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Abstract
Federated learning (FL) draws attention in academia and industry due to its privacy-preserving capability in training machine
learning models. However, there are still some critical security attacks and vulnerabilities, including gradients leakage and
interference attacks. Meanwhile, communication is another bottleneck in basic FL schemes since large-scale FL parameter
transmission leads to inefficient communication, latency, and slower learning processes. To overcome these shortcomings,
different communication efficiency strategies and privacy-preserving cryptographic techniques have been proposed. However,
a single method can only partially resist privacy attacks. This paper presents a practical, privacy-preserving scheme combining
cryptographic techniques and communication networking solutions.We implementKafka formessage distribution, theDiffie–
Hellman scheme for secure server aggregation, and gradient differential privacy for interference attack prevention. The
proposed approach maintains training efficiency while being able to addressing gradients leakage problems and interference
attacks. Meanwhile, the implementation of Kafka and Zookeeper provides asynchronous communication and anonymous
authenticated computationwith role-based access controls. Finally, we prove the privacy-preserving properties of the proposed
solution via security analysis and empirically demonstrate its efficiency and practicality.

Keywords Federated learning · Kafka · Secure aggregation · Differential privacy

B Yuping Yan
yupingyan@inf.elte.hu

Mohammed B. M. Kamel
mkamel@inf.elte.hu; mkamel@hs-furtwangen.de

Yaochu Jin
yaochu.jin@uni-bielefeld.de

Ligeti Péter
ligetipeter@inf.elte.hu

1 Department of Computer Algebra, Eötvös Loránd University,
Budapest, Hungary

2 Smart Data Group, E-Group ICT Software Zrt, Budapest,
Hungary

3 Faculty of Technology, Bielefeld University, 33619 Bielefeld,
Germany

4 Institute for Data Science, Cloud Computing and IT Security,
IDACUS, Furtwangen University, Furtwangen im
Schwarzwald, Germany

5 Department of Computer Science, University of Kufa, Najaf,
Iraq

Introduction

The increasing demand to process the generated data on the
Internet has led to the growing use ofMachineLearning (ML)
methods. Traditionally, a single server or data center stores
data collected from different parties and centrally performs
model training. This paradigm is called centralized learning.
The centralized learning mode is vulnerable to leakage of
personal and private information. Numerous studies [16, 36]
have shown that by analyzing the output of machine learn-
ing mode, attackers can reversely infer sensitive information
about individuals in the training dataset, e.g., bank transac-
tion records and personal medical data.

Without proper regulations and privacy consents, it is
challenging to effectively aggregate datasets from different
industry domains for privacy concerns in practice. Countries
worldwide have introduced a series of legal regulations to
protect user privacy. In March 2018, the EU General Data
Protection Regulation [34] came into force, setting precise
requirements for companies to process user data. Health
Insurance Portability and Accountability (HIPAA) [3] also
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defines how medical data can be used and released. These
regulations guide how companies can use data properly and
define unauthorized access to the data as illegal. It is for-
bidden to deliberately and unlawfully attempt to access or
gain entry to computer systems, networks, or data without a
proper authorization or permission. Therefore, a far-reaching
and urgent issue is how to give full play to the potential of
machine learning and other artificial intelligence methods
while ensuring user privacy and data security.

Recently, some researchers have tried to train global mod-
els while keeping data from all participants locally. A typical
case is Federated Learning (FL), which was proposed by
McMahan et al. [26]. FL shows its advantages in providing
user privacy protection without sharing data among partici-
pants. It is a good solution for the data silos problem, which
can learn from different datasets and improve the general-
ization effect of the model. Meanwhile, clients can adopt
differentmachine learning training algorithmsflexibly. Tech-
nically, the FL architecture has the potential to apply to any
industry, but it is essential to consider the security issues. The
basic Federated Averaging (FedAvg) scheme can not guaran-
tee data privacy. A malicious participant can infer sensitive
information about original data sets from the shared models
and hyper-parameters. This gradients leakage problem [35]
is one of the significant security concerns in FL. Similarly,
data reconstruction attacks [24] and interference attacks [31]
can be conducted on the classic FL schemes. Even though
cryptographic primitives such as homomorphic encryption
(HE), differential privacy (DP), and secure multi-party com-
putation (MPC) schemes are widely applied to FL, there are
trade-offs between accuracy, efficiency, and learning perfor-
mance.

The typical attack points in an FL scenario can be the com-
promised server and malicious clients. On the one hand, the
server deployed by a service provider is considered a passive
attacker with honest-but-curious security models. The server
usually provides its services strictly following the established
learning protocols, but it may also leak some sensitive infor-
mation about the user from local model updates. On the other
hand, participants are considered active attackers who try
to recover sensitive information about the other participants
from the global model parameters shared by the training data
formation.

There are several open-accessFL frameworks and libraries
available for academia and industry, such as TensorFlow
Federated (TFF) [1] proposed by Google, FedML [15],
FATE [38] by WeBank, Flower [5] structure, among others.
Different platforms use various strategies. However, imple-
menting these libraries requires a lot of effort to re-engineer
to accommodate new ML models. Meanwhile, they are all
client–server structures and do not support managed and
access-controlled networks. We will conduct a comparative
analysis with these proposed schemes, especially regarding

privacy mechanisms in the “Comparisons of different FL
frameworks”.

