraman Lena Baboon Peppers White Black

[18] 8.4 NA NA NA NA NA

[19] 9.4 9.4 8.5 8.8 NA NA

Proposed model 6.1 8.6 8.8 7.4 4.8 4.8

Histogram analysis: It describes the allocation of the pixel
intensity values. The even distribution of the histogram
implies great hiding of the image [9]. The results of the his-
togram of the images are represented in Figs. 21, 22, 23, 24,
25, 26, 27, 28, 29 and 30.

Information entropy: It measures the randomness of the
images. It is calculated using Eq. (20) [32]:

Fig. 21 Cameraman imagehistogram.aOriginal image,b cipher image,
c restored image, d original image histogram, e cipher image histogram,
f restored image histogram

H = −
M∑

i=1

N∑
j=1

(
p(C(i , j)) × log10 p(C(i , j))

)
, (20)
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Fig. 22 Lena image histogram. a Original image, b cipher image,
c restored image, d original image histogram, e cipher image histogram,
f restored image histogram

Fig. 23 Baboon image histogram. a Original image, b cipher image,
c restored image, d original image histogram, e cipher image histogram,
f restored image histogram

Fig. 24 House image histogram. a Original image, b cipher image,
c restored image, d original image histogram, e cipher image histogram,
f restored image histogram

where C(i , j) is the value of the pixel in the cipher image,
p(C(i , j)) is the occurrence probability ofC(i , j). The ideal
value for information entropy should be near 8 [33].

Table 8 compares the proposed model results to [16,
18–21, 24] results on Cameraman, Lena, Baboon, Peppers,
White, and Black images in respect of information entropy.
The results of the proposed model outperform others in
Baboon andWhite images with values of 7.9974 and 7.9973,

Fig. 25 Peppers image histogram. a Original image, b cipher image,
c restored image, d original image histogram, e cipher image histogram,
f restored image histogram

Fig. 26 Barbara image histogram. a Original image, b cipher image,
c restored image, d original image histogram, e cipher image histogram,
f restored image histogram

Fig. 27 QR Code image histogram. a Original image, b cipher image,
c restored image, d original image histogram, e cipher image histogram,
f restored image histogram

respectively, while being comparable to others in Camera-
man, Lena, Peppers, and Black images with values of 7.997,
7.9975, 7.9972, and 7.9974, respectively. To sum up, the pro-
posed model implies comparable performance with the other
approaches.

Chi-square test: The test quantitatively describes the dis-
tribution of the values of image pixels and justifies their
uniformity. It is calculated using Eq. (21) [18, 19]:
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Fig. 28 Couple image histogram. a Original image, b cipher image,
c restored image, d original image histogram, e cipher image histogram,
f restored image histogram

Fig. 29 White image histogram. a Original image, b cipher image,
c restored image, d original image histogram, e cipher image histogram,
f restored image histogram

Fig. 30 Black image histogram. a Original image, b cipher image,
c restored image, d original image histogram, e cipher image histogram,
f restored image histogram

x2 =
255∑
i=0

(xi − x)2

x
, (21)

where xi is the pixel value frequency, x is the average of pixel
value frequencies from 0 to 255.

χ2 test results are presented in Table 9. It is apparent that
the values of the images are extremely high, ranging from
20,856 to 16,711,680. Yet, the values of encrypted images
vary between 221 and 300, which implies a uniform distri-
bution of pixel intensity when applying the proposed model.

Irregular deviation: It detects the variation of image devi-
ation from uniform distribution by calculating the pixel
deviation before and after the encryption process. Equa-
tion (22) [7, 12] calculates ID:

ID =
255∑
i=0

|HDi − MH|, (22)

where HDi is the histogram of the absolute values of the vari-
ation between the original image and the encrypted image,
and MH is the HD average. The ideal value of ID should be
the minimum to imply the uniformity of the histogram [34].
The results of the ID of the proposed model were shown
earlier in Table 3.

Correlation coefficient adjacent (horizontal, vertical, diago-
nal): It calculates the similarity between each two adjacent
pixels. It is calculated using Eq. (23) [35]:

cc =
∣∣∣∑M

i=1
∑N

j=1

[
CA1(i , j) − CA1(i , j)

][
CA2(i , j) − CA2(i , j)

]∣∣∣
√∑M

i=1
∑N

j=1

[
CA1(i , j) − CA1(i , j)

]2√∑M
i=1

∑N
j=1

[
CA2(i , j) − CA2(i , j)

]2 ,

(23)

where CA1(i , j) and CA2(i , j) are gray-scale values of
adjacent pixels, M and N are the image dimensions,
CA1(i , j) = ∑M

i=1
∑N

j=1 CA1(i , j)/M N and CA2(i , j) =∑M
i=1

∑N
j=1 CA2(i , j)/M N . It is applied in horizontal, ver-

tical, and diagonal directions. Its value for the original image
should be near 100%, that for the encrypted image should be
near 0%.

