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Abstract
Surrogate-assisted evolutionary algorithm (SAEA) prevails in the optimization of computationally expensive problems. How-
ever, existing SAEAs confront low efficiency in the resolution of high-dimensional problems characterized by multiple local
optima and multivariate coupling. To this end, this paper offers a dual-drive collaboration surrogate-assisted evolutionary
algorithm (DDCSAEA) by coupling feature reduction and reconstruction, which coordinates two unsupervised feature learn-
ing techniques, i.e., principal component analysis and autoencoder, in tandem. DDCSAEA creates a low-dimensional solution
space by downscaling the target high-dimensional space via principal component analysis and collects promising candidates
in the reduced space by collaborating a surrogate-assisted evolutionary sampling with differential mutation. An autoencoder
is used to perform the feature reconstruction on the collected candidates for infill-sampling in the target high-dimensional
space to sequentially refine the neighborhood landscapes of the optimal solution. Experimental results reveal that DDCSAEA
has stronger convergence performance and optimization efficiency against eight state-of-the-art SAEAs on high-dimensional
benchmark problems within 200 dimensions.

Keywords Expensive problems · Surrogate model · Principal component analysis · Autoencoder · Evolutionary algorithms ·
Feature reduction and reconstruction

Introduction

Population-driven evolutionary algorithms (EAs) have
attracted considerable interest and applications in complex
black-box system design and optimization over the past sev-
eral decades. Their applications include but are not limited
to the design optimization of spacecraft and chemical reac-
tors [1, 2], neural network architectures [3, 4], morphological
topology [5, 6], at so forth, because of their simple principles,
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ease of operation, robustness, and especially theweak depen-
dence on the problem attributes. Nonetheless, to locate the
optimal solution to the optimization problem, EAs usually
necessitate triggering a large number of objective function
evaluations. Thismakes them inefficient and computationally
expensive in the resolution of problems involving time-
consuming high-precision simulation and analysis, such as
computational fluid dynamics, finite element analysis, and
physical and chemical experiments, significantly hindering
their practicality [7]. To break the performance bottleneck of
EAs in dealing with computationally expensive optimization
problems, SAEAs have gained wide attention. SAEA boosts
the efficiency of EA in resolving computationally expensive
optimization problems by constructing an inexpensive sur-
rogate model to approximately replace the expensive target
fitness function for fitness evaluation, which considerably
boosts the optimization efficiency of EA [8–10]. The com-
monly used surrogate models mainly include Radial Basis
Function (RBF) [11–13], Kriging or Gaussian Process (GP)
[12–14], Support Vector Machine (SVM) [15, 16], and Poly-
nomial Regression (PR) [17], etc.
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Nowadays, the focuses of SAEAs concern the surro-
gate modeling for different types of optimization problems
or underlying algorithms and the customization of effec-
tive model management strategies to optimally regulate the
balance between the frequency of target fitness function invo-
cations and solution accuracy on maximizing the algorithm
performance. Model management is critical for the correct
convergence of these methodologies. The primary compo-
nents of model management cover the cooperative operation
of the surrogate model with the EA’s learning operators and
the impact of infill samples on the model’s correctness dur-
ing the optimization process. To improve the training quality
and prediction accuracy of the surrogate model, inspired by
the Tri-Training semi-supervised learning technique, Wang
et al. [18] proposed a new surrogate-assisted multi-objective
optimization algorithm MOO-TTSA. The proposal used the
Tri-Training in each iteration to filter the samples with higher
confidence infitness among the candidate solutions to enlarge
the training sample set and optimize the modeling quality
of the surrogate. Tong et al. [19] calculated the leave-one-
out cross-validation error of the training sample set and
constructed the uncertainty prediction model of candidate
solutions basedon theRBFmodel. The sampleswith the best-
approximated fitness and the largest uncertainty in the design
space were chosen for infill sampling, respectively. By lever-
aging the feature selection and feature extraction techniques
in parallel, Guo et al. [20] enriched the training samples with
three different feature attributes and constructed an ensem-
blemodel to approximate the target solution space landscape.
The lower confidence bound and the expected improvement
acquisition functions were also improved depending on the
prediction variance of the three base models. In addition,
considering the diversity and accuracy of surrogate ensem-
ble modeling in the solution space, Yu et al. [21] calculated
the prediction error sum of squares (PRESS) for RBFmodels
pairedwith five different kernel functions by cross-validation
techniques. TwoRBF basemodels with optimal PRESSwere
selected to construct an ensemble model to estimate the fit-
ness of candidate solutions. To improve the accuracy of the
surrogate model and balance the exploration and exploita-
tion of the algorithm, the best and the worst individuals in
the iterative population were selected for real evaluation at
each iteration, respectively.

However, as the problem scale and complexity increase,
the issue of the curse of dimensionality, arising from high-
dimensional complex feature space with multiple local
optima and multivariate coupling, causes the exponential
growth in the demand for the training sample size for sur-
rogate modeling. As a result, the training cost and overfitting
risk of the surrogate model increase, which greatly limits
the effectiveness of SAEA. To improve the computational
efficiency of SAEAs for high-dimensional computation-
ally expensive optimization problems, spatial transformation

and dimensional learning techniques have gained great
attention. For reducing the training cost of GP models in
high-dimensional decision space, Sammon mapping was
employed in [12] to downscale the high-dimensional feature
space to a low-dimensional one, and theGPmodelswere then
constructed in the reduced feature subspace to screen promis-
ing solutions in conjunction with the lower confidence bound
criterion. Similarly, the high-dimensional feature space was
also approximately simplified by the Sammon mapping in
[22], and the iterative population was dynamically assigned
with different differential mutation operators to generate off-
spring individuals based on the feedback information of the
state of the optimal solution. Meanwhile, the global or local
GP models were opted for and constructed in the feature
subspace for different mutation strategies. In [23], an eigen
coordinate system associated with the original coordinate
system was generated through spatial transformation, and
these two coordinate systems were then taken collabora-
tively with RBF-based multi-swam optimization to generate
new candidate populations on a certain probability. When it
comes to complex large-scale expensive optimization prob-
lems, the principal component analysis (PCA)was employed
in [24] to help simplify the modeling complexity of the GP
model by linearly mapping the training samples to a low-
dimensional subspace, so that each objective function can
be well approximated by the GP model to direct the opti-
mization more accurately, and the solutions with the smallest
angle-penalized distances and the largest uncertainties were
chosen for subsequent refreshing of the GP models. Inspired
by the divide-and-conquer philosophy, at each generation,
the large-scale solution space was reduced to a series of
low-dimensional subspaces using PCA and a random fea-
ture selection technique [25], and an adaptive search switch
strategy was used to regulate the search of the subspaces at
different optimization stages, allowing the iterative popula-
tion and surrogatemodel to better accommodate the potential
exploration and exploitation directions offered by the sub-
spaces of the original and mapping spaces. A concept based
on transfer optimization was adopted in [26], wherein a sim-
plified problem space was constructed for the target problem
feature space in line with the principal component analy-
sis (PCA). The simplified problem space and the mapping
relationship matrix between the two spaces are periodically
reconstructed and updated according to the squared recon-
struction error to ensure a positive transfer of the optimal
information during the bi-spatial search. In [27] opted for
a feature selection technique to condense the large-scale
decision space and local surrogates were trained to approxi-
mate the landscape of the resulting low-dimensional feature
subspace. Unlike the aforementioned approaches, the high-
dimensional feature spacewas compressed and reconstructed
via the encoding and decoding operators of an autoencoder
in [28]. Two variable-size subpopulations were co-evolved
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and communicated in the original high-dimensional feature
space and approximated low-dimensional feature subspace,
significantly improving the solution efficiency of the SAEA
on high-dimensional expensive optimization problems.

The usage of dimension reduction techniques to reduce
the original complex high-dimensional feature space into a
lower, more easily solvable feature subspace, makes it pos-
sible to control the complexity of the surrogate modeling
on one hand. On the other hand, it can greatly increase the
optimization efficiency of the SAEAs for high-dimensional
solution space. Nevertheless, the loss of feature informa-
tion associated with dimension reduction often results in
a mismatch of the optimal structural properties between
the feature subspace and the original feature space, which
directly affects the accuracy and precision of SAEAs. In fact,
in the framework of SAEAs combinedwith dimension reduc-
tion techniques, the mapping relationship model between the
original feature space and the feature subspace is often built
based on a small amount of historical evolutionary samples.
The prediction accuracy of the mapping relationship model
is strongly dependent on the quality and distribution of the
historical evolutionary samples. Meanwhile, the candidate
solutions derived from the feature subspace optimization are
usually subject to inverse mapping to reconstruct features
for generating solutions to be evaluated in the original fea-
ture space. The prediction quality of themapping relationship
model therefore directly determines the correctness of subse-
quent candidate solution screening and evaluation. Currently,
existingSAEAswith dimension reduction techniques usually
use the derived eigenvector matrix from the training samples
for feature reconstruction for the newly generated candidates.
Given the quality discrepancies and distribution characteris-
tics of the training samples, directly adopting the derived
eigenvector matrix for feature reconstruction of the newly
added candidates can easily lead to feature drift, deteriorat-
ing the quality of the candidate samples in the original feature
space and misleading the convergence direction of the iter-
ative population. To address the above concerns, this paper
leverages two unsupervised feature learning techniques, i.e.,
principal component analysis and autoencoder, to perform
feature reduction and feature reconstruction of the high-
dimensional solution space, and proposes a dual-drive col-
laboration SAEA, named DDCSAEA, for high-dimensional
expensive optimization problems. The proposal’s main con-
tributions are as follows.

