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Abstract
Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the
existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and
diversity effectively. Therefore, a novel constrained multi-objective optimization evolutionary algorithm based on three-stage
multi-population coevolution (CMOEA-TMC) for complex CMOPs is proposed. CMOEA-TMC contains two populations,
calledmainPop and helpPop, which evolvewith andwithout consideration of constraints, respectively. The proposed algorithm
divides the search process into three stages. In the first stage, fast convergence is achieved by transforming the original
multi-objective problems into multiple single-objective problems. Coarse-grained parallel evolution of subpopulations in
mainPop and guidance information provided by helpPop can facilitate mainPop to quickly approach the Pareto front. In the
second stage, the objective function of mainPop changes to the original problem. Coevolution of mainPop and helpPop by
sharing offsprings can produce solutions with better diversity. In the third stage, the mining of the global optimal solutions is
performed, discarding helpPop to save computational resources. For CMOEA-TMC, the combination of parallel evolution,
coevolution, and staging strategy makes it easier for mainPop to converge and maintain good diversity. Experimental results
on 33 benchmark CMOPs and a real-world boiler combustion optimization case show that CMOEA-TMC is more competitive
than the other five advanced CMOEAs.
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Introduction

In real-world applications, many optimization problems con-
tain several conflicting objectives and multiple complicated
constraints, such as the robot gripper optimization problem
[26], the optimal scheduling in microgrids [15], the green
coal production problem [5], and the structure optimization
of a blended-wing-body underwater glider [22], etc. They
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can be defined as constrained multi-objective optimization
problems (CMOPs) and expressed as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min F(x) = ( f1(x), f2(x), . . . , fM (x))T ∈ F

s.t. x ∈ S

gi (x) ≤ 0, i = 1, . . . , p

hi (x) = 0, i = p + 1, . . . , q,

(1)

where x = (x1, . . . , xD)T is a D-dimensional decision vector
in the decision spaceS,F(x) representsM objective functions
that need to be optimized simultaneously, F is the objective
space, p is the number of inequality constraints, gi (x) rep-
resents the i th inequality constraints, (q − p) is the number
of equality constraints, and hi (x) represents the (i − p)th
equality constraints. The degree of constraint violation of x
at the i th constraint is calculated as

CVi (x) =
{
max(0, gi (x)), if i ≤ p

max(0, |hi (x) − η|), otherwise
, i = 1, 2, . . . , q,

(2)

where η is a sufficiently small positive value (e.g., η = 10−4)
for relaxing the equality constraints to inequality constraints.
The overall constraint violation value of x is calculated as

CV(x) =
q∑

i=1

CVi (x), (3)

then x is feasible if CV(x) = 0; otherwise, it is infeasi-
ble. Suppose two feasible decision vectors xu and xv , if
any fi (xu) ≤ fi (xv), and there is at least one dimension
fi (xu) < fi (xv), then xu is said to Pareto-dominate xv ,
denoted as xu ≺ xv .

A feasible solution is called Pareto-optimal when no other
feasible solution dominates it. The set of all Pareto-optimal
solutions in the search space is the Pareto set (PS). The image
of all Pareto-optimal solutions in the objective space is the
Pareto front (PF).

Compared with unconstrained MOPs, CMOPs are more
challenging and have receivedmore attention in recent years.
The critical to solve CMOPs is to effectively balance feasi-
bility, convergence, and diversity [19]. As a result, a number
of novel algorithms have recently emerged. A common fea-
ture of such algorithms is the transformation of the original
CMOPs to make better use of the potential information in
the search space and to avoid the difficulties encountered in
solving the original CMOPs directly [19]. Some scientists are
motivated to solveCMOPs usingmulti-stage evolutionmeth-
ods. They tend to promote different performance at different
stages of the algorithm, generally achieving fast convergence
before considering feasibility and diversity, proposing algo-
rithms, such as ToP [20], PPS [13], and CMOEA-MS [31].
Some scientists try to preserve infeasible solutions in the

search process and extract useful genetic information from
the infeasible ones to generate more diversified solutions.
Along this line of research, many CMOEAs with multi-
population cooperation methods have been proposed; for
example, C-TAEA [18], CCMO [30], and Bico [21].

However, these algorithms also have certain drawbacks. It
is difficult to design an effective transformation technique to
guarantee the equivalence with the original problem. [14, 19]
If the problem transformation mechanism is not reasonable,
the algorithm performance will degrade dramatically due to
the deviation of the transformed problem from the original
one. The specific indication in multi-stage algorithms it that
it may cause populations stuck in local optimums, especially
when feasible regions are narrow or poorly distributed in the
search space. In the case of multi-population algorithms, it is
that too much attention to the transformed problem may lead
to the waste of computational resources and poor feasibility
when the PF of the transformed problem differs significantly
from that of the original problem.

In this paper, to fully and efficiently explore the solu-
tion space and to better balance convergence and diver-
sity, we combine multi-stage strategy and multi-population
strategy, and propose a novel constrained multi-objective
optimization evolutionary algorithm based on three-stage
multi-population coevolution (CMOEA-TMC). The main
contributions of CMOEA-TMC are listed as follows:

1. To address the problem that the single population is
prone to fall into the local optimum, we propose a
multi-population method that includes both parallel evo-
lution and coevolution. (1) The main population, called
mainPop, is divided into several subpopulations that
evolve using the coarse-grained parallel algorithm to
speed up convergence and perform global searches and
(2) the helper population, called helpPop, is to better
maintain diversity by providing information of infeasible
solutions withmainPop during offspring generation and
cross-evolution.

2. A novel three-stage strategy is designed to improve search
efficiency and ensure solution feasibility. In the first stage,
it focuses on fast convergence and global search by divid-
ing subpopulations. In the second stage, it focuses on
the independent evolution of subpopulations, which can
maintain the diversity of solution sets. In the third stage,
extreme value mining is performed to find global optimal
solutions.

3. A novel algorithm named CMOEA-TMC is proposed.
The combination of multi-population and multi-stage
strategies allows the transformed problem to be as con-
sistent as possible with the original ones and results
in better overall performance of the algorithm. System-
atic experiments on three sets of benchmark functions
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and a real-world case demonstrate the effectiveness of
CMOEA-TMC.

The rest of this article is organized as follows. The section
“Related work” overviews the state-of-the-art evolutionary
approaches developed for CMOPs. The section “The pro-
posed algorithms: CMOEA-TMC” describes the details of
CMOEA-TMC. Afterward, in the section “Experimental
research”, we compare CMOEA-TMC with five advanced
CMOEAs on 33 benchmark problems and a real-world boiler
combustion optimization problem, showing the competitive-
ness of CMOEA-TMC. Finally, the section “ Conclusion”
concludes this article.

Related work

In the early days, scientists first focus on multi-objective
optimization problems (MOPs) without constraints. The
optimization algorithms for MOPs can be classified into two
categories: traditional algorithms and intelligent algorithms
[10]. Traditional algorithms include the weighting method,
the constraint method, and the linear programming method
[10]. For example, the weighting method refers to assign-
ing appropriate weighting factors to the different objectives
in a multi-objective problem according to their importance,
and then summed up as a new objective function. Traditional
algorithms always transform a multi-objective problem into
a single-objective problem, in which only one solution can
be obtained in each optimization, resulting in poor diversity
[3]. Intelligent algorithms mainly refer to evolutionary algo-
rithms (EAs), which iterate in the unit of population and can
handle large, complex search spaces. These methods pro-
duce a set of solutions in a single run and are better suited to
multi-objective optimization needs [4]. Considering the high
robustness and broad applicability of EAs, it has been recog-
nized as an efficient approach to solvingMOPs [32]. Over the
past 2 decades, many EAs, such as genetic algorithm (GA)
[6], differential evolution (DE) [27], and particle swarm opti-
mization (PSO), [11] have been applied, and multi-objective
evolutionary algorithms (MOEAs) have performed well in
solving variousMOPs.Many scientists have studiedMOEAs
andmade some improvements, such as domination-basedEA
[9, 36], decomposition-based EA [16, 37], indicator-based
EA [35, 39], etc.