In this paper,wepropose aKafka-basedprivacy-preserving
framework for FL. In this scheme, we improve the network
reliability by usingKafka formessage distribution and ensur-
ing data privacy with the Diffie-Hellman scheme for secure
server aggregation and DP on gradients to prevent interfer-
ence attacks. The contributions of this paper are summarized
as follows:

1. A combined framework of partial Diffie-Hellman proto-
col and DP scheme is proposed to minimize the main
security threats in FL.

2. Apractical FL schemewithApacheKafka andZookeeper
is designed to achieve anonymous authentication with
role-based ACLs and support independent and asyn-
chronous model distributions.

3. The proposedmethod is compared and evaluatedwith the
state-of-the-art with respect to security, efficiency, effec-
tiveness and accuracy via security analysis and empirical
studies.

The structure of the paper is as follows. In “Related work
andprimitives”,wewill introduce the primitives related to the
proposed framework, includingApacheKafka, secure aggre-
gation scheme, andDP.We then propose themain framework
and protocol in “Proposed framework”. Subsequently, secu-
rity analysis and performance analysis are conducted in
“Security analysis” and “Evaluations”, respectively. Finally,
we conclude the paper with a conclusion and future work in
“Conclusion and future work”.

Related work and primitives

This section will introduce the main primitives related to our
framework. They include the FL algorithm, Apache Kafka
block, secure aggregation scheme, and the DP primitives.

Federated learning

McMahan et al. [26] first introduced the concept of federated
learning, which eliminates the need to centrally store the
data and allows each participant to update the gradient in
a distributed way. It gained popularity for its capability of
addressing the data privacy issues, which was missing in the
previous distributed machine learning schemes. Generally,
FL works with both independent and identically distributed
(IID) and non-IID data. FL can be categorized into three
groups based on the data features: horizontal, vertical, or
hybrid data partition. Horizontal federated learning (HFL)
shares feature space but has a different sample space in the
data of the clients. By contrast, vertical federated learning
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Fig. 1 Training process of federated learning (round r )

(VFL) shares the same sample space but different feature
spaces. Hybrid federated learning uses a dataset that has a
diverse sample and different feature spaces [38]. A definition
of FL is given in Definition 1 and a typical HFL training
process is described in Fig. 1.

Definition 1 (Federated learning)LetU = {U1,U2, . . . ,Un}
be a set of n participants, and each participantUi has its own
local dataset Di . LetUc be the central server (or aggregator).
The task of FL is to compute the global model Mglobal on
node Uc based on all uploaded local models ∀i ∈ U : Mi ,
while each of the local model is generated from the local
client dataset Di .

In the first round, the server will generate a model with
random parameters θ0 and send them to all clients. After
receiving themodel sent by the server, k out of n participating
clients will locally compute the training gradients based on
their own dataset and send the updated model to the server.
Then, the server aggregates gradients of clients and computes
the global parameters θr = ∑k

i=1 θi/k. After a round of
updates is completed, the clients check whether the accuracy
of the local model meets the requirements and stops training
if it does; otherwise, it is ready for the next round of training.

During the FL training process, it is vital to minimize the
global accuracy fFL, i.e.,

min
w

1

K

N∑

n=1

kn∑

k=1

fk(w), (1)

where w and K represent the global model weights and the
number of participating clients, respectively.

The most typical algorithm for local model training is
Federated Averaging, or FedAvg for short, whose pseudo
code is listed in Algorithm 1. In FL, the server chooses a
fraction of clients 0 ≤ C ≤ 1 and set the learning rate to
η. For each client k, it computes the gradient w ← w − η

Fig. 2 Communication topology of Kafka cluster

∇(w, b) and sends it to the server. The server will update the
parameter wt+1 ← ∑K

k=1
nk
n wk

t+1 by the weighted average
of the gradients.

Algorithm 1: FedAvg
Input: The K clients are indexed by k, B is the local mini

batch-size, E is number of local epochs, and η is the
learning rate

Output: Updated model
1 Server Side: weights initialization wo
2 for each round t = 1, 2... do
3 Select St ← m ← (C ∗ K , 1) clients randomly.
4 for each client k ∈ St in parallel do
5 wk

t+1 ← ClientUpdate (k, wt )

6 wt+1 ← ∑K
k=1

nk
n wk

t+1
7 end for
8 end for
9 Return wt+1

10 Local update(k, w)

11 B ← split dk into batches of size B
12 for each local epoch e from 1 to E do
13 for b ∈ B do
14 w ← w − η ∇(w, b)
15 end for
16 end for
17 Return w

Apache Kafka

Apache Kafka [22] is a popular publish/subscribe (pub/sub)
system for data pipelines, streaming analytics, data integra-
tion, and mission-critical applications. A basic structure of
a Client-Kafka/Zookeeper-Producer architecture is shown in
Fig. 2.

The basic components of a simple Kafka platform include
Zookeeper nodes, Kafka broker nodes, producers, and con-
sumers. There are logical channels on Kafka for separating
themessageflow,which is named“topic”.Theproducers pro-
duce the messages, store them in brokers and send messages
to the topic, while the consumers who subscribe to this topic
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can listen and read messages from the broker. Meanwhile,
Kafka implements Zookeeper for robust synchronization.
As a centralized service, Zookeeper can trace clients’ states,
remove/add the nodes, distribute messages, and even make
the access list. These components communicate with each
other through secure and encrypted communication chan-
nels. The current Kafka includes some security supports such
as channel security, authentication, and authorization (ACL),
which are described in the following:

– Channel security: To safely transmit messages through
channels between different components, Secure Sock-
ets Layer (SSL)/Transport Layer Security (TLS) secure
communication channel is implemented.