(1) A new feature reduction-driven surrogate-assisted sub-
space search strategy is proposed to simplify the sur-
rogate modeling complexity and extract the principal
component prior to the optimal solution during the iter-
ation, based on the PCA and an RBF-assisted local
search.

(2) A new feature reconstruction-driven infill-sampling
strategy is designed for reconstructing and filtering the
promising solutions of the feature subspace for real eval-
uation in the target problem space, by taking advantage
of differential mutation and an autoencoder.

(3) A comprehensive analysis concerning the performance
discrepancy of SAEAs under the single and sequential
coupling modes of feature reduction and feature recon-
struction is provided. The contrastive results show that
the proposed method has better robustness and remark-
able performance over five state-of-the-art algorithms
on high-dimensional complex problemswithmulti-type
fitness landscapes.

The remainder of the paper is structured as follows:
“Related work” briefly introduces the principles of the RBF
model, PCA, Autoencoder and the underlying local search
engine. “Dual-drive collaboration surrogate-assisted evolu-
tionary algorithm by coupling feature reduction and recon-
struction” provides the motivation and a detailed description
of the proposed method. “Empirical study” gives the experi-
mental results and analyses. Finally, “Conclusion” concludes
the paper and discusses some future works.

Related work

Social learning particle swarm optimizer

DDCSAEA employs the social learning particle swarm
optimizer (SLPSO) to be the local search engine for the
exploration of the optimal solution GbestRBF of the RBF
in the feature subspace. SLPSO being a new PSO variant
uses the randomly selected excellent exemplars and themean
position of the iterative swarm to replace the personal best
Pbest and the swarm best Gbest, respectively, to guide the
behavior learning of particles. Specifically, during the behav-
ior learning of SLPSO, the iterative swarm members are
first ranked in ascending order of fitness. The smaller the
rank, the better the fitness. Then for each learner (particle),
an exemplar is figured out from the swarm members with
better ranks against the learner to guide its behavior learn-
ing. Here, the best particle in the current iterative swarm is
directly retained in the new iterative swarm without under-
going behavior learning. The experimental results show that
the SLPSO performs excellently in handling complex opti-
mization problems.

Without loss of generality, for the minimization problem,
SLPSO updates the velocities and positions of the particles
with Eqs. (1) and (2), respectively.

�x (t+1)
i j = γ · �x (t)

i j + c1 · (x (t)
k j − x (t)

i j ) + c2 · ε(x (t)
j − x (t)

i j ),
(1)
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x (t+1)
i j =

{
x (t)
i j + � x (t+1)

i j , i f p(t)
i ≤ p(L)

i ,

x (t)
i j , otherwise.

(2)

where, x(t)
i = (x (t)

i1 , x
(t)
i2 , ..., x (t)

i D), 1 ≤ i < N denotes
the position vector of the ith particle at generation t. N and
D represent the population size and the dimensionality of
the problem, respectively. γ is the inertia weight. �x(t)

i =
(�x (t)

i1 , �x (t)
i2 , ..., �x (t)

i D) denotes the behavior correction
vector acting similarly to the velocity correction vector in the
PSO. j denotes the jth decision variable for the ith particle,
and P(L)

i indicates the learning probability of the ith particle,

γ , c1, c2 and p(t)
i are three uniformly distributed random

numbers in [0,1] respectively. x (t)
k j represents the jth element

of the kth exemplar particle with better fitness over the ith

particle, and x (t)
j =

(∑N
i=1 x

(t)
i j

)
/N denotes the mean value

of the iterative swarm in the jth dimension. In Eq. (1), ε is
the social influence factor for controlling the effect of x (t)

j on

behavior learning. In this work, PL
i and ε are set to 1 and 0,

respectively [29].

Radial basis function

DDCSAEAconstructs anRBFmodel to approximate the pro-
jected neighborhood landscape of the iterative swarm in the
feature subspace during the surrogate-assisted feature sub-
space optimization phase, and to estimate the fitness of the
new candidate samples in the feature subspace. RBF, as a
single hidden-layer feed-forward neural network, is more
effective at approximating target problems with different
orders of nonlinearities and varying landscape characteris-
tics than GP, PR and SVR, and has the advantage of being
less sensitive to the training sample size and problem scale
[30–32].

Formally, an RBF model can be obtained by interpolating
the N pairs of training data (x1, f (x1)), (x2, f (x2))..., (xN ,
f (xN )), xi ∈ Rd , f (xi ) ∈ R, i = 1, 2, ..., N , according to
Eq. (3) [33].

f̂ (x) =
N∑
i=1

αiϕ(‖x − xi‖) + p(x), (3)

where ‖·‖ and ϕ(·) denote the Euclidean norm and kernel
basis function, respectively. Commonly used kernel basis
functions include cubic splines, thin-plate splines, gaussian,
linear splines, and multi-quadrics splines. In this work, we
opt for the thin-plate spline to construct the RBF to approxi-
mate the landscape of the feature subspace due to its excellent
smoothing performance [34]. In Eq. (3), αi ∈ R represents
the interpolation weight of kernel basis function over xi .
p(x) indicates a linear polynomial in d variables that meets∑N

i=1 αi p(xi ) = 0. The hyperparameters in Eq. (3) can be

derived from the following system of equations.

(
� P
PT 0

)(
α

c

)
=

(
F
0

)
(4)

where � ∈ RN×N is the kernel function matrix filled
with �i j := ϕ

(∥∥xi − x j
∥∥)
,i , j = 1, 2, ..., N .α= (α1,

α2, ..., αN )T ∈ RN denotes the weight coefficient vector.
P ∈ RN×(d+1) collects the values of the primary functions of
the linear polynomial p(x) at the interpolated sample points,
and the vector c=(c1, c2, ..., cd+1)

T ∈ Rd+1 gathers the
coefficients of the linear polynomial p(x). F = ( f (x1),
f (x2), ..., f (xN ))T ∈ RN is the vector of fitness for the
interpolated samples. Here the necessary condition for the
coefficient matrix in Eq. (4) to be non-singular is that all
training samples are affinely independent [35].

Principal component analysis for feature reduction

DDCSAEA takes PCA to implement the dimension reduc-
tion for producing a low-dimensional feature subspace by
extracting as much principal feature information as possible
from the original high-dimensional space, thereby effec-
tively controlling the trade-off of the problem complexity
and surrogate modeling complexity and improving the effi-
ciency and accuracy of surrogate-assisted optimization. PCA
is an unsupervised feature learning technique often used
for dimension reduction of high-dimensional data [36]. The
principle of PCA is to generate a set of uncorrelated low-
dimensional feature vectors by performing a singular value
decomposition on the covariance matrix of the centralized
high-dimensional training samples. The new samples are
then linearly projected into the low-dimensional feature
space.

DDCSAEA randomly chooses M samples X(rand) =
(X(rand)

1 , X(rand)
2 , ..., X(rand)

M ) from the database in the
original feature space as the training samples for PCA pro-
jection modeling. Here using a random sample set of the
database for the PCA training, on the one hand, allows the
iterative population to follow the potential exploration and
exploitation directions with equal probability as the opti-
mization proceeds, thus weakening the biased search due
to the biased distribution of the evolutionary samples. On
the other hand, in this way, the optimal neighborhood prior
to the target problem, especially the prior knowledge of the
unexplored optimal regions, can be enriched following the
low-dimensional subspace search on the optimal domain
covered by the iterative population. The basic steps for con-
structing the low-dimension feature subspace by PCA on the
random sample set X(rand) in D-dimensional feature space
are as follows.
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(1) Centralize X(rand) = (x(rand)
i , x(rand)

2 , ..., x(rand)
M ) to

yield X(rand)
c = (x(rand)

c1 , x(rand)
c2 , ..., x(rand)

cM ), where

x(rand)
i = (x (rand)

i1 , x (rand)
i2 , ..., x (rand)

i D )T , x(rand)
ci =

x(rand)
i − xc,i = 1, 2, ..., M , xc = 1

M

∑M
i=1 x

(rand)
i ;

(2) Calculate the covariance matrix R =
X(rand)
c (X(rand)

c )T of X(rand)
c and perform singu-

lar value decomposition on R to obtain R = UDVT;
(3) Take the first Ds (Ds < D) columns of the matrix

U to comprise the low-dimensional feature vector set
Umap = (u1, u2, ..., uDs), and construct the Ds dimen-
sional feature subspace.

This work sets the feature subspace size Ds = 10 to
balance the optimization performance and feature informa-
tion loss of the DDCSAEA. The sensitivity analysis on the
parameter Ds is detailed in “Sensitivity analysis”. Based on
the PCA model, the projection vector X(sub)

new in the feature
subspace of the newly added sample Xnew in the origi-
nal high-dimensional feature space can be derived from
X(sub)
new = (Umap)

T (Xnew − Xc).

