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Abstract
Abstractive summarization (AS) aims to generate more flexible and informative descriptions than extractive summarization.
Nevertheless, it often distorts or fabricates facts in the original article. To address this problem, some existing approaches
attempt to evaluate or verify factual consistency, or design models to reduce factual errors. However, most of the efforts
either have limited effects or result in lower rouge scores while reducing factual errors. In other words, it is challenging
to promote factual consistency while maintaining the informativeness of generated summaries. Inspired by the knowledge
graph embedding technique, in this paper, we propose a novel cross-modal knowledge guided model (CKGM) for AS,
which embeds a multimodal knowledge graph (MKG) combining image entity-relationship information and textual factual
information (FI) into BERT to accomplish cross-modal information interaction and knowledge expansion. The pre-training
method obtains rich contextual semantic information, while the knowledge graph supplements the textual information. In
addition, an entity memory embedding algorithm is further proposed to improve information fusion efficiency and model
training speed. We elaborately conducted ablation experiments and evaluated our model on the Visual Genome, FewRel,
MSCOCO, and CNN/DailyMail datasets. Experimental results demonstrate that our model can significantly improve the FI
consistency and informativeness of generated summaries.
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Introduction

With the further development of various deep learning tech-
nologies, how to efficiently extract the primary information
from the original massive data in the 5G era, where text
resources are growing exponentially and communication
technologies are developing by leaps and bounds [1–3], has
become a pressing problem. Automatic summarization is a
task to make a concise and fluent summary of the source
text, which has two main types of generation technologies:
extractive and abstractive. The former directly copies some
words from the original text [4], while the latter can flexibly
generate new words and phrases that are not found in the
original one [5].

Deep neural network-based sequence-to-sequence
(Seq2Seq) methods are gaining tractions in various applica-
tions due to their feature representing capacity [6, 7].Most of
the existing studies on abstractive summarization (AS) also
use Seq2Seq architecture [8] and have achieved promising
results. However, along with the increasing number of AS
generation tasks, researchers found that nearly 30% of the
AS distort or fabricate factual information (FI) in the articles,
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making even the generated summaries unusable. As shown in
the example in Fig. 1, the FI refers to the basic facts described
or implied in the article, similar to the theorems inmathemat-
ics, which cannot be denied and tampered with. Otherwise,
there will be obvious ambiguities, i.e., factual errors.

In fact, some researchers have taken it into account in
their work and have pushed the frontiers of ensuring consis-
tency of FI in AS. Cao et al. [9] leveraged open information
extraction and dependency parse techniques to extract factual
descriptions and then guide AS. Falke et al. [10] proposed
to rearrange candidate summary sentences through textual
entailment models. Kryscinski et al. [11] proposed a weakly
supervised approach to verify the factual consistency of gen-
erated summaries. Wang et al. [12] designed a framework
for automatically detecting factual errors in supervised gen-
erated texts and use this it to develop QAGS, a metric used to
measure factual consistency in AS. These models focus on
proposing metrics to evaluate factual consistency, but they
do not explore how to reduce factual errors. Later, some
work looked at model designs to further address this problem
in AS. For example, Zhang et al. [13] proposed to opti-
mize the summary model with factual correctness reward
by reinforcement learning. Dong et al. [14] used the knowl-
edge learned from the question–answer model to correct
the system-generated summaries through the span selection
strategy. Zhu et al. [15] proposed a fact-aware summary
model FASUM and a fact-corrector model FC, which frames
the correction process as a seq2seq problem to make the cor-
rected summarymore realistically consistent with the article.
These models are indeed effective in improving the factual
consistency of AS, but often at the cost of greatly reducing
the rouge scores of the generated summaries.

On the other hand, in scenarios such as news, where
text and images often appear in parallel, but most of the
current AS models are based on a single text modality,
ignoring the interaction and supplementation of multimodal
knowledge. Knowledge graph (KG) is a network structured
knowledge base containing rich semantic information and
knowledge; however, general KG is often prone to problems,
such as insufficient entity and relationship information, and
researchers often use techniques, such as knowledge graph
embedding and knowledge graph complementation to solve
it. These two types of approaches enhance the informative-
ness and optimize the structure of the KG by reasoning
new information on the basis of existing information and
constructing entity and relationship nodes into a continuous
vector space, respectively, so that various models and down-
stream tasks can better utilize the KG. In our opinion, the
knowledge embedding approach using graph networks is an
effective strategy to represent rich FI in different modalities.

In this paper, we design a novel cross-modal knowledge
guided model (CKGM) that incorporates external KG in the
upstream encoding part of the AS task to accomplish cross-

modal information interaction and knowledge augmentation.
Specifically, we first introduce a multi-granularity entity-
relation representation graph to extract structured factual
graph elements, followed using a multi-scale semantic and
spatial feature extractionmethod to obtain a scene graph con-
taining image entity information, then design a multimodal
knowledge graph (MKG) incorporating the image entity rela-
tionship information and textual factual information, and
finally embedded it into BERT as external knowledge during
the training of the model. The pre-training approach obtains
rich contextual semantic information, while the knowledge
graph complements the lack of knowledge of textual infor-
mation. In addition, an entity memory embedding algorithm
is further proposed to improve information fusion efficiency
and model training speed.

Our contribution can be summarized as follows:

(1) Inspired by the knowledge graph embedding strategy, a
novel pre-trained language model CKGM incorporating
multimodal knowledge is constructed for knowledge sup-
plementation and factual information enhancement inAS
task.

(2) An entity memory embedding algorithm is designed to
improve information fusion efficiency andmodel training
speed, which achieves good performance.

