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Abstract
Infrared and visible image fusion aims to generate synthetic images including salient targets and abundant texture details.
However, traditional techniques and recent deep learning-based approaches have faced challenges in preserving prominent
structures and fine-grained features. In this study, we propose a lightweight infrared and visible image fusion network
utilizing multi-scale attention modules and hybrid dilated convolutional blocks to preserve significant structural features and
fine-grained textural details. First, we design a hybrid dilated convolutional block with different dilation rates that enable
the extraction of prominent structure features by enlarging the receptive field in the fusion network. Compared with other
deep learning methods, our method can obtain more high-level semantic information without piling up a large number
of convolutional blocks, effectively improving the ability of feature representation. Second, distinct attention modules are
designed to integrate into different layers of the network to fully exploit contextual information of the source images, and we
leverage the total loss to guide the fusion process to focus on vital regions and compensate for missing information. Extensive
qualitative and quantitative experiments demonstrate the superiority of our proposed method over state-of-the-art methods in
both visual effects and evaluation metrics. The experimental results on public datasets show that our method can improve the
entropy (EN) by 4.80%, standard deviation (SD) by 3.97%, correlation coefficient (CC) by 1.86%, correlations of differences
(SCD) by 9.98%, and multi-scale structural similarity (MS_SSIM) by 5.64%, respectively. In addition, experiments with the
VIFB dataset further indicate that our approach outperforms other comparable models.

Keywords Image fusion · Attention model · Dilated convolution · Infrared image · Visible image

Introduction

Images collected by a single mode sensor fail to effec-
tively and comprehensively describe imaging scenes due to
theoretical and technical limitations [1]. Infrared sensors cap-
ture thermal radiation emitted by objects and can generate
infrared images with significant targets, even in adverse con-
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ditions such as low brightness, occlusions, or harsh weather.
However, infrared images are susceptible to noise and lack
textural details. In contrast, visible images offer abundant tex-
ture and structural information but are susceptible to imaging
conditions. As such, infrared and visible image fusion tasks
involve reconstructing a single image with comprehensive
information from multimodal data, providing both signifi-
cant targets and valuable texture information. Motivated by
variations in imaging scenes, several excellent fusion algo-
rithms have been proposed for broad applications in various
advanced vision tasks, including object detection [2], seman-
tic segmentation [3], pedestrian re-recognition [4], and visual
tracking [5].

In recent years, the fusion of infrared and visible images
has attracted the attention of many scholars and has devel-
oped rapidly as a result. Existing technologies can be
categorized into two groups: traditional methods [6, 7]
and deep learning-based methods [8–12]. Traditional image
fusion algorithms are typically implemented using multi-
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scale transform (MST)-based methods [13], sparse repre-
sentation (SR)-based methods [14], low-rank representation
(LRR) [15], saliency-based methods [16], subspace-based
methods [17], and other methods [18]. Although traditional
methods have shown superior fusion performance in some
aspects, they are also known to encounter specific chal-
lenges. (1) They generally require manually selected feature
representations and accurate fusion rules when generating
high-quality fused images, which require manual interven-
tion and can degrade fusion performance. (2) In the case of
SR and LRR techniques, it can be difficult to construct a suit-
able overcomplete dictionary. The runtime for corresponding
fusion algorithms is, thus, not conducive to real-time image
fusion. (3) Complex feature extraction and fusion strategies
often introduce halos and blurred edges, due to the overlap-
ping of asymmetric feature information.

To address these issues, deep learning-based methods
have been introduced for infrared and visible image fusion.
These frameworks can typically be divided into three cat-
egories: auto-encoder (AE) [8, 9], convolutional neural
network (CNN) [19], and generative adversarial network
(GAN) based architectures [20]. Deep learning offers sev-
eral advantages for improved representation capabilities, but
with certain limitations. First, to reduce the complexity of the
network, introducing a down-sampling operation to reduce
the image resolution inevitably results in the loss of impor-
tant information in the fusion image. On the other hand,
modern convolutional networks are not shift-invariant[21],
as small shifts or translations in the input cause substantial
changes in the output. Second, some methods use only sim-
ple feature fusion rules, such as addition and connection,
which can cause artifacts or blurred edges in fused images.
Third, the existing infrared and visible images used for train-
ing and testing are mainly derived from the TNO [22] and
RoadScene [23] datasets, which restricts the comprehen-
sive evaluation of the model’s generalization performance.
FusionGAN [24] crops the source images into image patches
by setting the stride to 14, while lacking global information
to learn over long distances and failing to handle complex
scenes.

A novel deep learning architecture for the fusion of
infrared and visible images is proposed in this paper to
address the issues discussed above.

Inspired by previous traditional multi-scale frameworks,
we design an encoder network, consisting of hybrid dilated
convolutional blocks used to obtain multi-scale depth salient
features by implementing different dilation rates. It is worth
noting that no down-sampling is used during feature extrac-
tion, so the resulting feature map is the same size as the
source images. In addition, to make full use of multi-scale
layer characteristics, we introduce different attention mod-
ules for each scale, to ensure the network pays attention to
specific features and compensates for information loss. To
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Fig. 1 A schematic illustration of the proposed method. The first row
displays the source images, the second row presents fused images with
IFCNN [19] and FusionGAN [24], and the last row provides results
produced by NestFuse [8] and our proposed method

demonstrate the effectiveness of our approach, a representa-
tive fusion sample is shown in Fig. 1 and comparedwith three
other excellent deep learning-based algorithms. Our method
not only produces higher image contrast (e.g., the person in
the infrared image is brighter using our technique), but also
improves visual effects (e.g., smoke is preserved in the visible
images, and trees in the background exhibit clearer edges).
The primary contributions of our work can be summarized
as follows:

• We propose a lightweight network architecture for
infrared and visible image fusion, which can capture fine-
grained detailed features with a high semantic level and
does not require a down-sampling operation.