Over the last 2 decades, many constraint handling tech-
niques (CHTs) have been proposed for constrained problems.
They are constrained dominance principle (CDP) [9], penalty
function methods [34], and ε-constrained methods [28]. Of
these, CDP is the most widely used one because of its effi-
ciency and simplicity. These CHTs are usually utilized to
solve single-objective optimization problems and can be
used to solve CMOPs by extension or modification. For

example, Deb et al. [9] proposed the famous NSGA-II-
CDP,which incorporatesCDP intoNSGA-II for environment
selection. Fan et al. [12] proposed an angle-based CDP algo-
rithm (MOEA/D-ACDP), which takes advantage of classical
Pareto to compare infeasible solutions within a given angle.
However, these methods still have some limitations, because
they use relatively simple constraint information. They also
have difficulty in achieving good results when dealing with
types of problems, such as low feasible domains, strong con-
straints, and discontinuous PF. Therefore, there is a need
to propose improved algorithms that are more applicable to
CMOPs.

In recent years, to solve CMOPs more efficiently, many
researchers try to transform CMOPs into other problems,
such as multi-stage optimization problems or collaborative
optimization problems. This can assist the population to dis-
cover some potential information during the evolutionary
process and to converge better.

Multi-stage optimization generally involves dividing the
optimization process into multiple stages, with different
CHTs or different objects being optimized in different stages.
Back in 2013, Miyakawa et al. [25] proposed a new CMOEA
based on a two-stage non-dominated solution ranking. In
the first stage, the degree of constraint violation for each
constraint is considered as an objective function, and the
whole population is classified into several fronts by non-
dominated ranking based on the constraint violation values.
In the second stage, each obtained front is reclassified by an
undominated ranking based on the objective function value,
and the parent population is selected from it. Miyakawa
et al. claimed that feasible solutions with better objective
functions can be found using this two-stage non-dominated
ranking. Liu and Wang [20] proposed a two-stage frame-
work called ToP for dealing with CMOPs with complex
constraints. ToP is divided into two stages, the uniqueness of
which is its first stage, where the CMOP is transformed into
a constrained single-objective optimization problem using
a weighted summation method. CDP is used to deal with
the constraints, aiming at finding promising feasible regions
and fast convergence, while the second stage is solved using
common CMOEAs, such as NSGA-II and CMOEA/D. Fan
et al. [13] embed the push–pull search (PPS) framework into
CMOEA/D. PPS is also divided into two stages: in the push
stage, only the objective function is considered for the search
to approximate the unconstrained PF; in the pull stage, an
improved CMOEA is used to pull the infeasible individu-
als obtained in the push stage to the feasible non-dominated
regions. Tian et al. [31] devised a two-stage evolutionary
algorithm, called CMOEA-MS, in which one stage helps the
population to reach the feasible regions and the other stage
allows the population to spread along the feasible boundaries.
Furthermore, according to the status of the population, the
algorithm can adaptively switch between the two stages.
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Coevolution refers to the evolutionary technology in
which multiple objects carry out the collaborative search
through certain mechanisms and strategies, such as multi-
population, multi-algorithm, and multi-strategy integrated
evolution. When applied to CMOPs, multi-population and
multi-constraint processing is mostly used. Li et al. [18] pro-
posed a two-archive evolutionary algorithm (C-TAEA). It
maintains two archives simultaneously: (1) a convergence-
oriented archive (CA), which optimizes constraints and
objectives, and (2) a diversity-oriented archive (DA), which
optimizes only objectives. The two populations cooperate
with each other in the mating selection and environmen-
tal selection. CCMO [30] is a coevolutionary algorithm that
simultaneously computes two objective problems, the origi-
nal problem and the helper problem. Typically, the original
problem in CCMO is solved by population 1. The helper
problem is defined as the original problem with constraints
removed and is solved by population 2. Coevolution is
achieved by sharing offspring between the two populations.
Liu et al. [21] designed a novel bidirectional coevolution-
ary algorithm using both the main population and archive
population. Specifically, the main population maintains the
feasibility of the solution set and moves from the feasible
side to the PF, while the archive population uses the angle
information to maintain the diversity of the solution set and
approach the PF from the infeasible side.

In view of the effectiveness of multi-stage algorithms
and coevolutionary algorithms in dealing with CMOPs,
some optimization algorithms that combine the two strate-
gies have been produced recently. Fan et al. [14] improved
CCMOby proposing a two-stage coevolutionary constrained
multi-objective optimization evolutionary algorithm (TSC-
CMOEA), which switches to the second stage when the
rate of population change is too small during coevolution,
discarding the helper problem and keeping only the main
population evolving, thus saving computational resources
and enhancing the convergence of the population. Ming et
al. [24] proposed a new method with dual stages and dual
populations, called DD-CMOEA. Specifically, the dual pop-
ulations are mainPop and aux Pop, which evolve with
and without considering constraints, respectively. The dual
stages are exploration and exploitation, focusing on extensive
search for solutions with good objective values in the explo-
ration stage and convergence to the true PF in the exploitation
stage.

The proposed algorithms: CMOEA-TMC

Main framework of CMOEA-TMC

To overcome the current CMOEAs’ difficulty in effectively
balancing feasibility, convergence, and diversity, this paper

proposed a novel algorithm—CMOEA-TMC. As outlined
in Fig. 1, the proposed CMOEA-TMC has three stages:
fast convergence stage, diversity maintenance stage, and
extremum mining stage. It is worth noting that the pro-
posed algorithm contains two archives: the main population
(calledmainPop) and the help population (called helpPop).
mainPop is used to search for the constrained PF through-
out the process, and helpPop searches for the unconstrained
PF in the first and second stages.

Algorithm 1 Procedure of CMOEA − T MC
Input: a CMOP, the number of optimization goals M , the subpopula-

tion size N , the current number of function evaluations FE , and the
maximum number of function evaluations maxFE

Output: the final mainPop
1: Pop(k) ← RandomInitiali zation(N )

2: mainPop ← Pop(1) ∪ ... ∪ Pop(M) ∪ Pop(M + 1)
3: helpPop ← RandomInitiali zation(N )