– Authentication: Simple Authentication and Security
Layer (SASL) or SSH (Secure Shell) authentication are
used to authenticate clients against brokers or, optionally,
against Zookeepers.

– Authorization (ACL): Authorization is a process where
the application decides which user has access to the
resources and which resources. In this case, one prac-
tical example is that one client has the right to publish
a message on a topic, and the other one has the right to
readmessages from this topic. No other action is allowed.
These rules are defined in Kafka through Access Control
Lists (ACLs).

These unique features make Kafka an excellent solution
to handle and mediate communication between two applica-
tions. For FL structure, Apache Kafka can provide a secure
communication channel for different clients and the server,
store and distribute messages. Meanwhile, it can authenti-
cate clients without extra security strategies, such as VPN or
username-password authentication. Its distributed and scal-
able nature makes Kafka well suited for FL. It fits the FL
environment for the following reasons:

1. Scalability: Kafka excels in handling high-throughput,
large-scale data streaming with low latency, which aligns
well with the requirements of real-time processing appli-
cations, such as FL. Meanwhile, comparing to other
pub/sub systems, such as Amazon Kinesis, Apach Kafka
can easily be integratedwith other platforms and services.

2. Data integration anddistribution:Kafka’s publish-subscribe
model allows for the integration and distribution of data
streams among the participants and the server, which fits
the server-client structure of FL.

3. Reliability:Kafkaprovides reliable communication chan-
nels and ensures that data streams are highly available.
In FL, where communication is a bottleneck and devices
may go offline during the communication, Kafka’s
resilience ensures that data updates and model synchro-

nization can be reliably managed even during network
disruptions.

Secure aggregation

Secure aggregation protocol is proposed by Segal et al. [29]
to prevent the gradient leakage attack in FL. It builds on
secret sharing [30], public-key cryptography, and pseudo-
random number generation. The core idea of the algorithm
is to add random noise to the updates that change the values
completely but cancels out at the aggregation.

These masks are generated by pairwise Diffie–Hellmann
Key Agreement [9] that uses pseudo-random generators for
creating the noises, whose seeds are given by shared secret
keys gab. Here ga and gb are the public keys of the two
clients with the secret keys a and b, respectively, and g is
a public generator element. The scheme is secure under the
Computational Diffie–Hellman assumption.

Definition 2 (ComputationalDiffie–Hellman (CDH)assump-
tion) Consider a cyclic groupG of order q, a generator g ∈ G
and random a, b ∈ Z

∗
q , given (g,G, p, ga, gb) it is compu-

tationally intractable to compute the value gab.

Theprotocol ofDiffie–HellmannKeyAgreement is defined
as follows:

1. Alice picks a random natural number a with 1 < a < q
as her secret key, and sends the element ga of G to Bob;

2. Bob picks a random natural number b with 1 < b < q as
hse secret key, and sends the element gb of G to Alice;

3. Alice computes the element
(
gb

)a = gba of G;
4. Bob computes the element (ga)b = gab of G.

Thus gab = gba will be their shared secret (this is done
for every pair of clients). To address the problem of clients’
dropout and unresolved noises, sharing the private key a and
b via by Shamir’s k-out-of-n threshold secret sharing [30]
is implemented. It results that at least k shares of a secret
can reconstruct it perfectly. By having less than k shares, an
entity can reconstruct the secret with negligible probability
only.

Differential privacy

DP was first proposed by Dwork et al. [10] and is consid-
ered the most secure perturbation-based privacy protection
method. DP provides statistical privacy guarantees for indi-
vidual records and prevents interference attacks on themodel
without incurring additional computational overhead com-
pared to encryption methods.

In the context of FL, the adjacency means the one dataset
D′ can be obtained for the other D by removing the data of
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a single client [2]. DP can be achieved by applying defer-
entially private transformation. The most common form of
these transformations is adding random noise to the data.

There are two categories of DP: the central DP (or global
DP) and the local DP, according to where the noise is added.
In the local model of DP, the noise is directly added to the
local datasets of clients. After collecting these noisy data,
the aggregator can compute some statistics and publish them.
The significant advantage of this mode is that it does not ask
for a trusty aggregator. However, it reduces the accuracy by
adding noise to the raw data. By contrast, in the central mode,
clients send their trained models to the aggregator, and the
aggregator publishes the results after masking them. In this
scenario, it compromises with a trusty aggregator, but the
final results remain private.

Definition 3 (Differential privacy) In differential privacy
[12], it quantifies and limits information disclosure about
an individual with a privacy loss parameter (ε, δ). A ran-
dom algorithm A is (ε, δ)-differentially private, if for all
S ⊆ Range(A) and for all D, and D′ adjacent datasets

P(A(D) ∈ S) ≤ eεP(A(D′) ∈ S) + δ (2)

where Smeans all possible outcomes ofA. If ε, the difference
between the probabilities for getting the result from dataset
D orD′ is small, that means that it is hard to guess on which
has been A run.

Definition 4 (Global sensitivity) The random algorithm A
satisfies the global sensitivity, which tells us howmuch noise
is to be added to the results. Given a sequence of counting
queries Q, global sensitivity measures the maximal change
on the result when removing one record from the dataset D.

ForQ : D → R, the global sensitivity ofQ is defined as:

GS = max
D,D′

∥
∥Q(D) − Q(D′)

∥
∥ (3)

To satisfy the differential privacy definition, there are two
primary noise mechanisms in DP, namely Laplace mecha-
nism (LM) and exponential mechanism (EM).