• Both spatial attention and channel attention mechanisms
are introduced in the encoder-decoder framework at dif-
ferent scales. The proposed method not only forces the
network to focus on foreground targets of the infrared
image and the background information in the visible
image, it also enhances local and global contextual infor-
mation and attenuates noise.

• A total loss function is designed to jointly focus on
pixel distribution information and texture details in both
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infrared and visible images, to preserve essential com-
plementary information in each modality.

• Extensive experiments demonstrate our method’s supe-
riority over state-of-the-art methods. The experimental
results on public datasets reveal that our method achieves
significant enhancements in entropy (EN) by 4.80%,
standard deviation (SD) by 3.97%, correlation coefficient
(CC) by 1.86%, correlations of differences (SCD) by
9.98%, and multi-scale structural similarity (MS_SSIM)
by 5.64%.

Related work

Traditional image fusionmethods

Traditional image fusion algorithms can be divided into
three steps: feature extraction, fusion, and reconstruction.
The feature extraction and reconstruction steps are typically
opposite operations. Several multi-scale techniques such as
Gaussian pyramid [7], shearlet [25], and nonsubsampled con-
tourlet [26] transforms have been proposed in the past few
decades, some of which are utilized in deep learning-based
fusion frameworks. In addition, feature extraction methods
used for sparse representations include joint sparse represen-
tation [14] and latent low-rank representations [27]. Inspired
by human visual perception, this process requires an over-
complete dictionary. As such, the computational complexity
of sparse representations has always been an issue. In addi-
tion, by reducing the dimensionality of the original features
into low-dimensionality of features that are independent of
each other, representative techniques can be developed using
subspace feature extraction, including independent compo-
nent analysis [28], principal component analysis [29], and
non-negative matrix factorization [30].

Deep learning-based fusionmethods

Convolutional neural networks can learn prior knowledge
from large image quantities and have been widely used for
image fusion and other related tasks. Image fusion methods
based on deep learning include AE-based algorithms, con-
volutional neural networks, and GAN-based image fusion
models. Liu et al. [31] first proposed a CNN-based fusion
framework. Since the purpose of the network is to gen-
erate a decision map, this approach is only suitable for
multi-focus images. Li et al. [8] proposed a fusion method
of nest connection-based architecture comprised of three
parts: encoder network, fusion strategy, and decoder net-
work, which extract deep features at different scales. This
feature fusion is manually supervised by rules that affect
fusion performance to a certain extent. Later, residual end-

to-end auto-encoder fusion networks have been proposed to
overcome the issue [9].

In addition, by forcing the network to focus on inten-
sity distribution and texture structures in images, infrared
and visible image fusion algorithms based on the end-to-
end convolutional neural network provide a solution to this
problem. For example, Ma et al. [32] used salient mask to
force the network on texture details in visible images and
salient information in infrared images. However, it can be
difficult to provide ground truth data to the network for
image fusion tasks. Considering extreme illumination con-
ditions for source images, Tang et al. [33] introduced an
illumination-aware sub-network that maintains intensity dis-
tributions in salient targets and preserves texture information
in the background. Furthermore, to facilitate advanced visual
tasks, this group introduced semantic segmentation into the
image fusion module to improve the semantic information
in the fused images. They also proposed a joint low-level
and high-level adaptive training strategy to simultaneously
achieve superior performance and close the gap in both image
fusion and high-level vision tasks [34].

In 2019, Ma et al. [24] first introduced the generative
adversarial networks into the field of infrared and visible
image fusion. Specifically, content loss and adversarial loss
are employed to preserve details of thermal radiation in the
fused images generated fromconnected source images.How-
ever, a single discriminator cannot focus on both infrared and
visible regions. As such, Li et al. [35] not only introduced
a dual-discriminator conditional generative adversarial net-
work, but also used a multi-scale attention mechanism to
constrain the discriminator and focus more on regions of
interest, to balance the data distribution and improve fused
image fidelity.

Dilated convolutional and attentionmechanism
applications

Dilated convolution, inspired by wavelet decomposition,
enhances the receptive field of a convolutional kernel by
inserting zeros between its pixels. This expansion aids the
network in capturing detailed information within the scene.
Dilated convolution has been widely applied in image classi-
fication, object detection, and semantic segmentation. Yu et
al. [36] addressed the issue of gridding artifacts introduced
by dilation by designing dilated residual networks, which can
be effectively employed in downstream tasks such as object
localization and semantic segmentation.