(3) We analyze the contribution of each component of model
and elaborately conduct extensive experiments on mul-
tiple datasets. Experimental results show that our model
can significantly improve the FI consistency and infor-
mativeness of generated summaries.

The remainder of this article is structured as follows. In the
section“Relatedworks”, relatedwork is presented. In the sec-
tion“Method”, we introduce the architecture and technical
details of the proposed model. In the section“Experiment”,
the experiment process is introduced, and the experimental
results are analyzed. Finally, some conclusions are drawn in
the section“Conclusion”.

Related works

Abstractive summarization

Sequence-to-sequence (Seq2Seq) [8] is a widely used model
that has greatly facilitated the development of AS [16]. In
2015, Rush et al. [17] first proposed an attention-basedmech-
anism and a neural network languagemodel (NNLM) forAS,
which was the first time to apply the Seq2Seq model struc-
ture to the AS. Later work improved the above structure with
better encoders, such as LSTM and GRU, to further capture
long-range dependencies [18]. After that, to alleviate prob-
lems, such as unregistered words, generation of duplicates,
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Fig. 1 Factual errors in the summarization

etc., which are prone to occur when using only Seq2Seq to
generate summaries, See et al. [19] proposed adding Copy
and Coverage mechanisms to Seq2Seq and Paulus et al. [20]
further incorporated a novel intra-attention and reinforce-
ment learning. Then, Li et al. [21] proposed sentence-level
attention and sentence-level Coverage mechanism.

More recently, researchers have found that nearly 30%
of the abstractive summaries contain factual errors. In fact,
some studies have attempted to address this problem. On
the one hand, some models have focused on proposing met-
rics to assess factual consistency [9–12], but they have not
further explored how to reduce factual errors. Subsequently,
some work has examined model design to further address
this issue in AS. Zhang et al. [13] proposed an approach
to optimize the summary model with factual correctness
reward by reinforcement learning. Dong et al. [14] used
the knowledge learned from the question–answer model to
correct the system-generated summaries through the span
selection strategy. Zhu et al. [15] proposes a fact-aware sum-
mary model FASUM and a fact-corrector model FC, which
frames the correction process as a seq2seq problem, making
the revised summary more truly consistent with the article.
These above models are indeed effective in improving the
factual consistency of AS, but often at the cost of greatly
reducing the carmine score of the generated summaries. In
this paper, we introduce a multi-granularity entity-relation
representation graph to extract the structured fact tuples and
select the most important FI by defining a scoring function.
Moreover, we believe that cross-modal knowledge graph
embedding based on factual consistency is an effective strat-
egy that can not only represent rich FI in different modes, but
also ensure the information richness contained in the gener-
ated summary through cross-modal information interaction
and supplementation.

Multimodal knowledge fusion

Cross-modal fusion aims to fuse the information contained
in different modalities to realize knowledge interaction and
complementary. Therefore, it can solve the problem of insuf-
ficient and inaccurate summaries generated by relying only
on a single text modality. In recent years, several multimodal
fusion techniques, including weighted summation, direct
splicing, graph attention mechanisms, and bilinear pooling,
have been used to guide various generation tasks [22–24].
In this paper, we do not use the above methods, but through

the construction of KG to fusion the features in the image
and text, to achieve multimodal knowledge fusion. KG is a
semantic network knowledge base, which usually represents
knowledge in terms of triples and is stored as directed graphs.
In recent years, two techniques, knowledge graph embedding
[25] and knowledge graph supplementation, are commonly
used to enhance the information content of the knowledge
graph and optimize the structure of the knowledge graph by
inferring and supplementing new information on top of the
existing information and by constructing entity nodes and
relationship nodes as a continuous vector space, respectively,
so that various models and downstream tasks can make bet-
ter and fuller use of the KG. Inspired by knowledge graph
embedding, this paper extracts multimodal entities and rela-
tions (ERs) by fusing text and image information, and embed
the constructed MKG into the pre-trained language model
BERT to perform the AS task. In addition, an entity memory
embedding algorithm is proposed in our model to improve
the information fusion efficiency and model training speed.

Method

The architecture of CKGM is shown in Fig. 2. We first
construct a MKG fusing image entity-relationship infor-
mation and textual FI, specifically, (a) precoding the input
textual information using the benchmark BERT, (b) we
simultaneously extract multi-scale features from images and
generating entity and entity-relationship graphs, and then use
graph convolutional networks and graph attention mecha-
nisms to infer and generate entity precoding, (c) we also
propose an entity memory embedding algorithm to further
improve the information fusion efficiency and model train-
ing speed, and (d) further, the text precoding is fused with
the image entity and entity-relationship precoding. Finally,
we complete the model training around multiple subtasks
based on BERT. The abbreviations in the section“Method”
are described in Table 1. Next, we will introduce the details
of each part in the following subsections.