Theorem 1 (Laplace mechanism) Given an function Q :
D → R, for an arbitrary domain D, the random algorithm
A provides ε-DP, if A satisfies:

A = Q(D) +
(

Lap

(
GS

ε

))

,

where the noise Lap
(GS

ε

)
is drawn from a Laplace distribu-

tion, and d is the dimension of the query Q.

Theorem 2 (Exponential mechanism) Given a function Q,
where its input is dataset D, and the output is an entity object

r ∈ Range. Let q(D, r) be a score function to assign each
output r a score, and GS be the sensitivity of the score func-
tion. Then, the mechanism A maintains ε-DP, if:

A(r , q) =
{

return r with probability ∝ exp

(
εQ(D, r)

2GS

)}

.

Proposed framework

This section will explain the FedlabX: Kafka-based privacy-
preserving framework in detail. The framework overview is
presented in Fig. 3, with the implementations of DP on the
trained model gradients, Kafka brokers with Zookeeper for
communication, and secure aggregation on the server side.

Security model

We follow the semi-honest threat model in which all the par-
ticipating parties, including the curious adversaries, follow
the protocol properly. Additionally, the parties in the semi-
honest model can passively gather and analyze the publicly
available data in the system. We assume Probabilistic Poly-
nomial Time (PPT) computational power of the parties in the
system. Based on the scheme, we can define the following
security and privacy requirements:

Definition 5 (Correctness) The proposed model is correct if
the server conducts aggregation following the protocol hon-
estly without accuracy loss.

Definition 6 (Data Privacy) Any PPT adversary party can
infer the original data of the clients from the proposed model
with a negligible probability only.

Definition 7 (Client Unlinkability) Any PPT adversary party
can link the client local data to the aggregated data with a
negligible probability only.

FedlabX framework

Our framework has three parties: the server, clients, and
the Apache Kafka message queue. In this framework, the
server initializes a model and sends the untrained model to
the request broker in Kafka. We assume Kafka is embedded
in the trusted third-party side. Once the clients request the
model from the Kafka request broker, Kafka relies upon the
untrained model for the clients. The proposed model allows
the central broker to set a policy that permits only specified
clients based on a 1-out-of-n verification scheme [18] with
predefined n attributes to join the system. We assume that
there is an established secure channel between the central
server and the clients. A lightweight encryption [19], [20]
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Fig. 3 Overview framework of
the FedlabX

during the verification can be adopted by the central bro-
ker. Each client will train the model based on their local
dataset. Once the server requests the trained model, clients
will respond to the response broker in Kafka with the trained
and masked model. Finally, the response broker will send
the updated models to the server, and the server will con-
duct the secure aggregation algorithm to get the final result.
This framework is ideal for cross-silos FL scenarios with
few clients but large databases. It is more practical in the
real industry with the Kafka client–server communication
structure and message storage and transmission function.
Meanwhile, from the security perspective, secure aggrega-
tion and DP schemes make FedlabX privacy-preserving and
prevent most attacks when the server and clients are semi-
honest. We implement the variant of secure aggregation,
which makes it more efficient and computation cost-saving.

This scheme contains the following phases: setup and key
generations, model updates, and secure aggregation. The
main structure can be found in Fig. 4, and we will go for
details of each phase in the following protocol.

Phase 1 (Setup and key generations)

This phase includes the key generation between the clients.
Let the set of clients be C = 1, 2, . . . , n. Then the server
chooses an appropriate group G, where the computational
Diffie–Hellman problem is hard. G will be a cyclic group of
q elements with generator g, following general parameters
will be generated:

(G, ), |G| = q, g ∈ G : G =< g >

Fig. 4 Structure of the phases

Let i �= j ∈ C be afixedpair of clients. Then the following
protocol that includes seed and noise generation must be run
for every pair of clients:

Seed generation

1. Client i chooses an exponent ai ∈R Z
∗
q , and sends to the

server with the value of gai . Then the server sends the
pair (i, gai ) to the client j .
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2. Client j chooses an exponent a j ∈R Z
∗
q and sends to the

server with the value of ga j . Then the server sends the
pair ( j, ga j ) to the client i .

3. The common key of client i and j is keyi, j = gai a j .
At the end of this phase, every client i ∈ C stores a set
of common keys with other clients:

Ki = keyi,1, keyi,2, . . . , keyi,n .

Noise generation

To prevent interference attacks, clients will implement DP by
adding noises to the gradients after the model training, which
is based on DP-SDG [2]. In our case, we use the Laplace
noise generation mechanism [11] of DP. The Laplace mech-
anism preserves (ε, 0)-differential privacy or ε-differentially
private.

Definition 8 Lets Q be an aggregated query. The results of
Q is α differentially private if it is perturbed by a random
variable R ∼ Lap(θ, α), where θ is the mean, and α is a
scale.

A random variable R ∼ Lap(0,�Q/α) follows a Laplace
distribution if:

Pr(R = r) = α

2�Q
e−|r |α/�Q (4)

Whenweadd aLaplaciannoise to the gradients,we exploit
the infinitely divisible property of the distribution, where the
random variable R can be computed by summing up n of
other random variables. We generate the partial noise using
the following:

R =
√
√
√
√B ·

n∑

i=1

Ri , forR,Ri ∼ Lap(0, α), and (5)

B ∼ Beta(1, n − 1) is a single r.v., (6)

Where Pr(B = x) = (n − 1)(1 − x)n−2.