4: while FE < maxFE do
5: if CMOEA − T MC is in the first stage then
6: Problem ← Transform a CMOP into (M+1) single-objective

optimization problems according to Eq. (4)
7: for k = 1 to M + 1 do
8: Produce O f f (k) from Pop(k) and helpPop using DE

operators
9: Update Pop(k) using the constrained dominance principle
10: end for
11: mainPop ← Pop(1) ∪ ... ∪ Pop(M) ∪ Pop(M + 1)
12: Produce O f f (help) from helpPop using GA operators
13: Update helpPop using the fitness evaluation strategy
14: else if CMOEA − T MC is in the second stage then
15: Problem ← Use the original CMOP
16: for k = 1 to M + 1 do
17: Produce O f f (k) from mainPop and helpPop using GA

operators
18: Update Pop(k) by discovering the non-dominated feasible

solutions
19: end for
20: mainPop ← Pop(1) ∪ ... ∪ Pop(M) ∪ Pop(M + 1)
21: Produce O f f (help) from helpPop andmainPop using GA

operators
22: Update helpPop using the fitness evaluation strategy
23: else
24: Produce O f f (main) from mainPop using GA operators
25: UpdatemainPop by discovering the non-dominated feasible

solutions
26: end if
27: end while
28: return mainPop

Algorithm 1 gives the pseudocode of CMOEA-TMC. In
the first stage, the algorithm transforms the CMOP into mul-
tiple single-objective problems by setting different weight
vectors, so as to achieve task partitioning of the complex
problem. The detailed transformation process is described in
the section “The first stage: fast convergence”. mainPop is
also divided into multiple subpopulations and evolves using
the coarse-grained parallel algorithmwhich has strong global
search capability and achieves fast convergence. In addition,
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Fig. 1 The framework of
CMOEA-TMC

the guidance information provided by helpPop tomainPop
ensures that the population canmaintain gooddiversity. In the
second stage,mainPop changes to use the original CMOPas
the objective function, which is beneficial to obtaining more
high-quality feasible solutions. Meanwhile, the subpopula-
tions in mainPop maintain independent evolution, so that
all candidate solutions obtained in the first stage continue to
converge to more promising feasible domains, maintaining
the diversity of the solution set. In the third stage, the indi-
viduals of all subpopulations in mainPop are aggregated
together to optimize for the global optimal solution. And,
helpPop no longer provides additional information, as we
consider it more important to focus on the constrained PF
in this stage. These three stages are further explained in the
sections “The first stage: fast convergence”–“The third stage:
extremum mining”.

It is worth emphasizing that to compare the performance
of different solutions, CDP is applied to the environment
selection. The definition of CDP is as follows. Given two

decision vectors xu and xv , xu is said to constraint-dominate
xv if one of the following conditions is satisfied:

(1) both xu and xv are infeasible, and CV(xu) ≤ CV(xv);
(2) xu is feasible, yet xv is infeasible;
(3) both xu and xv are feasible, and xu ≺ xv .

In general, CDP can motivate the population to approach
or enter the feasible region promptly, because feasible solu-
tions are always selected before infeasible solutions in
environmental selection.

The first stage: fast convergence

Considering the fact that CMOEAs need to balance multiple
objective functions, the convergence speed is inevitably slow,
which presents a major challenge for solving CMOPs with a
wide objective space. Therefore, this paper considers trans-
forming a CMOP into multiple constrained single-objective
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optimization problems by weighted summation, and solves
it using the coarse-grained parallel evolutionary algorithm,
that is, a subpopulation in mainPop focuses on one of the
single-objective problems. Handling with a single-objective
optimization problem with constraints is much easier than
handling with a multi-objective optimization problem with
constraints. Although each subpopulation can only approach
some local solutions in the PF of the original problem, the
global search ability and convergence performance of the
population are significantly improved. Setting appropriate
weight vectors and ending conditions can keep the algo-
rithm with good convergence and diversity, and provide
high-quality initial solutions for subsequent optimization.

Thus, a CMOPwith M objective functions is transformed
into (M+1) constrained single-objective optimization prob-
lems

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min

{
f

′
k (x) = f1(x)+···+(ω+1) fk (x)+···+ fM (x)

M+ω
, k = 1, . . . , M

f
′
k (x) = f1(x)+···+ fM (x)

M , k = M + 1

s.t. x ∈ S

gi (x) ≤ 0, i = 1, . . . , p

hi (x) = 0, i = p + 1, . . . , q,

(4)

whereω is set to 2 based on the sensitivity analysis in the sec-
tion “Sensitivity analysis of parameters in CMOEA-TMC”.
Since we only change the objective function and keep the
constraints unchanged, Eqs. (1) and (4) share the same fea-
sible regions.

The benefits of multi-population strategy are explained
below. As shown in Fig. 2, candidate solutions of single
population are likely to be distributed in the center of the
true PF, which leads it to potentially ignore solutions at the
edges of the PF. As shown in Fig. 2, candidate solutions of
multi-population may be evenly distributed across different
locations of the true PF, which makes the expansion of the
population distribution easier.

Next, the implementation details of the first stage are
explained in two parts: (1) update procedure and (2) switch-
ing condition.

(1) Update procedure In the first stage, for mainPop,
we need it to converge quickly to the true PF, so differen-
tial evolution (DE) is considered as the search engine. The
pseudocode is presented in Algorithm 2.

We employ three popular generation strategies to generate
offspring:

(a) DE/current-to-rand/1:

ui = xi + F ∗ (xr1 − xi ) + F ∗ (xr2 − xr3). (5)

(b) DE/rand-to-best/1/bin:

vi = xr1 + F ∗ (xbest − xr1) + F ∗ (xr2 − xr3) (6)

Algorithm 2 Evolution of subpopulation ofmainPop in the
first stage
Input: Pop(k, t)=(x1, x2, ..., xN ), helpPop(t)
Output: Pop(k, t + 1)
1: Pop(k, t + 1) = ∅
2: for i = 1 : N do
3: if rand < 0.4 then
4: Generate the trial vector ui according to DE/current-to-rand/1
5: else if rand < 0.8 then
6: Generate the trial vectorui according toDE/rand-to-best/1/bin
7: else
8: Generate the trial vector ui according to DE/current-to-best/1
9: end if
10: Employ the feasibility rule to compare ui and xi , and store the

better one into Pop(k, t + 1)
11: end for
12: return Pop(k, t + 1)

ui, j =
{
vi, j if rand j < CR or j = jrand
xi, j else.

(7)

(c) DE/current-to-best/1:

ui = xi + F ∗ (xhelpbest − xi ) + F ∗ (xr1 − xr2), (8)

where vi is the i th mutant vector, ui is the i th trial vector,
r1, r2, and r3 are three mutually distinct integers chosen at
random from [1, N ], xbest denotes the individual with the
smallest objective function value in the current subpopula-
tion, xhelpbest denotes the best individual of helpPop, rand j

is a random number in [0, 1], jrand is a random integer in
[1, D], F is the scaling factor, andCR is the crossover control
parameter. In addition, as suggested by [20] and [33], F and
CR are randomly chosen from the scaling factor pool (i.e.,
Fpool = [0.6, 0.8, 1.0]) and the crossover control parameter
pool (i.e., CRpool = [0.1, 0.2, 1.0]), respectively.

In DE/current-to-rand/1, xi learns information from other
randomly selected individuals, which facilitates the expan-
sion of the global search. In DE/rand-to-best/1/bin, informa-
tion about the best individual in the current subpopulation
is used. Note that xbest in Eq. (6) is determined based on
the transformed objective function f

′
k . Before the population

enters the feasible region, xbest is similar to the randomly
selected individual. After the population enters the feasible
region, the population can be guided toward the optimal solu-
tion by xbest. In DE/current-to-best/1, information about the
optimal individual in helpPop is used. In general, helpPop
converges more quickly to the unconstrained PF, and if
there is an infeasible region between xhelpbest and mainPop,
mainPop has the opportunity to cross the infeasible region
and be led to a more convergent feasible region. Overall,
these three variantsmake good use of information about local
and global optimum, allowing the evolution of populations
to better balance convergence and diversity.
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Fig. 2 Extending the
distribution of mainPop using
different population settings

(a) Single-population (b) Multi-population

For helpPop, we use the GA operator for optimization
and environmental selection based on the fitness evaluation
strategy proposed in SPEA2 [41].

(2) Switching condition If we perform a large num-
ber of fitness evaluations in the first stage, all individuals
in mainPop are likely to converge to the optimal solution
of the transformed single-objective problems, which would
result in the lack of diversity. To obtain high-quality feasi-
ble solutions that are close to the PF of the original CMOP
but maintain good diversity, we have designed the following
three conditions to ensure that the evolution of subpopulation
can be terminated early.