Autoencoder for feature reconstruction

DDCSAEA selects the candidate solutions obtained from the
low-dimensional feature subspace as input data to train an
autoencoder [37, 38], which is then adopted to reconstruct
these candidate solutions into the original high-dimensional
feature space for infill-sampling. The autoencoder is also
an unsupervised feature learning technique depending on a
backpropagation algorithm and optimization methods [39,
40]. As an important feature learning technique, autoencoder
has been widely used in areas such as image classification
and pattern recognition [41]. The autoencoder is essentially
made up of a binary symmetric structure with an encoder and
a decoder, as shown in Fig. 1a.

Given p input data Xinput = (Xinput
1 , Xinput

2 , ..., Xinput
p ),

the autoencoder first encodes Xinput to map it to the hidden
layer’s embedding space: Encoder(Xinput ) → Xembedding ,
and then reconstructs Xembedding at the output end through
decoding to map it back to the original input space:
Decoder(Xembedding) → Xoutput. Mathematically, Eq. (5)
formulates the encoding process of Xinput from the input
space to the embedding space of the hidden layer. The decod-
ing process ofXembedding from the hidden layer’s embedding
space to the output space is formulated in Eq. (6).

Xembedding
j = σ(WXinput

j + b) (5)

Xoutput
i = σ(W′Xembedding

j + b) (6)

where Xinput
j denotes the jth input data, Xembedding

j and

Xoutput
i represent the encoded vector and the decoded vector

of Xinput
j , respectively. σ(·) represents the codec function

and the Sigmoid function is chosen in this work for non-
linear codec transformation. W ∈ R

Ds×D and b ∈ Ds are
the weight matrix and bias vector of the encoding process,
respectively.W′ ∈ R

D×Ds and b′ ∈ D are the weight matrix
and bias vector of the decoding process, respectively. The
weights and bias units in the codec process can be derived
by minimizing the reconstruction error L(w, b) of the input
data Xinput and the output data Xoutput , as shown in Eq. (7).

L(w, b) =
p∑

i=1

∥∥∥Xinput
i − Xoutput

i

∥∥∥2 (7)

Unlike the reconstructionmode of linear PCA, the autoen-
coder learns the bilateral non-linear encoding and decoding
transformations from input data to output data byminimizing
the reconstruction error, so that it can maintain the con-
sistency of data information between the input and output
layers as much as possible, resulting in a strong generaliza-
tion performance [42]. The autoencoder can achieve feature
downscaling and feature upscaling of the input data dur-
ing its encoding process by scaling the number of neuron
nodes in the hidden layer [43]. Therefore, DDCSAEA uses
an autoencoder to encode the candidate solutions of the
low-dimensional feature subspace to expand their dimen-
sionality for reconstructing the corresponding samples of
the original high-dimensional feature space. In this way,
the optimal structural property information about the prob-
lem fitness landscape contained in the candidate solutions
of the low-dimensional feature subspace allows being trans-
ferred. To balance the complexity of autoencoder training
and the efficiency of DDASAEA, the training epoch for the
Autoencoder is set as epoch = 20. The PCA feature reduc-
tion and autoencoder feature reconstruction are shown in
Fig. 1b.

Dual-drive collaboration surrogate-assisted
evolutionary algorithm by coupling feature
reduction and reconstruction

Outline of DDCSAEA

Algorithm 1 gives the pseudocode of the DDCSAEA. The
schema of DDCSAEA is mainly structured in two modules.
One features a PCA-driven feature reduction and an RBF-
assisted evolutionary sampling in the feature subspace. The
other accompanies an autoencoder-driven feature reconstruc-
tion and nearest neighbor principle-assisted infill sampling in
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the original high-dimensional space. The two modules exe-
cute in tandem to realize the transfer and communication

of the principal feature information in the original high-
dimensional space and the low-dimension feature subspace.
Additionally, the differential mutation is carried out on the

nearest neighbors surrounding the optimal solution attained
in the feature subspace optimization to fully exploit the opti-
mal a priori of the solution space.

Fig. 1 Schematic diagrams for
feature reduction and
reconstruction: a feature
reduction and reconstruction by a
single autoencoder; b feature
reduction and reconstruction by
PCA and an autoencoder,
respectively
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Fig. 2 The flowchart of DDCSAEA

Figure 2 presents the flowchart of DDCSAEA, wherein
the dashed line indicates the data flow direction. As shown
in Fig. 2, DDCSAEA first uses Latin hypercube sampling
(LHS) [44] to initialize the iterative swarm with its fitness
calculated by the real objective function. Then the real-
evaluated samples are stored in the database DB, followed
by an ascending ranking of the DB samples based on fit-
ness. Afterward, the PCA-driven feature reduction on the
original high-dimensional space is performed to construct a
low-dimensional feature subspace. Here, a certain number
of random samples of the database is utilized to construct
and update the PCA to reduce the original high-dimensional
problem space into a low-dimensional feature subspace. The
projection of the random sample set in the original problem
space is selected to train a local RBF model to approxi-
mate the landscape of the feature subspace, and the optimum
GbestRBF of the RBF model in the projection domain of
the iterative swarm in the feature subspace is located via the
SLPSO.Thereafter, k nearest neighbors toGbestRBF are cho-
sen to constitute a trial population according to the Euclidean
distance criterion. The trial population then evolves M gen-
erations with DE/rand/1 mutation operator to generate
K × M candidate solutions. Subsequently, the autoencoder-
driven feature reconstruction on these candidate solutions
is implemented to reconstruct these candidate solutions into
the original high-dimensional space in a one-by-one manner.
Here a certain number of randomly selected candidate solu-
tions is used to train the autoencoder. Finally, the Euclidean
distances between the current global best solution and recon-
structed candidate solutions are computed, and the solutions

with the smallest distance are then chosen for real evalu-
ation. During the iteration, the newly evaluated solutions
are archived in DB to update the database and the global
optimum. Repeat the above procedure until the termination
condition is reached, then output the optimal solution.

PCA-driven feature reduction
and surrogate-assisted feature subspace
optimization

To alleviate the high complexity of surrogate modeling in
high-dimensional feature space and improve the prediction
accuracy, DDCSAEA iteratively trains a PCA model to
perform feature reduction on the original high-dimensional
feature space to extract principal features for constructing a
simplified low-dimensional feature subspace. A local RBF
model is then trained by the projections in the feature sub-
space of a certain number of random samples in the database
to approximate the landscape of the feature subspace. To
further manipulate the training complexity of RBF in the fea-
ture subspace, the 2Ds + 1[45] database samples are chosen
for training the RBF model, where Ds denotes the dimen-
sion of the feature subspace. Moreover, to fully exploit a
priori knowledge contained in the principal features, anRBF-
assisted SLPSO search is carried out to find the best solution
GbestRBF of the RBF model in the area covered by the train-
ing samples. Note that other EAs and local search methods
can also be used as the local optimizer. Algorithm 2 pro-
vides a pseudo-code for the surrogate model-assisted feature
subspace optimization based on the PCA feature reduction.
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Autoencoder-driven feature reconstruction

After completing the surrogate-assisted feature subspace
optimization, DDCSAEA further collects the candidate sam-
ples V(candi) after deduplication in the feature subspace to
train an autoencoder for feature reconstruction. Algorithm 3
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provides the pseudocode for autoencoder-driven feature
reconstruction, where S(recons) indicates the set of recon-
structed solutions in the original problem space R

D by the
autoencoder on the associated candidate solution set in the
feature subspace RDs .

To diversify the candidate solutions for the autoencoder
modeling and the subsequent infill-sampling, the nearest
neighbors to GbestRBF further undergo several generations
of differential mutation and crossover operations to generate
a set of trial solutions. In this way, it is possible to assure the
intra-domain transfer of information about the optimal struc-
ture of the feature subspace on the one hand. On the other
hand, it can effectively enrich a priori landscape knowledge
over the optimal region of the feature subspace and provide
enough samples for subsequent feature reconstruction. To
be more specific, the Euclidean distances between the opti-
mal solution GbestRBF and the individuals of the iterative
population PoP(t) is first calculated. Here PoP(t) represents
the corresponding projected population of feature subspace
R

Ds by projecting the iterative population P(t) of the origi-
nal problem space R

D with the PCA model. K individuals
with the smallest distances are then figured out to comprise
a trial population P(tr ial). After that, P(tr ial) performs M
generations of differential mutation and binomial crossover
operations to generate the candidate solution set V(candi). In
this work, DE/rand/1mutation strategy as shown in Eq. (8)
is adopted, where xr1, xr2 and xr2 represent three mutually
exclusive individuals in P(tr ial) and F is the scale factor tak-
ing values in the interval [0.4, 1]

υi = xr1 + F(xr2 − xr3) (8)

For a balance between the training efficiency and predic-
tion accuracy of the autoencoder model, its training set size
is set to NS. If the number of candidate solutions in the

feature subspace exceeds NS, NS candidate solutions are
randomly picked from the candidate set to train the autoen-
coder model; Otherwise, a fraction of individuals in the trial
population P(tr ial) are chosen in the order of fitness priority
to compensate for the training set. Note that the training set
of the autoencoder model undergoes feature reconstruction
to acquire the candidate solution set of the original high-
dimensional feature space for subsequent infill sampling.