The attention mechanism, motivated by the human visual
system, has been successfully incorporated into computer
vision systems such as image recognition, object detec-
tion, semantic segmentation, and action recognition [37].
Channel attention focuses on important objects by assign-
ing new weights to the channels of the feature map. Hu et
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Fig. 2 The overall framework for the infrared and visible image fusion algorithm based on HDC blocks and different attention mechanisms

al. [38] first proposed the concept of channel attention, known
as SENet. The core squeeze-and-excitation (SE) block of
SENet effectively captures the channel-wise relationship,
thereby enhancing the representation capability of the net-
work model. Qin et al. [39] demonstrated that global average
pooling can be viewed as a special case of the discrete cosine
transform and designed a multi-spectral channel attention
mechanism to further enhance the model’s representation
capabilities. Spatial attention, on the other hand, can be seen
as the adaptive selection of important spatial regions. Hu
et al. [40] designed GENet to capture long-distance spa-
tial contextual information in feature maps, enabling the
highlighting of important features while suppressing noise.
Building upon the success of self-attention in natural lan-
guage processing, Wang et al. [41] proposed Non-Local
networks that expand the receptive fields of the network,
enabling the capture of global information. In the context
of image fusion, Ma et al. [42] introduced Swin Trans-
former and proposed intra-domain and inter-domain fusion
units basedon self-attention andcross-attention, respectively.
This approach achieves the integration of complementary
information and captures global long-range dependencies,
facilitating the effective fusion of multi-domain images.

Methodology

This section describes the proposed lightweight infrared and
visible image fusion network architecture in detail. First, we
present the overall network pipeline. Hybrid dilated convolu-
tional (HDC)blocks andmulti-scale spatial/channel attention
are then introduced. Finally, the proposed loss function is dis-
cussed.

Problem formulation

Given a pair of registered infrared Iir ∈ RH×W×1 and visible
images Ivis ∈ RH×W×3, under the guidance of a total loss

function, the fused image I f ∈ RH×W×3 can be generated
by feature extraction, feature fusion, and reconstruction. The
previous deep learning methods emphasized the importance
of feature extraction on the quality of fusion results, which
led to designing complex feature extractors. However, the
real-time image fusion requirement was ignored. In order to
improve the ability of feature representation, while ensur-
ing real-time infrared and visible image fusion, key design
components for the lightweight HDC blocks and multi-scale
attention mechanisms are designed to produce high-quality
fused images and prevent artifacts. (we will discuss its net-
work architecture in Section“Network architecture”). The
overall framework for our proposed infrared and visible
image fusion algorithm is shown in Fig. 2.

First, a fusion network based on HDC blocks is devised to
fully extract the high-level semantic information in source
images. More specifically, we apply a feature extraction
module FE to extract fine-grained feature information from
infrared and visible images. This process can be represented
as:

{Fir , Fvis} = {FE (Iir ) , FE (Ivis)} , (1)

where Fir and Fvis represent feature maps for infrared
and visible images, respectively. Moreover, HDC blocks are
deployed in the feature extraction module to expand the
receptive field while ensuring that important coarse-grained
and fine-grained feature information is extracted, as shown
in Fig. 3. Given the HDC input Fi , the corresponding output
Fi+1 can be represented as:

Fi+1 = HDC (Fi ) = φ
(
DConvn(Fi )

)
, (2)

where DConvn is an n-cascaded 3× 3 dilated convolutional
layer and φ represents the LReLU activation function. Infor-
mation flow is processed in HDC blocks using respective
hierarchical levels in the pipeline. In this paper, HDC blocks
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Fig. 3 The specific arrangement of the hybrid dilated convolutional
blocks. Lift to right: convolutional layers with a kernel size of 3 × 3
and dilation rates of 1, 3, and 5, respectively. The HDC clocks naturally
enlarge the network receptive field without adding extra modules

capture local and global information of the source image to
effectively facilitate feature representation capabilities.

The feature fusion and reconstruction module is respon-
sible for converting the feature maps into the fused image.
However, simply reconstructing the fused image using con-
volution operations may result in information loss. There-
fore, we introduce different attention modules at different
layers of the extractor to fully exploit contextual information
from the source images and alleviate the information loss of
the feature maps in reconstruction.

To integrate the abundant fine-grained detailed features in
infrared and visible images and reconstruct the fused image,
the element-wise addition strategy in [43] is used. The for-
mula for this fusion process is as follows:

Ff = Add (αi (Fir ) , αi (Fvis)) , (3)

where Ff is fused feature maps, Add(·, ·) represents an
element-wise addition strategy, and αi denotes an attention
mechanism corresponding to multiple scales. Specifically,
α1 is employed to focus on coarse-grained information from
infrared and visible images using a spatial attention mech-
anism. Both α2 and α3 are devoted to strengthening a large
amount of fine-grained feature information using a channel
attention mechanism. Finally, the fused image I f is recon-
structed from Ff via an image reconstructor Ri as follows:

I f = Ri
(
Ff

)
. (4)

Network architecture

The framework for the proposed lightweight fusion net-
work based on hybrid dilated convolutional blocks (HDCBs),
shown in Fig. 2, consists of encoder and decoder networks
for feature extraction and image reconstruction, respectively.