Phase 2 (model updates)

As a result of the execution of the first phase, where the seed
and noise will be generated, all participating clients will be
ready for the model masked with noise and key pairs. Con-
tinually, clients will update the model by responding to the
request sent from the central server. Models will arrive and
be stored in the Kafka brokers connected with Zookeeper.
In this case, even if clients have different settings of hard-
ware conditions and network bandwidth, this framework can
finally reach synchronous communication.

Phase 3 (secure aggregation)

In this phase, the server computes the aggregated client data
for a given update. Let l ∈ N be the length of the users’ data
of a new update. This length can be different for every update
but fixed during a single update. Let xi ∈ {0, 1}l be the data
of client i , and Pl be a pseudorandom generator of output
size l.
The following protocol describes the phase 2 and phase 3 of
the framework:

Protocol 1 1: The server chooses a random salt r ∈R

{0, 1}n.
2: The server sends the chosen r to every client i .
3: Every client i ∈ C computes

si = xi +
∑

j≤i

Pl(r |keyi, j ) −
∑

i≤ j

Pl(r |key j,i )

4: Every client i sends si to the server.
5: The server computes

∑
i∈c si to get the aggregation of

the individual data.

The result of the
∑

i∈c si in step 5 of Protocol 1 is our final
result of the training request.

Security analysis

FedlabX shows its advantage in data privacy preservation.
With a modified federated ML scheme structure, we focused
on the privacy and security properties of this framework. In
this section, we analyze the security of the proposed model.
During analysis, we consider two types of threat models in
our scheme, internal and external attacks. Table 1 briefly
summarize the threats, source of vulnerability, and counter-
measures in the FedlabX framework. We do not go into the
details of attack prevention with DP and secure aggregation
here, as other papers have proved them [12, 14, 21, 29].

Remark 1 (Data privacy) If the secure aggregation and
Laplace noise generation have been implemented, then the
proposedmodel satisfies thedata privacy requirement,where
the original data can be protected from the gradient leakage
attacks and the inference attacks.

Below are a few arguments about this Remark 1. We
assume that the central server and clients are semi-honest
in the proposed model. In this case, they will follow the pro-
tocol properly but try to exploit and infer useful information
from the training process for their purpose. Therefore, for
an insider attack, the data reconstruction from the gradients
is the leading security issue. In this attack, the semi-honest
nodes get the gradient update during iterative training to
reconstruct the local training data using leaked gradients.
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Table 1 Summarize of threats
and countermeasures in
FedlabX framework

Threats Source of vulnerability Counter measures

Internal Gradient-leakage Semi-honest server Secure aggregation

Inference attack Semi-honest client semi-honest server Differential privacy

External Man in the middle Insecure channel Kafka

Sybil attacks Malicious outside users Kafka

Deep leakage from gradient (DLG) [42] and improved deep
leakage (iDLG) [41]) use different methods. That is, they run
optimization on the pixels of a randomly generated image (or
text) matching the gradients on the random image to those of
the real data point. If the training uses frequent updates com-
puted from gradients over few data points or a small number
of epochs, the training data can be reconstructed completely.
As FedlabX uses secure aggregation, this scheme prevents
gradient-leakage attacks [6, 13, 37].

External attacks such as man-in-the-middle-attack, Sybil
attacks, and interference attacks happen when attackers from
the outside of the architecture want to hack the system to
steal some data or crash the protocol. The man-in-the-middle
attack is one of themost typical attacks. An attacker sniffs the
traffics between clients and the central server and tries to infer
the private information of clients. However, as the proposed
model assumes the existence of secure communication chan-
nels [7, 17], we do not consider man-in-the-middle attacks in
our scheme. The main security issue, in this case, is the inter-
ference attack. In an interference attack, an attacker trains
shadow models similar to the attacked one, which performs
a similar task over similar datasets. Different input data feed
these malicious shadow models, and over their outputs, a
binary classifier attack model will be trained whose task is to
decide whether the input is part of the training data. Despite
its complexity trade-off [33], DP can prevent membership
interference attacks as proved in [8, 27, 28].

Theorem 3 The proposed model is computationally correct
by following the protocol honestly.

Proof based on Definition 5, the proposed model is correct
if the server conducts aggregation without considering the
accuracy loss. In other words, the central server in Proto-
col 1 should finally compute

∑
i∈c xi . Each client i computes

si = xi +∑
j≤i Pl(r |keyi, j )−∑

i≤ j Pl(r |key j,i ). Since the
pseudo-randomgenerator P takes the r |keyi, j seed fromeach
pair of clients (as a result of phase 1 of the proposed protocol),
in each pair of clients, the same random number will be gen-
erated. Considering that the central server will receive these
two random numbers in two opposite signs, they will cancel
each other after adding them. As a result, only xi values of
each client will remain, therefore

∑

i∈c
xi +

∑

j≤i

Pl(r |keyi, j ) −
∑

i≤ j

Pl(r |key j,i ) =
∑

i∈c
xi ��

Theorem 4 If the function Pl is PRNG in phase 3 of the pro-
tocol is, then the Protocol 1 satisfies client unlinkability.

Proof Assume that the function Pl is PRNG in phase 3 of the
Protocol 1. A PPT adversary party can access the securely
aggregated client data si from step 4 of Protocol 1. To link
the client identity to the client data, an adversary needs xi
that is blinded with

∑

j≤i

Pl(r |keyi, j ) −
∑

i≤ j

Pl(r |key j,i )

As a result of the PRNG with a secure seed concatenated
random salt r , the above blinding factor seems random from
any PPT adversary point of view, hence the adversary can
learn xi from aggregated si with negligible probability only.