Textual FI representation

Multi-granularity entity-relation representation

In the coding layer, we use the benchmark BERT to encode
the basic semantics and feature representation of the text.
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Fig. 2 CKGM architecture

Table 1 Description of abbreviations in Method

Abbreviation Description

Ci Common Eno

Bi Basic Eno

Si Sentence Eno

lB;C The edge between Bi and Ci

lB;B The edge between two Bi

lC;S The edge between Ci and Si

lS;S The edge between two Si

FI Factual information

Eno Entity node

ER Entity relation

ERs Entities and relations

ERG Entity-relation graph

KG Knowledge graph

MKG Multimodal knowledge graph

As shown in Fig. 3, since the overall idea of this part is to
uncover relevant factual information in the text at different
granularities, we embed chapter-level, sentence-level, and
word-level sequences into the encoding layer as the input of
feature embedding, which can be formalized as follows:

Chap_Level = {[CLS] , C1, C2, . . . ,
Cn, [SE P]} (1)

Sent_Level = {[CLS] ,S1,S2, . . . ,

Sn, [SE P]} (2)

Word_Level = {[CLS] ,W1,W2, . . . ,

Wn, [SE P]} (3)

L = {Chap_Level, Sent_Level,Word_Level} , (4)

where [CLS] and [SE P] denote the start and end markers of
the token sequence, respectively, Cn denotes the word encod-
ing of chapter-level sequences,Sn denotes theword encoding
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of sentence-level sequences, Wn denotes the word-level
encoding, n denotes the sequence length of each sequence,
and the input L of the final BERT model is the stitching of
sequences at different levels. Then, through BERT coding,
the hidden states of words in different levels hN

C j , h
N
Sj , h

N
W j

∈ 1 × Rhw can be obtained, where j represents the number
of word positions in the current sequence of levels. We pool
the output encoding vectors of the hidden layers, and then
concatenate the pooled hidden states of different levels.

We further construct a graph structure to represent ERs
built upon the above text encoding. As shown in Fig. 3,
first, we use different types of nodes and edges to repre-
sent different ERs in a global feature dimension, and then
fuse hierarchical labels for the ERs in the graph to fur-
ther enhance their representation. Specifically, three entity
node (Eno) types are defined: common Eno, basic Eno, and
Sentence Eno. Among them, common Eno is defined as Ci

i = 1, 2, .., n, which is directly extracted from the encoded
semantic vector and is the most obvious entity in the original
text. Basic Eno is defined as Bi i = 1, 2, .., n, which can be
derived as a node of common Enos, calculated by averag-
ing the vectors of all common Enos related to it. Sentence
Eno, as the name implies, denotes the node representing a
sentence or a paragraph, defined as Si i = 1, 2, .., n. In addi-
tion, four different types of edges are defined to represent the
relationship between entities: lB;C , lB;B ,lC;S , lS;S . Among
them, lB;C connects a common entity and a basic entity that
can be derived from this common entity; lB;B connects two
basic entities that appear in the same sentence; lC;S connects
the common entity and the sentence it belongs to; lS;S con-
nects all sentences into paragraphs or chapter.

Based on the above constructed graph structure, the lth
layer Graph Convolutional Network (GCN) [26] is used for
convolution and feature learning, and the result of (l+1)-th
layer is formalized as follows:

nl+1
i = ϕ

⎛
⎜⎝

∑
y∈Y

∑

j∈N y
i

1

|N y
i |M

l
yn

l
j + Ml

0n
l
i

⎞
⎟⎠ , (5)

where ϕ represents the activation function,N y
i represents the

set of adjacent nodes connected with nli , and Y represents
the set of relationships of the edges contained in adjacent
nodes.M is the weight matrix between different layers with
dimension R

dn×dn .
After the above iteration, the final representation obtained

is the global representation of each common Eno and entity
relation (ER), converted to higher level features. Next, we
use the graph attention network (GAT) to update the edges
of the relationship between entities, and gradually learn theFI
contained in the graph. Then,we use the attentionmechanism
to make the updating of the edges between entities quickly

converge, and finally obtain an entity and entity-relationship
graph containing FI. Specifically, taking all Enos in the graph
as input to GAT, based on the set of adjacent entities N y

i
mentioned above, we can learn the hidden value of each Eno
through attention mechanism.

FI extraction and importance evaluation

Through the work above, we have obtained the initial repre-
sentation H, the updated representation Hi , and the global
representation of the entityNi , as shown in Fig. 4. Themulti-
head attention weights are calculated as follows:

Multi Head (H, Hi , Ni )

= Concat (head1, head2, head3)W (6)

headi = so f tmax

(
NiWNi

i · HWH
i√

dHi

)
HiWHi

i , (7)

whereWH
i ,WHi

i ,WNi
i are weight matrices, then the multi-

head attention weights of a pair of entities connected by an
edge are calculated, and the entity pair or the adjacent entity
set with higher weight values has higher relevance.

Next, we defined a quadruple Fi = [Hi ,H j , li j ,K],
where i represents the sequence number of FI, Hi and H j

represent the entity pairs with high correlation, and li j rep-
resents the relationship between entity pairs. K represents
the entity with the highest weight in the adjacent entity set
N y

i . We directly concatenate these four elements into an FI
encoding, formalized as ei = [Hi ⊕H j ⊕ li j ⊕K], where ⊕
represents the concatenation operation.Determiningwhether
the FI is important can be defined as a binary problem

Yi = ϕ (Wei + b) (Yi ∈ {0, 1}) , (8)

where W represents the parameter that can be iteratively
updated, b is a bias term, and ϕ represents activation func-
tion. For an FI ei , a key value and a query value are set,
respectively

ki = Wkei (9)

qi = Wqei , (10)

where Wk and Wq are parameter matrices. Then, it can be
classified based on the attention weight between facts, and
the equation is as follows:

Yi = ϕ

⎛
⎝

n∑
j=1, j �=i

qTi ki

⎞
⎠ ; (11)

the higher the score, the more important the FI is. In this way,
we obtain the most important FI.
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Fig. 3 Multi-granularity entity-relation representation graph

Image knowledge representation

Since the sizes of the images are different, the images need to
be normalized first to avoid the possible loss of image infor-
mation in the convolution operation. After pre-processing,
multi-scale semantic and spatial feature are extracted, as
shown in Fig. 5.