(a) Feasibility condition: Following the suggestion in [20],
the feasibility proportion of the current subpopulation is
larger than 1/3.

(b) Convergence condition: Suppose that fmax, j and fmin, j

represent the maximum and minimum values of the j th
objective function among all feasible solutions found in
the current subpopulation, respectively. Then, the j th
objective function of each individual is normalized as

f j (i) = f j − fmin, j

fmax, j − fmin, j
. (9)

Subsequently, we add up all the normalized objective
function values

f ′
(i) =

M∑

j=1

f
′
j (i). (10)

Finally, we rank the feasible solutions from smallest to
largest according to f ′

(i). The convergence index (δcon)
is defined as the maximum difference of f ′

(i) among the
first 1/2 feasible solutions

δcon = f ′
(median) − f ′

(1). (11)

If δcon is less than 0.2, the convergence condition is
regarded to be satisfied.

(c) Diversity condition: Suppose that fmedian, j and fmin, j

represent the median and minimum values of the j th
objective function among all feasible solutions found in
the current subpopulation during evolution, respectively.
The diversity index δdiv is defined as

δdiv = min

(
fmedian, j − fmin, j

fmin, j + 1e−5

)

. (12)

If δdiv is less than 0.1, the diversity condition is regarded
to be satisfied.

The purpose of the feasibility condition is to ensure that
some feasible individuals have been obtained. The con-
vergence condition indicates that some feasible solutions
gradually converge to a small region, and the diversity con-
dition indicates that some feasible solutions are relatively
dispersed, rather than having converged to a small point.
Therefore, for each subpopulation in mainPop, the first
stage should terminate when the feasibility condition is sat-
isfied and the convergence or diversity condition is met, thus
ensuring convergence of the feasible solution and preventing
loss of diversity.

When all subpopulations satisfy the above switching con-
dition, the first stage of CMOEA-TMC ends and the second
stage starts.

The second stage: diversity maintenance

Although we have found promising feasible solutions in the
first stage, the performance of the population still needs
to be improved. On the one hand, since we only use part
of the feasible solutions in subpopulations of mainPop to
measure the termination conditions in the first stage, it is pos-
sible that some individuals are far from the Pareto-optimal
solution. On the other hand, due to the lack of an explicit
diversity maintenance mechanism in single-objective opti-
mization, the population is slightly less diverse across the PF.
As shown in Fig. 3, the set of candidate solutions in Pop(2)
is far away from the constrained PF, and some solutions in
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Pop(2) are dominated by solution A in Pop(1) and solution
B in Pop(3). Without diversity maintenance, these solutions
may enter the region where Pop(1) or Pop(3) is located, as
circled in Fig. 3. We expect the diversity and convergence of
mainPop to be further enhanced in the second stage, with a
distribution as shown in Fig. 3 in the ideal state.

Therefore, in this stage, we consider using the original
CMOP to further optimize for the high-quality candidate
solutions generated based on the first stage, to obtain a series
of feasible solutions that are well distributed and converge
well. Drawing on the ideas of CCMO [30], the coevolution
of mainPop and helpPop is carried out in a weak coop-
eration by sharing the offsprings, to enable them have the
opportunity to jump out of the infeasible region and evolve
toward the global PF. The pseudocode for the second stage
is presented in Algorithm 3.

Algorithm 3 Evolution of mainPop and helpPop in the
second stage
Input: mainPop(t), helpPop(t)
Output: mainPop(t + 1), helpPop(t + 1)
1: mainPop(t + 1) = ∅
2: helpPop(t + 1) = ∅
3: for i = 1 : M + 1 do
4: Parent1 ← Select 3N/5 parents from Pop(i, t)
5: Parent2 ←Select N/5parents from the remainingmainPop(t)

except Pop(i, t)
6: Parent3 ← Select N/5 parents from helpPop(t)
7: O f f 1 ← Generate 3N/5 offsprings based on Parent1 using

GA operators
8: O f f 2 ← Generate N/5 offsprings based on Parent2 using GA

operators
9: O f f 3 ← Generate N/5 offsprings based on Parent3 using GA

operators
10: Population1 ← Pop(i, t) ∪ O f f 1 ∪ O f f 2 ∪ O f f 3
11: Pop(i, t + 1) ← Select N solutions from Population1 by the

environmental selection
12: end for
13: mainPop(t+1) ← Pop(1, t+1)∪Pop(2, t+1)∪...∪Pop(M+

1, t + 1)
14: Parent4 ← Select 4N/5 parents from helpPop(t)
15: Parent5 ← Select N/5 parents from mainPop(t)
16: O f f 4 ← Generate 4N/5 offsprings based on Parent4 using GA

operators
17: O f f 5 ← Generate N/5 offsprings based on Parent5 using GA

operators
18: Population2 ← helpPop(t) ∪ O f f 4 ∪ O f f 5
19: helpPop(t + 1) ← Select N solutions from Population2 by the

environmental selection
20: return mainPop(t + 1), helpPop(t + 1)

In addition, we also set a switching condition for the sec-
ond stage. When the number of function evaluations reaches
60% of the set maxFE, the second stage of CMOEA-TMC
ends and the third stage starts.

The third stage: extremummining

After the second stage, we have obtained a series of well-
distributed and convergent feasible solutions, but the inde-
pendent evolution of multiple subpopulations has led to the
possibility of some dominant solutions among the generated
feasible solutions. Therefore, in the third stage, all subpopu-
lations of mainPop are combined and compete together for
extremum mining. It is worth mentioning that because the
helper problem can no longer support mainPop well, we
discard helpPop in the third stage to save the computational
resources.

Dynamic� strategy for equation constraints

For equation constraints in CMOPs, we introduce a very
small positive value eta to relax equation constraints to
inequality constraints. The value of η has a large impact on
the convergence of the algorithm. If η takes a larger value, the
convergence is usually better, but it also leads to a large dif-
ference between the optimized solution and the true solution.
if η takes a small value, some infeasible solutions that are par-
tially close to the feasible region may be discarded, because
the equation constraints are not satisfied, thus affecting the
convergence. Therefore, a dynamic η strategy is used, with η

taking a slightly larger value in the early evolution, relaxing
the stringency of the constraints on equations in the expecta-
tion of finding more promising solution sets, and gradually
decreasing to an accepted value in the late evolution.

The specific dynamic adjustment formula for η is as

η =

⎧
⎪⎨

⎪⎩

0.001 − (log 1
5maxFEFE)

×(0.001 − 0.0001), FE ≤ 1
5maxFE

0.0001, FE > 1
5maxFE,

(13)

where FE represents the current number of function eval-
uations and maxFE represents the maximum number of
function evaluations set by the user.

Effectiveness analysis of CMOEA-TMC

To analyze the effectiveness and mechanism of CMOEA-
TMC, we show the early, middle, and last population dis-
tribution of CMOEA-TMC on 2-objective MW11 in Fig. 4.
The gray surfaces denote the feasible regions of the problem,
and the black and red lines denote the unconstrained PF and
constrained PF, respectively.

As shown in the first column of Fig. 4, the population
of ToP converges quickly but can only converge to a single
feasible region in the early generations and cannot spread to
the other feasible regions at last. For MW11 which has three
small feasible regions, ToP with only one population has a
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(a) After the first stage (b) Without diversity mainte-
nance

(c) With diversity maintenance

Fig. 3 Comparison of population distribution without and with diversity maintenance

Fig. 4 Populations in the early, middle, and last generations of ToP, CCMO, and CMOEA-TMC on 2-objective MW11

lack of diversity maintenance. CMOEA-TMC and CCMO
behave similarly in the early generations. They both have
two populations, one considering constraints and the other
not considering constraints. However, helpPop of CMOEA-

TMC converges faster in the early stage, which greatly
helps mainPop to perform global search and thus main-
tain diversity. Population2 of CCMO converges slower
than Population1, which may lead to the inability to pro-
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vide useful information to Population1 during coevolution,
and therefore, offsprings are mainly generated based on
Population1.