The feature extractor utilizes three HDCBs to increase the
size of the receptive field in the network and capture more
contextual information, while ensuring fine-grained features
are extracted from infrared and visible images. In addition,
a multi-scale spatial/channel attention module is also pro-
posed to retain valuable information and reduce artifacts in
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Fig. 4 A diagram of the spatial and channel attention-based modules
is shown. C × H × W denotes feature maps with channel number C ,
height H and width W . ⊗ denotes matrix multiplication, ⊕ represents
element-wise addition, and � indicates element-wise multiplication

multi-modality images. In the feature extractor, a multi-scale
shallow layer in the encoder focuses on the elemental features
using a spatial attention module, while a channel attention
module is used to pay attention to fine-grained features in
source images on multi-scale deep layers of the encoder.
These multi-scale attention features are added as inputs to
corresponding layer features of the decoder network to recon-
struct the fused image. As shown in Fig. 2, two parallel
encoder modules are used to extract features from infrared
and visible images containing three HDCBs with dilation
rates of 1, 3, and 5, respectively. The special design of the
HDCB is shown in Fig. 3. The blockmainly changes the dila-
tion rates of ordinary convolutions, which is set to prevent the
occurrence of gridding problems. The mainstream applies to
three convolutional layerswith a kernel size of 3×3 and stride
of 1, the batch normalization (BN) layers, and the LReLU
layers. To preserve more diverse and important contextual
information, the different attention modules are introduced
to each scaling layer of the encoder, as shown in Fig. 4. The
FMi serves as the input to the attention module, acquired
from the feature maps of each HDCB output in the encoder,
while the FMo provides the output of the attention module.
The spatial attention mechanism is used by shallow features
of the first HDCB, while the channel attention mechanism is
exploited in the deep scaling layers.

Attention maps for infrared and visible images at differ-
ent scales are then integrated via an element-wise addition
strategy, and the results are fed into the decoder network
to achieve image reconstruction. The decoder network in the
image reconstructor generates fused images using three 3×3
convolutional layers and three BN layers, all of which are fol-
lowed by an LReLU activation function. The stride is set to
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1 in the fused network with no down-sampling operation, to
reduce information loss. As such, fused images are the same
size as the source images.

Loss function

A total loss function is proposed in this study to facilitate
more comprehensive detail in the resulting images, obtained
from salient target information in infrared images and fine-
grained features in visible images. This total loss function
consists of intensity loss Lintensi t y and detail loss Ldetail

terms, which is defined as follows:

Ltotal = Lintensi t y + γ Ldetail , (5)

where γ is a weight factor used to balance the intensity loss
Lintensi t y and detail loss Ldetail .

The intensity loss is designed to constrain intensity simi-
larity between the fused and input images at the pixel level.
Therefore, the intensity loss is expressed as:

Lintensi t y = 1

HW

∥∥I f − (pIir + (1 − p)Ivis)
∥∥
1 , (6)

where W and H represent the width and height of the image,
respectively, ‖·‖1 is the l1-norm, and p denotes the weight of
constraints used to integrate the distribution of pixel intensi-
ties in infrared and visible images.

However, fused images not only include the pixel intensity
distribution of the source images, but also exhibit a fine-
grained detail distribution. Hence, a detail loss is introduced
to force the fused image to preserve more structure and fine-
grained texture information. Detail loss can be expressed as:

Ldetail = 1

HW

∥∥∣∣∇ I f
∣∣ − (q |∇ Iir | + (1 − q) |∇ Ivis |)

∥∥
1 ,

(7)

where ∇ indicates the Sobel gradient operation used to mea-
sure the fine-grained information in the source images, q is
a weight parameter that constrains the fine-grained features
in infrared and visible images, and | · | indicates the absolute
value operation.

Finally, guided by the total loss function, our proposed
fused network based on HDCBs and multi-scale attention
provides fused images with a better pixel intensity distribu-
tion and larger quantities of detail information, to efficiently
generate high-quality images.

Experiments

In this section, we first describe the experimental settings
and training details. Then, we conduct both quantitative

and qualitative comparative experiments and generaliza-
tion experiments to fully evaluate the performance of our
proposed fusion algorithm. Finally, we introduce ablation
experiments to demonstrate the effectiveness of the model
design, including detail loss and multi-scale spatial/channel
attention.

Experimental settings

We perform extensive quantitative and qualitative experi-
ments using the TNO [22], RoadScene [23], and VIFB [44]
datasets to comprehensively evaluate the proposed fusion
method. In addition, seven state-of-the-art image fusion
algorithms are selected for comparison with our approach,
including three typical traditionalmethods, i.e., IFEVIP [45],
GTF [18] and CBF [46], two AE-based models, i.e.,
MFEIF [47] and NestFuse [8], one CNN-based method
IFCNN [19], and one GAN-based method FusionGAN [24].
Implementations of these algorithms are publicly available
and corresponding parameters are set in agreementwith those
in their respective papers.

Nine statistical evaluation indicators are used to quanti-
tatively evaluate our method and the seven other excellent
fusionmethods. They are entropy (EN) [48], modified fusion
artifacts measure (Nabf) [49], correlations of differences
(SCD) [50], spatial frequency (SF) [51], standard deviation
(SD) [52], peak signal to noise ratio(PSNR) [53], multi-
scale structural similarity (MS_SSIM) [54], feature mutual
information (FMI) and correlation coefficient (CC). These
values increase as the fusion performance improved (exclud-
ing Nabf).

The EN measures the amount of information contained in
a fused image as follows:

EN = −
L∑

l=0

pl log2 pl , (8)

where L and pl represent the total number of gray levels and
the normalized histogram of the corresponding gray level in
the fused image, respectively. A large EN indicates that a
large amount of information is available, representing better
fusion performance. Larger EN values may also be caused
by noises.