To fully extract the ERs of the image, it is necessary to rec-
ognize object category and object position simultaneously.
First, on the basis of the ResNet-101 network [27], we added
additional hidden layers to make the number of layers the
same as the Feature Pyramid Network (FPN) [28]. In partic-
ular, the fifth and sixth hidden layers are composed of three
identical convolution modules, each including two layers of
256 1 × 1 convolution kernels and one layer of 256 3 × 3
convolution kernels. The added 1 × 1 convolution kernels
help to dynamically maintain the dimension of the weights
to affirm the consistency of the features.

FPN is used to extract image features further. We set the
nth convolutionmodule toCn ; each convolutionmodule con-
tains convolution, pooling, and activation operations. Taking
mn as the feature map generated at the nth layer, the output

set Mglobal can be calculated as follows:

Mglobal = {m′
n−k, . . . ,m} (12)

m′
n = mn (13)

m′
n−1 = mn + mn−1 (n > k > 0) (14)

m′
n−k = mn + mn−1 + · · · + mn−k . (15)

Next, we extracted semantic feature ERs based on the Soft
NMS [29] model, and the obtained feature map is utilized to
identify the candidate regions containing important entities
in the image. Whether the entity is important or not can be
regarded as a classification problem cls, and the circle of the
candidate regions can be regarded as a coordinate regression
problem reg, the loss function is as follows:

L ({pi }, {ti }) = 1

Ncls

∑
i

Lcls
(
pi , p

′
i

) + 1

Nreg

×
∑
i

p′
i Lreg

(
ti , t

′
i

)
, (16)

where pi represents the predicted probability of the object
entity, ti is a vector representing the coordinates of the pre-
dicted bounding box, and p′

i , t
′
i are the ground-truth value

of pi , ti , respectively. Ncls and Nreg are the normalization
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Fig. 4 Multi-granularity entity
representation fusion based on
multi-head attention

parameters, and Lcls = −p′
i log(pi ) is the cross-entropy loss.

After completing the extraction of semantic features, we also
extract the spatial feature between image entities, and the
spatial location of two entities can be formalized as follows:

Dm =

⎧⎪⎨
⎪⎩
1, Floor

(
θi j
45◦

)
+ 1 = m

0, Floor
(

θi j
45◦

)
+ 1 �= m,

(17)

where D consists of a set of 8 directions in space, Dm

indicates whether entity j is in the mth direction region of
reference entity i , Floor() is the downward integral func-
tion, and θ i j represents the angle between the central line of
the two entities and the horizontal line.

Based on the above semantic and spatial feature informa-
tion, we further utilize GRU [30] to construct the ERG of
the image. In ERG, nodes represent entities and edges repre-
sent relations between entities. To generate weights using the
relations between entity-relation pairs, the entities are clus-
tered, so that related entities are in adjacent positions and a
relation group, as shown in the following formulas:

Ncut =
k∑

i=1

cut (Xi , Xi+1)

ass (Xi , T )
(18)

cut (Xi , Xi+1) =
∑

p∈Xi ,q∈Xi+1

w(p, q) (19)

ass (Xi , T ) =
∑

p∈Xi ,t∈T
w(p, t), (20)
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Fig. 5 Extraction and reasoning of entity relation of the image

where Xi represents the set of all entities at the i th layer. T
denotes the set of all entities, cut(Xi , Xi+1) is the sum of the
weights of the entities between Xi and Xi+1, and ass(Xi , T )

is the sum of the weights of the entity in Xi to all the entities
connected to it. p, q, t represent the entities in the set. The
function w() calculates the weight between entities.

Knowledge fusionmodule

We have completed the extraction of ERs in the image and
obtained FI in the text. To achieve cross-modal knowledge
fusion, we need to fuse image features with text features to
construct an MKG that will further guide the training of the
pre-trained model and the task of AS. Specifically, we fuse
the obtained entity-relation graph with the multi-granularity
entity-relation representation graph containing textual FI,
and finally, we get the knowledge graph that integrates the
image entity-relation information and textual fact informa-
tion.

A knowledge representation of the KG is denoted as a
triplet Ki = (Ei , E j , Ri j ), where Ei and E j represent enti-
ties. Ri j denotes the relationship between the two entities. In
this paper, we hope to re-determine ERs through a method to

realize the construction of MKG. To this end, we use a neu-
ral network to learn the representation of ERs, with the first
layer projecting a pair of input entities into a low-dimensional
vector and the second layer combining the two vectors into
a scalar that is compared by a scoring function with specific
relation parameters to achieve the final knowledge graph con-
struction. In particular, first, we construct a high-dimensional
feature sequence of entities from text and images byOne-Hot
encoding, and learn the entity representation by a linear func-
tion, as shown in the following formula:

yEi = f
(
WxEi

)
, (21)

where xEi represents the entities after One-Hot encoding,
which represents each entity as the average of its word vec-
tors.W is the weight matrix of the neural network layer. YEi

represents the entity representation learned by the network
layer.

Next, we define YEi ∈ R
n as the entity vector, andWEi ∈

R
n as the parameter matrix, and then, a scoring function of

the ER can be defined as follows:
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G = WEi − WE j

= −
(
2gEi

r

(
yEi , yE j

) − 2g
E j
r

(
yEi , yE j

) + TEi

)
(22)

gEi
r

(
yEi , yE j

) = yTEi
Mr yE j , (23)

where gEi
r represents a bilinear function and the correspond-

ing tensor parameter matrix is TEi ∈ R
n .Mr represents the

parameter matrix.
Then, we can update the knowledge by getting higher

scores with stronger relation, and the loss function is defined
as follows:

Loss =
∑

(
Ei ,E j ,Ri j

)∈{T ⋃
T ′}

ln(exp(−ϑ · g(Ei , E j , Ri j ) + 1),

(24)

where T and T ′ represent positive strong relation and nega-
tive weak relation, respectively. ϑ is a parameter that takes
the value of 1 when the triplet belongs to the positive strong
relation and -1 otherwise.