In the middle generation, CMOEA-TMC evolves inde-
pendently in three small feasible regions while generating
offsprings located in infeasible regions. This indicates that
mainPop and helpPop collaborate effectively and that
CMOEA-TMC has the opportunity to spread across infea-
sible regions into feasible ones in the presence of dispersed
feasible regions. In contrast, although CCMO also carries
out cooperation between the two populations, the offsprings
are mainly generated based on Population1, and thus, it has
difficulty in accessing the previouslymissed feasible regions.

Throughout the evolutionary process, CMOEA-TMC
explores the search spacemore fully. Finally, CMOEA-TMC
obtains well-diversified final solutions and shows its strong
performance.

Computational complexity of CMOEA-TMC

For CMOEA-TMC, there are three stages: the first stage is
DE evolution of subpopulations, the second stage is GA evo-
lution of subpopulations, and the third stage is overall GA
evolution. Let us denote the subpopulation size, the number
of subpopulations, the population size, the number of objec-
tives, and the dimension of decision vectors by N , M + 1,
Q, M , and D, where Q = N × (M + 1).

(1) Time complexity In the first stage, for each sub-
population, the time complexities of evolutionary variation,
crossover, and environmental selection are O(ND), O(N ),
and O(N ), respectively. Thus, the overall time complexity is
(M + 1)× (O(ND)+ O(N )+ O(N )) = O(MND). In the
second stage, for each subpopulation, the time complexities
of mating selection, genetic operators, and environmental
selection are O(N ), O(ND), and O(MN 2), respectively.
In general, O(MN 2) > O(ND), so the overall time com-
plexity is (M + 1) × O(MN 2) = O(M2N 2). In the third
stage, the entire population Q undergoes GA evolution. The
time complexities of mating selection, genetic operators, and
environmental selection are O(Q), O(QD), and O(MQ2),
respectively, where O(MQ2) is usually the largest. Thus, the
time complexity of the third stage is O(MQ2) = O(M3N 2).

In summary, the time complexity of three stages of
CMOEA-TMC is O(MND), O(M2N 2), and O(M3N 2),
respectively. Some comparison algorithms that use GA oper-
ators, such as CCMO and C-TAEA, usually have a time
complexity of O(M3N 2), so the proposed algorithm has an
advantage in the first and second stages and can result in a
smaller time cost.

(2) Space complexity The memory consumption of
CMOEAs is concentrated in the storage of the parent
and offspring populations. CMOEA-TMC needs to store
mainpop and offspring population, each of which takes up
O(DQ) space. In the first stage, the transformed single-
objective problem is used for performance comparison, so
the space used to store the objective values and constraint
violation values is O(Q) and O(Q), respectively. In the
second and third stages, the space used for storing the
objective values and constraint violation values is O(MQ)

and O(Q), respectively. Considering the different stages
together, the overall space complexity of CMOEA-TMC is
O(DQ) + O(MQ) + O(Q). The space complexity and the
population size are closely correlated, because the different
algorithms mainly store the parent and offspring popula-
tion information in each iteration. When the population size
is fixed, the differences in space complexity among differ-
ent algorithms are small. For CMOEA-TMC, no additional
storage content is introduced, so its space complexity is
approximate to that of the comparison algorithms.

Experimental research

Test sets and parameters setting

To systematically evaluate the performance of CMOEA-
TMC, three benchmark problem test suites are employed
to compare CMOEA-TMC with other four CMOEAs. Test
suites are DOC, MW, and CF. To be specific, DOC is a
recently proposed test suite that contains both decision and
objective constraints, and it also contains both inequality and
equality constraints.MWis also a recently proposed test suite
that covers various features, such as small feasible regions,
high dimensional decision space, and so on. As a classic test

Table 1 Parameter settings of
the test sets

Test set Objective number Population size maxFE

DOC DOC1–DOC7 2 150 300,000

DOC8, DOC9 3 200 300,000

MW MW1–3, 5–7, 9–13 2 150 300,000

MW4,8,14 3 200 300,000

CF CF1–CF7 2 150 100,000

CF8–CF10 3 200 100,000
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suit, the CF test suit has nonlinear, discontinuous PF. The
detailed description of these three test suits can be found in
their original paper [20, 23, 38]. Table 1 shows parameter
settings of the test sets used.

For CMOEA-TMC, we set ω, δcon, and δdiv to 2, 0.2, and
0.1 based on parameter sensitivity experiments in the section
“Sensitivity analysis of parameters in CMOEA-TMC”, and
these values showed the best performance. For performance
comparison, we consider five advanced CMOEAs, which
are ToP, PPS, CCMO, RVEA, and C-TAEA. The parame-
ters of all the compared algorithms are set as suggested in
their original papers [2, 13, 18, 20, 30]. For the ToP frame-
work, it is embeddedwith the constrainedNSGA-IIwhere the
first phase ends when the feasibility proportion Pf is larger
than 1/3 and the difference δ is less than 0.2. For the PPS
framework, it is embedded with the constrained MOEA/D,
where the parameter settings are α = 0.95, τ = 0.1,
cp = 2, and l = 20. Among these algorithms, ToP, PPS,
and CCMO use DE to generate offspring solutions, while C-
TAEA and RVEA employs the simulated binary crossover
[7] and polynomial mutation [8] for generating offspring
solutions. Besides, all the experiments in this paper were
conducted on the PlatEMO proposed in [29].

Performance indicators

To measure the performance of different algorithms, two
widely used metrics were employed in our experiments,
which can measure both convergence and diversity.

(1) InvertedGenerationalDistance (IGD) [1]:Assume that P
is the set of feasible solutions obtained from a CMOEA,
and P∗ is the set of points uniformly sampled along the
real PF, IGD is defined as

IGD(P, P∗) = 1

|P∗|
∑

z∗∈P∗
distance(z∗, P), (14)

where distance(z∗, P) is the Euclidean distance between
z∗ and the nearest point in P , and |P∗| is the total number
of points in P . It can be seen that calculating IGD needs
to know the real PF, and the smaller the IGD value, the
better the performance of a CMOEA.

(2) Hypervolume (HV) [40]: HV measures the volume
enclosedby P and a specified referencepoint in theobjec-
tive space, and it is defined as

HV(P) = VOL

(
⋃

x∈S
[ f1(x), zr1] × · · · × [ fM (x), zrM ]

)

,

(15)

where VOL indicates the Lebesgue measure, and zr =
(zr1, . . . , z

r
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paper, the reference point is set to 1.1 times the lowest
point of the PF, so that it can be dominated by all the
feasible solutions in PF. It is worth noting that the larger
the HV value, the better the performance of a CMOEA.

Experimental results of DOC problems

On the DOC problem test set, Table 2 shows the average
and standard deviation of the IGD values for 30 independent
runs of ToP, PPS, CCMO, C-TAEA, RVEA, and CMOEA-
TMC on the DOC problem test set. Table 3 shows the
average and standard deviation of the HV values. In those
two tables, Wilcoxon’s rank-sum two-sided comparison [17]
at the 0.05 significance level is performed to test the sta-
tistical significance of the experimental results between two
algorithms. The two-sided Wilcoxon rank-sum test tests the
null hypothesis that the data from two samples are contin-
uously distributed samples with equal medians, against the
alternative that they are not. For convenience, “+”, “-”, and
“≈” denote that a peer CMOEA performs better than, worse
than, and similar to CMOEA-TMC, respectively. NaN indi-
cates that the algorithm failed to find feasible solutions.