The Nabf, which quantifies the number of noises or arti-
facts added in the fused image due to the fusion process, can
be expressed as:

N
AB
F

m =
∑

∀i
∑

∀ j AMi, j

[(
1 − QAF

i, j

)
wA
i, j +

(
1 − QBF

i, j

)
wB
i, j

]

∑
∀i

∑
∀ j

(
wA
i,i + wB

i,i

) ,

(9)

AMi, j =
{
1, gFi, j > gA

i, j and gFi, j > gBi, j
0, otherwise

, (10)
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where AMi, j indicates locations of fusion artifacts when
fused gradients are stronger than input, QAF

i, j and Q
BF
i, j denote

the gradient information preservation estimates of source
images A and B, respectively,wA

i,i andwB
i,i are the perceptual

weights of source images, respectively, gA
i, j , g

B
i, j and g

F
i, j are

the edge strength of A, B, and fused image F, respectively. A
low Nabf value is indicative of superior visual performance
in the fused image.

The SCD, which measures the amount of information
transmitted from source images to the fused image, can be
represented as:

SCD = r(D1, S1) + r(D2, S2), (11)

where r(·) denotes the correlation function.
The SF metric effectively measures the gradient distri-

bution of images, which reveals the details and texture of
images. It can be defined as follows:

SF =
√
RF2 + CF2, (12)

RF =
√√√√

M∑

i=1

N∑

j=1

(F(i, j) − F(i, j − 1))2, (13)

CF =
√√√√

M∑

i=1

N∑

j=1

(F(i, j) − F(i − 1, j))2, (14)

where RF and CF are the spatial row frequency (RF) and
column frequency (CF) based on horizontal and vertical gra-
dients, respectively.

The CC metric measures the degree of linear correlation
between the fused image and the source images, as defined
below:

CC = ra f + rb f
2

, (15)

rx f =
∑M

i=1
∑N

j=1(xi, j − μx )( fi, j − μ f )
√∑M

i=1
∑N

j=1(xi, j − μx )2
∑M

i=1( fi, j − μ f )2
,

(16)

whereμx andμ f indicate themean values of the input image
x and the fused image f , respectively. A higher value of CC
indicates a better correlation and higher image quality for the
fused image.

The SD reflects the distribution and contrast of the fused
image from a statistical perspective and can be defined math-
ematically as:

SD =
√√√√

M∑

i=1

N∑

j=1

( f (i, j) − μ)2, (17)

where μ denotes the average of the fused image. A positive
SD value indicates that the fused image exhibits favorable
visual effects.

The MS_SSIM represents a calibration definition for the
difference between two images across scales. The corre-
sponding multi-scale SSIM index is given by:

SSI M(x, y) = [lM (x, y)]αM ·
M∏

j=1

[c j (x, y)]β j [s j (x, y)]γ j ,

(18)

where M is the highest scale, αM , β j and γ j are used to
adjust the relative importance of different components, and
c j (x, y) and s j (x, y) provide a comparison of contrast and
structure at the j-th scale image, respectively, while lM (x, y)
is only the luminance comparison at scale M.

The PSNR is used to evaluate the ratio of peak signal
power to noise power and therefore reflects the amount of
distortion during the fusion process. This metric is defined
as follows:

PSN R = 10 log10
r2

MSE
, (19)

where r indicates the peak value of the fused image. The
higher PSNR value indicates that the fused image is closer to
the source images and has less distortion in terms of image
quality.

TheFMI is used tomeasure the amount of feature informa-
tion transmitted from the source images to the fused image.
It is defined as follows:

FMI ABF = 1

n

n∑

i=1

(
Ii (A; F)

Hi (A) + Hi (F)
+ Ii (B; F)

Hi (B) + Hi (F)

)
,

(20)

where Hi (A) and Hi (B) are the entropy of the corresponding
windows from the input images, Ii (A; F) and Ii (B; F) indi-
cate the regional mutual information between corresponding
windows in the fused image and source images. A larger FMI
value commonly implies that a considerable amount of fea-
ture information is transferred from the source images to the
fused image.

Training details

We train the proposed fusion network on the Multi-Spectral
Road Scenarios (MSRS) [33] dataset. This training set
includes 1078 pairs of infrared and visible images, while the
test set contains 361 image pairs. This dataset is constructed
based onMFNet [55] and consists of a large number of night-
time and daytime scenes. Before feeding the training set to
the fusion network, all images are normalized to [0, 1] and
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Fig. 5 Four pairs of source images. The top rowcontains visible images,
and the second row displays infrared images

parameters are set as follows. The total loss hyper-parameter
is set to γ = 100, p = 0.68, and q = 0.08. The batch size and
epoch are set to 8 and 80, respectively. The model parame-
ters are updated by the Adam optimizer with a learning rate
of 0.001 and weight decay of 0.0001. All experiments are
performed on an NVIDIA RTXA5000 GPU and a 2.40 GHz
Intel(R) Xeon (R) Silver 4214R CPU. Since color visible
images are included in MSRS, a specific fusion strategy[43]
is used to process color image fusion. We first transfer the
input visible images from the RGB color space to the YCbCr
color space. The Y channel in the visible images is then
employed to fuse the infrared images and obtain a new fused
channel Y. Finally, the fused image is combined with the Cb
and Cr channels of visible images and converted to the RGB
color space.