Multimodal knowledge graph embedding

We designed a novel pre-trained language model CKGM
based on the above MKG embedding and benchmark BERT,
which contains two submodules: the knowledge embedding
module and language module. The knowledge embedding
module adopts GAT to realize structured information percep-
tion and entity embedding. The language module generates
text semantic encoding based on contextual information.

As mentioned in the section “Knowledge fusion module”,
we define the knowledge as a triple Ki = (Ei , E j , Ri j ),
and then, the argument K in the textual FI quadruple Fi =
(Hi ,H j , li j ,K) and the adjacent entities in the ERG are
jointly defined as a new entity set Nv . We define V =
{[MASK ], [CLS], [EOS], w1, . . . , wv} as a vocabulary to
mark contextual information, where [MASK ] represents
the special mark that masks the token and [CLS], [EOS]
represents the start and end marks of the token sequence,
respectively. In addition, we define a token sequence X =
[x1, x2, . . . , xv], and a reference entity set of X is M =
[m1,m2, . . . ,mm], where for each mi = (emi , smi , omi ) of
the sets, emi represents the corresponding entity, while smi ,
omi represent the start and end marks, respectively. To better
integrate external knowledge with text, we also extended the
entity description xemi to the entity emi in the MKG.

Our model first reconstructs the MKG to generate
knowledge-based entity representations by optimizing the
problem that the GAT can only exploit ERs on a single edge.
Specifically, by taking the co-embedding of ERs, we embed

the entity ei into the l-th hidden layer of themodel and encode
it as Emblei

Emblei = LN

⎛
⎝

K∑
k=1

δ

⎛
⎝ ∑

(r , j)∈Nv

ξ kv,r , j W
k f (Embl−1

e j , Rr )

⎞
⎠

⎞
⎠ + Embl−1

ei (25)

ξ kv,r , j = exp(LeakyReLU (aT [Wk Embl−1
ei

⊕
Wk Embl−1

e j , Rr ]))∑
(r ′, j ′)∈N v

exp(LeakyReLU (aT [Wk Embl−1
e j

⊕
Wk Embl−1

e j ′ , R j ′ ]))
,

(26)

where K denotes the number of multi-head attentions.Wk is
the parameter between each layer of themodel, Rr represents
the embedding vector of the relation r between entities, and
the function f () can embed entities and relationships into a
representation; by repeating the above operations, the final
output of entity embedding based on GAT is Embfinalei .

Algorithm 1 Entity memory embedding algorithm
Start:
1: The entity ei is embedded and encoded as Emblei :
2: Transform entity ei into the corresponding entity description xei
3: The language module calculates the context embedding

Embtj = Bei
smi +Bei

omi
2 of all entity descriptions xei

4: The knowledge embedding module selects the suitable Embei
from Emball
5: Update the representation of the Embei :
6: Update the entity description embedding based on the current
language

module before each time step:
7: Calculate the time steps Jinitial before the first update of the

embedded representation
8: Set the increase rate of the update interval λ[i/r ]
9: T (i) = min

(
Jinitial ∗ λ[i/r ],Jnow

)
10: Dynamic update entity embedding Embnew = ξEmbei +
(1 − ξ)EmbT (i)
Update completed

The above embedding of ERs is complementary to the ini-
tial semantic representation generated by the BERT model.
However, such a combination tends to have the problem of
cycle dependence that affects the model’s convergence, so
we further optimize the BERT-based pre-training language
model. To this end,wedivide theBERThiding layers into two
relatively small encoding models with equal numbers. The
former completes the basic encoding of the input sequence
and the initial encoding for the output Embfinalei of the above
knowledge embedding, while the latter fuses the basic con-
textual encoding with the initial encoding of the knowledge
embedding. Specifically, the former initializes the sequence
X = [x1, x2, . . . , xv] as Bemb and sends it to the next, which
also precedes the entity description xei asBei , and integrating
the mean value of encoding between smi and omi in the entity
set mi = (emi ,smi ,omi ) into the entity embedding encoding
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process. The operation of the current time step is as follows:

Bemb = G (xv) (27)

Bei = G
(
xei

)
(28)

Embtj = Bei
smi + Bei

omi

2
. (29)

Through n time steps of iteration, we obtain the final
embedded representation Embfinalei . We use a series of sub-
tasks such as entity classification and relation classification
to complete the pre-training, and take random sampling in
each training s step to further enrich the semantic represen-
tation capability of the language model. In addition, due to
the high computational power and training costwhenMKG is
embedded in BERT, we design an entity memory embedding
algorithm to speed up the model training process. Algorithm
1 outlines the proposed approach’s process.

Experiment

In the experiment, we adopt ablation strategy to gradually
carry out experiments for different modules of our model
to verify the effectiveness of each module, including image
feature extraction and entity-relation graph generation, mul-
timodal knowledge graph embedding, and finally to validate
the performance of the proposed model on the text summa-
rization task.

Dataset and evaluationmetrics

Dataset

We conducted experiments on the visual Genome dataset
[31] for validation of image feature extraction and ERG
generation, which contains images, as well as annotations,
attributes, and relationships between entities in the images.

For the experiment of MKG embedding and pre-training
modeling, we used the lightweight dataset FewRel [32] and
MSCOCO dataset [33]. The lightweight dataset FewRel
[32] includes 70K samples on 100 relations. The MSCOCO
dataset [33] is an open-source dataset built by Microsoft for
tasks such as detection, segmentation, including over 120K
images and 5 descriptive texts for each image.