��

Evaluations

In this section, we compare Kafka-based privacy preserving
FederatedLearning (FedlabX)with other typical frameworks
we mentioned before, Flower, FATE, TFF, and FedML,
regarding privacy mechanisms, system scalability and inter-
operability and the computational complexity. Furthermore,
we also evaluate the performance of the proposed FedlabX
framework in terms of computational cost and accuracy.

Comparisons of different FL frameworks

Comparisons of privacy mechanisms

We list the privacy mechanisms of the most popular FL
frameworks in Table 2.

The comparison shows that the FATE framework applies
different cryptographicmechanisms compared toother frame-
works. FATE implements secure computation protocols
based on homomorphic encryption (HE) of the Pallier system
and multi-party computation (MPC). It provides strong pri-
vacy protection but relies on heavy computation. The Flower
is one of the most user-friendly FL libraries among these
open-access frameworks, and it provides DP for privacy-
preserving. From the official website, we can find out that
their "LightSecAgg protocol," which is for secure aggre-

123



Complex & Intelligent Systems (2024) 10:677–690 685

Table 2 Comparisons of different FL frameworks

Frameworks Privacy mechanisms

SA DP HE MPC AA

FATE 1.5.0 � � �
Flower �
TFF 0.17.0 � �
FedML �
FedlabX � � �

SA secure aggregation, DP differential privacy, HE homomorphic
encryption, MPC multi-party computation, AA anonymous authenti-
cation

gation, has not been implemented yet, so its diagram and
abstraction may not be accurate in practice. Same for other
mechanisms. TFF applies very similar strategies to our
framework in implementing cryptographic mechanisms with
SA and DP schemes. FedML only provides DP, which can
guarantee a certain level of privacy. However, it can not solve
the gradient leakage risks in FL.

Incredibly, onlyour framework reaches anonymous authen-
tication. It is not allowed to use anti-detoxification and
anomaly detection to user data or proposed updates in
the FL settings. That is why FL has no defense against
data poisoning and no anomaly detection. Most other
schemes apply standard security communication channels
to exchange messages, but they do not mention how the
clients are authenticated to prevent malicious clients. How-
ever, in our framework, it is clear that we reach anonymous
authentication with Kafka ACLs and 1 out of n attribute
verification.

Comparisons of system scalability and interoperability

The comparisons of system scalability and interoperability
of different frameworks can be found in Table 3.

As observed, FATE has the capability to support vari-
ous data structures, including HFL, VFL, and Hybrid FL,
whereas other frameworks may only support HFL. Addi-
tionally, FATE offers a comprehensive one-step federation
solution that encompasses assessment and evaluation. This
aspect enhances its operability while potentially impacting
its scalability. Flower is predominantly used in stand-alone
cases, which can result in average operability and scalabil-
ity. TFF focuses on edge computing and emphasizes ease
of cooperation with other platforms and structures. How-
ever, the complexity in operating TFF may arise due to its
reliance on command-line operations rather than a graph-
ical user interface. FedML demonstrates its versatility in
various applications, including topology-based mode, stand-
alone mode, edge computing, and non-IID case. Its user
interface and API offer ease of use, allowing for straight-

forward implementation. However, extending the framework
to integrate with other platforms can be challenging. Fed-
LabX supports both stand-alone mode and edge computing.
It facilitates seamless collaboration with different strategies
and platforms, offering enhanced interoperability. However,
its operability is rated as average due to the absence of a user
interface.

Comparisons of computational complexity

All calculations below assume a single server and n users,
where each user holds a data vector of size m. The com-
putational complexity of the FL libraries is influenced by
various factors, including the size and complexity of the data
and models, the algorithms and protocols used, and the effi-
ciency optimizations employed within the library. However,
here we only discuss the computational complexity, which
is increased by the privacy mechanisms, especially SA, DP,
and HE strategies.We analyze the computational complexity
of FedlabX in the following.

On the client side

Compared to the basic FL, the main differences in computa-
tional cost lie in the key generation at the initialization stage,
PRNG function for the secure aggregation, and the Laplacian
noise generation for the DP. We can divide the computation
cost of each client i into three parts. (1) Performing the n−1
key agreements, which takes O(n − 1) computation time,
(2) Generating noise Pl(r |keyi, j ) with the PRNG function
for every other user j , which takes O(mn) time in total, (3)
Generating local noise with the Laplace mechanism, which
takes O(mn) computation time. Overall, the computation
cost on a standard client is O(mn + n).

On the server side

There is no key set up on the server side. Thus, we only
need to consider the computation cost during the federated
process. The server’s computation cost can be broken down
as: performing the aggregation function by removing the
Pl(r |keyi, j ) values, which takes time 0(mn2) in the worst
case.

The computational complexity of different FL frameworks
is summarized in Table 4.

The most significant computation cost of FATE lies in
the HE, which is mainly determined by the encryption and
decryption of the message size. For each client, it encrypts
the predicted value and sends the resulting ciphertext to the
server. Therefore, the computational complexity for each
client is O(m2), where m is the size of the message and m
is much larger than the client number n. The computational
complexity of the FATE is the highest one. On the server side,
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Table 3 System scalability and
interoperability comparisons of
different FL frameworks

Framework Structures Applications Operability Scalability

FATE 1.5.0 HFL, VFL, Hybrid FL One-step federation solution
Assessment, evaluation...