As can be seen from Tables 2 and 3, CMOEA-TMC
clearly outperforms the other four compared algorithms on
the DOC test set, achieving the best results on eight of the
nine test problems, followed by CCMO, which achieves one
best result on DOC7. It is found that DOC7 contains fewer
constraints, and the helper population in CCMO can play
a greater role. The DOC test set contains decision space
constraints and objective space constraints, and the initial
distribution of the objective function is more divergent, so it
is more complex and difficult to solve. CMOEA-TMC shows
better convergence and diversity on this series of problems,
suggesting that the algorithm’s three-stage strategy and mul-
tiple subpopulations’ coevolutionary design are effective.

Figure 5 plots the performance of the six MOEAs on
the three test problems DOC1, DOC6, and DOC8, where
DOC1 and DOC6 are two-objective problems with contin-
uous and discontinuous feasible domains, respectively, and
DOC8 is a three-objective problemwith a discontinuous fea-
sible domain. In Fig. 5, the red line represents the true PF
and the blue points are the final solutions obtained by the
algorithm. It is clear that CMOEA-TMC exhibits the better
convergence in all three problems, while the other CMOEAs
still retain a large number of individuals far from the true
PF. The fast convergence rate of CMOEA-TMC is mainly
attributed to the single-objective evolution in the first stage
and the coevolution with helpPop, which makes it easier for
mainPop to skip the infeasible region and converge quickly.
For DOC6 and DOC8 with discontinuous feasible regions,
CMOEA-TMC shows better diversity than other CMOEAs,
which is attributed to the strategy of independent parallel
evolution of multiple subpopulations. Ta
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Fig. 5 True PF and final solutions achieved by each algorithm on DOC1, DOC6, and DOC8

Meanwhile, to verify the effectiveness of the dynamic η

strategy, the static η strategy and the dynamic η strategy run
30 times independently for the three problems of DOC3,
DOC5, and DOC7 with equation constraints, respectively.
The mean and standard deviation of the obtained IGD values
are calculated, and the final results using the static η strat-
egy and the dynamic η strategy are presented in Table 4.
The bolded data in Table 4 indicate the solution with the
smaller IGD value obtained under the same algorithm for the
same test problem with equation constraints, in both cases
with static η strategy and the dynamic η strategy. It can be
seen that IGD values of compared algorithm decreased with
the dynamic η strategy, except for the case where no feasible
solution is obtained resulting in anNaN IGDvalue.After per-
forming the two-sided Wilcoxon rank-sum test on the data,
the IGD values of the static η strategy are usually worse than
or similar to the IGD values of the dynamic η strategy, which
means that the convergence and diversity of algorithms are
improved after adopting the dynamic η strategy.

Based on the above analysis, we can see that the novel
multiple subpopulation parallel evolution method and three-
stage strategy of CMOEA-TMC have good results on the
DOC test set, and that the proposed dynamic η adjustment
strategy for equation constraints has some generality and can
improve the performance of CMOEA for CMOPs with equa-
tion constraints.

Experimental results of MW and CF problems

To further verify the validity of CMOEA-TMC,we usedMW
and CF test suites for performance testing. Table 5 shows
the average and standard deviation of the IGD values for 30

independent runs of ToP, PPS, CCMO, C-TAEA, RVEA, and
CMOEA-TMC on theMW and CF test problem sets, and the
HV results are presented in Table 6.

As shown in Tables 5 and 6, CMOEA-TMC achieves
the best results on 11 problems with 6 for C-TAEA, 4 for
PPS, 2 for RVEA, and 1 for CCMO. For the MW test
set, CMOEA-TMC and C-TAEA perform better, probably
because most of the MW functions have scattered and nar-
row feasible domains, so algorithms that are more concerned
with diversity have better results. CMOEA-TMC maintains
the uniform distribution of solution sets around the objective
space through parallel evolution of subpopulations, and C-
TAEA uses a diversity-oriented weighted vector method to
keep the diversity in each direction, both of them focusing
more on the maintenance of diversity in different directions.
For the CF test set, the algorithms with DE operators (PPS
and CMOEA-TMC) outperform other methods, because the
CF functions have low-dimensional decision variables and
discrete feasible regions, and DE may help to maintain good
diversity.

Figure 6 plots the performance of the six CMOEAs on the
three test problems MW5, MW12, and CF6. The red points
are the true PF, the blue points are the final solutions obtained
by each algorithm, and the gray areas represent the feasible
regions in the target space. For MW5with discontinuous and
small feasible regions, CMOEA-TMC shows better diversity
performance than other CMOEAs. For MW12 with feasi-
ble regions separated by infeasible regions, CMOEA-TMC
crosses the local optimum and evolves toward the true PF,
shows better convergence performance than other CMOEAs.
For CF6 with true PF in segments, CMOEA-TMC can fully
explore the target space and exhibits powerful performance.
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Therefore, it can be concluded that the proposedCMOEA-
TMChasbetter overall performance than comparedCMOEAs
when solving the benchmark CMOP, being able to bet-
ter balance convergence and diversity, precisely due to the
coevolution method and the three-stage algorithm design.

Sensitivity analysis of parameters in CMOEA-TMC

InCMOEA-TMC, there are three parameters (i.e.,ω, δcon and
δdiv) that have an impact on the performance of the algorithm.
ω determines theweight of different objective functionswhen
converting a multi-objective problem into a single-objective
problem. A large value of ω may cause subpopulations to
fall into local optimum, while a small value of ω may cause
overlapping search areas. δcon and δdiv determine when to
switch from the first stage to the second stage. A small value
of δcon or δdiv may result in the feasible solutions clustering
in a very small region. However, with a large value of δcon
or δdiv, the solution set may be far from the true PF when
the first stage ends. Therefore, we conducted the sensitivity
analysis of above three parameters.

We tested the performance on six test instances: DOC1,
DOC6, DOC8, MW5, MW12, and CF6. Their PFs have dif-
ferent characteristics and therefore can provide insight on
various aspects. We chose five differentω values: 1/2, 1, 2, 3,
4; four different δcon values: 0.1, 0.2, 0.3, 0.4; and four differ-
ent δdiv values: 0.05, 0.1, 0.15, 0.2. The average IGD values
of the algorithm over ten independent runs were used as the
evaluation criterion. The test results are shown in Figs. 7 and
8.

We can observe that, overall, CMOEA-TMC exhibits bet-
ter performance with ω = 2, δcon = 0.2 and δdiv = 0.1.
Therefore, in this paper, ω is set to 2, δcon is set to 0.2 and
δdiv is set to 0.1.

Experiments on computing performance

To verify the computing performance of CMOEA-TMC, the
average computation timeoffive comparative algorithmswas
counted. All experiments were performed on the computer
with an i7-10510U CPU, on the PlatEMO built in MATLAB
R2021b. Table 7 shows the average computation time spent
by each algorithm running on the test problems in each test
suit.

As shown in Table 7, for DOC and MW test suits,
CMOEA-TMC has the shortest computation time except for
RVEA. For CF test suite, the average computation time of
CMOEA-TMC is slightly larger than that of ToP and RVEA,
but much smaller than the other three algorithms. Therefore,
the proposed CMOEA-TMC is computationally efficient.
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Fig. 6 True PF and final solutions achieved by each algorithm on MW5, MW12, and CF6

Fig. 7 Average IGD values provided by CMOEA-TMC with different ω on DOC1, DOC6, DOC8, MW5, MW12, and CF6

Experimental results of real-world boiler
combustion optimization problem

After testing CMOEA-TMC’s performance in solving a
series of benchmark problems, this subsection examines
the performance of CMOEA-TMC and four comparison
CMOEAs on a real-world boiler combustion optimization
problem.