We used the CNN/DailyMail dataset [34] for text sum-
marization, which is one of the most comprehensive datasets
for this task, containing millions of news articles and human-
edited summaries covering different topics and styles. In
this paper, we further preprocess this dataset. In detail, we
anonymized all the documents in the dataset, segmented the
words using the Stanford-CoreNLP parser, and then divided

them into a training set and a test set after converting all
words to lowercase letters.

Evaluation metrics

We evaluated our model with three evaluation metrics. The
first is ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) [35], which is one of the international common
text summary evaluation standards and provides a method
to quickly evaluate a model’s ability to produce summaries
closer to those written by humans. In this paper, we use the
standard ROUGE-1, ROUGE-2 and ROUGE-L metrics to
measure summary quality. These three metrics evaluate the
accuracy on unigrams, bigrams, and the longest common
subsequence.

In addition, in the three downstream subtasks of the
validation module for image feature extraction and ERG
generation, and the two image processing subtasks of the
knowledge graph embedding module, we choose to use the
metric Recall@N, which is a commonly used metric that
measures the relationship score between the real entity rela-
tionship triad and the predicted top N triads.

In the knowledge graph embedding module, we evaluate
the classification task using the commonly used precision,
recall, and F1 values, whose evaluation metrics are calcu-
lated as shown below, where TP represents the number of
samples correctly predicted in a classification, FP represents
the number of samples incorrectly predicted as that classi-
fication in other classifications, and TN is the number of
samples incorrectly predicted as other classifications in that
classification

P = TP

TP + FP
(30)

R = TP

TP + TN
(31)

F1 = 2 × P × R

P + R
. (32)

Experimental results and analysis

Validation of image feature extraction and ERG generation

Since the semantic feature of the image in ourmodel depends
on the ERG, we conduct experiments to verify the effective-
ness of image feature extraction and ERG generation in this
section. The scale and parameter settings are shown in Table
2.

We use three mainstream image processing tasks on the
visual Genome dataset [31] to verify the performance of
the model, namely the Entity-Pre task, which predicts the
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Table 2 Parameter settings of image feature extraction and ERG generation

Feature extraction ERG generation

Parameter Value Parameter Value

Learning rate 0.004 Learning rate 0.004

Decay rate 0.4 Decay rate 0.4

Convolution step length 1000 Random gradient descent impulse 0.9

Anchor frame size [64, 128,256] Random gradient descent optimizer SGD

Random gradient descent impulse 0.8 Loss function Cross entropy loss

Random gradient descent optimizer SGD

Loss function Cross entropy loss

Table 3 There seems to be a problem with the layout of table 3.
Recall@10 and Recall@30 are evaluation indicators and should not
be included in the "Tasks" column. Please adjust the format to match
the original layout.

Task VRD IMP CKGM (Img)

Recall@10

Entity-Pre 29.3 46.5 64.1

Relation-Clas 12.6 26.4 37.8

Relation-Pre 0.5 5.1 21.7

Recall@30

Entity-Pre 38.2 55.7 71.3

Relation-Clas 15.5 26.9 39.4

Relation-Pre 0.7 7.2 25.3

relationship between entities, the Relation-Clas task, which
predicts the relationship between entity categories and enti-
ties, and theRelation-Pre task,whichpredicts the relationship
between entity locations, entity categories and entities. Our
baseline models are IMP [36] and VRD [37], we used the
Recall@N evaluation metric to measure the relationship
scores between the actual ER triples and the predicted first N
triples. As can be seen from Table 3, whether it is recall-10 or
recall-30 evaluation index, the performance of our proposed
model is better than the other twomodels. In detail, compared
to the VRDmodel, our model scores increased by 34.8, 25.2,
and 21.2 for the three tasks on Recall-10, and by 33.1, 23.9,
and 24.6 for the three tasks on Recall-30, respectively. Com-
pared to the IMPmodel, our model scores increased by 17.6,
11.4, and 16.6 for the three tasks on Recall-10, and 15.6,
12.5, and 18.1 for the three tasks on Recall-30, respectively.

Multi-model knowledge graph embedded in pre-trained
languagemodel

In this section, we further implemented theMKG embedding
pre-training language model experiment through a series of
downstream tasks, and the process and results of the experi-
ment are shown below.

The first is the relation classification task, which mainly
allows themodel to predict the relationship between two enti-
ties. Given M relationships of N entities in each prediction,
there will be a total of N × MER pairs, and the model needs
to complete classification of these ER pairs. The lightweight
dataset FewRel [32] is applied to this task, we directly use
the pre-trained language model and set a sequence classifica-
tion layer outside the output layer of the model, by sending
the connected sequence to the sequence classification layer,
the scores of two samples representing the same relationship
can be obtained. We have conducted comparative experi-
ments with the benchmark Transformer [38], BERT [39],
RoBERTa [40], and the above models with GNN added. As
can be seen from Table 4, the precision scores of our model
outperformed all other models when the size of the num-
ber of ER of the input model was set to 5 × 5, 10 × 5 and
10×10, respectively. Specifically, our model scores improve
by 7.7%, 8.4%, and 8.6%, respectively, compared to the base-
line Transformer, and further improve by 0.84%, 0.25%, and
0.38%, respectively, compared to the RoBERTa model with
GNN added, which validates the effectiveness of our pro-
posedmethod. The experimental results are intuitively shown
in Fig. 6, where the input scales are 5 × 5 for the left image,
10×5 for the middle image, and 10×10 for the right image.
It can be observed that our proposed model can effectively
classify the relationships between entities regardless of the
scale of the number of ER of the input model.