It is conceivable that using the autoencoder model to non-
linearly transfer the structural prior information concerning
the optimal region of the feature subspace to the original
problem space at the expense of losing some feature infor-
mation contributes to the dynamic regulation of the structural
prior information of the original problem space. Meanwhile,
as the newly added samples aggregate within the neigh-
borhood of the best solution, the consistency regarding the
optimal structure attributes between the feature subspaceRDs

and the original problem spaceRD is possible to strike a good
balance via the autoencoder-driven feature reconstruction.

Infill-sampling based on the nearest neighbor
principle

Aftermapping the candidate solutions in the feature subspace
back into the original problem space via the autoencoder
model, q samples nbest = (ns1, ns2, ..., nsq) nearest to the
current global best solution Gbest are picked from the can-
didate solution set S(recons) for real evaluation. Algorithm 4
provides the pseudocode of the infill-sampling strategy.Here,
taking the nearest neighbors of the best solution for reevalu-
ation and infill-sampling is capable of increasing the sample
density of the neighborhood the optimal solution locates, thus
enriching the landscape prior to steering the search to rapidly
reach the optimum.
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Table 1 Basic characteristics of selected benchmark problems

No Function Dimension Variable domain Characteristics Global optimum

F1 Ellipsoid 30, 50, 100, 200 [− 5, 5]D Unimodal 0

F2 Rosenbrock 30, 50, 100, 200 [− 2, 2]D Multimodal with narrow valley 0

F3 Ackley 30, 50, 100, 200 [− 32, 32]D Multimodal 0

F4 Griewank 30, 50, 100, 200 [− 600, 600]D Multimodal 0

F5 Rastrigin 30, 50, 100, 200 [− 5, 5]D Multimodal 0

F6 Shifted Rotated Rastrigin (F10 in [49]) 30, 50, 100, 200 [− 5, 5]D Very complicated multimodal − 330

F7 Rotated Hybrid composition function
with a Narrow Basin for the Global
Optimum (F19 in [49])

30, 50, 100, 200 [− 5, 5]D Very complicated multimodal 10

Empirical study

To validate the effectiveness of the proposed DDCSAEA, we
test it over seven widely used benchmark problems featured
by different fitness landscapes at four-dimensional scales,
i.e., 30, 50, 100, and 200 dimensions. Its performance is
compared with eight state-of-the-art algorithms, including
SHPSO [9], TL-SSLPSO [46], SAMSO [23], DESO [47],
TS-DDEO [48], TASEA [22], SADE-AMSS [25] and SAEO
[28], to examine its optimization efficiency. Table 1 lists the
basic characteristics of the selected benchmark problems that
cover the single-peaked landscape with zero-point as opti-
mum, multi-peaked landscapes with zero-point as optimum,
and complex asymmetric multi-peaked landscapes with non-
zero-point as optimum.

Parameter settings

In the following experiments, the population size for DDC-
SAEA is set to 50. Ds = 10 principal features are extracted
via PCA for structuring the feature subspace RDs . The scale
factor F and the crossover probability CR are both set to 0.8,
and K = 5nearest neighbors toGbest are picked to comprise
the trial population P(tr ial). NS = 80 training samples are
chosen for the autoencoder modeling. A sensitivity analysis
concerning the parameters K and Ds on the performance of
DDCSAEA is detailed in the subsequent “Sensitivity analy-
sis”. To control the computational budget, q = 2 solutions
are chosen for real evaluation at each iteration. In addition,
the parameter configurations for the compared algorithms
SHPSO,TL-SSLPSO,SAMSO,DESO,TS-DDEO,TASEA,
SADE-AMSS and SAEO follow the same settings recom-
mended in the relevant literature. All algorithms involved
in the experiments are implemented on a desktop computer
with an Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz.
20 independent runs are assigned to each contestant, and
the maximum number of real objective function evaluations

MaxFes = 1000 is used to trigger the termination condi-
tion.

Behavior analysis of the DDCSAEA

DDCSAEA sequentially couples the PCAmodel and autoen-
coder model for feature reduction and feature reconstruction
of the original high-dimensional problem space. To test its
effectiveness, in this section, we first perform a sensitiv-
ity analysis of parameter Ds to gain some insights into
its impacts on the performance of DDCSAEA. Then, we
draw a comparison on the efficiency of feature reduction
and reconstruction between DDCSAEA coupling with PCA
and autoencoder versus DDCSAEA solely assembling the
autoencoder or the PCA.

Sensitivity analysis

Table 2 records the statistical results of DDCSAEA with
Ds = 5, 10, 30 on 50-, 100-, and 200-dimensional bench-
mark problems over 20 independent runs, respectively,
including the mean and standard deviation of the obtained
best solutions as well as the average time cost (TC). In
Table 2, the best result on each test instance is bolded and
the suboptimal result is highlighted with shadow. As shown
in Table 2, DDCSAEA’s performance improves as the fea-
ture subspace scale grows, but so does its time complexity.
More specifically, DDCSAEA possesses a low time com-
plexity with Ds = 5, but it is hard to locate a better solution
to the selected problems. When the scale of Ds reaches
Ds = 30, DDCSAEA performs the best on a majority of the
selected problems. However, its time complexity is higher
among the comparative cases. In contrast, for DDCSAEA
with Ds = 10, its final results are slightly worse than that
of DDCSAEA with Ds = 30, but its time complexity has
received a great boost. Meanwhile, compared to DDCSAEA
with Ds = 5, DDCSAEA taking Ds = 10 gets better per-
formance, and both have a relatively lower time complexity
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Table 2 The statistical results of DDCSAEA with different Ds

No D Ds = 5 Ds = 10 Ds = 30

Mean (Std.) TC Mean (Std.) TC Mean (Std.) TC

F1 50 9.54e − 02 (1.46e − 02) 9.64e + 01 1.46e − 02 (1.79e − 02) 1.28e + 02 5.14e − 03 (6.05e − 03) 3.88e + 02

100 1.46e − 01 (2.23e − 02) 1.02e + 02 2.15e − 02 (4.05e − 02) 1.36e + 02 8.14e − 02 (1.00e − 01) 4.04e + 02

200 5.33e − 01 (3.01e − 01) 1.05e + 02 1.98e − 01 (5.94e − 02) 1.56e + 02 3.99e − 02 (6.94e − 02) 4.28e + 02

F2 50 4.85e + 01 (5.40e − 03) 9.43e + 01 4.85e + 01 (6.58e − 03) 1.25e + 02 4.82e + 01 (1.94e − 02) 3.86e + 02

100 9.80e + 01 (1.63e − 02) 9.90e + 01 9.80e + 01 (1.19e − 02) 1.33e + 02 9.80e + 01 (6.66e − 03) 3.91e + 02

200 1.97e + 02 (4.29e − 02) 1.09e + 02 1.97e + 02 (7.29e − 02) 1.49e + 02 1.97e + 02 (1.06e − 01) 3.79e + 02

F3 50 3.36e − 02 (1.76e − 02) 9.25e + 01 1.74e − 02 (1.45e − 02) 1.13e + 02 3.65e − 03 (2.75e − 02) 3.04e + 02

100 5.20e − 02 (2.36e − 02) 9.76e + 01 5.14e − 02 (1.95e − 02) 1.17e + 02 1.47e − 02 (1.24e − 02) 3.09e + 02

200 7.99e − 02 (3.63e − 02) 1.07e + 02 4.42e − 02 (3.36e − 02) 1.50e + 02 2.17e − 02 (1.63e − 02) 2.83e + 02

F4 50 1.04e − 04 (1.08e − 04) 9.19e + 01 9.41e − 05 (9.36e − 05) 1.12e + 02 3.36e − 04 (4.94e − 04) 3.26e + 02

100 4.25e − 04 (1.94e − 04) 9.73e + 01 3.45e − 04 (1.53e − 04) 1.21e + 02 2.23e − 04 (3.02e − 03) 3.43e + 02

200 8.56e − 04 (3.16e − 04) 1.17e + 02 7.42e − 04 (2.66e − 04) 1.62e + 02 1.63e − 03 (2.76e − 03) 3.26e + 02

F5 50 7.19e − 02 (9.24e − 02) 9.16e + 01 9.30e − 02 (1.31e − 01) 1.09e + 02 6.24e − 02 (7.88e − 02) 2.82e + 02

100 3.33e − 01 (6.11e − 01) 9.96e + 01 9.51e − 02 (1.88e − 01) 1.15e + 02 9.45e − 02 (1.93e − 01) 3.66e + 02

200 6.10e − 01 (1.20e + 00) 1.09e + 02 1.13e − 01 (1.49e − 01) 1.51e + 02 1.63e − 01 (2.38e − 01) 3.39e + 02

F6 50 1.03e + 03 (1.26e + 01) 1.02e + 02 1.03e + 03 (1.67e + 01) 1.11e + 02 1.02e + 03 (1.28e + 01) 2.64e + 02

100 1.99e + 03 (3.90e + 01) 1.16e + 02 2.00e + 03 (3.52e + 01) 1.26e + 02 1.98e + 03 (5.26e + 01) 3.75e + 02

200 4.39e + 03 (1.03e + 02) 1.59e + 02 4.37e + 03 (1.06e + 02) 2.04e + 02 4.37e + 03 (8.81e + 01) 4.69e + 02

F7 50 9.10e + 02 (7.44e − 02) 1.01e + 02 9.10e + 02 (1.80e − 02) 1.17e + 02 9.10e + 02 (1.58e − 02) 2.92e + 02

100 9.10e + 02 (5.53e − 02) 1.96e + 02 9.10e + 02 (2.04e − 02) 1.95e + 02 9.10e + 02 (2.88e − 02) 4.31e + 02

200 9.10e + 02 (2.34e − 02) 5.90e + 02 9.10e + 02 (9.92e − 03) 6.24e + 02 9.10e + 02 (8.43e − 03) 9.22e + 02

against the case of Ds = 30. Therefore, to strike a good
trade-off of the computational complexity and convergence
performance of the DDCSAEA, Ds = 10 is configured to
regulate the feature subspace scale.