Table 8 Information entropy
against other benchmark
approaches

Model Cameraman Lena Baboon Peppers White Black

[18] 7.9974 7.9974 NA NA NA NA

[20] 7.9951 7.9951 NA NA NA NA

[16] NA 7.9973 NA NA NA NA

[21] 7.9973 7.9969 NA NA 7.9972 7.9973

[24] NA 7.9973 NA NA 7.9972 7.9975

[19] 7.9986 7.9989 7.9965 7.9975 NA 7.9971

Proposed model 7.997 7.9975 7.9974 7.9972 7.9973 7.9974
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Table 9 χ2 results

Criteria Cameraman Lena Baboon House Peppers Barbara QR Code Couple White Black

Plain
Image

299,789 30,666 20,856 299,789 28,838 53,078 8,343,778 45,732 16,711,680 16,641,637

Encrypted
Image

275 225 236 221 256 248 300 222 248 233

Table 10 CCA against other
benchmark approaches Model Cameraman Lena Baboon Peppers White Black

[18] H − 0.0013 0.0058 NA NA NA NA

V 0.0016 −
0.0051

NA NA NA NA

D 0.0058 − 0.003 NA NA NA NA

[20] H 0.0040 0.0088 NA NA NA NA

V 0.0088 0.0008 NA NA NA NA

D 0.0180 0.0022 NA NA NA NA

[16] H NA −
0.0016

NA NA NA NA

V NA 0.0002 NA NA NA NA

D NA −
0.0035

NA NA NA NA

[21] H − 0.0031 0.004 NA 0.0013 NA 0.005

V − 0.0006 −
0.0012

NA 0.0032 NA 0.0038

D 0.0012 −
0.0021

NA −
0.0068

NA 0.0026

[24] H NA 0.0084 NA NA NA NA

V NA −
0.0039

NA NA NA NA

D NA −
0.0013

NA NA NA NA

[19] H 0.0002 0.0002 0.0002 NA 0.0007 0.0012

V 0.0001 0.0005 0.00005 NA 0.0005 0.0014

D 0.0025 0.0024 0.0026 NA 0.0013 0.0022

Proposed
model

H 0.0033 0.0012 −
0.00002

0.0084 −
0.0023

− 0.0063

V 0.0003 −
0.0031

− 0.0006 0.0008 −
0.0024

0.0035

D 0.0067 0.0034 − 0.0016 0.0013 −
0.0067

− 0.0028

RegardingCCA, the proposedmodel results are compared
to [16, 18–21, 24] results in Table 10 on Cameraman, Lena,
Baboon, Peppers, White, and Black images. The results are
comparable to others and tend to be zero [36]. To detect the
improvement of the model, the average CCA is applied using
Eq. (24) [14]:

Correlation coefficient = (|HC| + |VC| + |DC|)/3, (24)

where HC, VC, and DC are the correlation coefficient hori-
zontally, vertically, and diagonally, respectively.

In Table 11, it is obvious that the proposed model results
overcome the others on the Baboon image with a value of
0.0007 while being comparable to others on Cameraman,
Lena, Peppers, White, and Black images with values of
0.0034, 0.0026, 0.0038, 0.0035, and 0.0042, respectively.
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Table 11 CCA average against
other benchmark approaches Criteria Cameraman Lena Baboon Peppers White Black

[18] 0.0029 0.0046 NA NA NA NA

[20] 0.0103 0.0039 NA NA NA NA

[16] NA 0.0018 NA NA NA NA

[21] 0.0016 0.0024 NA NA 0.0038 0.0038

[24] NA 0.0045 NA NA NA NA

[19] 0.0009 0.001 0.001 0.0008 NA 0.0016

Proposed model 0.0034 0.0026 0.0007 0.0038 0.0035 0.0042

Computational complexity analysis

Computational complexity measures the steps executed in
the encryption model [15]. The computational complexity
of the main module of [7] is O(M × N). The computational
complexity of generating the sequence of coding rules is O(4
× M × N). Therefore, the proposed model’s computational
complexity is O(M × N + 4× M × N)≈ O(M × N), which
is linear and depends on the original image size.

Results interpretation

Evaluating the proposed model against recent models was
challenging. Two main factors influenced the choice of the
benchmark approaches. First is the evaluation metrics factor,
where aminimumof fourmetrics should be used. The second
factor is the number of images in the data set. Existingmodels
were assessed using different numbers of images. Only one
model [19] was applied to five images, one model [21] was
applied to four images, one model [24] was applied to three
images, whereasmodels [18, 20]were applied to two images,
and one model [16] was applied to one image.