In addition, to validate the inference ability of our pro-
posed model to ERs in the MKG, we also designed the entity
classification task to predict the category labels correspond-
ing to new entities in the test set. We conducted experiments
using datasets of different sizes to verify the robustness of
CKGM, namely, full dataset, random half dataset, and ran-
dom quarter dataset. The experimental results are shown in
Table 5. It can be seen that with the reduction of the size
of the dataset, the score of the evaluation index decreases
accordingly. However, the results of our model at the quarter
dataset size are still close to the scores of Transformer on the
full dataset. Specifically, on the full dataset, the precision,
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Table 4 Experimental results of
relation classification task

Model 5 × 5 10 × 5 10 × 10

P R F1 P R F1 P R F1

Transformer 77.6 76.7 75.9 75.4 74.8 74.2 73.6 72.8 71.7

BERT 79.2 78.5 77.8 77.9 77.2 76.4 77.1 76.1 75

Transformer+GNN 78.5 77.9 77.1 77.4 76.9 76 76.8 75.8 75.1

BERT+GNN 80.5 79.2 78.7 79.1 78.3 77.7 78.2 77.2 76.8

RoBERTa 81.8 80.3 79.9 80 79.2 78.8 79.1 78 77.2

RoBERTa+GNN 82.9 82 80.9 81.5 80.2 79.1 79.6 78.7 77.6

CKGM 83.6 83.2 82.4 81.7 81.1 80.7 79.9 79.2 78.1

Fig. 6 Comparison results of different models on entity-relation classification subtask

recall, and F1 values of our models improve by about 30.1%,
30.0%, and 30.2%, respectively, compared to Transformer,
and by about 4.0%, 3.9%, and 3.9%, respectively, compared
to RoBERTa+GNN. Figure7 shows the experimental results
for each model on the full data set (left), half data set (mid-
dle), and quarter data set (right).

Then, we further proposed a downstream task of image-
text retrieval task for experiments on the MSCOCO dataset
[33], including two subtasks: image-to-text retrieval and text-
to-image retrieval. For each text-image pairs, we need to
retrieve the related image based on the text and retrieve the
candidate text based on the image. We conducted compara-
tive experiments on two types of subtasks with other related
work, such as DVSA [41], m-CNN [42], DSPE [43], VSE++
[44], SCAN [45], SCG [46], PFAN [47], etc. The evalua-
tion indexes include Recall@1, Recall@3, Recall@5, and
Recall@10, and the experimental results are shown in Table
6. It can be seen that both CKGM and other models have
better performance on text-based related image retrieval task
than image-based related text retrieval task. Meanwhile, our

model performs better than other models on different evalua-
tion indicators of the two types of subtasks, and its scores are
both above 70 points. In detail, compared with the [47], our
model improved by 3.9%, 5.6%, 5.6%, and 6.3% in image-
based related text retrieval task, and by 4.4%, 3.9%, 6.3%,
and 7.3% in text-based related image retrieval task, respec-
tively. Obviously, our model can match the most relevant
series of image and text pairs in in such tasks, which reflects
the effectiveness of our proposed model.

Text summary generation based on CKGMmodel

We compare our method with other state-of-the-art models
on the CNN/Daily Mail dataset, including BanditSum [48],
NeuSum [49], JECS [50], PG+SA [51], REFRESH [52],
LATENT [53], BERTSum [54], PNBert [55], HiBert [56],
ExtraPhrase [57], DRAS [58] etc. As can be seen from Table
7, our proposed CKGMperformsmore effectively than other
models. Its scores on R-1, R-2, and R-L improved by 19.9%,
45.6%, and 16.8%, respectively, compared with the worst
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Table 5 Experimental results
of entity classification task

Model Full Half Quarter

P R F1 P R F1 P R F1

Transformer 62.5 61.7 61 49.2 48.1 47.6 33.2 32.6 31.4

BERT 70.2 69.4 68.7 56.1 55.1 54.4 39.7 38.5 38

Transformer+GNN 65.1 64.2 63.7 51 50.1 48.9 34.1 33.4 31.8

BERT+GNN 73 72.6 72.1 60.4 59.7 58.9 42.6 41.4 40.7

RoBERTa 75.9 74.3 73.1 63.9 62.3 61.7 44.7 43.6 43.1

RoBERTa+GNN 78.2 77.2 76.4 67.2 66 65.3 47.2 46.4 45.6

CKGM 81.3 80.2 79.4 69.5 69.1 68.3 52.1 51.4 50.8

Fig. 7 Comparison results of different models on the entity label classification subtask

Table 6 Comparative
experimental results of the two
types of subtasks

Model Image-based related text retrieval Text-based related image retrieval

R@1 R@3 R@5 R@10 R@1 R@3 R@5 R@10

DVSA [41] 41.4 42.5 42.9 43.3 42.5 43.6 43.8 44.3

m-CNN [42] 44.1 44.7 45.2 47.1 45.1 45.8 46.5 47.2

DSPE [43] 49.7 50.2 50.8 52 50.5 51.3 52.7 53.5

VSE++ [44] 52.4 53.2 53.9 55.1 54.3 54.9 55.6 56.2

SCAN [45] 57.9 58.6 59.3 60.1 59.4 60.8 61.3 62.1

SCG [46] 65.6 66.3 67.5 68.3 65.8 66.3 67.4 68.6

PFAN [47] 69.6 70.2 71.5 73 70.3 71.1 71.7 72.9

CKGM 72.3 74.1 75.5 77.6 73.4 73.9 76.2 78.2

model [48]. And our model improves 5.5% and 0.8% on R-
2 and R-L, respectively, compared to the DRAS [58] with
the highest R-1 score. In this paper, our model fuses multi-
modal features, so the generated text encoding contains richer
semantic information. In addition to the text, it also contains
rich context representation and entity-relation information of

the image, so as to improve the effect of text summary gener-
ation. To further visualize the experimental results, as shown
in Fig. 8, it can be seen that our proposed model works well
on all three metrics.
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Table 7 Index scores of each model
on CNN/Daily Mail dataset