Comparison results of DDCSAEA featured by a hybrid
or single feature reduction and reconstruction technique

For simplicity, we denote the variant of DDCSAEA that
ensembles a single autoencoder for feature reduction and
reconstruction as DDCSAEA-AE, and name another DDC-
SAEA variant as DDCSAEA-PTP that solely assembles
a PCA for feature reduction and reconstruction. Table 3
presents the statistical results of these three contestants for
solving 50-, 100-, and 200-dimensional benchmark prob-
lems. The pairwiseWilcoxon rank sum test on thefinal results
at 95% confidence level is also computed, where “ + ”, “–”
and “≈” indicate DDCSAEA performs significantly better
than, significantly worse than or equivalent to the compared
algorithm, respectively, in terms of the final solutions. As
shown in Table 3, for the selected benchmark problems,
DDCSAEA significantly outperforms DDCSAEA-AE and
DDCSAEA-PTP in obtaining the best solutions for at least

18 test instances, slightly underperforms DDCSAEA-PTP
and DDCSAEA-AE on two test instances, and performs
comparably to DDCSAEA-AE on one instance. To be more
specific, DDCSAEA can obtain significantly better results
than DDCSAEA-PTP and DDCSAEA-AE over 1000 real
fitness function evaluations for all unimodal and multi-
modal test problems except F6, exhibiting good robustness
over the problem scale. For F6 featured a complex multi-
modal fitness landscape, DDCSAEA performs worse than
DDCSAEA-PTP and DDCSAEA-AE in the cases of 50 and
100 dimensions. However, as the scale and complexity of the
problem grow, the performance of DDCSAEA coupled with
PCA and autoencoder improves. Meanwhile, there shows no
significant difference between DDCSAEA and DDCSAEA-
AE in the solution quality on the 200-dimensional F6, on
which the best solution obtained by DDCSAEA is slightly
better than that of DDCSAEA-AE. From Table 3, we can
conclude that in contrast to directly encoding and decod-
ing the original high-dimensional problem space via a single
autoencoder or a single PCA, sequentially coupling PCA
with autoencoder for feature reduction and reconstruction of
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Table 3 Comparison results of
DDCSAEA against
DDCSAEA-PTP and
DDCSAEA-AE on benchmarks

No D DDCSAEA-PTP DDCSAEA-AE DDCSAEA

Mean (Std.) Mean (Std.) Mean (Std.)

F1 50 3.02e + 02 (2.32e + 02) + 1.83e + 01 (8.09e + 00) + 1.46e − 02 (1.79e − 02)

100 8.16e + 02 (3.25e + 02) + 1.06e + 02 (3.01e + 01) + 2.15e − 02 (4.05e − 02)

200 4.62e + 03 (3.54e + 03) + 4.12e + 02 (1.45e + 02) + 1.98e − 01 (5.94e − 02)

F2 50 2.92e + 02 (1.84e + 02) + 6.01e + 01 (5.67e + 00) + 4.85e + 01 (6.58e − 03)

100 4.52e + 02 (1.42e + 02) + 1.27e + 02 (1.56e + 01) + 9.80e + 01 (1.19e − 02)

200 8.20e + 02 (2.57e + 02) + 2.56e + 02 (2.77e + 01) + 1.97e + 02 (7.29e − 02)

F3 50 1.16e + 01 (2.58e + 00) + 6.32e + 00 (7.29e − 01) + 1.74e − 02 (1.45e − 02)

100 1.11e + 01 (2.23e + 00) + 6.36e + 00 (6.80e − 01) + 5.14e − 02 (1.95e − 02)

200 1.02e + 01 (1.69e + 00) + 5.97e + 00 (5.39e − 01) + 4.42e − 02 (3.36e − 02)

F4 50 4.11e + 01 (3.45e + 01) + 1.54e + 01 (4.36 e + 00) + 9.41e − 05 (9.36e − 05)

100 8.38e + 01 (5.51e + 01) + 2.62e + 01 (7.52 e + 00) + 3.45e − 04 (1.53e − 04)

200 1.30e + 02 (1.00e + 02) + 3.96e + 01 (1.24e + 01) + 7.42e − 04 (2.66e − 04)

F5 50 4.51e + 02 (3.52e + 01) + 1.58e + 02 (6.71e + 01) + 9.30e − 02 (1.31e − 01)

100 9.27e + 02 (5.74e + 01) + 3.15e + 02 (8.25e + 01) + 9.51e − 02 (1.88e − 01)

200 1.91e + 03 (7.76e + 01) + 6.97e + 02 (1.48e + 02) + 1.13e − 01 (1.49e − 01)

F6 50 8.75e + 02 (7.29e + 01) – 8.80e + 02 (4.82e + 01) – 1.03e + 03 (1.67e + 01)

100 1.94e + 03 (8.79e + 01) – 1.88e + 03 (4.50e + 01) – 2.00e + 03 (3.52e + 01)

200 4.73e + 03 (1.08e + 02) + 4.42e + 03 (9.17e + 01) ≈ 4.37e + 03 (1.06e + 02)

F7 50 1.26e + 03 (7.94e + 01) + 9.57e + 02 (2.23e + 01) + 9.10e + 02 (1.80e − 02)

100 1.24e + 03 (8.55e + 01) + 9.55e + 02 (1.65e + 01) + 9.10e + 02 (2.04e − 02)

200 1.13e + 03 (4.74e + 01) + 9.45e + 02 (1.22e + 01) + 9.10e + 02 (9.92e − 03)

+ / ≈ / − 19 / 0 / 2 18 / 1 / 2 N / A

the target feature space can significantly improve the perfor-
mance of DDCSAEA, demonstrating the effectiveness and
superiority of this hybrid codec strategy.

Comparison results of DDCSAEA with different training
samples for PCA

PCA tends to extract the principal components of feature
space with larger variance by the training samples, thus using
different training samples for PCA modeling differentiates
the extracted principal components, due to the different dis-
tribution and quality of the training samples. This subsection
explores the potential impact on the performance of DDC-
SAEA with different training samples for PCA modeling.
Here, the DDCSAEA compares with its two variants, i.e.,
DDCSAEA-TB and DDCSAEA-TW. In terms of PCAmod-
eling, DDCSAEA-TB chooses the best sample set of DB
to be the training samples, while DDCSAEA-TW uses the
worst sample set of DB. Table 4 shows the statistical results
of these three competitors on the selected benchmark prob-
lems with the best results on each instance being highlighted.
From Table 4, one can observe that DDCSAEA can obtain
the best results than DDCSAEA-TB and DDCSAEA-TW
on all the test instances except 100- and 200-dimensional

F6, indicating the remarkable superiority of using a random
sample set in the database for PCA modeling. In fact, as
the optimization process progresses, the best samples in DB
aggregate in the decision space exacerbating the difficulty of
exploration with smaller variances in the principal direction,
while the worst samples in DB deteriorate the exploitation.
In contrast, using the random samples for PCA training is
promising to promote diversity in search and help escape the
shackles of local optimality by emphasizing exploration of
the unexplored areas with random principal components.

Comparison results of DDCSAEA versus five
advanced algorithms without feature reduction

To further investigate the computational efficiency of the
proposed DDCSAEA, we carry out a comparison of DDC-
SAEA with five advanced algorithms without feature reduc-
tion, including SHPSO, TL-SSLPSO, SAMSO, DESO, and
TS-DDEO. Table 5 shows the statistical results of these con-
testants on the selected benchmark problems. As shown in
Table 5, in general, DDCSAEA performs significantly better
than the five competitors for a majority of the selected test
instances. According to the results derived from the pairwise
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Table 4 Comparison results of
DDCSAEA against
DDCSAEA-TB and
DDCSAEA-TW on the selected
benchmarks

No D DDCSAEA-TB DDCSAEA-TW DDCSAEA

Mean (Std.) Mean (Std.) Mean (Std.)