Results analysis on TNO dataset

We compare the fusion performance for our method with
the seven state-of-the-art algorithms applied to 24 image
pairs acquired from the TNO dataset. All infrared and visi-
ble images display different scenes and are registered before
being fed to the network. Samples of these images are shown
in Fig. 5.

Qualitative results

For quantitative experiments, fused images produced by
existing fusion methods and our proposed method are shown
in Figs. 6 and 7. Some representative regions from the fused
images are selected and enlarged near the bottom, to more
intuitively display and analyze visual effects in the fused
results. A significant target is evident in the green box and
abundant textural details can be seen in the red box.

As shown, nearly all methods generate some meaningless
information due to thermal radiation contamination in the
background. However, our method not only highlights the
target but also preserves detail information. The region in the
green box indicates that although the CBF results include a
bright target, the pixel distribution in this area suffers heav-
ily from noise compared to the proposed method. Also, the

IFEVIP, GTF, and FusionGAN models severely weaken sig-
nificant targets in the fused images. In the case of NestFuse,
IFCNN, and MFEIF, the fused images indicate that while
some of the target edges are highlighted, other salient fea-
tures and textural details in the fused images are blurred. In
contrast, our fusion method produces more realistic contrast
and successfully preserves the intensity of significant areas
and the texture detail of visible images, compared with other
methods. For example, the proposed scheme preserves inter-
nal contours and details for cars and clouds intact in Fig. 7.
This improvement demonstrates one of the primary advan-
tages of our method.

Quantitative results

Quantitative evaluation experiments are conducted using the
TNO dataset, employing nine metrics to comprehensively
compare our method with seven state-of-the-art methods.
Average values for the compared fusion methods and the
proposed algorithm are shown in Table 1 across nine metrics,
where the two best values for eachmetric are bold and under-
lined, respectively. As demonstrated by the statistical results,
the proposed fusion method achieves the largest average val-
ues in four of the metrics, including CC, SCD, MS_SSIM,
and FMI. It also achieves reasonable performance in EN
and SD, producing the second largest average values. Our
method also achieves the best performance for SCD, indi-
cating that the correlation between our fused images and the
source images is the highest. In addition, the largest average
values for CC and MS_SSIM indicate that our fused images
transfer more considerable information while preserving
structural information in the input images. The values for
FMI also prove that our method well preserves feature infor-
mation from the source images to the fused images. These
results indicate that our method can transfer more meaning-
ful information from the source images, especially the richest
fine-grained details and significant structural information.

Results analysis on RoadScene dataset

Qualitative results

An additional 24 image pairs showing different day and
night scenes are selected from theRoadScene dataset, includ-
ing cars, streetlights, roads, pedestrians, bicycles, trees, and
houses. The fused results produced by different fusion meth-
ods are shown in Figs. 8 and 9. It is evident that undesirable
artifacts appear in the CBF results, while the GTF and IFE-
VIP fused images do not retain details from the infrared
image. This results in significant information loss, particu-
larly in the red box region. In addition, FusionGAN produces
under-exposed results and could not retain the sharp tar-
get edges. On the contrary, the NestFuse, IFCNN, MFEIF,
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(a) Visible

(f) Infrared

(b) GTF (c) IFEVIP (d) CBF (e) FusionGAN

(g) IFCNN (h) Nestfuse (i) MFEIF (j) Ours

Fig. 6 Visual result comparisons for different methods apply to the ‘man-in-doorway’ image from the TNO dataset. Ourmethod excels at preserving
abundant texture details, particularly in the zoomed-in region (i.e., the red box), and effectively highlights a salient region (i.e., the green box)

(a) Visible

(f) Infrared

(b) GTF (c) IFEVIP (d) CBF (e) FusionGAN

(g) IFCNN (h) Nestfuse (i) MFEIF (j) Ours

Fig. 7 Visual result comparisons for different methods apply to the ‘Marne-04’ image from the TNO dataset. Our method excels at preserving
abundant texture details, particularly in the zoomed-in region (i.e., the red box), and effectively highlights a salient region (i.e., the green box)

Table 1 Average evaluation
metric values for all methods
apply to 24 image pairs from the
TNO dataset

Metrics GTF IFEVIP CBF FusionGAN IFCNN NestFuse MFEIF Ours

EN 6.5999 6.6540 6.8784 6.4741 6.6637 6.9888 6.6295 6.9476

SF 0.0373 0.0425 0.0553 0.0259 0.0484 0.0429 0.0290 0.0395

SD 8.8174 8.9208 8.9346 8.2617 8.7769 9.2871 8.8902 9.2430

PSNR 62.7178 62.1595 63.8897 60.9702 64.3641 62.9549 64.5550 64.1134

CC 0.3877 0.4923 0.4377 0.4682 0.5322 0.5226 0.5527 0.5630

SCD 0.9237 1.5413 1.3249 1.2768 1.6169 1.7041 1.7044 1.8574

Nabf 0.0713 0.1189 0.2588 0.0780 0.1779 0.1308 0.0047 0.0993

MS_SSIM 0.8091 0.8443 0.7286 0.7362 0.9022 0.8544 0.8957 0.9462

FMI 0.8953 0.8917 0.8769 0.8788 0.8957 0.8965 0.8983 0.8997

The two best values for each metric are bold and underlined, respectively. The two types of numbers under
each method name represent the number of best values and second best values, respectively
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(a) Visible