Power plant boilers have generated a lot of valuable his-
torical data over many years of operation, which can be used
to model the relationship between operating variables and
performance indicators. The model can be optimized under
specific constraints and the optimization results can provide
guidance for adjustments to the boiler combustion process,
thus improving the thermal efficiency and reducing the gen-
eration of pollutants.
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Fig. 8 Average IGD values provided by CMOEA-TMC with different combinations of δcon and δdiv on DOC1, DOC6, DOC8, MW5, MW12, and
CF6

Table 7 Mean time consumption (in seconds) of CMOEA-TMC and the peer CMOEAs on DOC, MW, and CF test suits

Problem ToP PPS CCMO C-TAEA RVEA CMOEA-TMC

DOC test suit 67.40 105.42 162.86 611.80 8.09 38.60

MW test suit 44.76 74.95 159.88 446.87 8.53 25.20

CF test suit 5.47 26.67 25.69 131.33 3.41 9.63

In our experiment, the gradient boosted decision tree
(GBDT) is used to model the operational data generated
during boiler combustion. The inputs to the model are 19
non-adjustable operational variables and16 adjustable opera-
tional variables, corresponding to variables, such as coal feed
and damper opening in boiler combustion. The outputs of the
model are four max–min normalized performance indicators
corresponding to the outlet temperatures of air preheaters A
and B and the NOx content of the inlet flue A and B. For the
training process of GBDT, we used 5466 offline historical
samples with the training data set of 5466 × 19. Adequate
historical data ensure the accuracy of GBDT, and an addi-
tional sample is used to test the performance of CMOEAs.
The training and testing process is performed offline.

The demand of the power plant is to reduce these four per-
formance indicators as much as possible to improve the coal
combustion efficiency.By analyzing the historical data, itwas
found that the dampers opening corresponding to the 2nd,
4th, 9th, 12th, 14th, and 16th operating variables fluctuated
very little, so the constraint was set to limit their optimization
range towithin 1%above and below the current sample value.

The boiler combustion optimization model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1 = GBDT1(v, x)

f2 = GBDT2(v, x)

f3 = GBDT3(v, x)

f4 = GBDT4(v, x)

s.t. x ∈ S

gi (x) ≤ 0, i = 2, 4, 9, 12, 16,

(16)

where v is the non-adjustable operational variables, and x is
the adjustable operational variables.

Table 8 lists the HV values obtained for the six com-
pared CMOEAs, where each CMOEA was run ten times
independently. The population size was set to 100, maxFE
was set to 10,000, and the reference point for calculating
HV was set to [1,1,1,1]. From Table 8, it can be seen that
CMOEA-TMC shows better overall performance than other
CMOEAs in boiler combustion optimization, obtaining the
best HV value. Figure 9 shows the results of some compared
algorithms on this real-world problem, where four objective
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Table 8 Mean and standard deviation of the HV values obtained by TOP, PPS, CCMO, C-TAEA, RVEA, and CMOEA-TMC for ten independent runs on boiler
combustion optimization

Problem ToP PPS CCMO C-TAEA RVEA CMOEA-TMC

Coal 1.0705e−1(1.44e−2)− 1.2200e−1(4.00e−3)− 1.2516e−1(6.17e−4)− 1.2593e−1(6.16e−3)≈ 1.2394e−1(4.05e−3)− 1.2899e−1(3.05e−3)

+/ − / ≈ 0/1/0 0/1/0 0/1/0 0/0/1 0/1/0

The best results are highlighted in bold

Fig. 9 Final solutions achieved by compared algorithm on real-world boiler combustion optimization problem

functions are reverse normalized to their actual values. The
solutions obtained by CMOEA-TMC converge better and
have smaller objective function values, which is more evi-
dent for the objective functions f2 and f4. Therefore, it can
be concluded that the usefulness of CMOEA-TMC is also
demonstrated in the real-world problem.

Conclusion

In this paper, a novel algorithm named CMOEA-TMC is
proposed for solving complex CMOPs. The combination of
parallel evolution, coevolution, and staging strategies better
balances the feasibility, convergence, and diversity of solu-
tion sets. In the first stage, the subpopulations in mainPop
evolve independently to achieve fast convergence. When the
subpopulations all converge to a small region, the algorithm
switches to the second stage, which enhances the collabora-
tion betweenmainPop and helpPop tomaintain population
diversity and promote convergence. When the number of
function evaluations reaches 60% of the set maximum, the
algorithm switches to the third stage to find the global optimal
non-dominated solutions.

The broad effectiveness of CMOEA-TMC is verified by
applying on the DOC, MW, and CF test suites as well as a
real-world problem in comparison with five advanced algo-
rithms, namely ToP, PPS, CCMO, RVEA, and C-TAEA.

Experimental results comparing with two-stage algorithms
ToP and PPS show that the proposed three-stage strategy
can help obtain solutions with better convergence. Experi-
mental results comparing with multi-population algorithms
CCMO and C-TAEA show that parallel evolution strategy
and coevolution strategy proposed in this paper can well
avoid populations from falling into local optimums. For
CMOPs with complex constraints, such as the DOC test suit,
the performance indicators of the proposed algorithm are
significantly better than that of other algorithms, and the com-
putation time is shorter. Therefore, CMOEA-TMC has good
performance in CMOPs and can be applied to real-world
problems. In addition, since good experimental results were
obtained on the various test problems, the same population
size specifications can be used for the new test problems. For
test problems with more than three objectives, a larger num-
ber of population size and iterations are likely to be required,
because more solutions are needed to cover the entire PF.
As the efficiency of the offspring generation improves, the
proposed algorithm will also have promising applications in
many-objective optimization problems.

Acknowledgements This work was supported in part by the National
Natural Science Foundation of China (NSFC) underGrant 61973269, in
part by the National Key Research and Development Program of China
under Grant 2019YFB1705502, in part by the Fundamental Research
Funds for the Central Universities (Zhejiang University NGICS Plat-
form), in part by the National Key Research and Development Program

123



674 Complex & Intelligent Systems (2024) 10:655–675

of China under Grant 2022YFE0198900, and in part by the Ningbo
Natural Science Foundation under Grant 2021J038.

Declarations

Conflict of interest All authors certify that they have no affiliations with
or involvement in any organization or entity with any financial interest
or non-financial interest in the subject matter or materials discussed in
this manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. BosmanPA,ThierensD (2003)The balance between proximity and
diversity in multiobjective evolutionary algorithms. IEEE Trans
Evol Comput 7(2):174–188

2. Cheng R, Jin Y, Olhofer M et al (2016) A reference vector guided
evolutionary algorithm for many-objective optimization. IEEE
Trans Evol Comput 20(5):773–791

3. Coello CC (1999) An updated survey of evolutionary multiobjec-
tive optimization techniques: state of the art and future trends. In:
Proceedings of the 1999 congress on evolutionary computation-
CEC99 (Cat. No. 99TH8406). IEEE, pp 3–13

4. CoelloCC (2006)Evolutionarymulti-objective optimization: a his-
torical view of the field. IEEE Comput Intell Mag 1(1):28–36

5. Cui Z, Zhang J, Wu D et al (2020) Hybrid many-objective particle
swarm optimization algorithm for green coal production problem.
Inf Sci 518:256–271

6. DeOliveira LL, FreitasAA,TinósR (2018)Multi-objective genetic
algorithms in the study of the genetic code’s adaptability. Inf Sci
425:48–61