F1 50 3.50e − 01 (2.93e − 01) + 4.35e − 01 (6.09e − 01) + 1.46e − 02 (1.79e − 02)

100 1.23e + 00 (1.22e + 00) + 1.94e + 00 (1.76e + 00) + 2.15e − 02 (4.05e − 02)

200 5.87e + 00 (6.03e + 00) + 9.02e + 00 (8.75e + 00) + 1.98e − 01 (5.94e − 02)

F2 50 4.88e + 01 (3.99e − 01) + 4.87e + 01 (2.20e − 01) ≈ 4.85e + 01 (6.58e − 03)

100 9.94e + 01 (1.22 e + 00) + 9.89e + 01 (1.15e + 00) + 9.80e + 01 (1.19e − 02)

200 2.00e + 02 (3.13e + 00) + 2.00e + 02 (2.64e + 00) + 1.97e + 02 (7.29e − 02)

F3 50 7.82e − 02 (4.51e − 02) + 9.01e − 02 (5.63e − 02) + 1.74e − 02 (1.45e − 02)

100 8.92e − 02 (3.41e − 02) ≈ 9.03e − 02 (2.44e − 02) + 5.14e − 02 (1.95e − 02)

200 1.00 e − 01 (3.75e − 02) + 1.18e − 01 (5.75e − 02) + 4.42e − 02 (3.36e − 02)

F4 50 7.75e − 04 (7.31e − 04) + 7.83e − 04 (8.33e − 04) + 9.41e − 05 (9.36e − 05)

100 8.91e − 04 (4.49e − 04) ≈ 9.70e − 04 (5.24e − 04) + 3.45e − 04 (1.53e − 04)

200 1.40e − 03 (9.06e − 04) + 1.64e − 03 (8.71e − 04) + 7.42e − 04 (2.66e − 04)

F5 50 2.70e + 00 (3.46e + 00) + 1.95e + 00 (1.97e + 00) + 9.30e − 02 (1.31e − 01)

100 4.38e + 00 (3.68e + 00) + 4.68e + 00 (2.64e + 00) + 9.51e − 02 (1.88e − 01)

200 1.26e + 01 (1.12e + 01) + 9.11e + 00 (7.48e + 00) + 1.13e − 01 (1.49e − 01)

F6 50 1.05e + 03 (7.88e + 00) + 1.04e + 03 (5.66e + 01) ≈ 1.03e + 03 (1.67e + 01)

100 1.97e + 03 (4.67e + 01) – 1.98e + 03 (2.57e + 01) ≈ 2.00e + 03 (3.52e + 01)

200 4.39e + 03 (6.82e + 01) ≈ 4.35e + 03 (9.10e + 01) ≈ 4.37e + 03 (1.06e + 02)

F7 50 9.10 e + 02 (2.55e − 01) ≈ 9.10e + 02 (4.71e − 01) ≈ 9.10e + 02 (1.80e − 02)

100 9.10e + 02 (1.15e + 00) ≈ 9.11e + 02 (8.65e − 01) + 9.10e + 02 (2.04e − 02)

200 9.11e + 02 (1.18e + 00) + 9.11e + 02 (2.76e − 01) + 9.10e + 02 (9.92e − 03)

+ / ≈ / – 15 / 5 / 1 16 / 5 / 0 N/A

Average
ranking

2.26 2.52 1.21

Wilcoxon rank sum test at a 95% significant level, DDC-
SAEA significantly outperforms SHPSO, TL-SSLPSO, and
SAMSO on at least 22 test instances and significantly out-
performs DESO and TS-DDEO on at least 19 test instances.
Furthermore, according to the average rankings computed
by the Friedman test, the proposed DDCSAEA ranks first
among the contestants, indicating its strong computational
efficiency and robustness.

To be more specific, as shown in Table 5, DDCSAEA
outperforms the other comparative algorithms for the 30-
dimensional unimodal problem F1. However, as the dimen-
sionality of the problem increases, DDCSAEA’s perfor-
mance improves and significantly outperforms SHPSO, TL-
SSLPSO, SAMSO, and DESO, whereas its computational
efficiency necessitates being further improved in contrast
to TS-DDEO. We speculate that this is mainly due to the
surrogate-assisted dimension-by-dimension crossover strat-
egy in TS-DDEO. Underlying the dimension-by-dimension
crossover strategy on the current optimal solution with a
portion of the optimal sample set, TS-DDEO updates the
global optimum by yielding as many candidate solutions as
possible in the neighborhood of the optimal solution. This

in turn enhances the algorithm’s local exploitation to the
neighborhood of the optimum and significantly increases the
algorithm’s convergence accuracy, especially for unimodal
problems. Nonetheless, DDCSAEA can obtain significantly
better solutions than TS-DDEO for the multimodal problems
F4, F5, and F7.

For F2, whose global optimum locates in a narrow
basin, the proposed DDCSAEA yields superior results
over SHPSO, TL-SSLPSO, and SAMSO in 30- and 50-
dimensional cases, while its final results are not as good
as that of DESO and TS-DDEO. However, under the sce-
nario of 100- and 200-dimensional instances,DDCSAEAhas
achieved the best solutions among all the competitors. This
indicates that the neighboring prior knowledge of the opti-
mal solution in the original high-dimensional problem space
can be effectively learned through feature reduction, sub-
space local search and feature reconstruction as the increase
of problem complexity.

For F3, which features a symmetric multimodal fitness
landscape, DDCSAEA defeats the other five competitors
in 50-, 100-, and 200-dimensional cases and obtains sig-
nificantly better results. From Table 5, one can note that
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Table 5 Comparison results of DDCSAEA against five advanced algorithms on the selected problems

No. D SHPSO TL-SSLPSO SAMSO DESO TS-DDEO DDCSAEA

Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.)

F1 30 4.07e − 01
(2.35e − 01)
+

7.27e − 05
(1.66e − 04) –

5.70e − 03
(7.20e − 03) –

1.70e − 18
(8.05e − 19) –

8.32e − 14
(9.01e − 14) –

5.76e − 03 (1.15e
− 03)

50 6.76e + 00
(2.41e + 00)
+

5.79e − 01
(1.55e + 00)
≈

5.29e − 01
(2.30e − 01)
+

5.15e − 10
(4.45e − 10) –

7.41e − 11
(5.18e − 11) –

1.46e − 02 (1.79e
− 02)

100 1.22e + 02
(3.22e + 01)
+

2.41e + 01
(1.46e + 01)
+

6.62e + 01
(1.96e + 01)
+

2.01e + 00
(1.10e + 00) ≈

6.04e − 06
(5.94e − 06) –

2.15e − 02 (4.05e
− 02)

200 1.12e + 03
(2.18e + 02)
+

6.02e + 02
(1.24e + 02)
+

1.48e + 03
(1.58e + 02)
+

8.26e + 02
(1.91e + 02) +

6.24e − 01
(3.40e − 01) +

1.98e − 01 (5.94e
− 02)

F2 30 4.65e + 01
(1.25e + 01)
+

2.95e + 01
(1.13e + 01)
+

2.83e + 01
(7.05e − 01) –

2.45e + 01
(1.18e + 00) –

2.70e + 01
(6.58e − 01) –

2.89e + 01 (1.41e
− 01)

50 1.60e + 02
(3.44e + 01)
+

6.81e + 01
(3.06e + 01)
≈

4.99e + 01
(9.90e − 01)
+

4.65e + 01
(6.00e − 01) –

4.80e + 01
(7.28e − 01) –

4.85e + 01 (6.58e
− 03)

100 8.73e + 02
(2.08e + 02)
+

1.30e + 02
(4.98e + 01)
+

2.93e + 02
(3.72e + 01)
+

1.00e + 02
(1.60e + 00) +

1.05e + 02
(1.05e + 01) +

9.80e + 01 (1.19e
− 02)

200 2.72e + 03
(1.50e + 03)
+

9.07e + 02
(1.29e + 02)
+

1.09e + 03
(1.33e + 02)
+

3.43e + 02
(3.28e + 01) +

2.66e + 02
(4.23e + 01) +

1.97e + 02 (7.29e
− 02)

F3 30 4.00e − 02
(1.00e − 02)
+

8.37e − 01
(8.51e − 01)
+

5.87e − 01
(3.79e − 01)
+

3.23e − 05
(1.58e − 05) –

1.54e − 04
(4.33e − 05) –

5.91e − 03 (5.69e
− 03)

50 7.29e − 02
(2.02e − 02)
+

1.13e + 00
(7.22e − 01)
+

1.53e + 00
(3.12e − 01)
+

2.39e − 01
(4.48e − 01) +

1.55e − 01
(2.90e − 01) +

1.74e − 02 (1.45e
− 02)

100 1.19e + 00
(1.36e − 01)
+

2.25e + 00
(3.68e − 01)
+

6.04e + 00
(3.42e − 01)
+

2.76e + 00
(3.30e − 01) +

2.51e + 00
(3.19e − 01) +

5.14e − 02 (1.95e
− 02)

200 1.59e + 00
(2.06e − 01)
+

7.94e + 00
(8.10e − 01)
+

1.19e + 01
(3.55e − 01)
+

5.82e + 00
(3.60e − 01) +

5.59e + 00
(4.01e − 01) +

4.42e − 02 (3.36e
− 02)

F4 30 1.80e − 03
(1.30e − 03)
+

2.30e − 03 (4.9e
− 03) +

4.47e − 01
(1.29e − 01)
+

3.07e − 05
(3.10e − 05) +

3.40e − 03
(3.90e − 03) +

1.25e − 05 (2.43e
− 05)

50 1.60e − 03
(5.14e − 04)
+

3.68e − 02
(5.91e − 02)
+

6.33e − 01
(1.03e − 01)
+

8.80e − 03
(4.80e − 03) +

3.44e − 02
(1.62e − 02) +

9.41e − 05 (9.36e
− 05)

100 6.14e − 03
(2.74e − 03)
+

9.07e − 01
(7.89e − 02)
+

1.07e + 00
(2.12e − 02)
+

1.02e + 00
(9.07e − 02) +

2.51e + 00
(3.19e − 01) +

3.45e − 04 (1.53e
− 04)

200 2.13e + 01
(6.00e − 03)
+

8.52e + 00
(2.94e − 00)
+

8.82e + 00
(1.28e + 00)
+

1.56e + 01
(3.06e + 00) +

7.60e − 01
(6.71e − 02) +

7.42e − 04 (2.66e
− 04)

F5 30 1.86e + 02
(4.40e + 01)
+

9.47e + 01
(2.05e + 01)
+

2.68e + 01
(9.90e + 00)
+

2.21e + 02
(1.51e + 01) +

1.99e + 02
(1.31e + 01) +

6.22e − 02 (1.19e
− 01)
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Table 5 (continued)

No. D SHPSO TL-SSLPSO SAMSO DESO TS-DDEO DDCSAEA

Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.)