(f) Infrared

(b) GTF (c) IFEVIP (d) CBF (e) FusionGAN

(g) IFCNN (h) Nestfuse (i) MFEIF (j) Ours

Fig. 8 Qualitative comparisons of the proposed method with seven
state-of-the-art methods apply to ‘FL I R_07210’ from the RoadScene
dataset. Our method excels at preserving abundant texture details, par-

ticularly in the zoomed-in region (i.e., the red box), and effectively
highlights a salient region (i.e., the green box)

(a) Visible

(f) Infrared

(b) GTF (c) IFEVIP (d) CBF (e) FusionGAN

(g) IFCNN (h) Nestfuse (i) MFEIF (j) Ours

Fig. 9 Qualitative comparisons of the proposed method with seven
state-of-the-art methods on ‘FL I R_08954’ from the RoadScene
dataset. Our method excels at preserving abundant texture details, par-

ticularly in the zoomed-in region (i.e., the red box), and effectively
highlights a salient region (i.e., the green box)

Table 2 Average evaluation
metric values for all methods
apply to 24 image pairs from the
RoadScene dataset

Metrics GTF IFEVIP CBF FusionGAN IFCNN NestFuse MFEIF Ours

EN 7.524 7.0617 7.4704 7.1238 7.2134 7.5156 7.1476 7.3405

SF 0.0399 0.0555 0.0658 0.0358 0.0630 0.0558 0.0392 0.0545

SD 10.2173 9.8298 10.2358 9.9576 10.0158 10.3017 10.1937 10.3180

PSNR 62.6298 61.5192 63.493 60.5857 64.1579 62.6796 64.1637 63.9071

CC 0.5326 0.6244 0.5673 0.5974 0.6614 0.6628 0.6871 0.6912

SCD 0.9901 1.3149 1.1595 1.0931 1.3921 1.6465 1.5420 1.6868

Nabf 0.0634 0.1593 0.2576 0.1019 0.1796 0.1309 0.0086 0.0786

MS_SSIM 0.7861 0.8361 0.7985 0.7578 0.8991 0.8627 0.8813 0.9088

FMI 0.8628 0.8503 0.8516 0.8486 0.8592 0.8631 0.8627 0.8531

The two best values for each metric are bold and underlined, respectively. The two types of numbers under
each method name represent the number of best values and second best values, respectively
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and the proposed method obtain better fusion performance
in subjective evaluations compared with the other three
fusion methods. However, the fused images obtained by the
proposed method exhibit more reasonable luminance infor-
mation.

Quantitative results

The results of quantitative comparisons between our method
and other state-of-the-art algorithms are provided in Table 2.
It shows that our method achieves the largest average across
four metrics, including SD, CC, SCD, and MS_SSIM. Our
proposed method presents the best SD value, indicating the
fused images exhibit the highest contrast. In addition, our
algorithm produces the highest CC and MS_SSIM values,
suggesting the fused results share strong correlation and
structural information with the source images. The highest
SCD value further implies that our fused images have less
pseudo-information and the strongest correlationwith source
images.

In summary, both qualitative and quantitative results
demonstrate that our proposed method achieves excellent
performance in transferring more considerable information
and highlighting significant contrast, which has remarkable
advantages over other methods.

Ablation studies

Multi-scale attention analysis

The multi-scale attention module plays a critical role in our
fusion network as it enhances the contextual representation
of the network on both local and global features. Therefore,
we implement an ablation study using the multi-scale atten-
tion module, the results of which are shown in Fig. 10. The
multi-scale attention module is excluded from the ablation
experiment. It is evident that the fused images preserve tex-
ture details in the source images, but with low contrast. In
addition, some of the visualized results exhibit a few artifacts.

Detail loss analysis

Ablation experiments are included to determine the role of
detail loss in the results.More specifically, we train a network
without additional detail loss, the results of which are shown
in Fig. 10. Notice that when the detail loss is removed, the
fusion network fails to preserve useful information of source
images, specifically texture detail in background regions and
pixel intensity and contours for salient targets. In addition, the
results of quantitative comparisons are provided in Table 3,
where all metrics are seen to decrease, excluding the SDmet-
ric. These experimental results demonstrate the importance
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Fig. 10 Qualitative comparisons of ablation analysis results for four
image pairs acquired from the TNO dataset. The source images are
shown in thefirst two rows, followedby the fused images producedwith-
out a multi-scale attention network (Without Attention), fused images
without detail loss (Without Detail Loss), and fused images produced
by our method

of detail loss, which can preserve the texture details in the
fused images.

Efficiency comparisons

To verify the computational efficiency of the fusion algo-
rithm, the traditional methods are tested on the CPU, while
the others are implemented on the GPU. As can be seen in
Table 5, the average running time of the image fusion algo-
rithms varies widely, and the running times of traditional
methods are longer than that of deep learning-based methods
that benefit from the GPU acceleration. Specifically, IFCNN
with a simple network architecture is the fastest algorithm
on all datasets. Our proposed fusion algorithm focuses on
features at different scales andmakes up for themissing com-
prehensive information via attention modules. As such, the
running time for our method trails only IFCNN. Fortunately,
the experiments show that our fusion algorithm has an effi-
ciency advantage compared with other methods and will be
thus feasible for real-time applications.