High Low

Flower HFL Stand-alone mode Average Average

TFF 0.17.0 HFL Edge computing Low High

FedML HFL Topology-based mode
Stand-alone mode Edge
computing Non-IID

High Low

FedLabX HFL Stand-alone mode Edge
computing

Average High

Table 4 Comparisons of computational complexity of different FL
frameworks

Frameworks Computational complexity

Client side Server side

FATE 1.5.0 O(m2) O(mn2)

TFF 0.17.0 O(mn + n) O(mn2)

Flower & FedML O(m) O(m)

FedlabX O(mn + n) O(mn2)

calculations are performed based on the ciphertext, resulting
in a computational complexity of O(m). However, the SA
strategy is also employed, which increases the computational
complexity to O(mn2). In conclusion, the overall computa-
tional complexity is O(mn2).

The Flower library and FedML have SAME complexity
since they both utilize the DP strategy. On the client side, the
computation complexity is determined by the Laplace mech-
anism, which has a complexity of O(m). Similarly, on the
server side, where aggregation is performed, the computa-
tion complexity is also based on the message size, resulting
in a complexity of O(m) as well. Thus, both the client and
server components exhibit a computational complexity of
O(m). TFF and FedlabX employ the same privacy strate-
gies, resulting in comparable complexity on both the client
and server sides.

Prototype performance

In this sub-section, we first clarify the hardware and public
datasets for prototype evaluation. Then, the accuracy results
with DP and without DP are shown and explained.

Hardware: Both the central server and clients have the
same hardware settings in this experiment. All experiments
were executed on 2x Intel(R) Xeon(R) Gold 6230R CPU @
2.10GHz, 1 A100 GPU, and 256 GB of RAM. Every com-
ponent was run in Docker containers, and resources were
allocated to them dynamically. One container was dedicated
toMongoDB for storing the trainedmodels, and another con-

tainer served as the message queue. These containers had
minimal resource usage, except for disk I/O.Accuracy testing
was performed separately using a Python script. The exper-
iment was designed in a way that the clients’ VRAM usage
was slightly below 4GB, ensuring that the 40GB GPU was
not bottlenecked when using 10 clients.

Dataset: We use standard MNIST [25] and CIFAR-10 [23]
datasets to conduct experiments. MNIST is a handwrit-
ten digital recondition dataset consisting of 60,000 training
examples and 10,000 testing examples, and each is a 28 ×
28 size gray-level image. MNIST is divided into four sub-
datasets for FL, where the size of each sub-dataset is 100
samples. Compared to the MNIST, CIFAR-10 has a more
complicated combination consisting of 60,000 32× 32 color
images in 10 classes, with 6000 images per class.TheMNIST
and CIFAR-10 datasets are widely used in machine-learning
for tasks such as image classification.While these datasets do
not contain personally identifiable information (PII), they can
still be subject to specific privacy attacks. One of the most
severe attacks is membership inference, where an attacker
may attempt to infer whether a specific data point was part
of the original dataset [31]. Meanwhile, although MNIST
and CIFAR-10 datasets do not directly contain PII, it is pos-
sible to re-identify individuals by combining the dataset with
external information. There is a high risk that an attackermay
attempt to re-identify those individuals based on their unique
characteristics.

Accuracy results without DP: We take the FedAvg algo-
rithm 1 in MNIST and CIFAR-10 databases with IID and
non-IID data structures as our baseline. Table 5 shows the
accuracy of centralized learning and FL on MNIST and
CIFAR-10 databases. The mode details results can be found
in Fig. 5. It plots the accuracy of the FedlabX algorithm in
the IID and non-IID data structure without the added DP.
The training sets are evenly partitioned into ten clients. Each
client is randomly assigned a uniform distribution over ten
classes for the IID setting. For the non-IID setting, the data is
sorted by class and divided to create an extreme 1-class non-
IID, where each client receives data partition from only a
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Fig. 5 Test accuracy of FedlabX framework

Table 5 Baseline accuracy

MNIST (%) CIFAR-10 (%)

Centralized learning 98.2 89.3

Federated learning (iid) 98.4 80.3

Federated learning (non-iid) 96.4 47.2

single class. We perform 50 communication rounds of train-
ing onMNIST and CIFAR-10.We use the same notations for
the FedAvg algorithm as Algorithm 1: B, the batch size, and
E, the number of local epochs. The following parameters are
used for FedlabX framework: for MNIST, B = 32, E = 25, η
= 0.01 and decay rate = 0.995; for CIFAR-10, B = 128, E =
60, η = 0.1 and decay rate = 0.992.

The following observations can be made: the accuracy on
theMNIST dataset can reach even higher than the centralized
accuracy in the IID data structure. There is a slight drop in the
non-IID case on MNIST with 2%. However, on the CIFAR-
10 database, the accuracy reaches around 80% in IID, and
drops sharply in the non-IID scenario, which can only reach
almost 50% of accuracy.

AccuracywithDP: From the definition of DP (Definition 3),
we conclude that the parameter ε measures the ability of the
random algorithm A to resist attacks, and the smaller the
parameter ε, the greater the privacy protection it provides.
This is because the smaller the ε is, the bigger Laplace noise
is, i.e., b = �q

ε
. In this case, the accuracy will increase with

the growth of ε value. In this experiment,wefix the parameter
of θ to 10−5. In most of the literature, the algorithms have
been evaluated with ε ranging from as little as 0.1 to as much
as 8. In our case, we analyze the accuracy of MNIST and
CIFAR-10 with the ε value from 1 to 8. The main results can
be found in Figs. 6 and 7.