50 3.85e + 02
(7.27e + 01)
+

1.80e + 02
(5.29e + 01)
+

3.99e + 01
(1.53e + 01)
+

3.97e + 02
(1.58e + 01) +

3.79e + 02
(3.34e + 01) +

9.30e − 02 (1.31e
− 01)

100 8.89e + 02
(1.01e + 02)
+

3.25e + 02
(1.45e + 02)
+

4.35e + 03
(7.95e + 02)
+

8.80e + 02
(3.75e + 01) +

8.55e + 02
(4.62e + 01) +

9.51e − 02 (1.88e
− 01)

200 1.85e + 03
(1.14e + 02)
+

2.08e + 03
(6.48e + 01)
+

1.68e + 03
(1.27e + 02)
+

1.84e + 03
(3.42e + 01) +

1.82e + 03
(6.29e + 01) +

1.13e − 01 (1.49e
− 01)

F6 30 − 8.32e + 01
(2.88e + 01)–

− 2.52e + 02
(2.12e + 01)–

− 2.39e + 02
(1.93e + 01)–

− 6.36e + 01
(2.09e + 01) –

− 8.92e + 01
(1.66e + 01) –

5.52e + 02 (3.13e
+ 01)

50 1.17e + 02
(2.78e + 01) –

− 1.80e + 02
(3.74e + 01)–

− 1.51e + 02
(3.15e + 01)–

2.00e + 02
(3.75e + 01) –

1.11e + 02
(2.30e + 01) –

1.03e + 03 (1.67e
+ 01)

100 7.94e + 02
(5.74e + 01) –

8.12e + 02
(5.53e + 01)–

7.73e + 02
(5.25e + 02) –

1.23e + 03
(7.19e + 01) –

7.56e + 02
(8.60e + 01) –

2.00e + 03 (3.52e
+ 01)

200 5.53e + 03
(2.78e + 02)
+

5.55e + 03
(1.67e + 02)
+

4.95e + 03
(1.67e + 02)
+

4.88e + 03
(1.43e + 02) +

5.04e + 03
(1.95e + 02) +

4.37e + 03 (1.06e
+ 02)

F7 30 9.42e + 02
(9.79e + 00)
+

9.42e + 02
(1.66e + 01)
+

9.22e + 02
(3.50e + 01)
+

9.59e + 02
(1.56e + 01) +

9.38e + 02
(1.19e + 01) +

9.10e + 02 (7.75e
− 02)

50 9.42e + 02
(9.79e + 00)
+

9.96e + 02
(3.16e + 01)
+

9.78e + 02
(2.80e + 01)
+

1.03e + 03
(2.65e + 01) +

1.00e + 03
(2.12e + 01) +

9.10e + 02 (1.80e
− 02)

100 1.43e + 03
(2.94e + 01)
+

1.40e + 03
(4.30e + 01)
+

1.27e + 03
(3.27e + 01)
+

1.34e + 03
(4.79e + 01) +

1.38e + 03
(3.39e + 01) +

9.10e + 02 (2.04e
− 02)

200 1.46e + 03
(6.01e + 01)
+

1.47e + 03
(1.88e + 01)
+

1.31e + 03
(2.94e + 01)
+

1.35e + 03
(5.78e + 01) +

1.41e + 03
(3.52e + 01) +

9.10e + 02 (9.92e
− 03)

+ / ≈ / – 25/0/3 22/2/4 23/0/5 19/1/8 19/0/9 N/A

Average ranking 4.46 3.95 3.86 3.64 3.05 2.04

DDCSAEA is slightly worse than SHPSO, DESO, and TS-
DDEO in solving the 30-dimensional instance. This may
attribute to DDCSAEA’s iterative execution of feature reduc-
tion and reconstruction on the current optimal solution and
its neighboring candidate solutions for updating the itera-
tive population, resulting in rapid degradation of population
diversity. On the contrary, SHPSO, DESO, and TS-DDEO,
which all involve global exploration sampling of the original
problem space, can effectively maintain the iterative popu-
lation’s diversity as the optimization progresses. Similarly,
for the multimodal problems F4 and F5, as shown in Table
5, DDCSAEA holds good robustness as the problem scale
varies, and the best solutions obtained are significantly bet-
ter than those of the other contestants.

For the asymmetricmultimodal problemsF6-F7, as shown
in Table 5, DDCSAEA performs worse than the other five

competitors in 30-, 50-, and 100-dimensional cases. How-
ever, the performance of DDCSAEA improves significantly
when the problem dimension reaches 200, where the best
solution obtained by DDCSAEA is significantly better than
those of the other five competitors. Particularly, for F7, DDC-
SAEAhas found the best solutionswith high qualities against
the competitors within 200 dimensions, indicating the high
accuracy and good robustness of DDCSAEA in solving such
complex problems. Note that DDCSAEA deploys a PCA to
reduce the complexity of the target high-dimensional prob-
lem space. In this manner, the original problem space can
be well smoothed by getting rid of some redundant feature
information.

To be more intuitive, Figs. 3, 4, 5 and 6 depict the average
performance profiles of each compared algorithm for solving
the selected benchmark problems over 20 independent runs.
In general, DDCSAEA converges rapidly in the early search
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a 30-D F1         b 30-D F2         c 30-D F3         d 30-D F4  

e 30-D F5         f 30-D F6         g 30-D F7
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Fig. 3 Convergence profiles of the compared algorithms for 30-D benchmark problems

a 50-D F1         b 50-D F2         c 50-D F3         d 50-D F4 

e 50-D F5         f 50-D F6         g 50-D F7
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Fig. 4 Convergence profiles of the compared algorithms for 50-D benchmark problems

stage and can quickly locate the local optimal solution at the
expense of very few real fitness function evaluations, e.g.,
optimization on F1–F7 of 30 dimensions. Meanwhile, DDC-
SAEA can still quickly locate the global best solution as the
problem scale increases against the other five contestants,
such as F2, F3, F4, F5, and F7 with 50 to 200 dimensions.
In particular, for F5 and F7, DDCSAEA has better conver-
gence performance than the other five compared algorithms
within 1000 real evaluations, and its superiority persists as the
problem scale increases. This largely benefits from the com-
pression and simplification of the feature space by the PCA
model inDDCSAEA and the surrogate-assisted optimization
of the principal feature subspace, which greatly improves the

accessibility to prior knowledge of the principal features of
the original problem space in the early search stage. Conse-
quently, the promising solutions in the optimal region can
be enriched through feature reconstruction. From Fig. 3,
we can also find that DDCSAEA is less capable of global
exploration in the later search stage than DESO and TS-
DDEO, such as F1, F3, F4 and F6. Nevertheless, as shown in
Figs. 4, 5 and 6, the convergence performance of DDCSAEA
achieves great improvement and is significantly better than
the other competitors in F3 and F4 in 50- to 200-dimensional
instances. What’s more, from Fig. 6, we can observe that
DDCSAEA exhibits remarkable convergence performance
versus the other five compared algorithms.
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a 100-D F1      b 100-D F2       c 100-D F3      d 100-D F4 

e 100-D F5         f 100-D F6         g 100-D F7
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Fig. 5 Convergence profiles of the compared algorithms for 100-D benchmark problems

a 200-D F1       b 200-D F2        c 200-D F3       d 200-D F4

e 200-D F5        f 200-D F6       g 200-D F7
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Fig. 6 Convergence profiles of the compared algorithms for 200-D benchmark problems

According to the aforementioned comparative results
shown in Table 5 and Figs. 3, 4, 5 and 6, it is possible to
conclude that the proposedDDCSAEAholds a fast optimiza-
tion speed against SHPSO, TL-SSLPSO, SAMSO, DESO,
andTS-DDEOunder the computation budget of 1000 real fit-
ness function evaluations. In particular, for high-dimensional
complex problem solution spaces of 100 to 200 dimensions,
DDCSAEA offers significant superiority in terms of conver-
gence performance and robustness.