7. Deb K, Agrawal RB et al (1995) Simulated binary crossover for
continuous search space. Complex Syst 9(2):115–148

8. Deb K, Goyal M et al (1996) A combined genetic adaptive search
(GeneAS) for engineering design. Comput Sci Inform 26:30–45

9. Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput
6(2):182–197

10. Deb K, Sindhya K, Hakanen J (2016) Multi-objective opti-
mization. In: Decision sciences. CRC Press, Boca Raton, pp
161–200. https://www.taylorfrancis.com/chapters/edit/10.1201/
9781315183176-12/multi-objective-optimization-kalyanmoy-
deb-karthik-sindhya-jussi-hakanen

11. Eberhart R, Kennedy J (1995) A new optimizer using particle
swarm theory. In: MHS’95. Proceedings of the sixth international
symposium onmicro machine and human science. IEEE, pp 39–43

12. FanZ, LiW,CaiX et al (2016)Angle-based constrained dominance
principle inMOEA/D for constrained multi-objective optimization
problems. In: 2016 IEEE congress on evolutionary computation
(CEC), pp 460–467

13. Fan Z, Li W, Cai X et al (2019) Push and pull search for solving
constrained multi-objective optimization problems. Swarm Evol
Comput 44:665–679

14. Fan C, Wang J, Xiao L et al (2022) A coevolution algorithm based
on two-staged strategy for constrained multi-objective problems.
Appl Intell. https://doi.org/10.1007/s10489-022-03421-7

15. Farzin H, Fotuhi-Firuzabad M, Moeini-Aghtaie M (2016) A
stochastic multi-objective framework for optimal scheduling of
energy storage systems in microgrids. IEEE Trans Smart Grid
8(1):117–127

16. Geng H, Xu K, Zhang Y et al (2023) A classification tree and
decomposition based multi-objective evolutionary algorithm with
adaptive operator selection. Complex Intell Syst 9(1): 579–596

17. Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statis-
tical methods. Wiley, Hoboken

18. Li K, Chen R, Fu G et al (2018) Two-archive evolutionary algo-
rithm for constrainedmultiobjective optimization. IEEETransEvol
Comput 23(2):303–315

19. Liang J, Ban X, Yu K et al (2022) A survey on evolutionary con-
strained multi-objective optimization. IEEE Trans Evol Comput.
https://doi.org/10.1109/TEVC.2022.3155533

20. Liu Z, Wang Y (2019) Handling constrained multiobjective opti-
mization problems with constraints in both the decision and
objective spaces. IEEE Trans Evol Comput 23(5):870–884

21. LiuZ,WangB,TangK (2021)Handling constrainedmultiobjective
optimization problems via bidirectional coevolution. IEEE Trans
Cybern. https://doi.org/10.1109/TCYB.2021.3056176

22. Long W, Dong H, Wang P et al (2023) A constrained multi-
objective optimization algorithm using an efficient global diversity
strategy. Complex Intell Syst 9(2): 1455–1478

23. Ma Z, Wang Y (2019) Evolutionary constrained multiobjective
optimization: test suite construction and performance comparisons.
IEEE Trans Evol Comput 23(6):972–986

24. MingM,Wang R, Ishibuchi H et al (2021) A novel dual-stage dual-
population evolutionary algorithm for constrained multi-objective
optimization. IEEE Trans Evol Comput. https://doi.org/10.1109/
TEVC.2021.3131124

25. Miyakawa M, Takadama K, Sato H (2013) Two-stage non-
dominated sorting and directed mating for solving problems with
multi-objectives and constraints. In: Proceedings of the 15th annual
conference on genetic and evolutionary computation, pp 647–654

26. Saravanan R, Ramabalan S, Ebenezer NGR et al (2009) Evolution-
ary multi criteria design optimization of robot grippers. Appl Soft
Comput 9(1):159–172

27. Storn R, Price K (1997) Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Global Optim 11(4):341–359

28. TakahamaT, Sakai S (2006)Constrained optimization by the ε con-
strained differential evolution with gradient-based mutation and
feasible elites. In: 2006 IEEE international conference on evolu-
tionary computation, pp 1–8

29. Tian Y, Cheng R, Zhang X et al (2017) PlatEMO: aMATLAB plat-
form for evolutionary multi-objective optimization. IEEE Comput
Intell Mag 12(4):73–87

30. Tian Y, Zhang T, Xiao J et al (2020) A coevolutionary framework
for constrained multiobjective optimization problems. IEEE Trans
Evol Comput 25(1):102–116

31. TianY,ZhangY,SuYet al (2021)Balancing objective optimization
and constraint satisfaction in constrained evolutionary multiobjec-
tive optimization. IEEE Trans Cybern 52(9):9559–9572

32. Vikhar PA (2016) Evolutionary algorithms: a critical review and its
future prospects. In: 2016 International conference on global trends
in signal processing, information computing and communication
(ICGTSPICC). IEEE, pp 261–265

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315183176-12/multi-objective-optimization-kalyanmoy-deb-karthik-sindhya-jussi-hakanen
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315183176-12/multi-objective-optimization-kalyanmoy-deb-karthik-sindhya-jussi-hakanen
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315183176-12/multi-objective-optimization-kalyanmoy-deb-karthik-sindhya-jussi-hakanen
https://doi.org/10.1007/s10489-022-03421-7
https://doi.org/10.1109/TEVC.2022.3155533
https://doi.org/10.1109/TCYB.2021.3056176
https://doi.org/10.1109/TEVC.2021.3131124
https://doi.org/10.1109/TEVC.2021.3131124


Complex & Intelligent Systems (2024) 10:655–675 675

33. Wang Y, Wang BC, Li HX et al (2015) Incorporating objective
function information into the feasibility rule for constrained evo-
lutionary optimization. IEEE Trans Cybern 46(12):2938–2952

34. Xia Z, Liu Y, Lu J et al (2020) Penalty method for constrained
distributed quaternion-variable optimization. IEEE Trans Cybern
51(11):5631–5636

35. Yang T, Zhang S, Li C (2021) A multi-objective hyper-heuristic
algorithm based on adaptive epsilon-greedy selection. Complex
Intell Syst 7(2):765–780

36. Yang F, Xu L, Chu X et al (2021) A new dominance relation based
on convergence indicators and niching for many-objective opti-
mization. Appl Intell 51(8):5525–5542

37. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary
algorithm based on decomposition. IEEE Trans Evol Comput
11(6):712–731

38. Zhang Q, Zhou A, Zhao S et al (2008) Multiobjective optimization
test instances for the CEC 2009 special session and competition.
University of Essex 264:1–30

39. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjec-
tive search. In: International conference onparallel problemsolving
from nature, pp 832–842

40. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms:
a comparative case study and the strength pareto approach. IEEE
Trans Evol Comput 3(4):257–271

41. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the
strength Pareto evolutionary algorithm. TIK-report 103

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	A novel three-stage multi-population evolutionary algorithm for constrained multi-objective optimization problems
	Abstract
	Introduction
	Related work
	The proposed algorithms: CMOEA-TMC
	Main framework of CMOEA-TMC
	The first stage: fast convergence
	The second stage: diversity maintenance
	The third stage: extremum mining
	Dynamic η strategy for equation constraints
	Effectiveness analysis of CMOEA-TMC
	Computational complexity of CMOEA-TMC

	Experimental research
	Test sets and parameters setting
	Performance indicators
	Experimental results of DOC problems
	Experimental results of MW and CF problems
	Sensitivity analysis of parameters in CMOEA-TMC
	Experiments on computing performance
	Experimental results of real-world boiler combustion optimization problem

	Conclusion
	Acknowledgements
	References