Extension to the VIFB dataset

To further verify our generalization of the proposed method,
the experiment is also conducted using the VIFB dataset,
which includes 21 pairs of registered visible and infrared
images. These samples not only cover a wide range of envi-
ronments and working conditions (e.g., indoor, outdoor, low
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Table 3 Quantitative comparisons of ablation studies using the TNO dataset

Method EN SF SD PSNR CC SCD Nabf MS_SSIM FMI

without attention 6.7770 0.0300 9.1252 63.9204 0.5477 1.6720 0.0543 0.8728 0.8888

without detail loss 6.8592 0.0277 9.2555 63.9672 0.5472 1.7239 0.1110 0.8774 0.8870

Our 6.9476 0.0395 9.2430 64.1134 0.5630 1.8574 0.0993 0.9462 0.8997

Bold text indicates the best result

(a) Visible

(f) Infrared

(b) GTF (c) IFEVIP (d) CBF (e) FusionGAN

(g) IFCNN (h) Nestfuse (i) MFEIF (j) Ours

Fig. 11 Qualitative comparisons of eight methods apply to ‘elecbike’ image pairs from the extended VIFB dataset. Our method excels at preserving
abundant texture details, particularly in the zoomed-in region (i.e., the red box), and effectively highlights a salient region (i.e., the green box)

(a) Visible

(f) Infrared

(b) GTF (c) IFEVIP (d) CBF (e) FusionGAN

(g) IFCNN (h) Nestfuse (i) MFEIF (j) Ours

Fig. 12 Qualitative comparisons of eight methods apply to ‘manCar’ image pairs from the extended VIFB dataset. Our method excels at preserving
abundant texture details, particularly in the zoomed-in region (i.e., the red box), and effectively highlights a salient region (i.e., the green box)

illumination, and over-exposure), they also include various
image resolutions, such as 320×240, 630×460, 512×184,
and 452 × 332.

Fused results for the VIFB dataset are shown in Figs. 11
and 12, where it is evident that GTF, FusionGAN, and Nest-
Fuse lose vital information. CBF is also seen to suffer from
noise interference and other undesirable artifacts. In addition,
IEVIP fails to display significant targets due to overexposure
to visible images. In contrast, MFEIf, IFCNN, and the pro-
posed method preserve detail information and highlighted

targets from the source images. Quantitative results for the
VIFB dataset are provided in Table 4, where it is evident that
our method achieves the largest average values across three
metrics, including CC, SCD, and MS_SSIM. These metrics
indicate the fused results exhibit a meaningful structure and
texture information transferred from the source images. In
contrast, the proposed method follows CBF in the ENmetric
because the fused images generated by CBF contain addi-
tional noise.
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Table 4 Quantitative
comparisons of 21 image pairs
from the extended VIFB dataset

Metrics GTF IFEVIP CBF FusionGAN IFCNN NestFuse MFEIF Ours

EN 6.5061 6.9566 7.3149 6.3727 6.9083 6.9131 6.8695 7.0286

SF 0.0572 0.0612 0.0789 0.0361 0.0726 0.0579 0.0452 0.0529

SD 9.0553 9.3865 9.7274 8.3456 9.3688 9.5795 9.5951 9.7190

PSNR 61.7115 61.4836 62.4867 62.1179 63.3259 62.7005 63.7930 63.7914

CC 0.4845 0.5546 0.5144 0.5730 0.5942 0.5992 0.6216 0.6323

SCD 0.7584 1.2620 1.0509 0.8902 1.3786 1.4510 1.4925 1.5522

Nabf 0.0936 0.1528 0.3442 0.1092 0.1891 0.0925 0.0209 0.1075

MS_SSIM 0.7630 0.8481 0.7566 0.6757 0.9087 0.8585 0.8991 0.9354

FMI 0.8823 0.8908 0.8841 0.8807 0.8956 0.8949 0.8974 0.8923

The two best values for each metric are bold and underlined, respectively. The two types of numbers under
each method name represent the number of best values and second best values, respectively

Table 5 Average running time for all methods across three datasets
(unit: second)

Method TNO RoadScene VIFB

GTF 6.152 8.448 8.504

IFEVIP 0.078 0.089 0.096

CBF 17.342 26.056 32.184

FusionGAN 0.697 0.440 0.535

IFCNN 0.056 0.056 0.068

NestFuse 3.764 2.175 2.744

MFEIF 0.084 0.068 0.079

Ours 0.061 0.063 0.073

Bold text indicates the best results and underlined text represents the
second best results

Conclusion

In this paper, a novel lightweight deep learning fusion
network based on multi-scale attention and hybrid dilated
convolutional blocks is proposed to effectively improve the
fusion of infrared and visible images. By designing hybrid
dilated convolution blocks, the feature extraction module
with a larger receptive field efficiently extracts more contex-
tual information and fine-grained details without changing
the size of the feature maps. The use of a unique total loss
allows our proposed fusion network to simultaneously pre-
serve texture features and salient target intensity from both
infrared and visible images. In addition, the spatial/channel
attention modules at different scales are designed to focus
on shallow local and deep global detail features, which com-
pensate for missing detail in the fusion process and improve
the contrast of fused images. Experiments performed on two
public infrared and visible image datasets demonstrate that
our fused images not only include large amounts of detailed
textural features but also reduce noise and artifacts. In addi-
tion, these experiments are extended to the VIFB dataset and
further verify the generalizability of our proposed model.
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