Comparison results of DDCSAEA versus three
advanced algorithms with feature reduction

The proposed DDCSAEA is further examined for its compu-
tational effectiveness alongside the TASEA, SADE-AMSS
and SAEO. These three contestants take advantage of
dimension reduction techniques to eliminate redundant or
irrelevant features of the target high-dimensional or large-
scale feature space, enabling them to deeply mine the prior
knowledge following the direction of the most important fea-
tures within the solution space, thereby improving surrogate
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Table 6 Comparison results of DDCSAEA against SAEO algorithm

No D TASEA SADE-AMSS SAEO DDCSAEA

Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.)

F1 50 1.37e + 03 (2.39e + 02) + 5.04e + 01 (1.83e + 01) + 8.33e − 15 (3.73e − 14) – 1.46e − 02 (1.79e − 02)

100 7.90e + 03 (9.11e + 02) + 5.82e + 02 (1.21e + 02) + 4.48e − 03 (1.62e − 02) – 2.15e − 02 (4.05e − 02)

200 3.92e + 04 (3.92e + 03) + 7.67e + 03 (1.44e + 03) + 4.21e − 02 (2.78e − 02) + 1.98e − 01 (5.94e − 02)

F2 50 1.52e + 03 (2.94e + 02) + 2.44e + 02 (9.63e + 01) + 4.90e + 01 (2.54e − 02) + 4.85e + 01 (6.58e − 03)

100 4.85e + 03 (7.00e + 02) + 7.70e + 02 (2.01e + 02) + 9.90e + 01 (6.65e − 02) + 9.80e + 01 (1.19e − 02)

200 1.32e + 04 (1.31e + 03) + 2.66e + 03 (5.68e + 02) + 1.99e + 02 (5.31e − 02) + 1.97e + 02 (7.29e − 02)

F3 50 1.70e + 01 (4.21e − 01) + 1.43e + 01 (3.07e + 00) + 1.73e − 01 (4.33e − 01) ≈ 1.74e − 02 (1.45e − 02)

100 1.80e + 01 (3.27e − 01) + 1.73e + 01 (2.26e + 00) + 1.85e − 04 (5.50e − 04) – 5.14e − 02 (1.95e − 02)

200 1.86e + 01 (2.88e − 01) + 1.65e + 01 (9.09e − 01) + 1.16e − 01 (9.37e − 02) + 4.42e − 02 (3.36e − 02)

F4 50 2.05e + 02 (2.76e + 01) + 2.54e + 01 (6.88e + 00) + 4.55e − 11 (1.12e − 10) – 9.41e − 05 (9.36e − 05)

100 6.06e + 02 (7.02e + 01) + 8.52e + 01 (3.01e + 01) + 1.13e − 02 (2.49e − 02) ≈ 3.45e − 04 (1.53e − 04)

200 1.44e + 03 (1.35e + 02) + 2.94e + 02 (4.45e + 01) + 1.19e − 01 (2.88e − 02) + 7.42e − 04 (2.66e − 04)

F5 50 4.95e + 02 (2.56e + 01) + 2.36e + 02 (3.71e + 01) + 1.26e − 01 (1.84e − 01) ≈ 9.30e − 02 (1.31e − 01)

100 1.09e + 03 (3.23e + 01) + 7.50e + 02 (6.14e + 01) + 1.17e − 01 (2.85e − 01) ≈ 9.51e − 02 (1.88e − 01)

200 2.37e + 03 (5.60e + 01) + 1.91e + 03 (7.68e + 01) + 4.00e − 01 (1.98e − 01) + 1.13e − 01 (1.49e − 01)

F6 50 4.08e + 02 (4.36e + 01) – 6.58e + 02 (1.74e + 02) – 8.17e + 02 (8.92e + 01) – 1.03e + 03 (1.67e + 01)

100 1.71e + 03 (1.17e + 02) – 2.12e + 03 (2.42e + 02) + 2.01e + 03 (1.16e + 02) ≈ 2.00e + 03 (3.52e + 01)

200 6.02e + 03 (1.98e + 02) + 6.11e + 03 (2.78e + 02) + 4.86e + 03 (3.38e + 02) + 4.37e + 03 (1.06e + 02)

F7 50 1.18e + 03 (2.65e + 01) + 1.16e + 03 (6.43e + 01) + 9.10e + 02 (0.00e − 00) – 9.10e + 02 (1.80e − 02)

100 1.45e + 03 (2.26e + 01) + 1.48e + 03 (4.51e + 01) + 9.10e + 02 (2.61e − 14) – 9.10e + 02 (2.04e − 02)

200 1.51e + 03 (2.02e + 01) + 1.53e + 03 (3.57e + 01) + 9.10e + 02 (4.23e − 03) ≈ 9.10e + 02 (9.92e − 03)

+ /≈/− 19/0/2 20/0/1 8/6/7 N/A

Average ranking 3.57 3.14 1.79 1.50

model performance and interpretability. TASEA employs
Sammon mapping to project the high-dimensional space
into a lower-dimensional subspace, constructing a global
GP model and a local GP model for different mutation
operators in screening candidate solutions. SADE-AMSS
constructs a series of subspaces using PCA and a random
feature selection strategy, adaptively switching three sub-
space search strategies and surrogate modeling according
to different optimization stages. SAEO uses an autoen-
coder for feature reduction and feature reconstruction of
the iterative population on the high-dimensional solution
space, with a surrogate-assisted greedy sampling in the target
high-dimensional space, achieving excellent optimization
performance. Table 6 presents the statistical results obtained
by TASEA, SADE-AMSS, SAEO, and DDCSAEA on the
selected benchmark problems of 50–200 dimensions, with
the best results on each instance being highlighted. From
Table 6, following the results derived from the pairwise
Wilcoxon rank sum test at a 95% significance level, DDC-
SAEA significantly outperforms TASEA and SADE-AMSS
on at least 19 test instances and significantly outperforms
SAEO on 8 test instances. According to the Friedman test,

DDCSAEA ranks first and attains the best average ranking
of 1.50 among all competitors, followed by SAEO, SADE-
AMSS and TASEA, indicating the superior performance of
DDCSAEA in this category of SAEA with feature reduc-
tion. Additionally, for a more visual representation of the
comparative performance, the radar charts of DDCSAEA
versusTASEA,SADE-AMSSandSAEOare shown inFig. 7.
For the 50-dimensional asymmetric multimodal problem F6,
DDCSAEA demonstrates poorer performance compared to
TASEA, SADE-AMSS, and SAEO. However, the perfor-
mance of DDCSAEA exhibits significant improvement as
the problem dimension increases to 100-dimensional and
200-dimensional, reaching its optimal performance at 200-
dimensional instances. To provide a clearer illustration of
the performancedifferences betweenDDCSAEAandSAEO,
Fig. 8 presents the separate radar charts for these two contes-
tants. From Fig. 8, one can observe that DDCSAEA exhibits
significant superiority against SAEO on the selected bench-
mark problems in terms of comprehensive performance and
maintains strong robustness with the problem scale. Here in
Fig. 8, the F7 is not marked in the radar charts due to the
similar performance of DDCSAEA and SAEO.
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Fig. 7 Radar charts of DDCSAEA versus TASEA, SADE-AMSS and SAEO
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Fig. 8 Radar charts of DDCSAEA versus SAEO

Conclusion

This paper proposes a dual-drive collaborationSAEAnamely
DDCSAEA for complex high-dimensional expensive opti-
mization problems. In the framework of DDCSAEA, two
unsupervised feature learning techniques, PCA and autoen-
coder, are assembled in tandem to drive its exploration and
exploitation across two feature spaces through iterative fea-
ture reduction and feature reconstruction. At each iteration
of DDCSAEA, a PCA model is trained to reduce the orig-
inal problem space for getting a principal feature subspace.
An RBF-assisted SLPSO is then employed to exploit the
optimum of the RBFmodel. After that, the neighboring sam-
ples to the RBF optimum in the feature subspace further
undergo differential mutation and crossover to explore some
promising candidate solutions for enriching the structural
prior information of the optimal region. An autoencoder is
thereafter trained to perform feature reconstruction on these
candidates to project them into the target high-dimensional
space. Finally, these candidate samples and current opti-
mal samples after the feature reconstruction are prescreened
based on the nearest neighbor principle to determine the infill

samples for real evaluation. DDCSAEA is evaluated on a
widely used test suit with various fitness landscapes at dif-
ferent dimensional scales. Experimental results demonstrate
that DDCSAEA features superior convergence performance
and better robustness over eight state-of-the-art algorithms
under the scenario of 30-, 50-, 100-, and 200- dimensional
instances.

However, we also note that DDCSAEA performs poorly
in dealing with some of the medium and low-dimensional
test problems. We speculate that the fixed feature subspace
scale leads to the distortion of the feature subspace optimiza-
tion, resulting in the wrong convergence. In our future work,
the adaptive mechanism of the feature reduction scale to the
original problem scalewill be considered in conjunctionwith
fitness landscape analysis to further improve the applicability
of the DDCSAEA. Applying DDCSAEA to the solution of
real-world expensive problems is also included in our future
work.
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