Model CNN/Daily Mail

R-1 R-2 R-L R-1 R-2 R-L

BanditSum [48] 34.31 12.85 32.74 BERTSum [54] 38.45 16.85 37.17

NeuSum [49] 34.56 13.62 33.35 PNBert [55] 38.87 17.01 37.29

JECS [50] 36.82 14.75 34.03 HiBert [56] 39.91 17.31 37.64

PG+SA [51] 38.15 16.98 33.20 ExtraPhrase [57] 40.57 18.22 37.51

REFRESH [52] 38.27 16.51 35.85 DRAS [58] 41.35 17.73 37.91

LATENT [53] 38.64 16.46 36.14 CKGM 41.13 18.71 38.24

Fig. 8 Comparison results for text summaries on the CNN/Daily Mail
dataset

Ablation studies

Evaluation of unimodal text summary

To verify the effectiveness of unimodal (text-only) summary
generation, we set up ablation experiments on the multi-level
encoding module, the multi-granularity entity representation
module, and the multi-head attention of our proposed model.
Specifically, as shown in Fig. 9, the multi-level encoding
module contains three strategies: word-level, sentence-level,
and chapter-level encoding. And the FI extraction module
also contains three strategies: initial, updated, and global
entity representation. Based on the above strategies,we set up
six groups of experiments (including full model as a control
group) on CNN/Daily Mail dataset and adopted ROUGE-1,
ROUGE-2, and ROUGE-L as evaluation indexes. The exper-
imental results are shown in Tables 8 and 9.

Fig. 9 Different strategies for ablation experiments
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We observed that the complete model achieved the best
scores on all three indexes. When the model lacks the global
entity representation, its scores of R-1, R-2, and R-L indexes
on theCNNdataset decreased by 6.37, 3.86, and 4.08, respec-
tively, compared with the complete model, which is due to
the fact that the global entity representation integrates rich
context information and contains FI that plays a key role
in text summarization. When the model lacks the multi-
head attention mechanism, it performs much better than
without other modules, but it is still does not perform as
well as the complete model. its scores of R-1, R-2, and
RL indexes on the Daily Mail dataset decreased by 2.5%,
0.9%, and 1.3%, respectively, compared with the complete
model, this is because although the multi-level coding and
multi-granularity entity representation can integrate contex-
tual features and relationships, the model cannot incorporate
and embed FI well without multi-head attention. The exper-
imental result proves the effectiveness of each module in
the model, whether multi-level encoding module, multi-
granularity entity representation, or multi-head attention,
they all play an important role in the performance of the
text summary generation.

Evaluation of CKGM for AS

To demonstrate and analyze the effect of our proposed model
CKGM on AS task, we further set up ablation strategies and
conducted experiments on it. Specifically, in addition to the
multi-level encoding module and the multi-granularity entity
representationmodulementioned in “Evaluation of unimodal
text summary”, we further added the multi-scale image fea-
ture extraction module and the MKG embedding module to
verify the effectiveness of our model.

As can be seen from Table 10, by comparing the exper-
imental results of (A) and (B), the model using only multi-
level coding and multi-granularity entity representation has
increased by 0.78, 1.09, and 0.37, respectively, compared
with only using multi-scale image feature and MKG embed-
ding, and its better performance on the R-2 index confirms
that the CKGM can extract the most relevant entity-relation
information well. By comparing the experimental results of
(C), (D), (E), (F), and (G), we observe that the models (E)
and (F) obtained better scores than models (C) and (D),
which indicates that multi-scale image feature and MKG
embedding have more important gains for the model. With-
out multi-scale image feature extraction, the entity-relation
information contained in the image cannot be fully identi-
fied and extracted. In the end, the model with all modules
achieved the most outstanding experimental performance.
The scores on the three indexes are 41.97, 19.36, and 39.65,
respectively, which are 4.01%, 9.87%, and 4.70%higher than
the model (F), respectively, which validates the effectiveness
and advancement of our proposed model. Ta
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Conclusion

In this work, we propose a novel Cross-modal Knowledge
Guided Model (CKGM) for AS. First, we introduce a multi-
granularity entity-relation representation and extract the FI
of the text, and define a scoring function to complete the
importance assessment of the FI. Second, we construct the
ERG of the image by extracting semantic and spatial feature
information, and finally design an MKG and embed it into
BERT as external knowledge. In addition, we also propose
an entity memory embedding algorithm further to improve
the information fusion efficiency and model training speed.
Our model can effectively increase the informativeness of
the summaries while improving the factual consistency of
the generated summaries. We conducted a number of com-
parative experiments and evaluated our model on multiple
datasets. Experimental results demonstrate that our proposed
model can improve the performance of text summaries com-
pared to previous works.

In addition, our proposed model (CKGM) in this paper
embeds an MKG to implement the AS task, which can also
be used as a baseline model for other tasks of natural lan-
guage processing, such as question and answer systems, and
sentiment recognition. Therefore, we will continue to work
on improving the training efficiency of themodel, optimizing
the quality of summary, and considering applying our model
to other natural language generation tasks in the future.
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