On the MNIST database, there are a few differences with
the increase of ε value. The highest accuracy ranges from
89 to 91%. However, with more training rounds, the perfor-
mance on ε = 4 is better than when the ε = 8. It reflects

Fig. 6 Accuracy of different levels of ε setting with different rounds of
training on MNIST

Fig. 7 Accuracy of different levels of ε setting with different rounds of
training on CIFAR-10

that with higher epsilon, there is a need for as many training
rounds. Most clearly, this effect is observable around ε = 1.
This plot Fig. 6 suggests we have to focus more on sub-zero
and ε = 1–2 ranges.

On theCIFAR-10 database, there is a significant drop after
adding the noise to the model gradients with DP. When the ε

equals 1, the best accuracy only reaches around 44%. With
the increase of ε, the accuracy also improves. The details can
be found in Fig. 7.

We examined the client training loss with respect to the
number of epochs. The training loss serves as a monitoring
metric for assessing the progress of local training on each
client and evaluating the convergence and performance of
models across different clients. In our case, we fixed the num-
ber of clients to 4 and averaged all the training losses to obtain
the results. As observed, a larger ε value of DP leads to more
loss, particularly when the number of epochs is small. Addi-
tionally, the proposed framework suffers from less training
loss on MNIST than on CIFAR-10 due to its smaller size.
However, the framework converges on both datasets as the
number of epochs increases. More details can be found in
Fig. 8.
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Fig. 8 Client training loss over the epochs

Comparisons with some state-of-the-art FL frameworks

Table.6 depicts the accuracy of various differential private
training methods on MINIST and CIFAR-10 databases with
different privacy losses. LDP-FL [32] adds noises directly
into the raw database, which significantly drops the accu-
racy in CIFAR-10. For a more rigorous comparison, we have
included FedAvg-LDP and FedAvg-CDP [39], two state-
of-the-art algorithms in the comparison. The difference is
that LDP adds noise directly into the database, while CDP
adds noise after the model aggregation. These two algo-
rithms have a structure that closely resembles our framework,
making them more suitable for comparative analysis. We
also include the version of DP-SGD [4], which modifies the
activation functions to prevent activations from exploding
in differential privacy. DP-SGD applies DP in calculating
the gradients instead of adding noise directly to the model
or the dataset, which leads to better accuracy results. ρ-
zero-centralized DP-SGD [40] gets more attention and is
also applied in the 2020 Census Conflict of interest Avoid-
ance System for higher privacy. However, the accuracy is
not satisfied even in the MNIST database. In our approach,
FedlabX can not reach the best accuracy but can reach the
median.

Limitations of FedlabX

Based on the analysis and evaluations above, it is apparent
that the FedlabX framework still has certain limitations that
can be attributed to the cryptographic components adopted
in this work.

1. Size limitation and latency of Kakfa: Kafka configura-
tion limits the size of communication messages, which
is 1MB by default. However, the model we trained in
the FL framework might exceed this limitation. To solve
this problem, we can modify the Kafka broker configu-
ration file parameter to increase the allowed maximum
message size. Still, processing large messages consumes
more CPU and memory of our producer and consumer,
which might cause high latency to the end-user.

2. Computation cost: As we can found the comparison
of the computational complexity in Table 4, the secure
aggregation protocol, especially the key agreement pro-
cess and the PRNG generation process, increases the
computational complexity of our framework.

3. Accuracy drop: The choice of a DP scheme will
undoubtedly have an impact on the accuracy of the frame-
work.This is evident from the results presented inTable 6,
where the accuracy consistently decreases as more noise
is added to the algorithm.

Conclusion and future work

This paper proposed a practical privacy-preserving frame-
work FedlabX based on the basic FL. We proposed adopting
secure aggregation and differential privacy mechanisms to
achieve a privacy-preserving scheme. Meanwhile, Kafka
supports anonymous authentication and asynchronous mes-
sage queue. Our security analysis proves that FedlabX can
protect from the semi-honest server and semi-honest clients,
which is enough for a cross-silos FL scenario. From the
experiment results, the FedlabX accuracy is higher than the
LDP-FL and centralized DP-FL. However, some improve-

Table 6 Test accuracy of
various differentially private
training methods on MNIST and
CIFAR-10 with different privacy
loss and θ = 10−5

DP algorithms MNIST CIFAR-10

ε = 1 ε = 3 ε = 8 ε = 1 ε = 3 ε = 8

LDP-FL 78.76% 89.10% NA 27.18% 28.00% NA

FedAvg-CDP NA 69.20% 82.00% NA 51.00% 71.00%

FedAvg-LDP NA 71.10% 92.00% NA 52.00% 72.00%

DP-SGD 89.00% 89.40% 92.00% NA 68.00% 73.00%

ρ-zCDP-SGD 10.12% 65.33% NA NA NA NA

FedlabX 88.97% 89.23% 90.35% 44.01% 48.70% 55.72%

Bold represent the best accuracy results in each situation
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ments can still be made compared to TensorFlow DP-SGD.
The following future work are worthy of considering:

1. How canwe set a reasonable ε with an explanation or jus-
tification? If the relationship between the parameter ε and
the probability of the attacker’s success can be obtained,
it will undoubtedly give an intuitive understanding of the
strength of differential privacy protection.

2. Based on the current scheme, we can add more privacy-
preserving features and comprehensively analyze differ-
ent schemes, such as MPC and HE schemes.

3. Non-IID impacts the accuracy massively in FL. Another
important research direction is how we can improve the
accuracy of our FedlabX framework.
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