The models represent different techniques for dynamic
DNA coding. The technique of a coding rule for the image
is represented in [16], whereas the technique of a coding
rule for each block in the image is represented in [18, 19].
Meanwhile, the technique of a coding rule for each row in
block is represented in [20], the technique of a coding rule
for each pixel is represented in [21], and the model of [24],
in addition to the proposed model, represents the technique
of a coding rule for every 2 bits of the image.

As shown in the experimental results section, the robust-
ness of the model to statistical attacks depends on both the
structure of the encryption model and the color intensity of
different images. The diversity of the encryption layers and
their number affect the distribution of the pixel values’ inten-
sity in the encrypted image. This effect is demonstrated by
information entropy and CCA. Moreover, the color distri-
bution of the image has a great effect on its robustness to
statistical attacks. By studying the histogram of the origi-
nal images, the images with a more uniform distribution of

the histogram perform better in terms of CCA, information
entropy, and the X2 test. In contrast, by decreasing the uni-
formity of the histogram of the original images, the irregular
deviation tends to the ideal value.

Also, the structure of the encryption model has a great
impact on the generation of the encrypted image and its
robustness for extracting the original image. Increasing the
encryption layers with various properties and the applied
technique of dynamic DNA coding led to the generation of
an encrypted image with completely different pixel values.
Some algorithms, such as shuffling algorithms [7, 14, 18, 20,
21, 24], change the position of the pixel value, which gener-
ates randomness in the image. Other algorithms [7, 10, 16,
19] change the value of the pixel, for example, addition, sub-
traction, and XOR operations. This effect is supported by the
results of MSE and PSNR listed in Tables 6 and 7. Besides,
the dynamic DNA-coding technique used also affected the
results of MSE and PSNR. The technique increases the dif-
ference between the pixel values of the original image and
the cipher image.

Furthermore, the layers of generation of the key affect the
robustness of the model to differential attacks. These layers
increase the level of security of the model, generating a more
secure encrypted image. The sensitive algorithms used in key
generation imply an effect on the security of the proposed
model, which is proven by the results of NPCR and UACI in
Tables 4 and 5. In addition to the proposed model, models in
[16, 21] have an extremely sensitive algorithm for generating
the key. These models imply superior performance in NPCR
andUACI. The sensitivity of the key also supports this effect.

In general, the structure of the encryption model, the
dynamic DNA-coding technique used, the sensitivity of the
key generation, and the variation of the color intensity of the
original images are cornerstones of the security of the pro-
posed model. The results of the information entropy, CCA,
and X2 test are affected by the image characteristics and
encryptionmodel. The encryptionmodel also affects, in addi-
tion to the dynamic DNA-coding technique, the results of
MSE and PSNR. The algorithms used in key generation and
their sensitivity affect NPCR and UACI.
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Conclusion

Dynamic DNA coding has recently been shown to have a
crucial role in image encryption. It increases the random-
ness of the images and strengthens the model’s security.
This study proposes a grayscale image encryption model
with dynamic DNA coding. The original image and its meta-
data are hashed using the MD5 and SHA-256 procedures
to generate a secret key. The image is then provided to the
Arnold Transform method. The key is then assigned to HCS,
which creates three chaotic sequences. The coding rules’
sequence is subsequently generated by LLCS using the key.
The Arnold transform’s resulting image then gets dispersed
outward using five chaotic maps. The last step in the process
is to perform DNA operations using the chaotic sequences
generated by HCS after DNA-encoding the resultant image
using the coding rules sequence. The cipher image is then
obtained by applying DNA-decoding to the image.

The model is assessed based on key analysis, differential
attack analysis, robustness analysis, statistical attack anal-
ysis, and computational complexity analysis. Cameraman,
Lena, Baboon, House, Peppers, Barbara, QR code, Couple,
White, and Black were used as the ten prevalent images for
the evaluation. Twelve metrics are used during the evalu-
ation, including key space, key sensitivity, NPCR, UACI,
MSE, PSNR, histogram, information entropy, χ2, ID, CCA,
and computational complexity.

The proposed model’s key space is 21,453, and the results
of the NPCR and UACI tests ranged between 99.56% and
99.64% and 33.39% and 33.48%, respectively. The results
for MSE varied from 8579 to 21,774, while those for PSNR
varied from 4.8 to 8.8. According to the results, the informa-
tion entropy varied between 7.997 and 7.9976. The χ2 test
had a range of 221 to 300, but the ID test had a range of 1 to
11,621 results. Between 0.0007 and 0.0042 were the results
of the averageCCA.The proposedmodel isO(4MN) in terms
of complexity. In terms of NPCR, UACI, MSE, and PSNR,
the model outperforms others. Information entropy and CCA
are comparable to those of other models. The cipher image
will be incorporated into a DNA sequence to strengthen the
model’s security, in addition to enhancing the runtime of the
model in the future.
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